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Abstract. Remote sensing is the only feasible data source for distributed modelling of snow in mountain re-
gions on medium to large scales, due to the limited access to these areas together with the lack of dense ground
monitoring stations for snow variables. Observations worldwide identify snow cover persistence together with
snowfall occurrence as the most affected variables by global warming. In Mediterranean regions, the spatiotem-
poral evolution of the snow cover can experiment quick changes that result in different accumulation-ablation
cycles during the cold season. High frequency sensors are required to adequately monitor such shifts; however,
for trend analyses, the Landsat time series constitute the only available source of data, being their frequency low
for this regime, especially when cloudy conditions limit the available images. On the other hand, the MODIS
daily series provide more than 15 years of continuous snow maps, despite the spatial resolution may pose a con-
straint in areas with abrupt topography; several approaches have been done to improve their spatial resolution
from combining different information. This work presents a methodological approach to validate the improved
MODIS daily snow cover maps from Notarnicola et al. (2013a, b), with 250 m spatial resolution, in Sierra
Nevada (southern Spain), from a reference data set obtained by spectral mixture analyses of Landsat TM data by
Pimentel et al. (2017b). This reference time series of fractional snow maps, with 30 m spatial resolution, were
validated from high resolution local time series of snow maps obtained by terrestrial time-lapse cameras. The re-
sults show a significantly high correlation between the two snow map products both on a global and basin scales
in the Sierra Nevada area. Selected areas and time periods are shown to address the convergence and divergence
between both products and assess the development of a fusion algorithm to retrieve daily Landsat-resolution
snow maps on a long term basis.

1 Introduction

Remote sensing techniques constitute the best source to pro-
vide distributed information about the snowpack evolution
on medium to long time scales, complementing the tradi-
tional in situ field surveys and automatic ground measure-
ments. Snow cover fraction (SCF) is one of the more reliable
snow related variable measured from the space (Dozier and

Painter, 2004) and is commonly used in hydrological stud-
ies to calibrate, evaluate, or be assimilated into snow dis-
tributed modelling (Andreadis and Lettenmaier, 2006; Para-
jka and Blöschl, 2008; Pimentel et al., 2015) Within the dif-
ferent Earth Observation (EO) missions, (1) Landsat-5 (TM),
Landsat-7 (ETM+) and Landsat-8 (OLI), with 30×30 m spa-
tial resolution and 16 days revisiting time (Roy et al., 2014;
Pimentel et al., 2017a), and (2) MODIS Terra and Aqua, with
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Figure 1. Area of Sierra Nevada Mountain (Spain) above 1500 m a.s.l. and limits of the five regions in which the study area has been divided
for the spatial analysis: R1 – Adra, R2 – Andarax, R3 – Fardes, R4 – Genil and R5 – Guadalfeo.

500 m grid cell resolution and daily temporal frequency for
snow, are the most extended data sources for snow studies,
since they offer the highest spatial and temporal resolution,
respectively (Hall et al., 2002).

However, Mediterranean mountainous areas are extremely
vulnerable to climate change effects and highly dependent
on snow water resources (Barnett et al., 2005; Giorgi, 2006).
The particularities of the snowpack make the use of raw EO
products not enough to capture these specific patterns. For
instance, the very strong spatiotemporal variability, which
very often undergoes different accumulation-snowmelt cy-
cles during the cold season in a given year, or the snow
patched distribution around local singularities, such as rocks
and vegetation, consequence of a very complex ablation pro-
cess (Ménard et al., 2014; Pimentel et al., 2015, 2017b).
Hence, both high temporal and spatial resolutions are re-
quired to have a realistic representation of the snow cover.

In this context Pimentel et al. (2017a) carried out a
spectral mixture analysis to derive fractional snow cover
map time series from Landsat TM and ETM+. High res-
olution terrestrial photography (TP) was used as ground
truth to validate the obtained product. The spatial resolu-
tion of the snow cover area was improved using this tech-
nique; however, the large revisiting time of Landsat TM
and ETM+ in addition to the presence of clouds in some
of the dates with snow presence, constitute a big con-
straint for useful time series. Using the same idea of im-
proving spatial representation of the snow, Notarnicola et
al. (2013a, b) developed an algorithm that combines differ-
ent MODIS products: MOD09GQ-MYD09GQ, MOD09GA-
MYD09GA, MOD021KM-MYD021KM, MOD03-MYD03,
to produce snow cover maps at 250 m spatial resolution and
daily frequency. The algorithm has specific modules to take
into account the effect of vegetation and clouds and increase

the spatial resolution of the standard snow MODIS product,
MOD10A1-MOD10A2, from 500 to 250 m.

This work presents a methodological approach to assess
the improved MODIS daily snow cover maps from Notar-
nicola et al. (2013a, b), in Sierra Nevada (southern Spain),
using as reference data set the Landsat fractional cover
maps obtained by spectral mixture analyses by Pimentel et
al. (2017a).

2 Study site and data available

This study is carried out in Sierra Nevada Mountains, south-
ern Spain (Fig. 1). They are a linear mountain range of 90-
km length that runs parallel to the coastline of Mediterranean
Sea. Alpine and Mediterranean climate conditions coexist
in just a 40-km distance. Strong altitudinal gradients with
marked differences between the south (directly affected to
the sea) and the north faces are found in the area.

The snow usually appears above 2000 m a.s.l. during win-
ter and spring even though the major snowmelt season gen-
erally lasts from April to June, but can be also found at lower
altitudes every year. The typically mild Mediterranean win-
ters produce several snowmelt cycles before the final melt-
ing phase, which distributes the snow in patches over the ter-
rain. Precipitation and temperature regimes are highly vari-
able among years, with annual precipitation values averaged
in the area that can range from 200 to 900 mm and annual
mean of the daily minimum and maximum temperature of
−5 and 30 ◦C, respectively (Pérez-Palazón et al., 2015).

Two snow cover EO products are used in this study:
(1) Fractional snow cover maps, at 30× 30 m and 16 days
spatial and temporal resolution respectively, derived from
spectral mixture analysis of Landsat TM and ETM+ val-
idated using as high resolution terrestrial photography (Pi-
mentel et al., 2017a); (2) binary snow cover maps obtained
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from an algorithm that combines several MODIS products
and produce daily snow cover maps with a grid cell size of
250 m (Notarnicola et al., 2013a, b). In the text these products
will be referred as Landsat-mix and MODIS-EURAC, re-
spectively. Both products have a temporal overlapping from
1 January 2002 to 31 August 2013. For this period, a total
number of 108 and 2963 cloud-free images were used in the
study for Landasat-mix and MODIS-EURAC, respectively;
considering as cloudy images those whose presence of clouds
exceeded a 10 % of the study area.

3 Methods

SCF was calculated over the whole study area in Sierra
Nevada (area above 1500 m a.s.l) and in each one of the five
main headwaters regions: R1 – Adra, R2 – Andarax, R3 –
Fardes, R4 – Genil and R5 – Guadalfeo, for both snow prod-
ucts, Landsat-mix and MODIS-EURAC.

SCF from both products were compared in the 108 com-
mon dates. A simple linear model was fitted in those days to
relate both products. Landsat-mix was chosen as ground truth
and MODIS-EURAC as dependent variable. Equation (1)
was used for that,

SCFLandsat−mix = (SCFMODIS−EURAC× a)+ b, (1)

where a and b are the two parameters of the lineal model.
Using this model, the SCF from MODIS-EURAC was re-
constructed using the 2963 cloud-free images.

4 Results

Figure 2 shows the evolution of SCF from MODIS-EURAC
and Landsat-mix in the overlapping dates for both products
in each of the defined regions and over the whole study
area. SCF follows the same trend for both products, with
a clear overestimation of the SCF derived from MODIS-
EURAC. This overestimation is especially significant dur-
ing the dates with higher SCF values and specifically in R1
– Adra, where differences about 0.20 m2 m−2 can be found
in the 2 days with more snow throughout the study period.
Differences are practically negligible during dates with low
SCF for all the regions. However, this general overestimation
trend from MODIS-EURAC change during the last stages of
the snowmelt season, when its lower resolution is not able to
capture snow remaining isolated snow patches.

Figure 3 and Table 1 show the linear relation found be-
tween the two products and the parameters that fitted these
relationships respectively. The linear pattern is clear for all
regions, with determination coefficients ranging from 0.979
for R4 – Genil to 0.995 for R2 – Andarax, with a clear over-
estimation of MODIS-EURAC.

The parameter a (Table 1), which measures the slope of
the fitted model and consequently determines the magnitude

Figure 2. Comparison between SCF evolution of both products
MODIS-EURAC (black crosses) and Landsat-mix (gray dots) in
the 108 overlapping dates, in each of the regions selected and in
the whole study area.

of the MODIS-EURAC overestimation, differs between re-
gions. Lower values of the parameters, which imply higher
overestimations, are found in the drier and warmer areas
(Pérez-Palazón et al., 2015), 0.700 in R1 – Adra and 0.645 in
R2 – Andarax; located in the south face and with lower mean
elevation. On the contrary, wetter and colder regions have
higher values and consequently less overestimation coming
from MODIS-EURAC. Although, the general accuracy from
MODIS snow products is estimated approximately at 93 %
(Hall and Riggs, 2007) and similar studies has found an
accuracy of 94.6 % comparing MODIS products with sur-
face observations over northern China, (Huang et al., 2016),
the heterogeneity of the snow distribution due to the abrupt
terrain and climate conditions, make the overestimations of
MODIS-ERURAC over this are slightly bigger.

The clear linear fit found allows using this relationship
as a simple model to correct the average values calculated
using MODIS-EURAC over the study area. Overestimation
corrections of 0.30, 0.35, 0.13, 0.20 and 0.23 m2 m−2, were
achieved for Adra, Andarax, Fardes, Genil and Guadalfeo,
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Figure 3. Dispersion graphs comparing both products MODIS-
EURAC (x-axis) and Landsat-mix (y-axis) in the 108 selected dates
along the study period. Linear fit defined following Eq. (1) and the
parameters of Table 1 (red line). 1 : 1 line in light grey.

Table 1. Fitted parameters and coefficient of determination (a, b

and R2) of the linear model that related both products, MODIS-
EURAC and Landsat-mix in each of the region and in the whole
study area.

a b R2

R1 0.700 0 0.992
R2 0.645 0 0.995
R3 0.862 0 0.993
R4 0.792 0 0.979
R5 0.770 0 0.988

Total 0.775 0 0.993

respectively; with a mean value of 0.23 m2 m−2 for the whole
study area. Figure 4 shows an example of the new corrected
values of MODIS-EURAC for the hydrological year 2004–
2005. The general MODIS-EURAC overestimation has been
reduced giving more realistic values of the total SCF over the
study area.

Tables 2 and 3 show the annual mean and maximum
SCF calculated for the three snow products, Landsat-mix
(Land), MODIS-EURAC (MOD) and Corrected MODIS-
EURAC (NEW) in each of the study region and the whole
study area, respectively. Both tables show the clear impact
that this simple correction has on the quality of the results.
The corrected MODIS-EURAC combines the spatial accu-
racy of the Landsat-mix and the high temporal resolution of
the MODIS-EURAC products. Moreover, the direct use of
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Figure 4. Example of reconstruction of MODIS-EURAC snow
cover map for the year 2004–2005.

EURAC-MODIS product presented a general overestimation
during the high snow covered period, which was partially
solved with the correction with the linear model. Further on-
going work is exploring the apparent threshold in the large
SCF values domain that can be observed in the graphs, to-
gether with the different behaviour of Region 5, the mostly-
influenced by snow in the study area.

5 Conclusions

This work shows how the setting out of a simple approach
provides a more accurate evolution of the average SCF values
over this Mediterranean region, combining the advantages of
two already existing products, the high spatial accuracy of
Landsat-mix and the daily temporal resolution of MODIS-
EURAC. The result is a daily time series on which different
studies that require high resolution both of time and space
can be based on. This work constitutes the first step in a more
complex development of a data fusion algorithm that not only
reproduces average behaviour but also snow distribution at
grid/subgrid scales.
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