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ABSTRACT The study of fatigue load reduction in wind turbines has gained significant interest in recent
years. In monopile offshore wind turbines, vibrations induced by misalignment between waves and wind
directions can considerably shorten the tower’s lifespan due to lateral loads. To cope with this issue, this work
focuses on the design and evaluation of control strategies tomitigate these loads. An adaptive active generator
torque control (AGTC) scheme is proposed to mitigate lateral tower fatigue within the nominal region. Two
variants of AGTC are suggested: with or without using a bandpass filter. Amulti-objective optimization using
genetic algorithms is employed to determine the optimal AGTC parameters based on wind speed and wave
height. Objective functions related to tower and low-speed shaft fatigue load reduction, as well as power
fluctuation minimization, are employed. The performance of the proposed AGTC controllers is assessed in
comparison to a baseline controller. The results highlight that the AGTC strategy without a filter effectively
reduces lateral tower fatigue load at the expense of higher power signal oscillations and increased fatigue in
the low-speed shaft. Using a filter in the AGTCmitigates these adverse effects, smoothing power oscillations
to achieve similar values as the baseline control, and significantly reducing the load experienced in the
low-speed shaft. The proposed methodology is robust and adaptable to various wind and wave conditions,
demonstrating its ability to enhance the structural integrity of wind turbines without compromising power
generation efficiency.

INDEX TERMS Wind turbines, active generator torque control, lateral tower vibration reduction, multi-
objective optimization, genetic algorithms, active tower damping control.

I. INTRODUCTION
Wind energy has experienced tremendous growth over the
past decade, which has helped push renewables into direct
competition with traditional fuel-based energy. In 2021 the
European Union presented a new climate action plan to
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reduce greenhouse gas emissions by at least 55% by 2030.
This plan includes increased investment in wind and solar
energy, with onshore and offshore wind energy expected to
account for a quarter of the EU’s renewable energy gen-
eration capacity by 2030 [1]. The increase in clean energy
production is expected to continue to rise over the next few
years to reach almost 50% of the electricity demanded by
2050 [2]. The main development of wind energy technology
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in recent decades has been related to the growth of wind
turbine size, helping to increase power output and energy
efficiency, but creating challenges in wind turbine oper-
ation and maintenance. In recent years, advanced control
approaches have been developed that focus on maximiz-
ing power output, mitigating structural loads, and extending
wind turbine life [3]. These objectives often conflict when
designing a wind turbine control system, and the trade-off
between them varies and depends on actual operating situ-
ations, such as wind characteristics, system aging, and grid
requirements.

Currently, three-bladed horizontal axis wind turbines with
variable speed and variable blade pitch (VS-VP) are the most
common because they can optimize power generation at vari-
ous wind speeds [4]. These wind turbines operate in different
regions depending on the wind speed: connection (I), partial
load (II), transition (III), full load (IV) and disconnection (V),
as shown in Fig. 1, which shows the ideal power curve of a
wind turbine.

FIGURE 1. Operation regions of a wind turbine.

This work focuses on the full load region (Reg. IV), where
the impact of high wind speed must be minimized to avoid
damage to the system. Here it is necessary to keep the genera-
tor power and, consequently, the generator speed at their rated
values, which is achieved by using controllers that modify
the pitch angle of the blades to adjust the aerodynamics of
the wind turbine and limit the amount of energy removed
from the wind [5]. Normally, these controllers send the same
pitch value to all three blades, which is called collective
pitch control (CPC). In this region, the generated power (Pg)
usually depends only on the generator speed, ωg, according
to (1) since the generator torque remains constant at its rated
value Tg,rated.

Pg,rated = Tg,rated · ωg,rated (1)

Although PID controllers are traditionally used to reg-
ulate the pitch angle, computational intelligence methods
are a growing alternative for solving wind turbine con-
trol problems. In [6], the authors propose a hybrid control
scheme that combines a PID controller with a reinforcement
learning-based regulator for CPC, and they achieve reducing

the error of the power output compared with a PID controller.
In [7], a hybrid pitch control was developed that combines
a fuzzy logic controller and a deep learning module, which
is in charge of estimating the effective wind. In [8], a rein-
forcement learning-based fuzzy adaptive optimal controller
is designed for maximum power point tracking within a
variable-speed wind energy generation system, enhancing
robustness against uncertainties and disturbances. Methods
such as artificial neural networks (ANNs) and Genetic Algo-
rithms (GAs) are well known computational tools to improve
the performance of control techniques [9]. In [10], an ANN
is implemented as a pitch controller to regulate the output
power at the nominal value. In [11], an innovative pitch
neuro-control system is presented, employing neural net-
works that dynamically adapt to environmental fluctuations,
thereby enhancing control performance in contrast to conven-
tional PID controllers.

Wind turbines are vulnerable to external vibrations, such as
wind, wave, and seismic loads, which can affect wind energy
conversion and decrease the lifetime of their structural com-
ponents. Even in extreme situations, excessive vibrations can
lead to catastrophic collapse of the wind turbine [3]. The com-
plexity of dynamic behaviours, such as aerodynamics, blade
rotation, and ground-structure interaction, makes it difficult
to mitigate adverse vibrations. To maintain the structural
safety and serviceability of wind turbines, it is necessary to
mitigate these adverse vibrations and reduce structural loads
to avoid premature system failure. Deflections in the tower
and rotor blades, as well as vibrations in the turbine drive-
train, are the most common loads that can cause structural
stresses [4].
Deflections in a wind turbine tower are usually divided in

twomain directions: fore-aft (in wind direction) and side-side
(perpendicular to wind direction). Most of the research pub-
lished to date focuses on mitigating tower fore-aft vibrations,
as they are usually the most important. The different vibration
control methods to reduce tower oscillations can be classi-
fied as passive, semi-active, or active [12]. In [13], passive
vibration control of a spar-type floating offshore wind turbine
tower using passive tuned mass-damper-inerter was investi-
gated in detail. In [14] finite element structural analysis was
combined with a semi-active tuned mass damper (TMD) to
reduce the longitudinal vibration of an offshore wind turbine
supported by a monopile tower. In [15], a control scheme was
proposed to reduce wave-induced fatigue loads on offshore
wind turbine support structures by increasing both damping
and stiffness of fore-aft vibration modes. In [16], a design
method is proposed for a pitch controller with active tower
fore-aft damping, which improves system performance by
reducing both tower fore-aft load and vibration. In [17],
an intelligent control system based on fuzzy logic is tuned by
GAs for an offshore wind turbine, maintaining rated power
and reducing frontal vibrations. In [18], CPC is combined
with an active tower damping control (ATDC) that uses feed-
back to inject damping into the system by means of an extra
pitch controller.
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For onshore turbines, the side-side fatigue loads of the
tower are usually less significant compared to those in the
fore-aft direction. The fore-aft component is higher since
it is mainly affected by the wind, whereas the side-side
component is almost unaffected by disturbances. In contrast,
the support structure of offshore wind turbines can experi-
ence significant fatigue loads in the side-side direction [19].
The loads on an offshore wind turbine are introduced from
stochastic processes, such as wind and waves, whose char-
acteristics and, especially, their directions change rapidly.
In general, waves are inert to rapid changes, whereas the
turbulent wind can change its profile on very short time
scales. Therefore, wind and wave loads often act from dif-
ferent directions. In particular, misalignment between waves
and wind induces side-side motion due to low aerodynamic
damping. Cases of pronounced misalignment between waves
and wind can introduce a significant amount of fatigue dam-
age in the side-side direction [20]. This effect can be observed
in offshore wind farms in operation, such as in [21], where
recorded wind and wave data from two marine sites are
shown.

To reduce fatigue loads in the lateral direction it is neces-
sary to introduce additional damping in this direction. Some
investigations using passive control methods have been car-
ried out to reduce lateral tower vibrations. In [22], a spring
pendulum pounding tuned mass damper was developed to
mitigate the lateral response of monopile offshore wind tur-
bines. In [23], the performance of full-scale tuned liquid
dampers tomitigate lateral tower vibrations ofmultimegawatt
wind turbines was evaluated using real-time hybrid testing.
These types of devices can be fully passively or semi-actively
controlled [24].

One of the predominant control strategies for reducing
lateral tower vibrations for a wind turbine is active generator
torque control (AGTC) [25]. The generator torque affects the
lateral motion of the structure through the reaction in the
generator stator, which is attached to the main frame at
the top of the tower. Therefore, it is possible to increase the
damping of the side-to-side vibration modes of the structure
by controlling the generator torque in the opposite phase
with the side-to-side velocity. The damping is increased by a
generator roll moment that counteracts the side-to-side vibra-
tions. As examples of AGTC, in [26] AGTC was proposed
to reduce lateral tower vibrations. In [27], a fuzzy torque
control and a pitch sliding mode controller were developed to
simultaneously mitigate output power fluctuations and lateral
tower oscillations.

In [26] and [27], active vibration control using generator
torque is studied, making it clear that there is a trade-off
between reduction of tower lateral oscillations and output
power fluctuations, since any fluctuation in generator torque,
in turn, causes fluctuations in output power. However, these
papers either directly ignore or very tersely study other
side effects of the use of AGTC, such as increased fatigue
loads on drivetrain components such as the main shaft and
gearbox [20].

To our knowledge, there is no research work that simul-
taneously addresses the minimization of the fluctuations of
the generated power, the mitigation of the lateral fatigue
loads suffered in the tower and in the main shaft of the wind
turbines. Reaching a compromise between these three objec-
tives is necessary, and this is the focus of this work, which
proposes the design of an adaptive controller that mitigates
the lateral fatigue loads of the tower in the nominal region
taking into account the other objectives mentioned above.
To address this existing gap in this field of research, a CPC
is combined with an AGTC in a two-loop control scheme,
and the parameters of the AGTC controller are tuned with
a multi-objective optimization with genetic algorithms. The
proposed optimization considers an objective function of the
generated power fluctuations and two objective indices asso-
ciated with the tower lateral fatigue load and the low-speed
shaft load (LSS). The proposed methodology is applied to
a 15 MW wind turbine, which is simulated using OpenFAST
and MATLAB/Simulink software. Because of the nonlinear-
ity of the system, the AGTC control is designed adaptively
with scheduled gain as a function of wind speed and recorded
lateral wave height. Different AGTC schemes are compared
according to whether or not they include the addition of a
second-order bandpass filter.

The main novelties of this work with respect to the existing
literature are:

• In previous research work directly related to [26]
and [27], theAGTC strategy applied on the 5MWNREL
offshore and onshore turbine is studied, analysing the
lateral displacements of the tower, generated power and
torque without analysing the fatigue load on other main
elements such as the drive shaft or the blades. In this
work, the advantages and disadvantages of AGTC con-
trol are shown in more detail. Specifically, the influence
of AGTC on the drive shaft is further studied from the
viewpoint of the fatigue load experienced on the low-
speed shaft.

• It is shown that the use of a well-tuned bandpass filter
in AGTC brings significant improvements in the control
targets set versus AGTC without a filter.

• Most of the papers published to date on OpenFAST
focus on the 5 MW NREL turbine. This work is devel-
oped on a 15 MW monopile offshore turbine, a turbine
on which few studies have been conducted to date.

• A multi-objective control methodology is proposed in
which, through Pareto fronts, optimal solutions are
shown according to the established objectives. This
methodology allows the plant control operator to decide,
after studying the turbine used and environmental con-
ditions, the tuning of the parameters of the established
control loops. It looks for a compromise between objec-
tives or gives more or less priority to certain objectives,
depending on technical-economic specifications that
may exist.

The article has the following structure: Section II intro-
duces some background on multi-objective optimization
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and its use in wind turbines. Section III explains the pro-
posed methodology detailing the turbine model used, the
proposed adaptive AGTC scheme, the formulation of the
multi-objective optimization problem, and the Pareto fronts
obtained. The simulation results of the proposed controllers
are evaluated in Section IV. Finally, conclusions are summa-
rized in Section V.

II. BACKGROUND IN MULTI-OBJECTIVE OPTIMIZATION
IN WIND TURBINES
In multi-objective optimization (MOO) problems, several
optimal solutions can be found within a set of conflicting
objectives. Pareto fronts are a mathematical tool to visualize
and analyse the optimal solutions of this type of problem
as they are a graphical representation of the solutions that
satisfy all the constraints of the problem and that are optimal
in terms of multiple competing objectives [28], [29]. The
Pareto front shows solutions that cannot be improved in
one of the objectives without worsening at least one of the
others.

Figure 2 shows a representative example of a Pareto front.
The framed points represent feasible solutions to an opti-
mization problem with two objectives. Smaller values are
preferred over larger values; in other words, the smaller the
objective functions F1 and F2 for each alternative, the bet-
ter the option. Point C is dominated by both point A and
point B for both criteria (F1(A) < F1(C), F1(B) < F1(C),
F2(A)< F2(C) and F2(B)< F2(C)); therefore, point C cannot
be part of the Pareto front. Points A and B are on the Pareto
front because they are not exclusively dominated by any
other.

FIGURE 2. Example of Pareto front.

MOO problems are frequently solved using evolution-
ary algorithms, such as genetic algorithms, because they
provide practical advantages over classical optimization tech-
niques [30]. At the expense of numerous iterations and
computing efforts, GA-based approaches can be used to
identify proper and accurate Pareto fronts independently of
objectives and constraint functions [31]. To achieve better
computational efficiency, a fast elitist nondominated sorting

genetic algorithm (NSGA-II) was designed in 2002 [32],
especially for MOO.

Recent research employs MOO approaches to improve
wind turbine control in simulated models. A multi-objective
optimization was developed in [33] to design the control on
the 5 MW NREL onshore wind turbine based on several
objectives. In [34], an advanced reinforcement learning-based
yaw control approach was developed combining particle
swarm optimization with Pareto-based algorithms to find the
optimal actions to meet the trade-off between power gain
and mechanical loads resulting from yaw rotation. In [35],
drive chain active damping control is designed using an opti-
mization method and Pareto-based techniques. In other cases,
coordinated control methodologies based on model predic-
tive control together with Pareto optimization have been
proposed to reduce mechanical loads and improve power
output [36], [37], [38].

Other works use MOO applied in more classical con-
trol methodologies such as PID controllers. For example,
in [39], MOO is used to design CPC for power perfor-
mance, ATDC for tower oscillations, and individual pitch
control for blade loads; the work by [40] proposes a gain
scheduling PI controller for CPC, an adaptive gain for ATDC,
and an adaptive feedforward compensation for the wind
speed.

In situations where different goals are interrelated and
cannot be achieved at the same time, an optimal solution may
differ from a satisfactory solution. Generally, some objec-
tives fall within the Pareto frontier and all the solutions on
this frontier are optimal. However, a high-level optimiza-
tion objective is required to analyse the optimal solutions
and select the satisfactory one. Pareto frontier solutions can
be evaluated and ranked using multi-criteria decision mak-
ing (MCDM) methods to choose one of them based on
preferences.

MCDM techniques help to compare different options based
on different criteria to find the best solutions. Each method
has its pros and cons; however, the choice of an approach
depends on the criteria chosen. As a result, decision-makers
are not bound by a single method and can use different meth-
ods to achieve non-identical results. In such cases, integrated
methods are required for the final decision. MCDM methods
are becoming increasingly popular for solving renewable
energy problems because they involve multiple and fre-
quently conflicting criteria. In [41], the decision-making
process in multi-objective wind turbine problems is exam-
ined. The Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS) is a common MCDM method used
in the energy field in several studies [42], [43], [44], [45].
The TOPSIS method defines two points: the positive ideal
solution, which minimizes the cost criterion, and the negative
ideal solution, which maximizes the cost criterion. TOPSIS
then selects as the best compromise solution the one with the
shortest Euclidean distance from the positive ideal solution
and the farthest Euclidean distance from the negative ideal
solution [46].

VOLUME 11, 2023 115897



M. Lara et al.: Adaptive AGTC Design Using Multi-Objective Optimization

III. PROPOSED METHODOLOGY
A. WIND TURBINE MODEL AND ENVIRONMENTAL
SCENARIOS FOR OPTIMIZATION
The AGTC design methodology proposed in this paper has
been applied to the International Energy Agency (IEA)
Wind 15-Megawatt Reference Wind Turbine [47], which
is co-simulated using MATLAB/Simulink software in con-
junction with OpenFAST software [48], an open source
aero-servo-hydro-elastic simulation tool developed by the
National Renewable Energy Laboratory (NREL). Specifi-
cally, the proposed control system is modelled with Simulink
whereas the wind turbine (tower, blades, rotor and so on) and
the wind and wave profiles are modelled using OpenFAST.
Both applications share the necessary data during simulation
through a dynamic-link library. Although this turbine has
recently been receiving more attention in the literature [49],
[50], the number of research studies on this 15 MW turbine
model is still scarce compared to the NREL 5 MW wind
turbine [51]. In [52] a control strategy based on the combined
action of a resonant controller and an individual pitch control
was validated in a 15 MW IEA wind turbine supported by
a semi-submersible platform. In [53], a power control strat-
egy combining fuzzy sliding mode control with additional
pitching-rate feedback was proposed for the IEA 15 MW
offshore floating semi-submersible Wind Turbine. In this
work, the IEA 15 MW turbine is configured in its monopile
offshore mode as shown in Fig. 3. The main specifications of
the turbine are shown in Table 1.

FIGURE 3. The IEA Wind 15-MW reference wind turbine in monopile
offshore mode [47].

Considering the modularization framework of OpenFAST,
the wind turbine can be modelled by the generalized non-
linear time-domain model given in (2), which represents
a set of semi explicit differential algebraic equation of
index 1 [54]. X() represents the continuous-state functions

TABLE 1. Properties of the IEA 15 MW wind turbine.

that determine the first-time derivatives of the continuous
states x, which may include displacements and velocities
of different structural elements. Z() are the constraint-state
functions that determine the constraint (algebraic) states z,
such as quasi-steady induction in blade element momentum
theory. Y() are the output functions that determine explicitly
the module-level outputs y, and u are the module-level inputs
(derived from module-level outputs). Outputs and inputs
may include controller commands, motions, and loads. The
parameters that characterize the functions, such as geometry,
mass, stiffness, aerodynamic and hydrodynamic coefficients,
are represented by p.

ẋ = X (x, z,u, t, p)
0 = Z (x, z,u, t, p)
y = Y (x, z,u, t, p)

(2)

When working with offshore structures, it is crucial to
consider not only the effect of wind but also the effect of
waves and their contribution to fatigue damage. In addition,
it is important to include wind/wave misalignment to obtain
reliable estimates of cumulative fatigue damage resulting
from side-side vibrations. This study focuses on the side-side
vibration damping of an offshore turbine tower considering
two scenarios according to the waves. The most favourable
case occurs when there are no wave loads acting on the tower
in the lateral direction. The most unfavourable scenario for
the study occurs when wave loads act on the tower in the
lateral direction perpendicular to the mean wind speed to
fully excite the lateral vibration of the tower. Because of
the relatively shallow water, waves occasionally refract and
tend to propagate orthogonal to the sea floor contours, which
means that sometimes the direction of wave propagation can
be orthogonal to the mean wind speed. This loading scenario
is not expected to occur as frequently as in the unidirectional
case. However, if an offshore wind farm with numerous wind
turbines is considered, there is a strong likelihood that there
will always be a specific number of wind turbines in such a
situation [21], [26].
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The OpenFAST software is used to generate irregu-
lar waves according to the following JONSWAP/Pierson-
Moskowitz spectrum S1−sided described in [55]:

S1−sided (ω) =
5

2π16
H2
sTp

(
ωTp

2π

)−5

exp

[
−
5
4

(
ωTp

2π

)−4
]

(3)

where Hs is the significant wave height in m, defined as four
times the standard deviation of sea elevation; Tp is the peak
spectral period of incident waves in s; and ω is the angular
frequency of waves in rad/s.

Two types of waves have been considered: the most
unfavourable and the least unfavourable. In the most
unfavourable condition, the waves are completely sideways
with an angle of 90◦ with respect to the direction of the
mean wind speed and a Hs = 2 m, conditions used in [26].
The most favourable condition is when there are no lateral
waves Hs = 0 m. Considering the oceanic meteorologi-
cal environment of a generic U.S. east coast site, which is
used in [47] for the analysis and design of the IEA Wind
15-MW reference turbine with fixed-bottom monopile sup-
port, an average Tp value of 8 s was chosen.

For the optimization process of the AGTC controllers,
stochastic turbulent winds generated with the NRELTurbSim
tool were simulated [56] within region IV of the turbine oper-
ation. Specifically, three wind profiles have been designed
with average wind speeds of 14, 18 and 22 m/s with a
turbulence intensity of 14% and a vertical power-law shear
with exponent 0.2 according to the Kaimal turbulence model
defined by the Class B normal turbulence model in the IEC
standard [57].

B. CONTROL SYSTEM SCHEME
In this work, the wind turbine operates only in the rated region
(region IV in Fig. 1), where the electromagnetic torque is set
to its nominal value Tg,rated, and the pitch controller operates
to maintain the nominal rotor speed.

The proposed control scheme, which is implemented using
the Simulink software, is shown in Fig. 4. It consists of two
controllers: a CPC and an AGTC. The control actions of
these controllers generate the pitch βCPC and electromagnetic
torque Tg signals. According to (1), the generated power can
be maintained at its rated value if the angular velocity of
the wind turbine is controlled at its rated value ωg,rated. The
CPC maintains this speed at its rated value, rejecting changes

FIGURE 4. AGTC+CPC scheme for the full load region.

in wind speed νw. To implement the CPC, we have used
the Reference Open-Source Controller (ROSCO) and tuning
parameters presented in [58].

The controller to be designed in this work is the AGTC.
Its main objective is to minimize the structural load of the
tower lateral motion yss. To be more precise, the AGTC adds
damping to the natural frequency of the lateral bending mode
of the tower. The AGTC produces an additional component
Tg,SS of generator torque that is added to the nominal torque,
as shown in (4). This additional component is proportional
to the side-side velocity of the nacelle ẏSS. The final torque
signal is constrained by considering the slew-rate and elec-
tromagnetic torque saturation limits. In most works, the extra
component Tg,SS is limited to ±10% of the nominal gener-
ator torque [27]. For direct-drive wind turbines (such as the
IAE 15 MW turbine), the electrical torque on the generator is
significantly higher compared to gear-driven wind turbines,
which allows the tower lateral vibration to be damped more
effectively by AGTC [26].

Tg = Tg,rated + Tg,SS = Tg,rated + kẏSS (4)

The specific AGTC scheme used in this work is shown in
Fig. 5. The lateral velocity ẏSS is calculated by integrating
the lateral acceleration measured at the top of the tower.
Such velocity is multiplied by the proportional gain k to
obtain the extra component Tg,SS. Variations in wind speed
and significant wave height change the operating point of
the turbine and consequently, the control is directly affected.
Here, an adaptive control with scheduled gain of the AGTC
using wind speed and wave height as scheduling variables is
proposed to ensure proper performance for different wind and
wave conditions.

FIGURE 5. Adaptative AGTC scheme.

In addition, there is the option of including a second-order
bandpass filter with the following transfer function:

F(s) =
2ξωns

s2 + 2ξωns+ ω2
n

(5)

where ωn = 2π fn represents the first natural frequency of the
tower in the lateral direction and ξ characterizes the corre-
sponding damping ratio. This filter limits the frequency band
where AGTC should add active damping to avoid unneces-
sary actions in other frequency ranges.

To design the scheduled gain adaptive control of the AGTC
with robustness to wind and wave changes, tuning of the
controller is performed for the six operating points generated
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by the combination of three wind conditions and two wave
conditions described in the previous section.

From a control viewpoint, the model of Fig. 4 can be
formulated by the system of nonlinear equations in (6), where
state functions X(), constraint functions Z() and vector x and
z are extended to include not only states and constraints of the
OpenFAST wind turbine model in (2) but also the states and
constraints of the control system in Simulink. The new input
vector u is composed of the fixed rated rotational speed ωg,
which is the CPC set point, the rated generator torque, which
also remains fixed, the wind speed components νx and νy, and
the wave height Hs. The wind speed and wave height change
during simulation and they work as disturbances. The new
output function H() determines the output vector y, which
includes the variables of interest to analyse the performance
of the system, such as the rotational speed, the nacelle lateral
acceleration, the pitch control signal βCPC, the electromag-
netic torque Tg signal, and different tower moments. All
these variables depend on the AGTC parameter vector ρ to
be tuned. The model also includes the inequations related
to the saturation and slew-rate constraints on the control
signals βCPC and Tg, which are implemented explicitly with
Simulink blocks. The tuning of the AGTC block parame-
ters is formulated as a multi-objective optimization problem
described in the next section.

ẋ = X (x, z,u, t, )
0 = Z (x, z,u, t, )
y = H (x, z,u, t, )

0 ≤ βCPC (x, z,u, t, ) ≤
1
2
rad∣∣β̇CPC (x, z,u, t, )∣∣ ≤ 0.0349 rad/s

17808 ≤ Tg (x, z,u, t, ) ≤ 21765 kNm∣∣Ṫg(x, z,u, t, )∣∣ ≤ 4.5 MNm/s

(6)

C. MULTI-OBJECTIVE OPTIMIZATION FORMULATION
In this section, the methodology for adjusting the AGTC
block parameters is described. The main benefit of active
vibration control using generator torque is the reduction of
tower lateral oscillations and fatigue causing detrimental
side effects, such as higher output power fluctuations and
higher fatigue loads on drivetrain components, such as the
main shaft [20]. The trade-off between energy efficiency and
fatigue reduction in wind turbine control is approached in
this paper as a MOO problem. This optimization problem
is performed by proposing three objective functions to be
minimized in the cost function vector J, as follows:

J =
[
DEL (MSS)DEL (MLSS)TV

(
Pg

)]T (7)

The first two objective functions, DEL(Mss) and
DEL(MLSS), are based on the fatigue damage equivalent
load (DEL) and are chosen with the intention of minimizing
the lateral fatigue load of the tower and the main rotat-
ing shaft through the tower lateral bending moment Mss
and the moment on the low-speed shaft MLSS, respectively.

For fatigue assessment of wind turbines, the DEL is usually
calculated in the time domain using cycle counting tech-
niques. This function cannot be evaluated analytically since
the DEL index is calculated offline from the time series
of simulation data. The set of scripts MLife [59] is used
to post-process the data from each simulation to obtain the
corresponding DEL values.

The other cost objective function is the total variation
in generated power TV(Pg) given in (8). It is employed to
penalize control designs that result in significant fluctuations
in the generated power. It is also calculated from the time
series data after finishing a simulation with a total time tsim
and discarding the initial t0 seconds; derivatives and integrals
are replaced by discrete numerical approximations.

TV
(
Pg

)
=

1
tsim − tsim

∫ tsim

tsim

∣∣∣∣dPg (t)
dt

∣∣∣∣ dt (8)

The proposed MOO problem can be formulated as shown
in (9). The decision variables ρ match the tuning parameters
of AGTC. In the case without filter (labelled as AGTC), the
only parameter to be adjusted is the proportional gain, and the
parameter vector is ρ = [k]. In the case of using the bandpass
filter (labelled as AGTC+F), the vector ρ = [k fc ε]. These
design parameters are restricted to a solution space S∈ R1 for
AGTC or S∈ R3 for AGTC+F. The three objective functions
in (7), which depend on the tuning parameter vector ρ, must
be minimized subjected to the dynamical behaviour of the
system defined by the equations in (6) and subjected to the
solution space S.

minDEL (MSS (ρ)),min DEL (MLSS (ρ)),min TV
(
Pg(ρ)

)
subject to (x, z, y) solution of (6)

ρ ∈ S (9)

This MOO problem is solved according to the procedure
depicted in Fig. 6. This approach is based on calculating
Pareto fronts and using decision makers to select the final sat-
isfactory solution. Because the proposed objective functions
in J are very complex, as well as the wind turbine dynamic

FIGURE 6. Multi-objective optimization procedure.
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model, these cannot be evaluated analytically. Therefore,
a simulation-based approach is applied to calculate Pareto
front solutions using an optimizer, which needs to perform
numerous co-simulations with OpenFAST and Simulink.

The AGTC parameter setting procedure is performed by
simulating the IEA 15 MW wind turbine model around the
six operating points already discussed by combining three
wind speeds and two significant wave heights. The TOP-
SIS method is applied to each of the possible solutions for
each Pareto front, and the best one according to this crite-
rion is chosen as the best satisfactory solution. The tuning
parameters connected to this solution are regarded as the opti-
mal ones for that operating point. With them, the necessary
parameters are obtained to build a lookup table of gains to
implement the adaptive AGTC by scheduled gain.

D. OPTIMIZATION ALGORITHM
The proposed optimization procedure becomes a nonlinear
problem that requires great computational effort. To achieve
better computational efficiency, the optimizer in Fig. 6 uses
the nondominated sorting genetic algorithm-II (NSGA-II).
Specifically, the NSGA-II algorithm used in this study is
coded in the Global Optimization Toolbox of MATLAB. The
NSGA-II algorithm consists of the following steps depicted
in Fig. 7 [32]:

1) Input parameter definition: the algorithm is configured
by specifying parameters such as population size, stop-
ping criteria, decision variable bounds, and objective
functions. They are detailed in the next steps.

2) Initial population initialisation: prior to optimization,
the search ranges of the tuning parameters are estab-
lished manually using a bisection-like method in which
the range is narrowed by discarding parameter val-
ues that result in instability in the simulation. The
search range for gain k is [0-10e8], the range for fc is
[0.15-0.25] Hz and [0.001-20] for ε. An initial popula-
tion of size 100 is created with equidistant parameter
values within the set search range.

3) Fitness assessment: after the initialisation, the fitness
values are assigned to each individual (or chromo-
some) in the population. The fitness functions are the
cost functions in J to be optimized. In this proposed
simulation-based approach, a simulation is performed
for each individual to compute the corresponding
fitness.

4) Non-dominated sorting: this method ranks the indi-
viduals in the population. Each solution is assigned
a fitness (or rank) equal to its nondomination
level (1 is the best, 2 is the next-best, and so on). Once
the rank population is complete, the crowding distance,
a measure of how many chromosomes there are in a
particular chromosome’s surrounding area, is assigned
to each individual. Next, the steps to create an offspring
population start.

FIGURE 7. Procedure of NSGA-II.

5) Selection: the aim of this step is to choose the fittest
individuals and let them pass their genes to the next
generation. The selection function chooses parents
based on their scaled values from the fitness functions.
The scaled fitness values are called the expectation
values. Once the individuals are sorted, the individuals
are selected by using a binary tournament selection.
This selection strategy randomly chooses a subset of
individuals (or players) and then chooses the best indi-
vidual from that set to be a parent. Individuals with a
lower rank have a higher chance of selection. If indi-
viduals have the same nondomination rank, individuals
with large crowding distance will be selected.

6) Crossover: this operator recombines the selected indi-
viduals (parents) two by two to create a fraction of the
new population (children). It enables the algorithm to
extract the best genes from different individuals and
recombine them into potentially superior children. The
crossover fraction configured in this work is 80% and
indicates the fraction of population, other than elite
children, that is created by crossover. The crossover
operator chosen is the intermediate, which creates chil-
dren by taking a weighted average of the parents.

7) Mutation: it makes small random changes in the indi-
viduals in the population, which provides genetic
diversity and enable the genetic algorithm to search a
broader space in order to avoid local optimum tracking,
like crossover. The operator chosen is the adaptive
feasiblemutation, which randomly generates directions
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that are adaptive with respect to the last successful or
unsuccessful generation.

8) Fitness assessment: the objective functions are evalu-
ated with the new offspring population.

9) Non-dominated sorting: non-dominated solutions from
combined population (parent population + offspring
population) are sorted similarly to step 4.

10) New parent population: individuals are replaced with
the best ones for the next generation.

Then, the process repeats steps from 5 to 10 until the
stopping criteria is met. In this work, when the number
of generations reaches 50, the process stops and outputs a
non-dominant Pareto front. As the Pareto front population
fractionwas set to 25%, the resultant Pareto front is composed
of 25 nondominated solutions. The computational time to run
the proposed optimization procedure is in the order of tens
of hours, which is in line with what is reported in [41] for
problemswith three objective functions based on a simulation
approach using OpenFAST.

E. RESULTANT PARETO FRONTS
Figure 8 shows the 3D Pareto fronts for the six operating
points analysed in this work, both for the scheme AGTC
without filter (in red) and for the scheme AGTC+F with filter
(in blue). The fronts in the left column have been calculated
with the presence of side waves and those on the right without
side waves. The fronts in each row are associated with wind
profiles of 22, 18 and 14 m/s, respectively. In each front, the
best solution according to TOPSISmethod is highlightedwith
a diamond.

FIGURE 8. 3D Pareto fronts for AGTC and AGTC+F obtained with different
conditions of wind and waves.

Simulations during the optimization process are performed
with a total time of 800 s; however, the first 200 s are
discarded to exclude transient effects on the data. The

TABLE 2. Optimal AGTC parameters and objective indices.

TABLE 3. Optimal AGTC+F parameters and objective indices.

sampling frequency was set to 200 Hz. Tables 2 and 3 show
the objective functions and optimal parameters in both AGTC
schemes, respectively, for the six weather conditions. Table 3
also includes, in parentheses, the values of the objective
functions in percentages with respect to the AGTC without
filter.

The use of the bandpass filter in AGTC+F achieves
optimal points with significant reduction in TV(Pg) and
improvement in DEL(MLSS), maintaining similar values in
DEL(Mss). This is also seen in the 2D projections of the
Pareto fronts, as shown in Fig. 9 for the operating point with
wind of 18 m/s with waves, where the TV(Pg)-DEL(Mss)
projection corresponding to the AGTC+F scheme is more
displaced to the left than that of the AGTC scheme.

The gain k values of the AGTC+F are higher, which
allows more focus on damping the lateral momentum of the
Mss tower at frequency fc. For the design of the AGTC+F
adaptive control, frequency fc has been set at 0.172 Hz and
ξ at 0.4 as average values from Table 3 since they show very
little variation between operating points.

As for the gain k , the proposed AGTC schemes are
designed to address all possible operating points within the
nominal region. To cover all this operating range, a linear
interpolation of the gain k of the AGTC schemes as a function
of wind speed νw and wave height Hs was performed. The
meshing performed is for a range of wind speeds from 14 to
22 m/s in 0.5 m/s intervals and wave height values from 0 to
2 m in 0.2 m intervals. The surfaces obtained for the gain k as
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FIGURE 9. 2D projections of the Pareto fronts obtained for conditions
with wind speed of 18 m/s and waves.

FIGURE 10. Interpolated surfaces for scheduled gain k of the AGTC
schemes in function of the wind speed and lateral wave height.

a function of νw and Hs for both AGTC schemes are shown
in Fig. 10. The adaptive AGTC scheme continuously varies k
by interpolating between points within these 3D surfaces.

IV. EVALUATION OF PROPOSED CONTROLLERS
In this section, the performance of the two AGTC schemes
designed in the previous section for the IEA 15 MW wind
turbine is evaluated using two simulations with different envi-
ronmental conditions: case 1 that does not incorporate waves
and case 2 that does simulate waves. Both cases use stochastic
turbulent wind with varying wind speed ranges within the full
load region. The wind profile was generated with TurbSim
according to the IEC 61400-1 standard. The simulations have

a total time of 1200 s, eliminating the first 200 seconds to
exclude transient effects in the data. The sampling frequency
was set to 200 Hz. In case 2, which is the most unfavourable
case, the turbine is also subjected to irregular lateral waves
following the JONSWAP/Pierson-Moskowitz spectrum. Dif-
ferent environmental conditions are analysed to study how
generalizable the optimization results are, the robustness of
the proposed controllers, and the influence of wind and wave
conditions.

From the data obtained for each control strategy, an anal-
ysis of the most relevant variables in the time and frequency
domainswas performed. In addition, for each control strategy,
different performance indices related to the fatigue suffered
in the most essential components of the turbine, the generated
power, the generator speed, the pitch signal, or the electro-
magnetic torque were quantified. In the comparative analysis,
the ROSCO CPC, which does not incorporate AGTC, was
used as the baseline control.

A. CASE 1: SIMULATION WITHOUT WAVES
Figures 11 and 12 show the time response of the control
strategies to be compared for case 1. Figure 11 shows the
variables related to the CPC and Figure 12 the variables most
related to the AGTC. Table 4 collects the rate of variation
(TV) and standard deviation (STD) of some of the variables in
these figures as performance indices for quantitative analysis.

From top to bottom, Figure 11 shows the frontal and lat-
eral components of wind speed, generated power, generator
angular velocity and collective blade pitch. Qualitatively,
no significant differences in these wind turbine variables
are apparent, indicating that the performance in the CPC
loop is not affected by the additional AGTC scheme, as was
expected. This is also quantitatively corroborated by the TV
and STD data for both pitch and generator speed in Table 4,
as there are no significant differences between the different
control schemes. Figure 12 shows the variables most related
to the AGTC loop, specifically, from top to bottom: the
lateral moment at the base of the tower, the tower lateral
displacements, the torque on the low-speed axis, the manip-
ulated electromagnetic torque, and the adaptive proportional
gain k of the AGTC schemes. Compared to the reference CPC
control, the AGTC schemes manage to significantly reduce
the fluctuations in the lateral displacements at the top of the
tower yss and the lateral moments at the base of the tower
in exchange for a worsening in the torsional moment on the
low-speed shaft. This is also quantitatively confirmed by the
performance indices in Table 4, in particular by the reduction
achieved by the AGTC schemes in the TV and STD values
of the tower lateral displacements and tower lateral moment
at the cost of increased electromagnetic torque activity. If we
compare the two AGTC schemes in the zoom of the graph,
it is observed how AGTC+F smooths the electromagnetic
torque response compared to AGTCwithout filter. According
to the data in Table 4, the use of filter in AGTC+F reduces
by 73.51% the TV of the electromagnetic torque with respect
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FIGURE 11. Time response of wind speed (ν), generated power (Pg), angular velocity (ωg), and pitch (β) for
case 1 (no waves).

to AGTC without filter, obtaining even slightly lower values
of STD for torque Mss, and displacements yss.

Table 5 shows the three indices used as objective func-
tions in the MOO and calculated with the simulation data of
case 1. The use of AGTC reduces the DEL(Mss) at the cost
of worsening mainly the DEL(MLSS) and little the TV(Pg).
In absolute terms (kNm), the AGTC schemes manage to
decrease the DEL(Mss) muchmore (around 20000 kNm) than
to increase the DEL(MLSS). The DEL of the low-speed shaft
torque MLSS only increases around 450 kNm; this increase
is produced by the action of the AGTC on the electromag-
netic torque. If we compare both AGTC schemes with each
other, the AGTC+F achieves more reduction in Mss fatigue
with less increase in MLSS fatigue than the AGTC with-
out filter. The AGTC+F achieves more than 5% reduction
in DEL(MLSS) compared to the AGTC controller with-
out filter. In addition, AGTC+F achieves a similar TV(Pg)
value as the reference CPC control. The latter is consistent
with the lower TV(Tg) achieved by AGTC+F. In summary,
AGTC+F achieves the best compromise between the three
objectives.

Even though this work focuses on the study and reduction
of the tower lateral loads and their engagement with the
low-speed shaft moments, the DELs of other important loads
of a wind turbine such as the fore-aft moments of the tower
base or the flapwise and edgewise moments of the blades
have been calculated. Although these values are not shown,
the DELs related to these three moments are practically
the same for all three control schemes analysed, indicating
that the AGTC does not have a significant effect on these
loads.

TABLE 4. Performance indices for case 1.

TABLE 5. Cost functions used in the MOO calculated with the simulation
data of case 1.

Figure 13 shows the Fourier amplitude spectrum obtained
by Fast Fourier Transformation (FFT) of the side-side tower
bending moment, generated electric power, low-speed shaft
torsion moment, and generator torque for case 1 (simulation
without waves). With respect to the side-side tower bending
moment, the first mode is appreciated at around 0.175 Hz.

115904 VOLUME 11, 2023



M. Lara et al.: Adaptive AGTC Design Using Multi-Objective Optimization

FIGURE 12. Time responses of lateral moment at tower base (MSS), tower lateral displacement (ySS), torque
moment at low-speed axis (MLSS), electromagnetic torque (Tg), and adaptive gain of AGTC (k) for case 1
(without waves).

FIGURE 13. Fourier amplitude spectrum of the lateral moment at tower base (MSS), generated power (Pg), torque moment at
low-speed axis (MLSS), and electromagnetic torque (Tg) for case 1 (without waves).
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FIGURE 14. Time response of wind speed (ν), wave height (HS), generated power (Pg), angular velocity (ωg), and pitch (β)
for case 2 (with waves).

The AGTC schemes obtain a significantly lower peak than
the baseline control. If we compare both AGTC schemes, this
peak is reduced somewhat more by the scheme with filter.
With respect to the variables Pg, MLSS and Tg, the use of
AGTC adds additional activity in part of the frequency range,
in addition to a peak around 0.175 Hz.

If we compare both AGTC schemes, this peak is slightly
higher for AGTC+F as the filter makes the torque stress more
focused on the natural frequency of the lateral vibration of
the tower, but thanks to this it reduces the activity at the other
frequencies. This frequency analysis is in accordance with the
results of the comparative analysis in the time domain.

B. CASE 2: SIMULATION WITH WAVES
In this second case, in addition to the stochastic wind profile,
a simulation is performed with irregular waves following
the JONSWAP/Pierson-Moskowitz spectrum and impinging

on the tower perpendicular to the wind, which makes the
control task more difficult because they represent significant
disturbances on the system. A study similar to that of case 1 is
conducted. Figures 14 and 15 show the time response of
the control strategies to be compared for case 2. Figure 14
shows the variables most related to CPC and Figure 15 the
variables most related to AGTC. Table 6 shows the TV and
STD of some variables analysed as performance indices for a
quantitative analysis.

From top to bottom, Figure 14 shows the frontal and lateral
components of wind speed, wave height profile, generated
power, generator angular velocity, and collective blade pitch.
As in case 1, qualitatively no significant differences in these
wind turbine variables associated with the CPC loop are
apparent, which does not seem to be affected by the additional
AGTC scheme. This is also corroborated quantitatively with
the TV and STD data for both pitch and generator speed
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FIGURE 15. Time response of lateral moment at tower base (MSS), tower lateral displacement (ySS), torque moment at
low-speed axis (MLSS), electromagnetic torque (Tg), and adaptive gain of AGTC (k) for case 2 (with waves).

in Table 6, as there are no significant differences between
the different control schemes. Only the generated power is
somewhat worsened with the unfiltered AGTC because its
higher activity in the electromagnetic torque produces more
variations in the generated power.

Figure 15 shows the variables most related to the AGTC
loop, from top to bottom: the lateral moment at the tower base,
the tower lateral displacements, the torque on the low-speed
axis, the manipulated electromagnetic torque, and the adap-
tive proportional gain k of the AGTC schemes. As in case 1,
the AGTC schemes contribute to reducing the fluctuations in
the tower lateral displacements and their lateral moments in
exchange for a worsening in the torsional moment on the low-
speed shaft. The same is indicated by the performance indices
in Table 6, specifically with the reduction achieved by the
AGTC schemes in the TV and STD values of the tower lateral
displacement and lateral moment at the cost of the increase

in the rate of variation of the electromagnetic torque. If we
compare the two AGTC schemes, zooming in the graph, it is
again observed how AGTC+F smooths the electromagnetic
torque response compared to AGTCwithout filter. According
to the data in Table 6, AGTC+F reduces by 76.34% the TV
of the electromagnetic torque with respect to AGTC without
filter, obtaining even slightly lower STD values for torque,
Mss, and yss.

As in case 1, if we analyse the indices used in the MOO,
the AGTC+F control again achieves the best compromise
between DEL(Mss), DEL(MLSS) and TV(Pg), as shown by
the data in Table 7. The use of AGTC reduces tower lateral
fatigue at the cost of worsening mainly shaft fatigue. But
as in case 1, in absolute terms this increase in DEL(MLSS)
of about 750-1100 kNm is much smaller than the reduction
achieved in DEL(Mss) of about 27000 kNm. The use of a
filter in the AGTC+F achieves more than 24% reduction in
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TABLE 6. Performance indices for case 2.

TABLE 7. Cost functions used in the MOO calculated with the simulation
data of case 2.

the DEL(MLSS) compared to the AGTC schemewithout filter
and obtains a TV(Pg) similar to that of the baseline control
without AGTC.

Moreover, as in case 1, the AGTC schemes do not affect
the DELs of the other main turbine moments. The frequency
response results are also similar to those in case 1.

V. CONCLUSION
This paper proposes a control strategy for the reduction of
tower side loads of large-scale variable speed-variable pitch
horizontal axis wind turbines working in their nominal region
of operation. The control scheme combines two controllers: a
collective pitch control (CPC) that regulates the turbine speed
and an active electromagnetic torque control (AGTC) that
adds an additional component to the nominal torque set to
mitigate the lateral fatigue suffered in the tower. This work
focuses on the design of the latter AGTC controller while
using a previously designed CPC. Two AGTC configurations
are proposed: a proportional control and a proportional con-
trol with filter. They are implemented as adaptive controllers
by scheduled gain at different operating points as a function
of wind speed and wave height. The AGTC parameter tuning
procedure is formulated as a multi-objective optimization
problem for several operating points. This is solved by means
of genetic algorithms to obtain Pareto front solutions where
three objective functions are considered: two related to the
fatigue load suffered by the wind turbine, such as the DEL of
the lateral moment at the base of the tower and the DEL of the
moment at the low-speed axis, and another objective related
to the fluctuations of the generated power, such as its variation
rate. At each front, the TOPSIS method is used as MCDM to

decide the satisfactory compromise solution between these
objectives, which determines the optimal parameters of the
AGTC at that point. The optimization procedure is performed
based on simulations conducted with MATLAB/Simulink to
implement the controllers along with OpenFAST to simulate
the turbine in different wind and wave conditions in the
nominal region.

The proposed method has been applied to an IAE 15MW
offshore wind turbine with a monopile structure; the designed
controllers have been evaluated in two scenarios with differ-
ent wind-wave conditions and compared with the ROSCO
controller without AGTC as baseline control. The simu-
lation results show a good compromise between different
objectives, which is one of the main advantages of the pro-
posed methodology. In other studies, the AGTCs obtained
better structural performance in the lateral moments of the
tower at the cost of a worsening in the quality of gen-
erated power and/or shaft moments. However, with the
proposed methodology, AGTCs obtain acceptable results for
the generated power quality while maintaining a significant
reduction in tower lateral fatigue loading, at the cost of
a worsening, compared to the non-AGTC control, of the
shaft moments caused by the AGTCs use of electromag-
netic torque. The AGTC with filter achieves the best balance
between the three objectives since, compared to the AGTC
without filter, it does not increase the shaft moment DEL as
much because the filter attenuates the electromagnetic torque
action.

Although the methodology has been applied to a 15 MW
wind turbine, it could be used on all types of large-scale
horizontal axis wind turbines and variable speed-variable
pitch turbines, onshore or offshore, with monopile structures
or floating platforms.
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