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Abstract

A new unified design of an event-based PID control architecture for self-regulating and integral processes is investigated
in this work. The design is based on the Symmetrical-Send-On-Delta sampling technique (SSOD) and on the filtered Smith
predictor (FSP). In particular, the conditions to achieve robust stability to limit cycles are studied from the point of view of the
filter parameters through the describing functions theory. In this context, a simple frequency domain-based tuning methodology
to address the cases of first-order-plus-dead-time and integrator-plus-dead-time processes is proposed. With this method, the
properties of the filter parameters are also explored to cope with the set-point tracking and the load disturbance rejection tasks.
The effectiveness of the general approach is evaluated by simulations and experimental tests.

Index Terms

Event-based PID control, self- and non self-regulating processes, filtered Smith predictor, tuning.

I. INTRODUCTION

Until now, the industrial applications of process control have been practically handled by time-based feedback control
systems, most of them governed by standard proportional-integral-derivative (PID) controllers. A significant factor of their
success is the existence of numerous tuning rules and design techniques [1], which allow the user to provide a satisfactory
performance for many processes with a relatively easy design [2].

Despite PID control is well established as a technology, the advancement of industrial processes continuously demands
for new developments. A significant challenge has arisen in process control because of the more and more use of wireless
sensors and actuators, which conform the well-known networked control systems (NCS) (see [3], [4]). Such systems are a
valuable example of distributed architectures that suffer from the lack of efficient sampling techniques in order to minimize
the effect of data dropout and stochastic time delays, while saving energy and bandwidth (essentially in battery-powered
systems) [5]. In this context, it makes sense to transmit information between agents (sensors, actuators controllers, networks
coordinators, etc.) when something significant has occurred and this calls for the techniques based on events [6], [7]. As
demonstrated in recent works in the field of event-based PID control [8]–[12], a satisfactory trade-off between information
exchange and the closed-loop performance can be achieved when a tight tracking control is not of main concern and a small
steady-state error is acceptable.

In event-based control it is not the progress of time but the occurrence of events which forces agents to transmit information.
Although this is conceptually simple, the design of an efficient control scheme and of a systematic tuning method poses a
challenging problem. Note that the event condition may be any mathematical function (see [13], [14] for typical event-based
conditions), which can be combined with different techniques (event-based, self-triggered, sporadic, etc.), obtaining different
architectures and nonlinear responses [15], [16]. In particular, when wireless communications are considered, the protocol
constraints and the energy consumption need to be considered as a part of the control loop design [17].

Even so, some relevant consensus has been encountered. The Send-On-Delta (SOD) algorithm is the most employed in
practice (see [4], [18]–[20]) because of its simplicity of implementation. It consists in computing a new sample when a signal
changes more than a predefined threshold. Additionally, the use of hybrid sampling schemes, that is, those that combine
time-based and event-based sampling schemes in agents involved in the closed-loop, have become one of the most extended
design approaches. By this way, the event-based behavior can be characterized using the well-known automatic discrete
control theory. Based on the synergy between both frameworks, many theoretical results for event-based PID control have
been recently presented and tested on real plants, but unfortunately they are based on particular solutions either for self-
regulating or non self-regulating (integral) processes. Indeed, the case of integral processes has actually not been properly
addressed until now.

In this work, a unified framework for self-regulating and integral processes is proposed. It is based on the general model
discussed in [21] under the assumption that the event-based sampling technique is applied on the error signal [9], [10], [22].
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Fig. 1. General scheme of the event-based control system. Solid lines denote time-based signals, and dashed lines event-based signal transmission.

Note that, although such an approach has been effectively applied to self-regulating processes with delay [23]–[25], it is not
inherently suitable to be applied to integral processes.

In this sense, a new implementation is proposed in this paper. This results from the redesign of the architecture proposed
in [24] in order to obtain a unified approach able to cope with the most common (both self- and non self-regulating)
industrial processes. The new scheme is based on the structure of the filtered Smith predictor (FSP) [26]. The advantages
of this structure in comparison with the original Smith predictor one (implemented in [24]) rely on the two additional filters
considered, which allow the control system to use a common design to simultaneously handle the performance and the
robustness properties for both kind of processes. Under this scenario, the performance and robustness of the proposed event-
based structure is analyzed for a significant set of self-regulating and integral processes by providing a tuning methodology.
In particular, the Describing Function (DF) approach [27] is used to determine the design conditions of the filters that
robustly guarantee the avoidance of limit cycles for each particular process.

In this context, some theoretical analyses are provided, which are supported by simulations, and experimental results.
The paper is organized as follows. In Section 2, the event-based control system is presented and its behavior is described.

In Section 3, the robust stability and limit cycles problems are analyzed. In Section 4, the tuning procedure is described.
In Section 5, practical issues on the compensation of load disturbances are introduced. The results from simulation are
presented in Section 6 while experimental results are shown in Section 7. Finally, Section 8 presents the main conclusions.

II. CONTROL ARCHITECTURE

The scheme of the event-based control system (EBCS) analyzed in this work is shown in Fig. 1. In line with the general
model [21], the architecture considers three functional/main blocks: the controller, the process and the event generator. Their
tasks are described in the following part.

The dynamic behavior of the stable and integral processes under study can be described (or approximated), respectively,
by a first order plus time delay (FOPTD) transfer function as:

Ps �s� � K
τs�1e�Ls

� Gs �s�e�Ls (1)

or by an integrator plus time delay (IPTD) transfer function as:

Pu �s� � K
s e�Ls

� Gu �s�e�Ls (2)

where K is the static gain (velocity gain in the case of Pu), τ is the equivalent time constant of the stable process, and L
is the apparent dead time. The process is assumed to be affected by non-modeled step disturbances d �t� at the input u�t�
and a constant set-point value r �t� is applied. In both cases G�s� or Gu�s� represent the dead-time free part of the process.

Remark 1. Simple models are essential in the process industry. There are several claims that in practice low-order models
coupled with dead times are sufficient for most purposes in control system design and analyses. For this reason, a relevant
range of processes can be well represented as FOPTD and IPTD models [2].

The structure of the controller block is different depending on the process considered. In the stable case (1), it is
implemented by a discretized version of a continuous PI controller (since Gs �s� is a first order transfer function, a PI
controller achieves a good compromise between performance and simplicity):

C �s� � KP �1�
1

Tis

 (3)

In the case of (2), a standard P controller is chosen:

C �s� � KP (4)

The block of the event generator implements the event-based sampling technique, and therefore characterizes the overall
control loop as an event-based control system. According to the approach presented in [24], its structure can be given by the



Fig. 2. Event-based control scheme including the signals and the details of the event generator.

combination of a dead-time compensator (DTC) and an event-based sampler, which act as two complementary functional
parts. The DTC aims at reducing the effect of the process delay such that the relationship between the timing of events
and the process behavior is more predictable. In this work, the DTC is implemented with the structure of the Filtered
Smith predictor [26]. A detailed description of the event generator is shown in Fig. 2. Here, Gn �s�e�Lms is the model of the
process, Gn �s� represents the dead-time-free part and C �s� is a model of the primary controller (C �s��C �s�). The structure
considers two filters, known respectively, as the set-point filter, F �s�, and the predictor filter Fr �s�. To be consistent with the
robustness results of [26], the transfer function of the set-point filter is assumed to be the unity (because unstable processes
are not considered) and the predictor filter is defined as

Fr �s� � �Trs�1��β1s�1��T0s�1�2 (5)

where the parameter β1 is dependent on the structure of the controller, to be particularized as β1 �

Tm �1� �1�T0©Tm�2e�Lm©Tm� in the case of (1) and as β1 � 2T0�Lm in the case of (2). Similarly, the controller parameters
are established from the model and filter parameters as (6) and (7), for the case of the self-regulating process (1) and the
integer one (2), respectively.

Ti � Tm KP � T©KmTr (6)

KP � 1©KmTr (7)

As pointed out in [26], this structure provides a good trade-off between the robustness and load disturbance properties,
while simplifying the design using only T0 and Tr as adjustable parameters.

Remark 2: The event generator considers a model of the controller to obtain information about the control action u�t�
without the need of extra-communications between units. Thus, under the assumption that communication time delays can
be neglected, the control signal determined by both controllers (process controller and model controller) can be considered
to be synchronized. This can be assumed because they have the same transfer function and they are activated by the same
event-based error samples (which are sent at the same triggering instant to both controllers).

The event-based sampler block receives the measure of the error signal from the previous entity and computes the variable
error samples that are sent to the controller when the event condition is satisfied. As observed, the error signal is calculated
as the result of the difference between the filtered prediction error, the delay-free model output and a constant set-point
value r. In this work the triggering algorithm is based on the SSOD sampling technique [28], which is described in the next
section.

From a practical point of view, the EBCS functional blocks could be implemented in one or more physical entities, for
instance, intelligent on board devices, microcontrollers, automatons, computer-based systems, etc. In the case of several



entities, the data has to be sent from one to each other on a network which implies more efforts than the data exchanging
into a single machine, especially when they are battery powered. For this reason, it is recommended to use event-triggered
data exchanging for all the signals which are sent between two machines and normal time-driven sampling for the data
which are computed by an unique machine (for instance to link the blocks that compose the event-generator). It has to
be noted that this is an appealing architecture for networked control systems, because the sensor unit (in this case, the
event-generator represents this function) can be battery powered (thus, a reduction of the communications can increase the
battery life), whereas the control unit normally requires an external power supply so that the power consumption reduction
is not as critical as in the other unit.

A. Event-based sampling

The event-triggered data exchanging is performed using the SSOD event-based sampling algorithm, which represents a
special case of the send-on-delta (SOD) sampling technique (see [18]). According to the standard algorithm, the output is
computed based on two predefined parameters: an event threshold ∆ " R�, and the internal state of the algorithm j " Z�.
Thus, if e�t� is the input of the algorithm, the output, denoted as e� �t�, is forced to satisfy the relation e� �t� � j∆, that
is, a multiple integer j of ∆. In this way, the events are triggered when consecutive levels are crossed by the error signal,
which means that the sampled signal changes its value to the upper or lower quantization level when the input signal e�t�
increases or decreases more than ∆. This behavior can be mathematically described as

e�j �t� � SSOD�e j �t� ;∆� � ~��������
� j�1�∆ if e�t� ' � j�1�∆ and e� �t�� � j∆

j∆ if e�t� " �� j�1�∆,� j�1�∆� and e� �t�� � j∆� j�1�∆ if e�t� & � j�1�∆ and e� �t�� � j∆
(8)

and a graphical representation is shown in Fig. 3.
Remark 3: The behavior of the algorithm can be considered as a generalization of a relay with hysteresis, where there

are an infinite number of thresholds and admitting a simple representation as an hybrid automaton described by the set of
parameters � j,∆� [19].

B. Closed-loop response

The closed-loop response of the event-based system is mainly affected by the occurrence and the timing of events. As
shown in Fig. 2, the control loop has a time-driven behavior between the controller and the event generator, whereas the
transmissions between the event-generator and the controller are performed using the event-based sampling technique. Thus,
a new sample is not triggered and sent to the controller if the event condition is not satisfied, which interrupts the continuity
of the feedback loop and characterizes the overall scheme as an event-based control system. Therefore, in the nominal case,
the behavior of the system can be described as a sequence of open-loop responses composed by the controller and the
process plant since the feedback loop is only closed through the event generator at event triggering instants.

With this background, the behavior of the event-based system can be summarized as follow: each time the instantaneous
error signal e�t� exceeds a specific threshold defined by (5), a new event is triggered and therefore, a new sample e� �t�
is sent to the controller. The value of the sample is defined by the SSOD algorithm in accordance with the current state j.
According to Fig. 2, the response of the instantaneous error signal is elaborated from the difference between the process
and the model after filtering, and the delay-free model with respect to the value of the constant set-point r. Thus, under the
assumption of an accurate model of the process, the delay produced in its response can be compensated by the predictor
and the event samples are triggered at deterministic instants. In case of plant-model mismatches, events are triggered with
a different timeline because the dynamic of the error signal is altered and, consequently, the process response cannot be
predicted with precision. Thus, the key point in the closed-loop system behavior is represented by the dynamic of the error
signals between events, which is characterized by the effect of the predictor filter over the modeling errors and its interaction
with the open loop response of the controller C �s�.

III. ROBUST STABILIZATION OF THE EBCS

The stability properties of an EBCS can be derived from the analysis of the behavior of its equilibrium points [10]. The
analysis is based on the properties of the describing function (DF) of the nonlinearity introduced by the SSOD algorithm
and it will be exploited for the tuning of the controller parameters.

The describing function is an approximate method, classically used to analyze nonlinear systems by characterizing the
limit cycles experimented in the presence of nonlinear elements [29]–[31]. Alternatively, many authors have used the DF
as a frequency-domain-based modeling method for autotuner systems and, particularly, in the field of event-based control,
only a few works have considered this methodology for analyses [23], [32]. The relevance of this method is founded on the
adaptation of the Nyquist stability test to detect the presence of limit cycles in a nonlinear system, providing a prediction
of its approximate amplitude and frequency.



Fig. 3. Quantization relationship between e�t� and e� �t�.

In the context of this work, it is clear that the DF method can become a valuable approach to analyze the EBCS since its
stability properties are related to the behavior of the limit cycles. It has to be noted that the method of the DF represents an
approximation which is based on some assumptions, concretely, that the controlled system has low-pass filtering properties
and responds principally to the fundamental Fourier component [27]. This implies that the estimation error depends on how
the low-pass filtering assumption is verified, being smaller for very low-pass responses. As it will be explained later on,
the filtered predictor will introduce in the design the low-pass component so that this hypothesis will be verified. In the
following section, the basics of DF and their application to the tuning of the proposed scheme are described.

A. The Describing function analysis

In order to consider the describing function analysis, the control system in Fig. 2 is modified to obtain the equivalent scheme
in Fig. 4, where the nonlinear and the linear parts are described by separated blocks interconnected through the feedback
loop. Here, Gol �s� represents the frequency domain open-loop dynamics defined by the combination of the controller, the
process and the elements of the event-generator excluding the SSOD sampling block, which defines the nonlinear element.
For the particular case of a standard parametric transfer function of the process as (1) or (2) subject to uncertainty, the
equivalent transfer function could be obtained by considering the following expression:

Gol �s� �C �s�Geq �s� �C �s�Fr �s��P�s��Pn �s��Gn �s�©Fr �s�� (9)

where Pn �s� � Gn �s�e�Lms

As detailed in [27], the describing function of a nonlinear element can be defined as the ratio of the fundamental component
of the output with respect to the magnitude of a sinusoidal input signal applied to the nonlinear element. Thus, considering
the input x�t� � Asin�wt� to the nonlinear element, the output can be expressed using Fourier series as:

y�t� � c0
2 �

�

=
k�1

�cn cos�nwt��dn sin�nwt�� (10)

where

cn �
1
π
E 2π

0
y�t�cos�nwt�d �wt� (11)

dn �
1
π
E 2π

0
y�t�sin�nwt�d �wt� (12)

For an odd nonlinearity c0 is equal to zero. Then, using the fundamental component of y�t�, that is, y1 �t� � c1 cos�wt��
d1 sin�wt�, the nonlinearity is represented with the describing function as

N �A,w� � d1� jc1
A (13)



Fig. 4. Equivalent closed-loop system.

Thus, from (9), the characteristic equation of the system shown in Fig. 4 can be written as

1�N �A�Gol �s� � 0 (14)

where the parameter w is dropped from notation. Note that, in practice, the nonlinearity N �A,w� does not involve energy
storage or dissipation so that it can be expressed only as a function of the amplitude in the form N �A�. From (14), the
following equation can be obtained:

Gol � jw� � � 1
N �A� (15)

The solutions of (14) describe all the feasible characteristic limit cycles. This equation can be solved with graphical
methods by finding the intersections of G� jw� and �1©N �A� in the complex plane. Additionally, by analyzing (15), it can
be easily understood that the problem of the existence limit cycle solutions can be translated into a Nyquist stability problem,
where there is not a single critical point ��1,0�, but a locus of critical points given by the complex values of �1©N �A�.

Under this scenario, the DF of the nonlinear SSOD block can be computed by following the procedure of [27] as:

N�A� � 2∆

πA

Ẑ̂̂̂̂̂
\̂1�

Ø
1��m

∆

A

2

�2
m�1

=
k�1

Ø
1��k

∆

A

2[_______]� jm

2∆
2

πA2 (16)

where m �  A
∆
& represents the number of output levels for a sinusoidal input with amplitude A. The polar plot of 1

N�A� is

shown in Fig. 5, where the equation (16) is evaluated in the interval ∆

A " �0,1�.
From Fig. 5, it can be easily understood that a characteristic limit cycle will appear depending on the level and the point of

crossing with the polar plot of the open loop response (9). Therefore, the closed-loop stability, in the sense of the existence
of limit cycles, can be graphically analyzed by computing such graphics.

In next section, the problem of the robust stabilization of the EBCS is considered for the particular case of the processes
(1) and (2).

B. DF-based Robust Stability

A standard stability problem in robust control theory consists in finding a constraint on the infinity norm of the weighted
complementary sensitivity function that guarantees stability [33]. For the particular case of the proposed EBCS, the constraint
is represented in the Nyquist diagram by the bound of the uncertainties that avoid the existence of solutions that intersect
with the characteristic describing function of the SSOD block (limit cycle solutions).

Consider that the process is represented by a family of plants P�s� described by a multiplicative unstructured uncertainty,
such that P�s� � Pn �s��1�δP�s�Λ�s��, where Pn �s� is the nominal model, δP�s� is the uncertainty weighting frequency
function and Λ�s� is an unknown stable transfer function with ½Λ½

�
$ 1. As stated in [33], the complementary sensitivity

function of a system can be invoked to test the robust stability conditions, which from Fig. 4 can be determined for the
nominal model Pn �s� as:

T �s� � Fr �s�C �s�Pn �s�
1�C �s�Gn �s� (17)

In this sense, considering that the nominal system is stable, the necessary and sufficient condition for robust stability of
the standard FSP is:

δP�ω� $ ¶1�C � jω�Gn � jω�¶¶Fr � jω�C � jω�Pn � jω�¶ , ¾ω % 0 (18)

where δP�ω� is the multiplicative norm-bound uncertainty that verifies ¶δP� jω�¶ & δP�ω�, which finally yields

½T �s�δP�s�½
�
$ 1 (19)



From (19), a sufficient condition to obtain robust stability without limit cycles can be obtained by constraining the infinity
norm as it is stated in the following proposition.

Proposition 1: An EBCS according to the proposed scheme in Fig. 2 is robustly stable without limit cycles if the following
sufficient condition is satisfied:

¾T̃ �s�δP�s�¾
�
$ 1 (20)

where

T̃ �s� � Fr �s�C �s�Pn �s�
Ns�C �s�Pn �s� (21)

and where Ns represents the farthest point away from the critical point, that is Ns � Na� jNb " N �A�, such that ¶Ns¶ �
sup ¶1�N �A�¶.

Proof: If we develop the equation (9) and we introduce the module condition, it can be easily demonstrated that
intersections do not exist if ¶Gol �s�¶ $ inf

»»»»»»� 1
N�A�

»»»»»» � ¶�Ns �s�¶ is satisfied for all frequencies ω . From this, we have:

¶P�s��Pn �s�¶ $ ¶Ns�s��C�s�Gn�s�¶
¶Fr�s�C�s�¶

Dividing both sides by the nominal model, we obtain:

¶δP�s�¶ $ ¶Ns�s��C�s�Gn�s�¶
¶Fr�s�C�s�Gn�s�¶

that is equivalent to

¶Fr� jω�C� jω�Gn� jω�¶

¶Ns� jω��C� jω�Gn� jω�¶
¶δP�ω�¶ $ 1, ¾ω % 0

thus obtaining the infinity norm constraint

¾δP�s� T̃ �s�¾
�
$ 1

that demonstrates the validity of the Proposition 1.
Hence, from the DF analysis, the original problem of stability for the proposed event-based controller is transformed into

a nonlinear robust control problem that could be accomplished by finding the needed constraint on the infinity norm of the
complementary sensitivity function as illustrated. It is worth remembering that, in order to be consistent with robustness
results of [26], the adjustable tuning parameters used to cope with the problem of limit cycles and robustness will be
represented by the coefficients of the filter Fr �s�, T0 and Tr (instead of the conventional tuning parameters focused on the
controller, which are specified according to (6)-(7)). In the next section, the conditions for tuning these parameters in order
to obtain asymptotic robust stability are addressed and the tuning framework is introduced.

IV. TUNING PROCEDURE

As for all industrial control systems, in addition to the achievement of a satisfactory performance, it is important to ensure
that the controller is easy to design and for this reason a clear (robust) tuning procedure has to be sought.
Because of the nonlinear nature of the EBCS, the tuning of the filter can make the system unstable, to reach an equilibrium
point without limit cycles, or admit a stable limit cycle. For this reason, the proper knowledge of system properties is
essential to adequately tuning the filters in order to avoid limit cycles with a certain degree of robust performance. In this
section, we propose a simple method to compute the space of solutions that provide the characteristic behaviors of the
EBCS, that is, the instability region, the stable limit cycle region or the asymptotic stability region.

According to the formulation in the previous sections, the three characteristic regions that describe the behavior of the
equilibrium point for the EBCS can be represented as a function of the uncertainty bounds and of the filter parameters.
They can be derived in two steps by using the conditions (19)-(20). Firstly, the stable feasible region (namely, the region
concerning to stable limit cycles and asymptotic solutions) can be separated from the unstable solution region via the standard
robust stability problem derived from (19). Secondly, this information can be used to constrain the infinity norm in order to
adequately delimit the space of solutions for T0 and Tr that avoid a limit cycle for the family of uncertain plants (according
to condition (20)). In this way the three regions can be clearly delimited for tuning purposes. The procedure is described
hereafter, but for the sake of clarity, only the process plant (1) is considered in the description. It has to be emphasized,
however, that the same procedure can be trivially particularized for the process plant (2).



Define a nominal process described by the set of parameters �K,τ,L� and a set of structured uncertainty bounds K " �K,K�,
τ " �τ,τ� and L " �L,L� that determine all the family of process plants (only �K,L� in the case of (2)). The model of the
process Pn�s� �Gn �s�e�Lms is assumed to be described by the values of the nominal plant, namely �Km,τm,Lm� � �K,τ,L�.
Now, consider the limits of interest for the parameters of the filter to be used in the computation of the tuning regions as
T0 " �T0

min
,T0

max� and Tr " �Tr
min

,Tr
max�.

With this information, by suitably gridding the search space of T0 and Tr, the robustly stable solutions can be computed
by evaluating the condition (19) for each value of the controller parameters. To this aim, it is necessary to obtain the transfer
function that represents the upper bound of the relative error δP (the uncertain function), which can be derived using a
representative family of uncertain plants. As remarked in [33], a reasonable bound approximation is obtained by using all the
combinations of the values of the vertex of the uncertainties, that is all possible combinations in the process plant structure
that define the family F � t¾P�s,K,τ,L�¶K " tK,Kz ,τ " sτ,τy ,L " tL,Lzz. Note that the bound is independent from the
filter setting so that it has to be computed once in order to evaluate all the space of parameters for the filter values. In this
way, the solution space delimited by T0 " �T0

min
,T0

max� and Tr " �Tr
minTr

max� is reduced to the set of values that provides
robust stability according to the standard condition (19).

Next, the stable limit cycle region can be extracted from the global stable region by detecting the possible solutions that
produce limit cycles. This task is performed by imposing the infinity norm constraint derived in (20). The less conservative
constraint which guarantees the robust stability can be obtained by defining Ns with the complex coordinates �0.78�0.78 j.
Note that this point represents the point belonging to the DF with the highest radio-vector as can be observed in the polar
plot introduced in the graphical example of Fig. 6. Thus, solutions that satisfy condition (20) will not produce crossings
between Gol � jω� and the DF, avoiding the generation of limit cycles. In this sense, a second iterative procedure can be
carried out by checking condition (20) on the set of stable solutions, where only the solutions that satisfy it belong to the
asymptotic stable region, whereas the rest of solutions belongs the stable limit cycle region.

Remark 4: It can be easily understood that the region of asymptotically stable solutions can be computed directly without
first computing the overall stable feasible region. However, distinguishing all the three characteristic regions can be interesting
for the tuning procedure as in this way the designer can evaluate explicitly the relative stability of the system (that is, the
distance of the selected tuning from the unstable region). This is especially relevant if limit cycles are admissible for a given
application.

From a practical point of view, this method provides a simple map of the characteristic behavior of the EBCS, where it
is only necessary to specify the uncertainty bound. As it will be seen from the results of this approach, under certain prior
knowledge of uncertainties bound, the level of robustness to limit cycles can be increased arbitrarily using the information
provided by the characteristic tuning regions. This is very useful because the values of the filter can be easily derived to
handle the trade-off between the rejection of load disturbances and robust stability by selecting the adequate set of values.
It is worth stressing the simplicity of the proposed method which can be precomputed for each particular case without the
need of complex calculations or subroutines in order to develop the tuning procedure. As already mentioned, the extension
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to the case of integral processes (2) can be trivially derived using the same approach.

V. DISTURBANCE COMPENSATION/ESTIMATION ALGORITHM

The event-based control of integral processes as proposed in this work requires an additional (feedforward) compensation
action to deal with step load disturbances. Due to the quantized nature of control actions derived from the use of a P
controller in the scheme of Fig. 2, the unquantized part of a load disturbance cannot be compensated and, consequently, a
bimodal limit cycle surely arises. To clarify this point, we can consider the simplified version of the scheme in Fig. 4 where
it is assumed that the process plant behaves as the nominal case. In this situation, the simplification condition P�s� � Pn �s�
is satisfied and, therefore, the feedback signal is given by the output of the dead-time-free model Gol �s� � Gn �s�.

By analyzing the scheme and by remembering that control actions are computed as u�t� � KPe� �t� � KP j∆, it can be
easily seen that an equilibrium exist only if r � KP j∆�D. Then, if an unquantized part exists, because of the integral
behavior of the process, a limit cycle with period T appears, which involves two consecutive states denoted as jl�1 and jl .
Denoting as t� the time interval where j � jl�1 is retained, the control action assumes only the values KP jl and KP� jl�1�,
that is,

u�t� � vKP � jl �1�∆ if t " �0, t��
KP jl∆ if t " �t�,T� (22)

Under an established limit cycle, by definition, the trajectories of the process and of the controller are periodic. If we
consider now the integrated error IE �t�, its Laplace transform IE �s� can be calculated as

IE �s� � R�s�
s �

K
s2 �U �s��d� (23)

which corresponds to the following differential equation:

¨IE �t� � ṙ �t��K �u�t��d� (24)

By integrating (24) over a period and remembering that, by hypothesis, r and d are constant and IE �t� is periodic, we
obtain:

˙IE �T�� ˙IE �0� � �KdT �KE T

0
u�t�dt � 0 (25)

and finally:

u �
∆t�

T � jl∆ � d (26)

Fig. 6. Point with highest radio-vector of the SSOD describing function.



where u is the mean value of u�t� during a period and ∆t�

T is the “unquantized” part of the control action necessary to
compensate the load disturbance. Thus, a constant feedforward action equal to u is added to the event-based feedback control
action for integral processes in order to achieve a zero steady-state error when a constant load disturbance occurs. However,
as it was pointed out in [10] for the PI-SSOD control scheme, when the controller is quantized, the exact compensation
is virtually impossible in practice. In real plants, the trajectory tends to the limit cycles but does not reach it. Hence, the
hypothesis of periodicity is not further preserved (it is only an approximation), therefore the exact compensation of the
disturbances is not possible. For this reason, it it recommendable to include a small deadband in order to take into account
the numerical errors in the calculus of t� and T and the presence of noise, considering it is overbounded by ∆.

Remark 5: Limit cycles are defined as periodic oscillations of the unperturbed system, while stability analysis (in terms of
convergence in a neighborhood around the equilibrium point) is still valid also in presence of bounded disturbances. However,
for slow-varying piecewise constant input disturbances (namely, multiples of the limit cycle period) the limit cycles analysis
can be applied without significant approximation errors. It is worth stressing that, in presence of a fast-varying disturbance
signal (compared with the event-generator threshold), the number of events increases and the event-based control strategies
become more and more similar to their equivalent time-driven control strategies.

VI. SIMULATION RESULTS

In this section, simulation results are provided. In particular, the examples illustrate the robust design of the filter for a
significant range of different process dynamics (both self-regulating and integral) in order to avoid the presence of limit
cycles and the compensation of exogenous signals.

A. Illustrative Example 1

In the first simulation case, a series of experiments is proposed with the FOPTD process

Ps �s� � 1
s�1e�4s (27)

where for each parameter �K,τ,L� an uncertainty of �20 % is considered, that is, K � 0.8, K � 1.2, τ � 0.8, τ � 1.2, L � 3.2,
L � 4.8.

A.1. Computation of the stability regions: Assuming that the upper bound of the uncertainties is known, the methodology
proposed in Section IV can be used to compute the robust solutions for the filter parameters �T0,Tr�.

The first step is to obtain the norm bound function δP�ω�. According to the analysis of Sections 3 and 4, δP�ω� can
be computed as sup

»»»»»»Pi� jω��Pn� jω�

Pn� jω�

»»»»»», where Pi represents each one of the combinations that defines the family of uncertain

process plants F � t¾P�s,K,τ,L�¶K " tK,Kz ,τ " sτ,τy ,L " tL,Lzz. The Bode magnitude plot of the transfer function
employed is shown in Fig. 7 where it has been approximated by a second-order transfer function.

The graphic with the feasible solutions is shown in top-left plot of Fig. 8. Here, the three areas that characterize the
behavior of the EBCS can be distinguished (as pointed out in Section III, it can be unstable, reach an equilibrium point, or
admit a limit cycle). As a result of the proposed approach, the region for unstable solutions can be separated from the stable
one (condition (19)), which, at the same time, can be divided into the stable limit cycle and the asymptotically stable regions
(by using the proposition with the condition (20)). Note that, from this kind of graphic, a solution can be conveniently
chosen from the stable regions in order to fulfill some closed-loop performance properties (as it will be discussed in the
following examples). In this sense, an example of a stable design point is chosen for analysis.

The Nyquist plot of the family of plants F is also shown in Fig. 8 for the selected design point. As it can be observed, the
Nyquist plots satisfy the condition of no limit cycles imposed. Right-side plots of Fig. 8 show the time domain responses
for such a design point. Here, three cases of structured uncertainty are simulated such that the values of the parameters
are tK,τ,Lz, sK,τ,Ly and tK,τ,Lz, with Pn �s� given by (27). The value of ∆ is set equal to 0.1. A unit set-point step
is simulated at time t � 0 and a unit load disturbance step is applied at time t � 40. The proposition of robust avoidance
of limit cycles can be verified from the obtained results and it can be also seen that the used robust design point describes
a balanced solution in handling the set-point following and the load disturbance rejection tasks considering the uncertainty
bounds.

A.2. Influence of filter tuning parameters: Next example illustrates the influence of the tuning parameters, considering
the aforementioned process (27) with the same structured uncertainty. Note that Tr, T0 and ∆ represent the only three tuning
parameters, because the parameters of the controller are characterized by the parameters of the model and by the coefficient
Tr. The effects of the parameters Tr and T0 are derived from the structure of the FSP. While Tr determines the performance
with respect to the set-point step response, T0 handles the trade-off between performance (in the load disturbance rejection
task) and robustness of the control system. The parameter ∆ concerns to the system precision and the number of events.
The influence of this parameter will be discussed later on. As shown in Fig. 9, six sets of parameters belonging to the
stable area are analyzed, which are respectively denoted by using a circle or a triangle with an specific index. In the case of
the sets denoted with circles, they introduce increments in the parameter T0, while Tr is kept constant. Conversely, the sets



Fig. 7. Magnitude of the norm-bound transfer function δP�s� � �2.621s2
� 13.27s� 2.318�©�s2

� 6.21s� 10.87� for the process (27) considering an
uncertainty bound of �20%. Dashed lines represent the Bode magnitude of the function �Pi � jω��Pn � jω��©Pn � jω� for each one of the considered
uncertain plants Pi "F .

TABLE I
PERFORMANCE OF THE CONTROLLERS IN EXAMPLES OF FIG. 9-10. OV : OVERSHOOT. IAESP : INTEGRATED ABSOLUTE ERROR (COMPUTED ONLY FOR

THE SET-POINT CHANGE). IAELD : INTEGRATED ABSOLUTE ERROR (COMPUTED ONLY AFTER THE APPLICATION OF THE LOAD DISTURBANCE). S:
NUMBER OF EVENTS.

T0 Tr ∆ OV % IAESP IAELD S
Nominal 1.25 2 0.1 0% 5.77 5.68 32
Set 1 aS 1.25 2 0.1 37% 8.59 8.42 50
Set 2 a 1.5 2 0.1 36% 8.11 8.62 39
Set 3 a 2 2 0.1 34% 8.52 8.57 30
Set 2 S 1.25 3 0.1 25% 8.28 9.23 52
Set 3 S 1.25 4 0.1 15% 7.98 8.78 57

denoted with triangles illustrate the influence of the parameter Tr. The Nyquist plots and the response of the controllers are
shown in Fig. 10. Left-side plots of Fig. 10 describe the results to variations of T0. In qualitative terms, when Tr is fixed and
T0 is progressively increased, the disturbance rejection response slows down, which reduces the impact of the unmodeled
dynamics (this results in an increment of the robustness of the closed-loop control system as remarked in [26]) while the
set-point following performance is practically preserved. Specifically, the response of the feedback signal is more sluggish,
which reduces the oscillations of the error signal such that it remains inside the deadband (see Section II).

Right-side plots show the results with respect to changes in Tr. As mentioned, results reveal that lower values of Tr
increase the speed of the set-point response while the load disturbance is not significantly affected. The importance of
making a balanced design has to be noted since excessive low values of Tr turns into a higher overshooting which in general
increases the number of events without improving substantially the performance. Similarly, very low values of T0 reduces
the robustness of the design, reducing the relative stability of the equilibrium point under load disturbances.

For comparison with the nominal case (without structured uncertainty), Table I reflects some of the commonest performance
indexes computed from simulations. As observed, the number of events generated is, in general, higher when parameters are
close to the limit-cycle region, that is, when the relative stability of the system is lower. As expected, the resulting overshoot
after set-point changes mainly depends on the value of Tr (being higher for lower values of Tr), and each one of the IAE
indexes is particularly affected by the filter settings in a different way, where the IAESP may be regulated by the parameter
Tr and the IAELD by T0.

A.3. System behavior in the stability regions: The following experiment discusses the importance of satisfying the bounds
for stability defined by the limits of the stability regions. In Fig. 11, the response of the control system with three sets of
parameters is simulated, each one belonging to one of the characteristic stability areas for process (27). It can be observed
that the relative stability is degraded as T0 is decreased, which, in the case of the set 3, causes instability. It is worth stressing
that, despite the set 2 belongs to the area of limit cycle solutions, an equilibrium point without limit cycles is achieved,
similarly to design 1. This aspect is clarified in Remark 6. The bad performance of the design 3 is also verified in the



Nyquist plot. As observed, despite the reaction to load disturbances is slower than the case of the stable design (design 1),
the equilibrium point is achieved faster than the design 2. Additionally, the oscillations and peaks (because of the small
value of T0) make design 2 close to destabilize the EBCS.

Remark 6: Regarding the stability region graphics, it should be noted that the solutions enclosed in areas denoted as
”Stable limit cycle area” or ”Instability area” represent solutions where at least one combination of the modeling errors that
produce limit cycle or instability, respectively, exists inside the range of the considered uncertainties. In practice, this means
that such limit of the areas could be violated for particular cases of modeling errors (which consequently supposes relaxing
the robustness condition presented in Section 3) without achieving limit cycles or instability, respectively.

A.4. Influence of the event-triggering threshold: In last example, the influence of the event-based threshold ∆ is analyzed.
It can be easily understood, by analyzing the properties of the describing function, that the amplitude of the limit cycle, in
terms of the numbers of levels ∆ involved, is only determined by the points where the Nyquist plot crosses the DF [27]. This
means that, when the design allows establishing a limit cycle, the value of ∆ not only has influence on the number of events,
but it determines also the precision of the system (in terms of amplitude of the oscillations). This aspect is highlighted in
Fig. 12, where a filter that produces a limit cycle is tuned using two different values of ∆, that is, 0.05 and 0.1, respectively.
It can be seen that the limit cycle has a different amplitude in each case. By contrast, in the area with absence of limit
cycles, the event-threshold ∆ has influence on the number of resulting events and on the bounds for the expected steady-state
error value.

B. Illustrative Example 2

In the second simulation case, the event-based control of the IPTD process

Pu �s� � 1
s e�4s (28)

is investigated, by considering a structured modeling error of �10 % in the set of parameters �K,L�, that is, K � 0.9,
K � 1.1 ,L � 3.6 and L � 4.4.

The corresponding stability regions are shown in Fig. 13. This example is also used to illustrate the compensation algorithm
for step disturbances proposed in Section V. Here, two cases of structured uncertainty are simulated for the values tK,Lz
and sK,Ly, with Pn �s� given by (28). The simulation results are shown in right-side of Fig. 13. In this case, the even-based
threshold is set as 0.1. A unity set-point value is applied at the time instant t � 0 and a step input disturbance of 0.51 is
introduced at the time instant t � 50. Note that with this value of ∆ it is not possible to quantize the disturbance input and,
therefore, to compensate it perfectly. Under this scenario, the compensation algorithm is introduced at the instant t � 120
(after the occurrence of some limit cycles). It is possible to note that, at this time instant, the control variable takes the value
necessary to compensate the disturbance achieving a stable equilibrium point for both cases of the structured uncertainty.

Remark 7: Under ideal conditions, the exact compensation can be achieved so that the equilibrium point is preserved for
future instants and new events are not triggered. In a real setup, because the noisy conditions and the unmodelled dynamics,
the exact compensation is virtually impossible, but in practice a value very close to the ideal one can be determined so that
it is possible to enlarge the period of the limit cycle reducing substantially the number of events.

C. Illustrative Example 3

In this example, the performance of the proposed event-based strategy is evaluated for the self-regulating high-order
system

Ps �s� � ��0.3s�1��0.08s�1��2s�1��s�1��0.4s�1��0.2s�1��0.05s�1�3 (29)

In this case, the event generator is defined by the FOPDT approximation

Pn �s� � 1
2.5s�1

e�1.47s (30)

which has been obtained by using the Skogestad’s half rule [34].
The case of unstructured uncertainties can be managed by increasing the level of robustness of the stability regions,

which means considering in the computation a normalized dead time reasonably higher than the one obtained with the
approximation, as well as a suitable bound for the uncertainties. For the process (29), in order to compute the stability
regions, the dead time value is enlarged to consider a value of 2 (in comparison with the nominal one equal to 1.47) and a
bound for the parameters of �20% (see Fig. 14). With this setting, the validity of the regions is checked by simulating three
designs (one for each characteristic behavior of the equilibrium point). It appears that each set reflects the expected behavior
from each region. The correctness of the uncertainty bound is also verified with the Nyquist plots. Note that oversizing
the stability regions contributes positively to delimit the real stable solutions, but obviously results in more conservative
responses.



D. Illustrative Example 4

Last example is related to the control of a non self-process subject to unstructured uncertainties. The following transfer
function is considered

Pu �s� � ��0.17s�1�2

s�s�1��0.02s�1� (31)

and it is approximated as

Pn �s� � 1
s e�1.69s (32)

In this case the stability regions are computed by considering a dead time of 2 seconds and a uncertainty bound of �10%
(see Fig. 15). The set-point and load disturbance step responses are shown in Fig. 15. The simulation conditions were
configured like in example 2 and the compensation was introduced again at the time instant t � 120. The results demonstrate
the stability of the solution and the effectiveness of the algorithm. It should be noted that the compensation algorithm works
well both for structured and unstructured uncertainty cases because the method is independent on the process structure.

Fig. 8. Example of design with the proposed methodology for the process (27). Top-left plot: stability regions considering an uncertainty bound of
�20% for the process parameters. Bottom-left plot: Nyquist plots of the family of uncertain plants derived from the design point 1. Top-right plot: process
outputs and number of events considering the design point 1 subjected to three cases of structured uncertainty given by tK,τ,Lz, sK,τ,Ly and tK,τ,Lz,
respectively. Bottom-right plot: control variables for the three cases.

VII. EXPERIMENTAL RESULTS

The proposed approach has also been implemented in a real application. For this purpose, a laboratory-scale setup of the
Computer Science Department of the University of Cordoba has been used. In particular, the experimental setup consists in
the speed control of a brushless DC motor as described in [24]. Since the system has an apparent dead time that is very
small in comparison with the dominant time constant, a time delay of 4 s has been added via software at the process output.
The estimated FOPDT model, obtained by applying the area method to the open-loop response of an input step from 1 to
1.5 V is

P�s� � 0.53
0.54s�1

e�4s (33)

The percentage of the output variation that is explained by the model is approximately 91%. To provide significant
experiments, the process delay is assumed to be estimated with modeling errors. Particularly, the DTC is computed with



Fig. 9. Stability regions for the process (27) considering an uncertainty bound of �20%. Six sets of stable controllers are defined to evaluate the tuning
properties under changes in T0 and Tr (denoted with circles and triangles, respectively).

Fig. 10. Nyquist plots and control system responses for the six sets of stable controllers defined in Fig. 9 (denoted as sets 1 to 3 with circles on left-side
plots, and with triangles on right-side plots, respectively). Top plots: Nyquist plots of the family of uncertain plants derived from the six design points for
the process (27). Middle plots: process outputs and number of events for the six design point considered. Bottom plots: control variables.



Fig. 11. Illustration of the response of some characteristic equilibrium points for the process (27). Top-left plot: stability regions considering an uncertainty
bound of �20% for the process parameters. Bottom-left plot: Nyquist plots of the family of uncertain plants derived from the three design points. Top-right
plot: process outputs and number of events for the three design points with structured uncertainty given by sK,τ,Ly. Bottom-right plot: control variables.

Fig. 12. Evaluation of the influence of the event-based threshold ∆ inside the limit cycle region. Top-left plot: stability regions considering an uncertainty
bound of �20% for the process parameters. Bottom-left plot: Nyquist plots of the family of uncertain plants derived from the the design point 1. Top-right
plot: process outputs and number of events for the design point 1 with structured uncertainty given by sK,τ,Ly and using ∆� 0.05 and ∆� 0.1. Bottom-right
plot: control variables.



Fig. 13. Evaluation of the input disturbance compensation algorithm for the IPTD process (28). Top-left plot: stability regions considering an uncertainty
bound of �10% for the process parameters �K,L�. Bottom-left plot: Nyquist plots of the family of uncertain plants derived from the design point 1.
Top-right plot: process outputs and number of events for the design point 1 with structured uncertainty given by tK,Lz and sK,Ly. Bottom-right plot:
control responses for the three cases of structured uncertainty.

Fig. 14. Control of the self-regulating process (29) subjected to unstructured uncertainty. Top-left plot: stability regions considering an uncertainty bound
of a �20% for the modeled process parameters Km,τm,Lm. Bottom-left plot: Nyquist plots of the family of uncertain plants derived from the three design
points. Top-right plot: process outputs and number of events for the three design points. Bottom-right plot: control variables.



Fig. 15. Control of the integrating process (31) subjected to unstructured uncertainty. Top-left plot: stability regions considering an uncertainty bound of
�20% for the modeled process parameters Km,Lm. Bottom-left plot: Nyquist plots of the family of uncertain plants derived from the three design points
for process (31). Top-right plot: process outputs and number of events. Bottom-right plot: control variable.

the model Pn �s� � �0.53©�0.54s�1��e�3.2s, which introduces a plant/model mismatch of -20% in the dead time. With this
information, the stability regions are computed (see Fig. 16).

Four cases are developed (denoted with a circle and an index, respectively). The first three designs were performed to
obtain asymptotic stable responses, whereas the last one considers the stable limit cycle operation region. The responses are
shown in Fig. 17. Table II shows the results of the performance indexes considered in this work. Such experiments aim at
demonstrating experimentally the properties of the approach and of the tuning methodology.

A set-point change of magnitude 0.5 V is demanded at the initial time instant and a step input disturbance of 0.5 V is
applied at the time instant 15 s. The event threshold was selected as ∆ � 0.1, which is approximately 3-4 times higher than
the noise band coupled to the output signal. As expected, the experiments derived from the designs 1 to 3 (belonging to the
stable region) provide asymptotic stable responses (without limit cycles), whereas the design 4 achieves a limit cycle after
the set-point change. If we compare the responses, it can be observed that the general properties of the tuning parameters
are preserved. The designs 1,2 and 4 produce very similar fast transitions after the set-point change, which occurs because
of a similar tuning for Tr. In the case of the design 4, it establishes a three-state limit cycle as a consequence of the low
robustness caused by the small value of T0. Conversely, the design 1 is able to reject the input disturbance with a smaller
settling time in comparison with the design 2 (which has a higher level of robustness) but it is more sensitive to plant-model
mismatches as proven from the oscillation produced after the set-point change. This is also reflected in a higher number of
transitions of the event-based error signal and therefore, a higher number of events, as shown in Table II. In contrast, the
designs 1 and 2 produce faster set-point transitions since the value of Tr is lower. It turns out that the stability properties as
well as the robustness properties can be characterized with the developed tuning method. Such results are also summarized
in the values of the performance indexes shown in Table II.

VIII. CONCLUSIONS

In this paper, a unified structure for an event-based control system has been analyzed. The methodology is based on the
integration of the filtered Smith predictor in the event generator.

The robust stability has been addressed from the perspective of the limit cycles introduced by the nonlinear element. A
describing function approach has been proposed to this aim, where two of the most common process structures of industrial
relevance has been considered for this analysis, namely, FOPTD and IPTD systems.

A simple method to obtain the characteristic stability map of the EBCS has been provided, where only some prior
knowledge of the uncertainties bound is necessary. Two sufficient conditions have been derived in Sections III and IV. It



Fig. 16. Stability regions and design points for the experimental process plant.

TABLE II
PERFORMANCE OF THE CONTROLLERS IN THE EXPERIMENTAL SETUP. OV : OVERSHOOT. IAESP : INTEGRATED ABSOLUTE ERROR (COMPUTED ONLY

FOR THE SET-POINT CHANGE). IAELD : INTEGRATED ABSOLUTE ERROR (COMPUTED ONLY AFTER THE APPLICATION OF THE LOAD DISTURBANCE). S:
NUMBER OF EVENTS.

T0 Tr ∆ OV % IAESP IAELD S
Set 1 a 1.25 1 0.1 7.9% 1.1 0.42 19
Set 2 a 1.5 1 0.1 7.6% 1.31 0.4 18
Set 3 a 1.25 1.5 0.1 6.8% 1.5 0.74 13
Set 4 a 0.75 1 0.1 10.6% 1.24 0.61 38

has been shown that both the stability and limit cycle properties do not depend on the event-triggering strategy, so that it
can be tuned in order to handle the trade-off between the number of events and the system precision. The advantage of this
method relies on the simplicity of the framework to handle the system properties in term of robustness and load disturbance
rejection performance.

Simulations and experimental results confirmed the effectiveness of the approach in the framework of event-based control
architectures and robust tuning methodologies.

In future works, the extension of the proposed approach to unstable processes will be investigated.
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Industrial RIAI, vol. 5, no. 1, pp. 5 – 26, 2008.
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