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ABSTRACT

This thesis navigates the intersection of deep learning and ordinal regression, aiming to
address the challenges inherent in ordinal tasks, particularly withinmedical image diagnosis.
The primary contributions unfold across three interconnected chapters, each designed to
tackle a distinct facet of the overarching problem.
First, a new breed of Convolutional Neural Network (CNN) architectures tailored for

ordinal regression is introduced. The superior performance of the proposed Ordinal Binary
Decomposition (OBD) model, coupled with an Error Correcting Output Codes (ECOC)
scheme for label assignment, is demonstrated across diverse tasks. Notably, it achieves
superior ordinal performance metrics without compromising traditional classification ones,
offering a flexible and efficient solution to the challenges of ordinal regression problems.

The next chapter extends this methodology to a real medical application: the diagnosing
of Parkinson’s disease. Faced with the challenges of volumetric brain scans, a native 3D
CNN architecture is introduced, along with an innovative data augmentation algorithm
(OGO-SP-𝛽) that exploits ordinal information. This methodology showcases significant ad-
vancements in assessing dopaminergic brain activity, demonstrating adaptability to diverse
input types and resilience against class imbalance challenges.
Finally, the next chapter delves into the often-neglected realm of interpretability in or-

dinal CNN models. Existing explanation methods are rigorously validated, and two novel
techniques, GradOBD-CAM and OIBA, are introduced to shed light on the decision-making
processes of these models. GradOBD-CAM outperforms existing methods, providing nu-
anced insights into feature importance in the context of ordinal regression.
As a whole, this thesis contributes to advancing the understanding and application of

ordinal regression classifiers within deep learning. The developed methodologies, spanning
novel architectures, data augmentation techniques, and explanation methods, generally
enhance the performance, adaptability, and explainability of CNN models in the ordinal
domain. The successful application of these methodologies to real medical challenges
underscores their practical utility, with implications extending beyond the medical realm.

As the research unfolds, this thesis lays the groundwork for future explorations, suggesting
avenues for refining methodologies, expanding applications, and delving deeper into the
interpretability of ordinal CNNmodels. In conclusion, this thesis provides a comprehensive
and nuanced exploration of ordinal regression challenges, offering tangible solutions and
insights that contribute to the evolving landscape of deep learning applications.
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RESUMEN

Esta tesis navega por la intersección del aprendizaje profundo y la regresión ordinal,
con el objetivo de abordar los retos inherentes a las tareas ordinales, en particular en el
diagnóstico de imágenes médicas. Las principales contribuciones se desarrollan a lo largo
de tres capítulos interconectados, cada uno diseñado para abordar una faceta distinta del
problema general.
En primer lugar, se presenta una nueva variedad de arquitecturas de Redes Neuronales

Convolucionales (CNN) adaptadas a la regresión ordinal. El rendimiento superior del
modelo de Descomposición Ordinal Binaria (OBD) propuesto, junto con un esquema de
asignación de etiqueta basado en Códigos de Salida de Corrección de Errores (ECOC),
se demuestra a través de diversas tareas. En particular, logra métricas de rendimiento
ordinal superiores sin comprometer las métricas de clasificación tradicionales, ofreciendo
una solución flexible y eficiente a los retos de los problemas de regresión ordinal.

El siguiente capítulo amplía esta metodología a una aplicación médica real: el diagnóstico
de la enfermedad de Parkinson. Enfrentados a los retos de los escáneres cerebrales volumé-
tricos, se introduce una arquitectura de CNN nativa 3D así como un innovador algoritmo
de aumento de datos (OGO-SP-𝛽) que explota la información ordinal. Esta metodología
muestra avances significativos en la evaluación de la actividad cerebral dopaminérgica,
demostrando su adaptabilidad a diversos tipos de datos de entrada y su resistencia frente a
los desafíos del desequilibrio de clases.
Por último, el siguiente capítulo se adentra en el ámbito, a menudo descuidado, de la

explicabilidad en los modelos CNN ordinales. Se validan rigurosamente los métodos de
explicación existentes y se introducen dos técnicas novedosas, GradOBD-CAM y OIBA, para
arrojar luz sobre los procesos de toma de decisiones de estos modelos. GradOBD-CAM
supera a los métodos existentes, proporcionando información matizada sobre la importancia
de las características en el contexto de la regresión ordinal.

En conjunto, esta tesis contribuye a avanzar en la comprensión y aplicación de modelos
de regresión ordinal dentro del aprendizaje profundo. Las metodologías desarrolladas, que
abarcan arquitecturas novedosas, técnicas de aumento de datos y métodos de explicación,
mejoran generalmente el rendimiento, la adaptabilidad y la interpretabilidad de los modelos
CNN en el dominio ordinal. La aplicación con éxito de estas metodologías a retos médicos
reales subraya su utilidad práctica, con implicaciones que se extienden más allá del ámbito
médico.

A medida que se desarrolla la investigación, esta tesis sienta las bases para futuras explora-
ciones, sugiriendo vías para refinar las metodologías, ampliar las aplicaciones y profundizar
en la interpretabilidad de los modelos CNN ordinales. En conclusión, esta tesis proporciona
una exploración completa ymatizada de los retos de regresión ordinal, ofreciendo soluciones
tangibles y conocimientos que contribuyen al panorama en evolución de las aplicaciones de
aprendizaje profundo.
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1
INTRODUCT ION

1.1 machine learning

The field of Machine Learning (ML) is difficult to categorize. It lies on the intersection
of Artificial Intelligence (AI) and statistics, in some cases even philosophy, biology and
cognitive science [65]. Its aim is the creation of computational models that learn to perform
tasks from experience instead of being explicitly programmed [82].
Even though its humble beginning in the 1950s, ML has recently revolutionized a lot of

fields, specially since several milestone achievements were accomplished during the 2010s:
competitive strategy game playing, image and video object recognition, protein structure
prediction, speech recognition, language translation...

The now seemingly unlimited potential impact of ML on solving complex problems relies
on its ability to make data-driven decisions instead of depending on sometimes unreliable
heuristics. Generally speaking, ML models learn from a set of examples called a dataset, and
each of these examples is comprised of a set of characterising features.
The types of tasks that can be solved using ML are varied and ever-expanding. These

can be divided up into three main types: supervised learning, unsupervised learning and
reinforcement learning.

1.1.1 Supervised learning

As an example, suppose that we want to predict the final yield of a certain crop plantation
based on the total amount of rainfall that it received during the growing period. This is a
prime example of a task that can be tackled using supervised learning.

In the supervised learning paradigm the examples in the dataset are labelled, meaning that
an external source (generally an expert in the problem domain) has determined the value
(namely, the ground truth) of a special variable that is commonly referred to as the response
or dependent variable. In our example, a group of farmers could register the total amount of
rainfall (learning examples) and then report the final yield of that season (ground truth
value of the response variable).

The goal will be to build a model that is able to predict as accurately as possible the value
of the response variable using only the input features of an arbitrary example (present or
not in the original dataset). The process of using the data for building and optimizing the
model that achieves this goal is called training, and the data used for this process is the train
dataset. After this process is completed, we need to check that the model is able to generalize
well, i. e. to correctly classify examples which it has not been trained on. For this, we use a
separate set of data called the test dataset. Coming back to our example, we hope to use the
data gathered by farmers over different seasons so that we may be able to predict the final
yield beforehand in the future.

In mathematical terms, given a dataset 𝐷 = {(x1, 𝑦1), (x2, 𝑦2), ⋯ , (x𝑁, 𝑦𝑁)} where each
x𝑖 ∈ 𝒳 ⊂ ℝ𝑑 is a training example drawn from a specific distribution x ∼ 𝒟𝒳, and each
𝑦𝑖 ∈ 𝒴 corresponds to the ground truth value for the response variable, the prediction model

3
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is a function 𝑓 ∶ 𝒳 → 𝒴 mapping input examples to a predicted response ̂𝑦 = 𝑓 (x). The
objective of the training process is to obtain a prediction model 𝑓 such that it aligns with the
real distribution of the response variable 𝒟𝒴 as close as possible.

When the response variable can take a continuous value the task is referred to as regression.
This is the case for our previous example, where the predicted variable can take any positive
real value (𝒴 ⊂ ℝ+). An illustration of this can be seen in Fig. 1.1a.

Suppose now a different example: a clinic is trying to determine if a skin lesion in a patient
is a melanoma based on the colour and surface area by using previous cases as reference. In
this situation, the training examples have two different features (colour and surface area)
and, more importantly, the response variable can only take two values: melanoma or no
melanoma. When the response variable can only take a discrete finite number of values
the task is referred to as classification and the possible values of the response are called
classes. When only two different classes are considered like in our current example (that is,
𝒴 = {𝒞+, 𝒞−}) it is referred to as binary classification, whereas when there are 𝑄 > 2 possible
classes (𝒴 = {𝒞1, … 𝒞𝑄}), say differentiating between different types of disease, it is referred
to as multiclass classification. Illustrations for these kinds of tasks can be seen in Figs. 1.1b
and 1.1c, respectively.

Rainfall (L/m2)

C
ro
p
yi
el
d
(k

g/
m

2 )

(a) Regression

Colour

Su
rf
ac
e
ar
ea

(m
m

2 )

Melanoma
No melanoma

(b) Binary classification

Colour

Su
rf
ac
e
ar
ea

(m
m

2 )

In situ
Superficial
Nodular
Lentiginous

(c) Multiclass classification

Figure 1.1: Illustration of the different tasks in the supervised learning paradigm

1.2 ordinal regression

Regarding multiclass classification tasks, there are certain situations where a natural order
exists between the different classes. For instance, consider a situation where a medical
professional tries to determine the stage of a degenerative disease for a specific patient
and considers the following possible diagnoses: healthy, mild, moderate and severe. This
situation is similar to regression in that there exists an ordering of the possible values of the
response, but no specific continuous value can be assigned to each patient. It is also similar
to classification in that only a finite discrete number of values are possible, but regular
classification treats all classes as equally dissimilar, whereas in this case a classification error
of two stages is more severe than an off-by-one-stage error.
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These kinds of tasks in the frontier between regression and classification belong to the field
of ordinal regression (also referred to as ordinal classification in the literature) [38]. Starting
from the multiclass classification framework where the range of the response variable is
defined as 𝒴 = {𝒞1, … 𝒞𝑄} for a 𝑄-class problem, ordinal-domain tasks present an ordering
relationship ≺ between the classes such that 𝒞1 ≺ 𝒞2 ≺ ⋯ ≺ 𝒞𝑄. That is, 𝒞𝑖 ≺ 𝒞𝑗 ∀𝑖 < 𝑗.

Ordinal regression is specially relevant inML application fields likemedical diagnosis [58],
age estimation [13], quality assessment [101], weather forecasting [27] and many more.

A plethora of approaches are available for tackling ordinal regression tasks [38], organized
in the taxonomy in Fig. 1.2.

Ordinal regression

Naive
approaches

Regression

Nominal
classification

Cost-sensitive
learning

Ordinal binary
decompositions

Multiple models

Multiple output
single model

Threshold
models

Cumulative Link
Models (CLM)

Support Vector
Machines (SVM)

Discriminant Learning

...

Other
approaches

Unimodal
distribution
models

Unimodal
soft label
regularization

Figure 1.2: A taxonomy of ordinal regression methods based on the work by [38].

1.2.1 Naive approaches

Because ordinal regression exists in the border between regression and classification, the
simplest approach is to treat an ordinal task just as regular regression or nominal classifica-
tion.
If treated as regression, a real valued label is needed in order to substitute the original

ordinal label [54] through some transformation ℎ ∶ 𝒴 → ℝ, e. g. ℎ(𝒞𝑞) = 𝑞. This mapping
should hopefully reflect the original label order. This, however, requiresmaking assumptions
about the distance between class labels which are unknowable without prior information.
Treating it as nominal classification avoids making this assumption and is a widespread

approach, but in the process it also avoids incorporating the order relation ≺ between the
class labels, which may hinder performance as explored in Section 1.2.5.

A compromise can bemade by simply introducing amisclassification error proportional to
label distance in the target metric during the training process: this is known as cost-sensitive
learning. Even so, the magnitude of the error is rarely known a priori.



6 introduction

Ordinal Binary Decompositions

OrderedPartitions OneVsNext OneVsFollowers OneVsPrevious

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− − − −
+ − − −
+ + − −
+ + + −
+ + + +

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− 0 0 0
+ − 0 0
0 + − 0
0 0 + −
0 0 0 +

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− 0 0 0
+ − 0 0
+ + − 0
+ + + −
+ + + +

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

+ + + +
+ + + −
+ + − 0
+ − 0 0
− 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Table 1.1: Types of OBD for an ordinal 5-class regression task. Each column represents each of the four
binary sub-problems and each row represents the role of each class in each sub-problem: +
means it is treated as the positive class, − the negative class and 0means it is not considered.

1.2.2 Ordinal binary decomposition

While an ordinal regression taskmay be difficult to dealwith all at once, the order relationship
between the class labels can be used to decompose the original problem into a set of simpler
binary sub-problems. This approach is known as Ordinal Binary Decomposition (OBD).
There are many ways to perform this decomposition (as illustrated in Table 1.1) with

their own pros and cons. For example, the OrderedPartitions scheme allows the training
process for each sub-problem to use the whole training dataset, as it considers every class as
a valid option in all cases, but in exchange the sub-problems to be solved are more complex.
On the other hand, the OneVsNext approach only considers the available samples for two
contiguous classes for each sub-problem, reducing the number of available examples for
training but also reducing the complexity of the problem that needs to be solved.
This new set of binary problems can, in turn, be solved using a separate model for each

one (an ensemble) or a single model with multiple outputs.

1.2.3 Threshold models

It is common to assume the existence of a latent continuous variable 𝑦∗ as the basis of the
ordinal response 𝑦. Threshold models arise under this assumption: instead of learning the
ordinal response directly, a function 𝑓 ∶ 𝒳 → ℝ trying to approximate the latent variable
is learned along with a set of ordered thresholds b = (𝑏1, … , 𝑏𝑄−1) ∈ ℝ𝑄−1, 𝑏𝑖 < 𝑏𝑗∀𝑖 < 𝑗
representing intervals in the range of 𝑓 such that:

̂𝑦 = 𝒞𝑞 ⟺ 𝑏𝑞−1 < 𝑓 (x) < 𝑏𝑞, (1.1)

assuming that 𝑏0 = −∞ and 𝑏𝑄 = ∞.
While this type of model is related to the naive regression approach, in this case distances

between labels are not assumed a priori but rather learned trough the training process,
making them more flexible.

1.2.3.1 Cumulative Link Models

Cumulative Link Models (CLMs) are a family of ordinal regression models using a set of
binary classification rules based on the same latent variable approximation 𝑓 (x) in order
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Figure 1.3: Interaction between the latent variable 𝑦∗ and the thresholds 𝑏𝑖 in a 4-class CLM

to predict probabilities of belonging to groups of contiguous classes 𝑃(𝑦 ⪯ 𝒞𝑞 ∣ x). These
probabilities can then be easily transformed to single class probabilities 𝑃(𝑦 = 𝒞𝑞 ∣ x) =
𝑃(𝑦 ⪯ 𝒞𝑞 ∣ x) − 𝑃(𝑦 ⪯ 𝒞𝑞−1 ∣ x).

One such member of the CLM family is the Proportional Odds Model (POM) [64]. This
model extends the concept of logistic regression where 𝑃(𝑦 = 𝒞+) = 1/(1 + exp(𝑏 − wTx))
by setting cumulative probabilities to be:

P(𝑦 ⪯ 𝒞𝑞 ∣ x) =
1

1 + exp(𝑏𝑞 − wTx)
∀1 ≤ 𝑞 < 𝑄. (1.2)

In this context, the latent variable 𝑦∗ is approximated through a linear modelwTx, where
w are the parameters of the model. The interaction between the latent variable and the
thresholds is illustrated in Fig. 1.3.
The idea behind the POM can be adapted to work with any other regression model by

substituting the linear discriminant wTx in Eq. (1.2). For example, in [99] the linear model
is substituted by a Convolutional Neural Network (CNN) model with a single neuron as
output, which allows both considering non-linear relationships as well as applying this
method to work on structured inputs such as images.

1.2.4 Unimodal distribution models

So far, no assumptions have been made about the distribution of the response variable 𝑦,
namely 𝒟𝒴. However, in the framework of ordinal regression some general assumptions
could be made.
Let’s use the previous example of an ordinal regression task where we are trying to

determine the stage of a degenerative disease. If the most probable scenario is the one cor-
responding to a moderate level, the next most probable one should be one of the contiguous
affectation levels, namely mild or severe, and the likelihood should decrease as the distance
between the class labels grows.
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Figure 1.4: Example binomial distribution output 𝐵(𝑛, 𝑝) for a 5-class ordinal regression task. The
value of parameter 𝑛 is set to 𝑄 − 1 = 4. The ML model estimates the value of parameter
𝑝.

In mathematical terms, if the highest probability is assigned to 𝒞𝑞, i. e.:

𝒞𝑞 = argmax
𝒞𝑘∈𝒴

P(𝑦 = 𝒞𝑘 ∣ x), (1.3)

then the probability shouldmonotonically increase from 𝒞1 to 𝒞𝑞 andmonotonically decrease
from 𝒞𝑞 to 𝒞𝑄, in other words, the distribution should be unimodal.
Unimodality can be enforced directly in-model through a parametric approach: the

authors of [73] assume a specific unimodal distribution, such as the binomial or Poisson
distributions. The goal of theMLmodel is then to estimate the parameters of the distribution
that achieve a best fit with the training data. An example is shown in Fig. 1.4.
On the other hand, the non-parametric approach [72] does not impose a hard constrain

on the shape of the distribution but instead introduces a penalty term in the optimization
goal that favours the presence of a single mode in the output of the model. Both these
methodologies have been explored using Artificial Neural Network (ANN) [72, 73] and
Support Vector Machine (SVM) [74] models as the backbone.

Note that there is a certain level of intersection with CLMs, as their output is also enforced
to be unimodal due to the strict ordering of the latent variable thresholds.
A more recent approach related to the work in this thesis is soft labelling regularization,

where the target output of the model favoured by the optimization goal follows a predefined
unimodal distribution such as the beta [100] or triangular [98]. This will be expanded in
Chapter 6.

1.2.5 Performance metrics

A relevant and varied set of performance metrics is crucial in order to validate the well
functioning of an ML model. Because ordinal regression is contained inside multiclass
classification, traditional metrics of model performance like the following ones are still
relevant.

Below are presented the most relevant metrics for this work. Metrics which are supposed
to be maximized are indicated with (↑), and those to be minimized (i. e. errors) are indicated
with (↓).
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1.2.5.1 Binary classification performance metrics

the binary confusion matrix The confusionmatrix is useful for representing all correct
and incorrect classifications of an ML model and can be used to define all sorts of metrics.
In the binary case it consists of a 2 × 2 matrix, as seen in Table 1.2. All elements in the

first row have a positive ground truth label whereas elements in the second row all have
a negative ground truth label. As for the columns, elements of the first column have been
assigned a positive predicted class label while elements of the second column have been
assigned a negative label. Thus, all elements on the diagonal have been correctly classified
and all elements not in the diagonal have been misclassified. The sum of all elements is
equal to the total number of samples in the dataset 𝑁.

Predicted class ( ̂𝑦)

Positive (𝒞+) Negative (𝒞−)

True class (𝑦) Positive (𝒞+) True Positives (TP) False Negative (FN)
Negative (𝒞−) False Positive (FP) True Negatives (TN)

Table 1.2: Binary classification confusion matrix

accuracy (↑) It measures the ratio of samples classified correctly over the total number
of samples. It is a value between 0 and 1, often expressed as a percentage. It can be defined
using the indicator function 𝟙{⋅}, which is equal to 1 when its argument condition is true
and 0 otherwise, or using the confusion matrix:

Accuracy =
1
𝑁

𝑁
∑
𝑖=1

𝟙{ ̂𝑦𝑖 = 𝑦𝑖} =
TP + TN

𝑁 . (1.4)

sensitivity (↑) The ratio of true positive samples that are correctly classified, also called
the True Positive Rate or TPR:

Sensitivity = TPR =
TP

TP + FN . (1.5)

specificity (↑) The ratio of true negative samples that are correctly classified, also called
the True Negative Rate or TNR:

Specificity = TNR =
TN

TN + FP . (1.6)

Its opposite metric is the False Positive Rate or FPR = 1 − TNR.

area under the roc curve (AUC) (↑) The Receiver Operating Characteristic (ROC)
curve is a plot of the performance of a binary classifier as its discriminant threshold is
increased or decreased. More precisely, it represents the TPR against the FPR. By its very
nature, this is amonotonically increasing curve. In an ideal classifier, a high TPR is achievable
with low FPR, i. e. the area under the curve would be close to 1. A classifier no better than
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random guessing would show an area under the curve close to 0.5. An example of a ROC
curve can be seen in Fig. 1.5.
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Figure 1.5: Example of a ROC curve

1.2.5.2 Multiclass classification metrics

the multiclass confusion matrix The binary confusionmatrix can be extended for the
multiclass case, in which each row and column represent each ground truth and predicted
class label, respectively, as is illustrated in Table 1.3. As with the binary case, the sum of all
elements adds up to 𝑁 and all of those in the diagonal have been correctly classified. The
sum of the 𝑖-th row (the number of elements with true class 𝒞𝑖) is denoted as 𝑛𝑖,• and the
sum of the 𝑗-th column (the number of elements predicted as 𝒞𝑗) is denoted as 𝑛•,𝑗.

Predicted class ( ̂𝑦)

𝒞1 𝒞2 … 𝒞𝑄

True class (𝑦)

𝒞1 𝑛1,1 𝑛1,2 … 𝑛1,𝑄

𝒞2 𝑛2,1 𝑛2,2 … 𝑛2,𝑄

⋮ ⋮ ⋮ ⋱ ⋮
𝒞𝑄 𝑛𝑄,1 𝑛𝑄,2 … 𝑛𝑄,𝑄

Table 1.3: Multiclass classification confusion matrix

correct classification rate (CCR) (↑) CCR is the parallel of Accuracy for multiclass
classification and is defined accordingly:

CCR =
1
𝑁

𝑁
∑
𝑖=1

𝟙{ ̂𝑦𝑖 = 𝑦𝑖} =
1
𝑁

𝑄
∑
𝑞=1

𝑛𝑞,𝑞 . (1.7)
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per-class sensitivity (↑) In multiclass classification, sensitivity can be thought of as a
per-class metric S𝑞 when looking at only the subset of samples which have a specific ground
truth label 𝒞𝑞. Monitoring the minimum (MinS) or geometric average (GMS) can help
identify when one of the classes is neglected by the model:

S𝑞 =
∑𝑁

𝑖=1 𝟙{𝑦𝑖 = ̂𝑦𝑖 = 𝒞𝑞}

∑𝑁
𝑖=1 𝟙{𝑦𝑖 = 𝒞𝑞}

=
𝑛𝑞,𝑞

𝑛𝑞,•
, (1.8)

MinS = min
1≤𝑞≤𝑄

S𝑞, (1.9)

GMS = 𝑄

√
√√
⎷

𝑄
∏
𝑞=1

S𝑞. (1.10)

per-class specificity (↑) In the same manner, per-class specificity Sp𝑞 can also be
monitored, as well as its minimum (MinSp) and geometric mean (GMSp) to make sure that
no one class is being overly assigned:

Sp𝑞 =
∑𝑁

𝑖=1 𝟙{𝑦𝑖 ≠ 𝒞𝑞 ∧ ̂𝑦𝑖 ≠ 𝒞𝑞}

∑𝑁
𝑖=1 𝟙{𝑦𝑖 ≠ 𝒞𝑞}

=
𝑁 − 𝑛𝑞,• − 𝑛•,𝑞 + 𝑛𝑞,𝑞

𝑁 − 𝑛𝑞,•
= 1 −

𝑛•,𝑞 − 𝑛𝑞,𝑞

𝑁 − 𝑛𝑞,•
, (1.11)

MinSp = min
1≤𝑞≤𝑄

Sp𝑞, (1.12)

GMSp = 𝑄

√
√√
⎷

𝑄
∏
𝑞=1

Sp𝑞. (1.13)

average area under the roc curve (AvAUC) (↑) TheROC curve can only be obtained
in a binary classification setting. However, if a certain class label 𝑞 is considered as the positive
class and all the rest are considered as the negative class (a scheme known as One vs. Rest
or OvR) a different curve can be obtained for each class and the average area under them
can be computed.

1.2.5.3 Ordinal performance metrics

When tackling ordinal regression tasks, traditional performance metrics fail to consider the
different magnitudes of different misclassification errors. A misclassification of 𝑛 classes

̂𝑦 = 𝒞𝑞±𝑛 over the true class label 𝑦 = 𝒞𝑞 should always be of less importance than a
misclassification of 𝑛 + 1 classes ̂𝑦 = 𝒞𝑞±(𝑛+1). The following metrics take this into account.
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mean absolute error (MAE) (↓) An error measure taken from regular regression. It
is the mean absolute difference between the integer rank of the ground truth label and the
predicted label. If we define the integer rank of an ordinal label as 𝒪(𝒞𝑞) = 𝑞, then:

MAE =
1
𝑁

𝑁
∑
𝑖=1

∣𝒪( ̂𝑦𝑖) − 𝒪(𝑦𝑖)∣ =
1
𝑁

𝑄
∑
𝑞=1

𝑄
∑
𝑘=1

∣𝑞 − 𝑘∣ 𝑛𝑞,𝑘. (1.14)

MAE can also be defined as a per-class metricMAE𝑞, so that the average (AvMAE) and
the maximum (MaxMAE) can be observed:

MAE𝑞 =
∑𝑁

𝑖=1 𝟙{𝑦𝑖 = 𝒞𝑞} ∣𝒪( ̂𝑦𝑖) − 𝒪(𝑦𝑖)∣

∑𝑁
𝑖=1 𝟙{𝑦𝑖 = 𝒞𝑞}

=
1

𝑛𝑞,•

𝑄
∑
𝑘=1

∣𝑞 − 𝑘∣ 𝑛𝑞,𝑘, (1.15)

AvMAE =
1
𝑄

𝑄
∑
𝑞=1

MAE𝑞, (1.16)

MaxMAE = max
1≤𝑞≤𝑄

MAE𝑞. (1.17)

root mean squared error (RMSE) (↓) Similar toMAE, RMSEmeasures the squared
difference of integer ranks instead of the absolute difference. The square root is then applied
to maintain the original variable’s units:

RMSE = √ 1
𝑁

𝑁
∑
𝑖=1

(𝒪( ̂𝑦𝑖) − 𝒪(𝑦𝑖))2. (1.18)

cohen’s weighted kappa coefficient (𝜅) (↑) Proposed as a binary agreement met-
ric [20], it was extended to admit different disagreement errors [21]. This coefficient meas-
ures the rating agreement between two different scorers (e. g. the ground truth label and an
ML model output) based on a predetermined disagreement penalty and is bound between
−1 and 1:

𝜅 = 1 −
∑𝑄

𝑖=1 ∑𝑄
𝑗=1 𝑤𝑖,𝑗 𝑝𝑖,𝑗

∑𝑄
𝑖=1 ∑𝑄

𝑗=1 𝑤𝑖,𝑗 𝑒𝑖,𝑗
, (1.19)

𝑝𝑖,𝑗 = 𝑛𝑖,𝑗, (1.20)

𝑒𝑖,𝑗 =
𝑛𝑖,• ⋅ 𝑛•,𝑗

𝑁 , (1.21)

where 𝑝𝑖,𝑗 is the observed agreement, 𝑒𝑖,𝑗 is the expected agreement due to chance and 𝑤𝑖,𝑗
is the disagreement cost when 𝑦 = 𝒞𝑖 and ̂𝑦 = 𝒞𝑗. Throughout this work, the quadratic
weighting is always considered, where 𝑤𝑖,𝑗 = (𝑖 − 𝑗)2.

spearman’s rank correlation coefficient (𝑟𝑠) (↑) This metric measures the mono-
tonicity of the relationship between two variables. It will be high when observations have a
similar (or identical for a correlation of 1) rank, and lowwhen observations have a dissimilar
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(or fully opposed for a correlation of −1) rank between the two variables, which makes it
suitable to assess ordinal regression performance. It is defined as:

𝑟𝑠 =
Cov(𝒪( ̂𝑦), 𝒪(𝑦))

𝜎𝒪( ̂𝑦)𝜎𝒪(𝑦)
, (1.22)

where Cov(𝒪( ̂𝑦), 𝒪(𝑦)) is the covariance between the predicted label integer rank and
the ground truth label integer rank and 𝜎𝒪( ̂𝑦) and 𝜎𝒪(𝑦) are the standard deviation of the
predicted label integer rank and the ground truth label integer rank, respectively.

kendall’s rank correlation coefficient (𝜏𝑏) (↑) Another rank correlation metric
related to 𝑟𝑠 proposed in [50]. It is based on the notion of observation pairs of two variables
(in this case, the ground truth and predicted class labels) (𝑦1, ̂𝑦1), (𝑦2, ̂𝑦2), … , (𝑦𝑁, ̂𝑦𝑁). Two
different pairs (𝑦𝑖, ̂𝑦𝑖) and (𝑦𝑗, ̂𝑦𝑗) are concordant if either both 𝑦𝑖 < 𝑦𝑗 and ̂𝑦𝑖 < ̂𝑦𝑗 or 𝑦𝑖 > 𝑦𝑗
and ̂𝑦𝑖 > ̂𝑦𝑗, otherwise they are considered discordant. In this thesis a variant of the original
coefficient that accounts for ties where 𝑦𝑖 = 𝑦𝑗 or ̂𝑦𝑖 = ̂𝑦𝑗 is used(𝜏𝑏) [51], which is specially
important in a multiclass classification task:

𝜏𝑏 =
𝑛𝑐 − 𝑛𝑑

√(𝑁(𝑁 − 1)/2 − 𝑡𝑦)(𝑁(𝑁 − 1)/2 − 𝑡 ̂𝑦)
, (1.23)

𝑛𝑐 =
𝑄

∑
𝑖=1

𝑄
∑

𝑘=𝑖+1

𝑄
∑
𝑗=1

𝑄
∑

𝑙=𝑗+1
𝑛𝑖,𝑗𝑛𝑘,𝑙 , (1.24)

𝑛𝑑 =
𝑄

∑
𝑖=1

𝑄
∑

𝑘=𝑖+1

𝑄
∑
𝑗=1

𝑗−1

∑
𝑙=1

𝑛𝑖,𝑗𝑛𝑘,𝑙 , (1.25)

𝑡𝑦 =
1
2

𝑄
∑
𝑖=1

𝑛𝑖,•(𝑛𝑖,• − 1), (1.26)

𝑡 ̂𝑦 =
1
2

𝑄
∑
𝑗=1

𝑛•,𝑗(𝑛•,𝑗 − 1), (1.27)

where 𝑛𝑐 is the number of concordant pairs, 𝑛𝑑 is the number of discordant pairs, 𝑡𝑦 is the
number of ground truth label ties and 𝑡 ̂𝑦 is the number of predicted label ties. Its value is
bounded by −1 ≤ 𝜏𝑏 ≤ 1 and it is expected to be zero when the ranks are independent and
equal to 1 or −1 if the correlation is perfect or perfectly inverse, respectively.

1.3 data imbalance and data augmentation

It is often the case that the distribution of the class labels in the training dataset for a
supervised learning task is severely skewed, i. e. very few examples exist of certain classes
(called minority classes) while having an excess of examples of others (called majority classes).
Moreover, these minority classes are more often than not the ones where misclassification
errors are the costliest. This is a problem specially prevalent on medical domain tasks, where
sick patients are usually the rarest and, of course, the ones in need of more attention.

This situation causes a lot of standard supervised learning algorithms to yield a lopsided
performance between the different classes, in some cases even completely disregarding the
minority classes with null sensitivity [39]. In this regard, global performance metrics fail to
consider this aspect, and new ones are required to watch out for this effect, namely extreme
metrics like MinS, MinSp and MaxMAE as well as class average metrics like GMS, GMSp,
AvMAE and AvAUC, all of them defined in Section 1.2.5.
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In order to overcome this obstacle, different types of approaches have been proposed,
from introducing error cost weighting into the training process to methods selecting the
minimum necessary samples to define class boundaries. However, the most popular are
sampling methods, which modify the training dataset directly to provide a balanced class
distribution.

In this work, we focus on data augmentation techniques (also known as synthetic sampling),
which try to identify characterising features of the examples in the minority classes in order
to create new synthetic but plausible examples to include in the training dataset with the
goal of enhancing the model’s generalization performance.

1.4 artificial feedforward neural networks

Among themanymathematical models that have been proposed to solve different regression
and classification tasks, Artificial Neural Networks (ANNs) have been one of the most
important in the latest decades of ML. The same way as other early proposals, this is a
model inspired by biological learning, i. e. different theories of how learning occurs in the
brain. This tie to neuroscience is why they are called neural, although general ML research
is usually more concerned with its mathematical properties and abilities rather than its
accuracy mimicking real neurological systems [46].

One of the most basic forms of an ANN, the multi-layer perceptron (MLP), is a function
𝑓 (x;w,b) = ̂𝑦 mapping samples to a predicted label according to a set of weight and bias
parameters, w and b, respectively. The computation is performed in stages called layers.
Each layer is composed of a certain number of units or neurons which are each connected to
the neurons in the next layer forming a network, in such manner that information flows from
one layer to the next without feedback connections, reason why they are called feedforward.
The most common type of MLP assumes that all neurons in a layer are connected to all the
neurons in the previous layer, i. e. they are fully connected. An illustration of the information
flow in an MLP can be seen in Fig. 1.6.
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Figure 1.6: Example of a fully connected MLP architecture with 3 inputs, 3 hidden layers with 4
neurons each and 3 outputs. Circular nodes represent neurons and square nodes represent
bias terms in the computation.
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Each of these forward computations consists of a matrix multiplication with a bias term,
producing an affine transformation, followed by a non-linear operation called activation
function. This process is illustrated in Fig. 1.7. The selection of these functions is of great
importance in the construction of the model [97], and their non-linearity is essential in
giving the model its ability to approximate arbitrarily complex functions [56].
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Figure 1.7: Computation of a single neuron activation 𝑎(2)
1 (above) and of the whole second layer

activations (below, both in detail and in vector notation) in the architecture presented in
Fig. 1.6, using 𝑧 as the activation function.

1.4.1 Activation functions

A great variety of activation functions are available suited to different contexts inside an
ANNmodel depending on their domain, range, behaviour, shape, derivatives, etc.

The sigmoid function

The sigmoid function (also known as the logistic function), commonly denoted as 𝜎(𝑥)
maps any real value into the (0, 1) interval (𝜎 ∶ ℝ → (0, 1)). It is defined as:

𝜎(𝑥) =
1

1 + exp(−𝑥). (1.28)

It maps large negative values into values close to 0 and large positive values into values
close to 1, with gradient tending towards 0 in the extremes and maximum gradient of 0.25
when 𝑥 = 0. It can be conceptualized as a smoother version of the ‘threshold’ activation
𝟙{𝑥 > 0} which is differentiable. Although it can create a problem of vanishing gradients
in the hidden layers during training of an ANN, it is useful for producing probabilities from
unbounded scores.
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The Rectified Linear Unit (ReLU)

The Rectified Linear Unit (ReLU) is a piecewise-defined function that solves the problem of
the vanishing gradients of the sigmoid function. It is defined as:

ReLU(𝑥) =
⎧{
⎨{⎩

𝑥, if 𝑥 > 0,

0, otherwise.
(1.29)

Note how the derivative is always 1 for 𝑥 > 0. Even though it is not differentiable at 𝑥 = 0,
this does not affect its performance.
However, this introduces a new problem: its derivative is 0 for all negative values of the

input. This may cause too many neurons in the network to have a null gradient and thus,
hinder the training process. To fix this, an alternative called the Leaky Rectified Linear
Unit (LReLU) is used, which adds a small slope in the negative region through a parameter
𝛼 > 0 (set before the training process):

LReLU(𝑥) =
⎧{
⎨{⎩

𝑥, if 𝑥 > 0,

𝛼𝑥, otherwise.
(1.30)

This parameter is often set to values significantly lower than 1 like 𝛼 = 10−2.
The LReLU, although simple, increases the variance of its output by virtue of having

an arbitrarily large negative output. To reduce this complexity, the Exponential Linear
Unit (ELU) uses a saturated negative part defined by an exponential function:

ELU(𝑥) =
⎧{
⎨{⎩

𝑥, if 𝑥 > 0,

𝛼(𝑒𝑥 − 1), otherwise.
(1.31)

Another alternative is the softplus function (s+), a smoothed version of ReLU. It removes
the discontinuity at 𝑥 = 0, has non-zero gradients in the negative input region and also has a
derivative approaching 1 as 𝑥 increases, giving it robustness against the vanishing gradients
problem:

s+(𝑥) = ln(1 + 𝑒𝑥). (1.32)

Numerous other alternatives to the ReLU exist with learnable parameters (e. g. the Para-
metric ReLU) or even with some added randomness (e. g. the Randomized LReLU) [97].

The softmax function

In classification tasks, the output stage of a network is often trying to approximate a con-
ditional discrete probability distribution P(𝑦 = 𝒞𝑞 ∣ x). Per the basic probability rules, it
is desirable in these cases that the total sum ∑𝒞𝑞∈𝒴 P(𝑦 = 𝒞𝑞 ∣ x) is equal to 1. This can be
achieved by using the softmax function as the activation of the output layer. In this case, the
activation of each output neuron 𝑠𝑖 is dependent on each other neuron in the same layer:

softmax(𝑠𝑖) =
exp(𝑠𝑖)

∑𝑄
𝑗=1 exp(𝑠𝑗)

. (1.33)
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In this way, the network could be though of as approximating a kind of ‘log probabilities’
usually called scores, which are then transformed into probabilities through the softmax
function. As its name suggests, the highest probability will be given to the neuron with
highest score and so on.

1.4.2 ANN model training

Ideally, one would want a way to optimize the values of the parameters 𝜽 = (w,b) (that is,
the values of each layer’s weights and biases) in order to approximate as closely as possible
the real distribution of data 𝒟. This can be conceptualized as minimizing a risk function 𝐽
(i. e. the classification error) over the parameters of the model to be minimized:

𝐽(𝜽) = 𝔼(x,𝑦)∼𝒟[ℒ(𝑓 (x; 𝜽), 𝑦)], (1.34)

where ℒ(𝑓 (x; 𝜽), 𝑦) is the loss function for a single example x given its true label 𝑦. For a clas-
sification task this could be, for example, the ‘0-1 error’: ℒ01(𝑓 (x; 𝜽), 𝑦) = 𝟙{𝑦𝑖 = 𝑓 (x𝑖 ∣ 𝜽)}.
In ML however, the real distribution of the data is unknown, and only a sample 𝐷 is

available. Instead of minimizing the general risk, the empirical risk ̂𝐽 can be used as a proxy
for optimization:

̂𝐽(𝜽) = 𝔼(x𝑖,𝑦𝑖)∈𝐷[ℒ(𝑓 (x𝑖; 𝜽), 𝑦𝑖)] =
1
𝑁

𝑁
∑
𝑖=1

ℒ(𝑓 (x𝑖; 𝜽), 𝑦𝑖). (1.35)

The problem with minimizing the empirical risk is that it is prone to overfitting, that is,
adjusting the parameters to fit the specifics of sample 𝐷 at the cost of increasing the general
risk 𝐽.
In practice, empirical risk minimization is not used with ANN models, but rather a

similar approach called gradient descent [105]. Gradient descent is performed in steps: the
parameters 𝜽 of the model are updated at each step following the negative direction of the
gradient of the empirical risk. The magnitude of these steps is controlled through a training
hyperparameter known as the learning rate 𝜂:

𝜽 ∶= 𝜽 − 𝜂∇ ̂𝐽(𝜽) = 𝜽 − 𝜂
1
𝑁

𝑁
∑
𝑖=1

∇ℒ(𝑓 (x𝑖; 𝜽), 𝑦𝑖). (1.36)

Note how gradient descent requires the cost function ℒ to be differentiable, which a typical
error function like the previously mentioned ℒ01 is not. Thus, a new differentiable surrogate
loss function aligned with the real goal is defined, such as the cross-entropy loss:

ℒCE(𝑓 (x; 𝜽), 𝑦) =
𝑄

∑
𝑞=1

− log(𝑃(𝑦 = 𝒞𝑞 ∣ x))𝟙{𝑦 = 𝒞𝑞}. (1.37)

For large datasets, however, Eq. (1.36) is a fairly expensive computation. The process
can be broken down into smaller samples from the training dataset, called minibatches,
taking the average over only that small sample. This method is known as stochastic gradient
descent (SGD).

Unlike general optimization where the process stops when a local minimum is achieved,
when training anANNa different stopping criterion is used: typically, a subset of the training
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set is reserved as a validation set and a certain metric like CCR is monitored, stopping when
overfitting is detected.

There exist numerous variants of SGD that add elements like adaptive learning rates for
individual parameters (like AdaGrad [28] and RMSProp [42]) or momentum terms (like
Adam [52]).

Computing the loss gradient is the core operation in SGD methods. In order to do it
efficiently, the feedforward nature of ANNmodels can be exploited by the use of the back-
propagation algorithm [46].

1.5 convolutional neural networks

When dealing with structured grid-like data, traditional MLP models fall short of perform-
ance and efficiency. This includes time-series (1D temporal data, e. g. an electrocardiogram),
images (2D grids of pixels, e. g. conventional radiography) and volumetric scans (3D grids
of voxels, e. g. a CT scan) data. General matrix multiplication considers all interactions
between all inputs, hindering the training process due to inefficiency.

Convolution is an operation of two arguments, an input 𝐼 and a kernel 𝐾, resulting in a feature
map 𝑆, denoted by 𝑆 = 𝐾 ∗ 𝐼. Although borrowed from statistics, it takes on a new meaning
in an ANN context: both the inputs and outputs are assumed to be multidimensional arrays.
For a 2D convolution operation between an input of size 𝐻 × 𝑊 and 𝐶 channels and a kernel
of size ℎ × 𝑤, the operation for a specific pixel (𝑖, 𝑗) can be defined as:

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) =
𝐶

∑
𝑐=1

ℎ
∑
𝑎=1

𝑤
∑
𝑏=1

𝐼(𝑖 + 𝑎 − 1, 𝑗 + 𝑏 − 1, 𝑐)𝐾(𝑎, 𝑏, 𝑐). (1.38)

This process can be thought of as sliding the kernel as awindowover the input, multiplying
each overlapping entry and adding up the result to compute the corresponding value of the
feature map. A visualization of this can be seen in Fig. 1.8.

Figure 1.8: Example of a convolution operation. The highlighted part of the input tensor 𝐼 (7 × 7 × 3)
is multiplied element-wise with the elements of kernel 𝐾 (3 × 3 × 3) and the resulting
sum corresponds to the highlighted pixel of feature map 𝑆 (5 × 5 × 1). This is repeated for
every possible offset of 𝐾 over 𝐼 to obtain the complete 𝑆.

Convolution can be used at certain stages of an ANN instead of matrix multiplication.
These kinds of models are called Convolutional Neural Networks (CNNs), and it will be
the goal of an ML algorithm to optimize the values of the feature kernels as parameters.
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They present several advantages when dealing with structured data like the type mentioned
previously:

• They can detect sparse interactions in the input, i. e. interactions between spatially or
temporally close values of the input, and build up to higher order interactions by
composing several interactions at different layers instead of considering all interactions
at once.

• Parameters are shared between computations at every location of the image, so a single
set of parameters can be considered for all locations.

• They are also equivariant to certain transformations, mainly translation of features: if
an object is translated in space or time in the input, the resulting feature map will
experience the same translation.

Convolution operations are usually performed in the initial stages of a CNNmodel. At
a certain point, the spatial structure of the information is dropped, often through what is
called a global pooling operation by which all the elements in each feature map are condensed
into a single scalar (e. g. by taking the average, called global average pooling or GAP, or
the maximum, called global maximum pooling or GMP). After that, one or more fully
connected layers are usually present.

1.6 explanation methods

ANNmodels function as a black-box: decipheringwhich parts of the input are really relevant
to the final decision at the output after a long series of intricate operations seems insurmount-
able. In some contexts, obtaining such explanation is a desirable or even necessary step. For
example, one could leverage this information in order to debug a certain implementation
of a model. Also, in critical situations such as medical diagnostic, the rationale behind a
decision, like the finding of a specific lesion, could be even more important than the decision
itself. This is the problem of feature attribution.

Methods that try to solve this problem are referred to as explanation methods and are also
known as saliency methods or attribution methods. Given an input sample x, a target class
𝑦 = 𝒞𝑞, a CNN model, and the computation of the output of the model when given x as
input, the result of an explanation method will be a array 𝐸𝑞 with a single channel and
the same size as x, called the explanation map. Locations where 𝐸𝑞 is close to 0 are deemed
irrelevant and those close to 1 are considered important to the model decision for class 𝒞𝑞.
An example is shown in Fig. 1.9.

1.7 medical imaging

In the realm of medical image analysis, the selection and understanding of diverse imaging
modalities play a pivotal role in the success and applicability of ML algorithms. The intricate
nature of medical data demands a nuanced comprehension of the distinctive characteristics
inherent in various imaging modalities, each offering a unique perspective into the underly-
ing physiological or pathological processes. This section serves as a foundational exploration
into the landscape of medical image modalities and their essential characteristics, justifying
its inclusion within the broader context of ML applications.
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(a) Input image (b) Explanation for the class cat (c) Explanation for the class dog

Figure 1.9: Example of explanation maps for a CNN classifying animals in photos. The explanation
map has been superimposed over the image: values close to 0 are transparent, while
values close to 1 are highlighted in red. Image taken from the COCO dataset: https:
//cocodataset.org/#explore?id=114269

Medical professionals of every discipline use imaging techniques everyday for diagnosis,
treatment, intervention and research tasks. Imaging allows them to observe internal struc-
tures of the body which are otherwise hidden.

Different cases and goals call for particular imagemodalities which let the clinician observe
specific anatomical structures, lesions and bodily processes.
By delving into the intricacies of these modalities we aim to establish an understanding

of the challenges and opportunities posed by different medical imaging sources for the
subsequent development and optimization of ML models tailored for effective diagnostic,
prognostic, and therapeutic applications in the domain of medical image analysis.

1.7.1 Projectional imaging vs. Tomography

Most traditional imaging techniques fall into the category of projectional imaging, in which
radiation is captured onto a flat medium (usually film or a digital sensor) to form a 2D
image.

However, situations arise where projections alone are not suitable to observe the object of
interest. Computed Tomography (CT) is a technique that enables clinicians to obtain full
3D reconstructions of anatomical parts by capturing sequences of 2D slices of a set thickness
which can then be stacked. The acquisition of said slices from a set of projections is possible
through the use of reconstruction algorithms.

Note that in some of the imaging techniques described below both projections and tomo-
graphies are applicable.

1.7.2 Photography

The most basic type of medical image is simply photography: the capture of visible light
images for later analysis, which is performed nowadays in digital form almost exclusively.
Simple consumer grade cameras are suitable for tasks like posture or gait analysis, although
specialized equipment is also used for specific images like fundus photography (capturing an
image of the inner surface of the back of the eye), as shown in Fig. 1.10.

https://cocodataset.org/#explore?id=114269
https://cocodataset.org/#explore?id=114269
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Figure 1.10: Example of fundus photography. Source: Kaggle ‘Diabetic Retinopathy Detection’ chal-
lenge: https://visualsonline.cancer.gov/details.cfm?imageid=2510

Figure 1.11: Film radiography of a breast, known as a mammogram, showing a colloid carcinoma.
Source: American College of Radiology: https://visualsonline.cancer.gov/details.
cfm?imageid=2510

1.7.3 Radiography

X-rays (from 10nm to 10pm of wavelength), gamma rays (< 10pm) and other types of
ionizing radiation exist in a different part of the light spectrum for which the external parts
of the body are transparent. This allows radiologists to observe the internal parts without
invasive procedures.

The most common type of radiography is projectional radiography, where parts of the body
are exposed to a source of high-energy radiation and the resulting shadow is captured in
film or by a digital sensor. Different types of substances block varying amounts of radiation,
resulting in an image where properties like tissue density can be observed. An example can
be seen in Fig. 1.11.
Radiography may also be used in CT to obtain 3D volumes from a set of slices.

https://visualsonline.cancer.gov/details.cfm?imageid=2510
https://visualsonline.cancer.gov/details.cfm?imageid=2510
https://visualsonline.cancer.gov/details.cfm?imageid=2510
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(a) Whole body bone scinti-
graphy

(b) Brain SPECT

Figure 1.12: Examples of nuclear imaging. Figure (a) courtesy of Carlos Eduardo Anselmi, Radiopae-
dia.org, rID: 12294. Used under a CC BY-NC-SA 3.0 license. Figure (b) from the novel
Parkinson’s dataset presented in Section 4.3.1

1.7.4 Magnetic Resonance

Magnetic Resonance Imaging (MRI) techniques use the power of large magnets (usually in
the range of 1.5 T to 3 T) to excite the nuclei of hydrogen atoms of water molecules present in
the body. An electromagnetic pulse in the radio frequency causes these nuclei to disarrange
and later realign with the magnetic field, producing their own radio waves in the process,
which are then detected and reconstructed into an image. This type of imaging is used
exclusively in CT.

MRI offers high contrast in areas of soft tissue while avoiding the use of ionizing radiation,
but poses some limitations like greater patient discomfort due to noise and capture time
and incompatibility with metal implants when compared with other techniques.

1.7.5 Nuclear Imaging

In nuclear imaging, special radioactive substances known as radioligands are administered
safely to a patient with the goal of observing certain physiological processes. The isotopes
present in these substances are more likely to be absorbed by biologically active tissue in
the patient’s body, like points of bone fracture or tumours. Unlike other types of imaging
where radiation comes from outside the body, the radiation given off by these substances
originating from the body can then be captured by special sensors.

One of the most common types of nuclear image is scintigraphy (Fig. 1.12a), where special
gamma radiation cameras can capture 2D images. Whole body scintigraphy images are used
regularly in conjunction with technetium 99m methylene diphosphonate (99𝑚Tc-MDP) in
order to detect bone lesions like some types of bone metastasis in cancer patients.
Single-photon emission computed tomography (SPECT) (Fig. 1.12b) is a 3D imaging

technique that uses gamma cameras in combination with CT techniques. This allows the
clinician to observe levels of biological activity in specific 3D areas, e. g. dopaminergic
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activity in the brain using ioflupane as a radioligand (containing 123I) for the early diagnosis
of Parkinson’s disease (PD).





2
THES I S OVERV IEW

2.1 motivation and challenges

ML techniques developed in the last decade have made it possible to apply the available
computational power to tasks previously inaccessible to computer science: deep learning
has been extensively applied to 2D image recognition tasks of all kinds (classification,
segmentation, pose estimation, etc.) as well as to time series (1D). There is potential in
applying these techniques to 3D or volumetric images, although their use is not as widespread
as in the 2D case.
Computational models can also serve as a support tool for the physician or medical

team, being able to provide additional decision support or to detect inconsistencies and/or
potentially complex cases that may have been overlooked. Of particular interest is this
type of analysis for medical imaging to automate tasks such as anomaly detection [96] and
diagnosis [12].

Regarding ordinal regression tasks, traditionalMLmethods have already been successfully
applied and adapted to this framework such as logistic regression, SVMs or ANNs [18].
However, deep learning models have hardly been explored for ordinal regression tasks and
have great potential to improve classification performance. This kind of models, even though
very powerful, function as a ‘black box’: their internal workings are not readily apparent.
Explanation methods exist which are able to highlight relevant parts of the input for the
decision process, but these do not consider ordinal class information.
Finally, a very common problem in real applications especially relevant in biomedical

settings is the imbalance of class examples. The very nature of these problems means that
there is a much smaller sample size of some classes compared to others (for example, far
fewer sick patients than healthy ones, or far fewer cases in the intermediate stage of a disease
than at the end). Deep learning methods are sensitive to this imbalance and require a large
number of examples to generalise their predictions [48]. This is why the development of
data augmentation methods is required to circumvent these obstacles and thus extract as
much potential as possible from the available data.
Thus, a gap is identified in the vicinity of ordinal regression. There exists potential in

designing deep learning models and explanation methods that incorporate ordinal informa-
tion from the ground up in their formulation and training process. Such innovations may
be able to improve the performance of both existing and new automatic tasks in the medical
domain, especially regarding medical imaging. This thesis aims to address this gap by
providing novel solutions and methodologies.

2.2 objectives

The main objectives of this thesis can be summarized in the following points:

1. To develop new deep learning CNN architectures capable of dealing with ordinal
response variables natively in order to improve their ordinal performance.

25
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2. To propose new data augmentation techniques to tackle class imbalance problems in
ordinal regression tasks which take into account ordinal information.

3. To apply these innovations to solve real medical 2D and 3D image diagnosis problems
as well as related biomedical ordinal regression problems and study the potential
performance improvements.

4. To propose new explanation methods that incorporate ordinal information in the
explanation map generation process so as to improve the detection of relevant input
features.

2.3 thesis structure

The rest of this thesis is organized as follows:

• Chapter 3: Native ordinal representations for CNNs
Introduction to the limitations of traditional CNN architectures in handling or-
dinal regression tasks and the development of the Ordinal Binary Decompos-
ition (OBD) model with an Error Correcting Output Codes (ECOC) scheme,
aiming to improve classification performance for ordinal tasks.

• Chapter 4: Computer-aided diagnosis for Parkinson’s disease: an application of
ordinal data augmentation for 3D image imbalanced datasets

Exploration of the application of theOBDmodel to diagnose neurological damage
in Parkinson’s disease using volumetric brain scans. Study of the challenges of
working with 3D images, low sample size, and class imbalance, introducing a
native 3D CNN architecture and an ordinal data augmentation procedure to
address these issues.

• Chapter 5: Examining the decision process of ordinal CNNs
Recognition of the interpretability challenges in CNN models, especially in the
context of ordinal regression tasks. Validation of existing explanation methods on
ordinal regression, introducing two novel ordinal-specific adaptations, GradOBD-
CAM and OIBA, aiming to provide insights into the decision-making processes
of ordinal CNN models. Proposal of a visual explanation evaluation procedure
for assessing ordinal performance.

• Chapter 6: Additional works
Discussion of several additional works developed in parallel to this thesis.

• Chapter 7: Conclusions and future work
Summary of overall contributions, evaluation of the achievement of the proposed
objectives and foundation for future work.
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3
NAT IVE ORD INAL REPRESENTAT IONS FOR CNNS

Traditional ML methodologies involving Convolutional Neural Network (CNN) models
have shown an outstanding performance in nominal classification tasks where the input
information consists of images. As of today, CNNs are able to achieve 90% accuracy on the
ImageNet-1K dataset [11, 24].

However, nominal CNN architectures have been generally designed in a similar fashion,
suited to classification problems that deal with class labels without any domain-defined
relations. The presence of an order relationship between them, as is the case for ordinal
regression tasks, is therefore ignored during training and evaluation of the model.

Exploiting this information has the potential to improve the performance of these models
regarding more relevant metrics to the specific domain of the problem, i. e. ordinal met-
rics that treat misclassification errors differently from one another according to the order
relationship of the labels.
This chapter is dedicated to the development of a novel output architecture for CNNs based

on the idea of Ordinal Binary Decomposition (OBD) which is compatible with existing
proposals as a nearly drop-in replacement. This architecture is paired with a matching class
assignment rule based on the Error Correcting Output Codes (ECOC) scheme. We aim to
prove that this approach is capable of improving the classification performance for ordinal
tasks.

associated publication: Javier Barbero-Gómez, Pedro Antonio Gutiérrez and César
Hervás-Martínez. ‘Error-Correcting Output Codes in the Framework of Deep Ordinal
Classification’. In: Neural Processing Letters (12th May 2022). doi: 10.1007/s11063-022-
10824-7.

JCR (2022): 3.1. Ranking position in Computer Science, AI: 85/145 (Q3)

3.1 related work

Previous research in the field of ordinal regression has primarily focused on handling
unstructured input data that lacked spatial or temporal relationships between inputs. These
early approaches include using conventional regression techniques with rounding applied
to the outputs [54] or incorporating label distance as a cost penalty [53]. However, their
performance is often constrained due to the unequal underlying distances between labels.
To address this limitation, Cumulative Link Models (CLMs) emerged as a promising

solution. CLMs, such as the Proportional Odds Model (POM) [64] and the gologit model
[107], not only learn a latent continuous variable but also derive a set of thresholds for
each rank. This advancement improves their ability to handle ordinal data effectively.
Additionally, adaptations of Support Vector Machines (SVMs), such as Support Vector for
Ordinal Regression with Implicit constraints (SVORIM) and Support Vector for Ordinal
Regression with Explicit constraints (SVOREX) [19], introduce ordinal constraints into the
model optimization process, further enhancing their suitability for ordinal regression tasks.
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Another notable approach known asOBD aims to break down the original ordinal problem
into a series of binary subproblems. Examples of OBD methods include the cascade linear
utility model [108], where distinct models address each binary subproblem, and neural
networks with multiple outputs, each dedicated to a binary subproblem [18, 25]. However,
OBD methods face challenges in combining the individual outputs to make a final decision.

These existing approaches are not directly applicable to structured data like 2D images,
where domain-specific feature extraction remains essential. CNNs emerged as a valuable
tool for automatically extracting learned features from structured data in classification tasks.
Nevertheless, CNNs have a tendency to overfit due to their large number of parameters,
resulting in suboptimal generalization performance. Researchers have explored various
techniques to mitigate this issue, including traditional methods like 𝐿2 regularization and
dropout, as well as more recent strategies such as multi-stage implicit regularization [111]
and network path pruning [110].

Adapting CNNs to handle ordinal information is a recent research direction that requires
further exploration. Some initial efforts [32, 99] have incorporated CLMs as activation
functions for a single output neuron of a CNN. In [68], a CNN architecture was proposed
for addressing the OBD version of age estimation, with a straightforward approach to
combining binary outputs to obtain a rank. [59] introduced an alternative methodology
tailored for small datasets, relying on triplets of samples and majority voting. Lastly, [17]
built upon the work presented in [68] by constraining the maximum binary error for each
output, resulting in performance improvements. This area of research still warrants extensive
investigation and development.

3.2 goals

For this chapter, our goals are centred around objective number 1 from Section 2.2. More
precisely, they are:

• Testing the different ways in which CNNs can be adapted to work with ordinal data.

• Proposing a novel output scheme for solving ordinal regression tasks with CNNs.

• Testing the hypothesis that an ordinal method is able to outperform a nominal classi-
fication technique.

• Testing the hypothesis that our proposed method offers improvements over other
ordinal approaches.

3.3 base nominal cnn methodology

The general framework for nominal multiclass classification is explained in Section 1.1.1. In
short, this task consists in assigning a class label from a discrete finite set 𝒴 = {𝒞1, … , 𝒞𝑄} to
a given sample x from the population. In the nominal framework no predetermined relation
is assumed between the class labels.

Where CNNs excel is in their image classification capabilities. As explained in Section 1.5
they are able to natively capture the spatial relation between nearby pixels, which are more
strongly associated than distant ones.
The specifics of each CNN architecture are wildly different, but most of them follow the

same general premise:
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• In the first phase of the network several concatenated convolution (and maybe pooling)
operations are carried out starting from the input image.

• The resulting mapped features (sometimes summarized by some global pooling opera-
tion) are processed by one or more fully connected layers.

• In the end, an output layerwith asmany neurons as class labels is used. These class scores
are then transformed to class probabilities P(𝑦 = 𝒞𝑞 ∣ x) using the softmax activation
function (Section 1.4.1).

In order to train this model, categorical cross-entropy is chosen as the loss function to be
minimized, as defined in Eq. (1.37).
During evaluation and deployment of the model, the predicted class label ̂𝑦 assigned to

sample x is the one that maximizes the output probability of the model:

̂𝑦 = argmax
𝒞𝑞∈𝒴

P(𝑦 = 𝒞𝑞 ∣ x). (3.1)

3.4 adapting cnns for ordinal regression tasks

Ordinal regression tasks (Section 1.2) differ from nominal multiclass classification tasks in
that an ordering relationship ≺ is assumed between the class labels: 𝒞1 ≺ 𝒞2 ≺ ⋯ ≺ 𝒞𝑄,
that is, 𝑖 < 𝑗 ⟺ 𝒞𝑖 ≺ 𝒞𝑗. In this situation not all misclassification errors are considered
equal, e. g. assigning a predicted label ̂𝑦 = 𝒞𝑞±1 neighbouring the true target label 𝑦 = 𝒞𝑞 is
an error of less magnitude than assigning one two labels away ̂𝑦 = 𝒞𝑞±2.
Several avenues are available for introducing this information into CNN models:

1. Using a loss function that penalizes different misclassification errors according to the
ordering relationship of the class labels.

2. Altering only the output phase of an existing architecture to accommodate an ordinal
structure, leaving the rest of the network as-is.

3. Additionally to the previous point, possibly modifying the predicted label decision
rule.

Next are shown two different examples from the literature as well as a novel one presented
in this thesis.

3.4.1 An ordinal loss function: Quadratic Weighted Kappa

As discussed previously, categorical cross-entropy treats every misclassification equally. One
naive approach to ordinal regression is substituting this for an order-sensitive loss function.

The authors of [23] adapt the Cohen’s weighted kappa coefficient defined in Eq. (1.19) as
a loss function that can be used for training a CNNmodel. For this, they first express the
original formulation of 𝜅 using output probabilities instead of predicted labels:

̂𝜅 = 1 −
∑𝑁

𝑖=1 ∑𝑄
𝑞=1 𝑤𝒪(𝑦𝑖),𝑞 P(𝑦𝑖 = 𝒞𝑞 ∣ x𝑖)

∑𝑄
𝑐=1

𝑁𝑐
𝑁 ∑𝑄

𝑞=1(𝑤𝑐,𝑞 ∑𝑁
𝑖=1 P(𝑦𝑖 = 𝒞𝑞 ∣ x𝑖))

, (3.2)
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where 𝑁𝑐 is the number of samples with class label 𝒞𝑐 in the dataset. Then, the kappa loss
ℒ𝜅 is defined as:

ℒ𝜅 = log(1 − ̂𝜅), where ℒ𝜅 ∈ (−∞, 2]. (3.3)

A model trained in this way can use the same label assignment scheme as the one from
Eq. (3.1).

3.4.2 The Cumulative Link Model

As explained in Section 1.2.3.1, Cumulative Link Models use an approximation of a latent
continuous variable along with a set of thresholds in order to predict the probability of the
true class label of a sample being in a set of contiguous groups.

Whereas the approximation of the latent variable performed by the POM is a linear model,
as shown in Eq. (1.2), the authors of [99] substitute it by a CNNmodel with a single neuron
output denoted by 𝑓 (x):

P(𝑦 ⪯ 𝒞𝑞 ∣ x) =
1

1 + exp(𝑏𝑞 − 𝑓 (x))
∀𝑞, 1 ≤ 𝑞 < 𝑄. (3.4)

In order to use the argmax label assignment scheme from Eq. (3.1), equality probabilities
need to be computed from these in the following manner:

P(𝑦 = 𝒞𝑞 ∣ x) =

⎧{{{
⎨{{{⎩

P(𝑦 ⪯ 𝒞1 ∣ x), if 𝑞 = 1,

P(𝑦 ⪯ 𝒞𝑞 ∣ x) − P(𝑦 ⪯ 𝒞𝑞−1 ∣ x), if 1 < 𝑞 < 𝑄,

1 − P(𝑦 ⪯ 𝒞𝑄−1 ∣ x), if 𝑞 = 𝑄.

(3.5)

Once these equality probabilities are obtained, the model can be trained using cross-
entropy as the loss function.

3.4.3 A novel solution: Ordinal Binary Decomposition for CNNs

For our ordinal approach, we decompose the original 𝑄-class ordinal problem into 𝑄 − 1
binary decision problems, a strategy referred to as Ordinal Binary Decomposition (OBD).
Each problem 𝑞 involves determining whether 𝑦 ≻ 𝒞𝑞 conditioned on sample x (1 ≤ 𝑞 < 𝑄),
following the OrderedPartitions scheme from Table 1.1.
To adapt the model’s outputs for this approach, we replace the final fully-connected

block with 𝑄 − 1 separate fully-connected blocks. Each block contains a single output unit
with sigmoid activation. Each of these 𝑄 − 1 output units aims to predict the probability
P(𝑦 ≻ 𝒞𝑞 ∣ x). This modification results in the creation of 𝑄 − 1 distinct models that share
convolutional feature extraction parameters and are trained simultaneously.

3.4.3.1 Error Correcting Output Codes as an output consensus method

In the case of OBD models, the output is a vector p = (𝑝1, 𝑝2, … , 𝑝𝑄−1) of cumulative
probabilities 𝑝𝑞 = P(𝑦 ≻ 𝒞𝑞 ∣ x). Therefore, the decision rule involves combining multiple
outputs. However, these probabilities may not adhere to basic probability properties, such
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as P(𝑦 ≻ 𝒞𝑞) ≥ P(𝑦 ≻ 𝒞𝑞+1) and ∑𝑄
𝑞=1 P(𝑦 = 𝒞𝑞) = 1. Consequently, Eq. (3.5) cannot be

applied as in the case of CLMs.
To address this issue, we employ a stable approach based on the ECOC framework. This

approach considers the ideal output vector v(𝒞𝑞) for each class 𝒞𝑞, defined as:

v(𝒞𝑞) = (𝑐1, … , 𝑐𝑄−1), (3.6)

𝑐𝑗 = 𝟙{𝒞𝑞 ≻ 𝒞𝑗}, (3.7)

i. e. a vector with ones in positions corresponding to classes lower than 𝒞𝑞 in the ordinal
scale and zeros everywhere else. This results in the ideal output vector for a sample x with
label 𝑦 = 𝒞𝑞 being:

v(𝒞𝑞) = (𝑐1, … , 𝑐𝑞−1, 𝑐𝑞, … , 𝑐𝑄−1) = (1, … , 1, 0, … , 0), (3.8)

where, for instance, in a 4-class ordinal problem with labels 𝒞1, 𝒞2, 𝒞3, and 𝒞4, the ideal
outputs are v(𝒞1) = (0, 0, 0), v(𝒞2) = (1, 0, 0), v(𝒞3) = (1, 1, 0), and v(𝒞4) = (1, 1, 1).
The decision rule aims to identify the ideal vector that minimizes the distance from the

output vector p = (𝑝1, 𝑝2, … , 𝑝𝑄−1) computed by the CNN model:

̂𝑦 = argmin
𝒞1⪯𝒞𝑞⪯𝒞𝑄

∥p − v(𝒞𝑞)∥
2
, (3.9)

where ‖⋅‖2 represents the 𝐿2 norm. This choice of distancemetric aligns with the loss function
used in the optimization process.
As an example, consider a 4-class ordinal problem. For a given sample x, if the model’s

output is a 3-dimensional vector p = (0.8, 0.3, 0.2), the distances to each ideal class vector
would be calculated as follows:

‖p − v(𝒞1)‖2 = ‖(0.8, 0.3, 0.2) − (0, 0, 0)‖2 = 0.77,
‖p − v(𝒞2)‖2 = ‖(0.8, 0.3, 0.2) − (1, 0, 0)‖2 = 0.17,
‖p − v(𝒞3)‖2 = ‖(0.8, 0.3, 0.2) − (1, 1, 0)‖2 = 0.57,
‖p − v(𝒞4)‖2 = ‖(0.8, 0.3, 0.2) − (1, 1, 1)‖2 = 1.17.

(3.10)

This process is illustrated in Figure 3.1. The vector closest to p is v(𝒞2), indicating that
sample x would be assigned the class label ̂𝑦 = 𝒞2.

For the OBD methodology, we replace categorical cross-entropy with the Mean Squared
Error (MSE) loss, as it better aligns with the distance function used in the ECOC decision
rule [2]:

ℒMSE =
1
𝑁

𝑁
∑
𝑖=1

𝑄−1
∑
𝑞=1

(𝟙{𝑦𝑖 ≻ 𝒞𝑞} − P(𝑦𝑖 ≻ 𝒞𝑞 ∣ x𝑖))
2
. (3.11)

An illustration comparing the four methodologies presented in this section is shown in
Fig. 3.2.
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v(𝒞1) = (0, 0, 0) v(𝒞2) = (1, 0, 0)

v(𝒞3) = (1, 1, 0)

v(𝒞4) = (1, 1, 1)

p

Figure 3.1: Visualization of the model output vector p (red dot) for sample x and its distances to
the ideal class vectors (dashed lines) in a 3D graphical representation. Each dimension
corresponds to one of the three model outputs. The closest vector is v(𝒞2) (marked in
red), leading to the assignment of label 𝒞2 for sample x.

3.5 experiment design

3.5.1 Datasets

To test and compare the four methodologies described previously, four different image
ordinal regression tasks have been selected. The datasets for these tasks present a high level
of class imbalance as an additional challenge. A sample of each class from all of them can
be seen in Figs. 3.3 to 3.6 and the distribution of the class samples can be seen in Fig. 3.7.

3.5.1.1 ‘Adience’ face age estimation

A set of 17 702 photos of people scraped from the web and pre-aligned to fit their face,
categorized into 8 different age groups [29] of increasing value: 0 to 2 years, 4 to 6 years,
8 to 13 years, 15 to 20 years, 25 to 32 years, 38 to 43 years, 48 to 53 years, and 60 years and
up.

3.5.1.2 CBIS-DDSM

A database of 2620 scanned film mammography studies curated from the larger Digital
Database for Screening Mammography (DDSM) and each one assigned a Breast Imaging
Reporting and Data System (BI-RADS) assessment [55] by a trained mammographer. The
assessment is done on a scale from 0 to 5 according to the standard for a total of 6 classes
(there are no cases of class 6 as there is no biopsy information). For this dataset, before being
resized, all images were cropped into a square centred around the Region of Interest (RoI)
of the lesion.
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Figure 3.2: Visual comparison of the four methodologies. From left to right: the baseline nominal
architecture (using both ℒCE and ℒ𝜅 as the loss function), CLM, and our proposed
approach, OBD.

3.5.1.3 Diabetic Retinopathy diagnosis

A collection of 53 569 high-resolution retina images rated by a clinician on the presence of
Diabetic Retinopathy (DR), an eye disease present in a large proportion of diabetes patients,
on a scale from 0 (no DR) to 4 (proliferative DR) for a total of 5 classes 1.

3.5.1.4 Herlev Pap Smear Dataset

917 images of single Pap smear cells classified by doctors and technicians into 7 different
classes, 3 of them normal from different parts of the cervix (242 images in total) and 4
of them abnormal in different stages of dysplasia (675 images in total) [47]. These are
condensed into 4 ordinal classes, following the Bethesda System standard [67].

3.5.2 Validation scheme

The following four methodologies are compared:

• A baseline architecture using ℒCE as the loss function for training described in Sec-
tion 3.3, referred to as ‘Nominal’.

• The same architecture, but using ℒ𝜅 as the loss function for training described in
Section 3.4.1, referred to as ‘QWK’.

• The CLM approach described in Section 3.4.2, referred to as ‘CLM’.

• The OBD approach using the ECOC decision rule described in Section 3.4.3, referred
to as ‘OBD’.

1 https://www.kaggle.com/c/diabetic-retinopathy-detection/data

https://www.kaggle.com/c/diabetic-retinopathy-detection/data
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𝒞1 𝒞2 𝒞3 𝒞4

𝒞5 𝒞6 𝒞7 𝒞8

Figure 3.3: Sample image from each class of the Adience dataset

𝒞1 𝒞2 𝒞3 𝒞4 𝒞5

Figure 3.4: Sample image from each class of the CBIS-DDSM dataset

𝒞1 𝒞2 𝒞3 𝒞4 𝒞5

Figure 3.5: Sample image from each class of the Retinopathy dataset

𝒞1

𝒞2 𝒞3

𝒞4

Figure 3.6: Sample image from each class of the Herlev dataset



3.5 experiment design 37

𝒞1 𝒞2 𝒞3 𝒞4 𝒞5 𝒞6 𝒞7 𝒞8

Class label

0

1000

2000

3000

4000

5000

Sa
m
pl
e
co
un

t
Adience

𝒞1 𝒞2 𝒞3 𝒞4 𝒞5

Class label

0

250

500

750

1000

1250

1500

Sa
m
pl
e
co
un

t

CBIS-DDSM

𝒞1 𝒞2 𝒞3 𝒞4 𝒞5

Class label

0

10000

20000

30000

40000

Sa
m
pl
e
co
un

t

Retinopathy

𝒞1 𝒞2 𝒞3 𝒞4

Class label

0

100

200

300

Sa
m
pl
e
co
un

t

Herlev Pap smear

Figure 3.7: Distribution of class labels in the datasets

All of these methodologies are tested with four different architectures: VGG11 [87],
ResNet18 [40], MobileNetV3 [44] and ShuffleNetV2 [60], which yields a total of sixteen
different experiments for each of the four datasets.

In order to obtain a statistically significant result to test our hypothesis, each experiment
is repeated 30 times on 30 different holdout splits of the original dataset, where 80 % of
samples are used for training, 10 % are used for validation and early stopping and 10 % are
used for model evaluation. This split is performed in a stratified fashion, preserving the
original proportion of the class labels of the original dataset in the subsets.

3.5.3 Training scheme

In all experiments, weights are initialized randomly using the He initialization scheme [41].
They are then adjusted using the Adam optimization method [52] with a learning rate of
𝜂 = 10−4.
In the case of VGG11, both dropout (𝑝 = 0.5) and 𝐿2 regularization (with a weight of

5 × 10−4) are applied only in the fully connected layers as in the original paper [87]. For
ResNet18, batch normalization is applied after every convolution operation and 𝐿2 penalty
(with a weight of 10−4) is added to all mappings [40]. The number of trainable parameters
for each model is available on Table 3.1.
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Architecture Adience CBIS-DDSM Retinopathy Herlev
VGG11 132 871 344

(4084MiB)
132 868 341
(4084MiB)

132 868 341
(4084MiB)

132 867 340
(4084MiB)

ResNet18 11 697 520
(2729MiB)

11 694 517
(2729MiB)

11 694 517
(2729MiB)

11 693 516
(2729MiB)

MobileNetV3 5 491 040
(4838MiB)

5 488 037
(4838MiB)

5 488 037
(4838MiB)

5 487 036
(4838MiB)

ShuffleNetV2 7 402 004
(4114MiB)

7 399 001
(4114MiB)

7 399 001
(4114MiB)

7 398 000
(4114MiB)

Table 3.1: Number of trainable parameters and total memory size of the trained models for each
architecture and dataset

In order to help overcome the class imbalance, class weighting is applied to the loss
function based on the proportion of training samples for each class. The weight of a sample
with class label 𝒞𝑞 is determined as:

𝑤𝑞 =
exp(−𝐶𝑁𝑞)

∑𝑄
𝑐=1 exp(−𝐶𝑁𝑐)

, (3.12)

where 𝑁𝑞 is the number of training samples with class label 𝒞𝑞 and 𝐶 = 3×10−5 is a constant
that has been tuned manually based on validation performance.
Model weights are updated in batches of 72 training samples and loss performance is

monitored on both training and validation for a maximum of 200 full epochs. If validation
performance does not increase for 20 epochs, training is halted and the best performing
parameters over the validation set are restored.

3.5.4 Performance metrics

The traditional performance metric in classification tasks is the Correct Classification Rate
(CCR). However, given that all four datasets present a very high class imbalance, CCR is not
a representative measure of model performance: for example, in the case of the Retinopathy
dataset, a dummy classifier that always assign the majority class label 𝒞1 would obtain a
CCR of 73 %.

In order to monitor global per-class performance, metrics such as the Average Area Under
the ROC Curve (AvAUC) and minimum sensitivity (MinS) will also be included.
Also, for ordinal regression problems, rank agreement metrics including the Root Mean

Squared Error (RMSE), Spearman’s rank correlation coefficient (𝑟𝑠) and the Quadratic
Weighted Cohen’s Kappa (𝜅) have been selected as well for evaluation.

All of these metrics are fully described in Section 1.2.5.

3.6 results

The average of the training curves over all 30 repetitions is shown in Figs. 3.8 to 3.11. Note
how the QWK methodology fails to converge when used in conjunction with the VGG11
architecture: the high depth of this architecture makes the gradients disappear in the
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back-propagation phase of training. All the other architectures tested implement residual
paths into the network, allowing them to avoid this problem [102]. Note how the OBD
methodology does not alter the depth of the CNNmodel, so it will never cause this problem
by itself.

In addition, average training times for the different models are reported in Fig. 3.12. It can
be seen that the CLM methodology takes the longest to converge.
The average experimental results for each experiment are shown in Tables 3.2 to 3.5.
For the Adience dataset (Table 3.2), the OBD methodology is able to outperform the other

three with respect to CCR, AvAUC andMinS, with a close second place in RMSE, 𝑟𝑠 and 𝜅
behind CLM.
For the CBIS-DDSM dataset (Table 3.3), OBD is ahead regarding RMSE and second

regarding all other metrics but MinS behind both the Nominal and CLM approach.
As for the Retinopathy dataset (Table 3.4), OBD is able to outperform the rest in MinS,

RMSE and 𝜅, being second in all other except CCR.
Finally, for the Herlev dataset (Table 3.5), even though close to the rest, it only achieves

the best mean results in RMSE.
In general, it can be observed that OBD rarely fails catastrophically regarding sensitivity,

which the other two ordinal methodologies (QWK and CLM) do. This is reflected in the
amount of cases where the MinS drops to zero, meaning that in every repetition of the
experiment at least one of the classes was ignored. Even when OBD is not the clear winner
in average, it is usually never far behind. To formalize this observation further statistical
analysis is needed.

3.6.1 Statistical analysis

To determine the statistical significance of the mean differences observed for each classifier,
each architecture and each dataset, we have carried out a parametric Analysis of Variance
(ANOVA) test [34, 35] for each of the evaluated metrics. The three factors considered for the
experimental design are: (i) the database (Adience, CBIS-DDSM, Retinopathy and Herlev),
(ii) the CNN network architecture (VGG11, ResNet18, MobileNetV3 and ShuffleNetV2) and
(iii) the methodology (Nominal, QWK, CLM and OBD).

For each combination of these three factors we have repeated the experiment 30 times with
different data splits and weight initialization seeds. We have tested, using the Kolmogorov-
Smirnov test [63] for all metrics mentioned in Section 3.5.4, whether the null hypothesis
stating that the results are drawn from a normal distribution cannot be rejected (for a
significance level of 𝛼 = 0.05). This is true for all metrics except MinS, namely the CCR,
AvAUC, RMSE, 𝑟𝑠 and 𝜅. Only these metrics will be considered for the subsequent analysis,
given that ANOVA is a parametric test and can only be applied to normally distributed
variables.

After this, ANOVA is performed for these five metrics, the results of which can be seen in
Tables 3.6 to 3.10. According to this analysis, for all normally distributed metrics there exist
significant differences in the mean value (for a significance level of 𝛼 = 0.05) concerning
the three individual factors of dataset, architecture and methodology (all 𝑝-values < 0.001).
Then, we also found significant interactions between all the pairs of factors (all 𝑝-values
< 0.001) and between all three single factors (all 𝑝-values < 0.001). This shows that:

1. the impact of the architecture and the methodology varies across datasets,
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Nominal QWK CLM OBD

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

CCR (↑) 0.6808 0.0464 0.4210 0.1991 0.7215 0.0492 0.7427 0.0338
AvAUC (↑) 0.9331 0.0180 0.6877 0.1137 0.9351 0.0156 0.9377 0.0138
MinS (↑) 0.3239 0.1159 0.0000 0.0000 0.1221 0.1577 0.4865 0.0779
RMSE (↓) 0.9911 0.1175 1.5984 1.1095 0.7676 0.1006 0.8159 0.0883
𝑟𝑠 (↑) 0.8605 0.0314 0.6436 0.3699 0.9128 0.0230 0.9025 0.0209
𝜅 (↑) 0.8690 0.0308 0.6440 0.3726 0.9200 0.0217 0.9110 0.0197

Table 3.2: Mean results for the Adience dataset. Metrics to maximize are marked with (↑) and metrics
to minimize with (↓). Best and second best results are highlighted in bold and italics,
respectively

Nominal QWK CLM OBD

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

CCR (↑) 0.5672 0.0246 0.3394 0.1099 0.5411 0.0315 0.5558 0.0239
AvAUC (↑) 0.7568 0.0345 0.5613 0.0402 0.6847 0.0346 0.6987 0.0400
MinS (↑) 0.0106 0.0275 0.0065 0.0182 0.0000 0.0000 0.0003 0.0038
RMSE (↓) 1.1572 0.0435 1.4035 0.3038 1.1558 0.0459 1.1035 0.0415
𝑟𝑠 (↑) 0.4180 0.0574 0.3035 0.0931 0.4533 0.0530 0.4311 0.0559
𝜅 (↑) 0.3733 0.0563 0.3111 0.1073 0.4121 0.0543 0.3837 0.0595

Table 3.3: Mean results for the CBIS-DDSM dataset. Metrics to maximize are marked with (↑) and
metrics to minimize with (↓). Best and second best results are highlighted in bold and
italics, respectively

Nominal QWK CLM OBD

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

CCR (↑) 0.7638 0.0156 0.4216 0.1864 0.7638 0.0152 0.7238 0.0198
AvAUC (↑) 0.8152 0.0230 0.5105 0.0206 0.8053 0.0208 0.8085 0.0154
MinS (↑) 0.0094 0.0098 0.0000 0.0000 0.0000 0.0000 0.1370 0.0270
RMSE (↓) 0.8857 0.0548 1.0957 0.1803 0.8591 0.0478 0.8396 0.0392
𝑟𝑠 (↑) 0.5021 0.0555 0.0756 0.0585 0.5134 0.0490 0.5064 0.0386
𝜅 (↑) 0.5636 0.0594 0.0620 0.0491 0.5754 0.0502 0.5929 0.0402

Table 3.4: Mean results for the Retinopathy dataset. Metrics to maximize are marked with (↑) and
metrics to minimize with (↓). Best and second best results are highlighted in bold and
italics, respectively
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2. the architecture significantly affects performance,

3. the effect of the methodology is affected by the CNN architecture (that is, some
architectures are better suited for each methodology), and

4. the methodology alone affects the performance.

Given the ANOVA results identify a significant difference with respect to the Method-
ology factor, we now analyse the magnitude of these differences. We perform a post-hoc
Tukey’s honestly significant difference test [94] on each of these metrics. This test groups
the methodologies into groups of similar performance, where each group is significantly
different than the rest. The test results are shown in Table 3.11 and graphically in Fig. 3.13.
From these results it can be observed that the OBD methodology is always present in

the group with significantly best results, that is, it is never outperformed significantly by
any of the other three methodologies regarding any of the studied metrics. It shows similar
performance to the Nominal methodology in CCR, AvAUC, 𝑟𝑠 and 𝜅 and it also show similar
performance to the CLM methodology in AvAUC, 𝑟𝑠 and 𝜅. In this last case, it is important
to note that it achieves this level of performance while reducing the convergence time with
respect to the CLM methodology. Furthermore, it significantly outperforms every other
methodology with regard to RMSE.

3.7 conclusions

This chapter introduced a novel ordinal CNN architecture based on Ordinal Binary Decom-
position along with a decision scheme using Error Correcting Output Codes. The results
demonstrate that this approach obtains similar and significantly better results compared to
a purely nominal method and two other existing ordinal techniques, particularly in highly
imbalanced scenarios, such as medical and web-scraped datasets. Notably, the proposed
OBDmethodology enhances the RMSE performance without compromising any of the other
studied metrics. Importantly, this methodology is easily adaptable for various ordinal tasks.

While the tested architectures represent well-established and high-performingmodels, the
approach remains versatile, accommodating the integration of different andmore innovative
models. This provides a versatile tool for classification tasks that leverage ordinal information.
Furthermore, these modifications do not inflate the number of network parameters, memory
consumption, or significantly extend training time.
This versatility will allow applying this methodology to a wildly different input type

like 3D images in the following chapter, as the required modifications primarily affect the
latter stages of the network, allowing for arbitrary input shapes. Addressing class imbalance
challenges requires further investigation. Improved class balancing approaches, beyond
simple loss weighting, could be employed, including data augmentation methods that
account for ordinal information to enhance model performance.
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Nominal QWK CLM OBD

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

CCR (↑) 0.6028 0.1366 0.5054 0.0933 0.4047 0.0401 0.6013 0.1367
AvAUC (↑) 0.7932 0.1753 0.7348 0.1028 0.8416 0.0350 0.7921 0.1482
MinS (↑) 0.3844 0.2392 0.2590 0.1905 0.0000 0.0000 0.3585 0.2396
RMSE (↓) 0.9111 0.1823 0.9549 0.2186 1.1566 0.1185 0.8595 0.2071
𝑟𝑠 (↑) 0.5186 0.3073 0.5719 0.1937 0.6331 0.0743 0.5441 0.3215
𝜅 (↑) 0.5196 0.3080 0.5629 0.1973 0.5866 0.0769 0.5448 0.3221

Table 3.5: Mean results for the Herlev Pap smear dataset. Metrics to maximize are marked with (↑)
and metrics to minimize with (↓). Best and second best results are highlighted in bold and
italics, respectively

Source Sum of Squares Degrees of freedom F-ratio Sig. level

Dataset (D) 9.79 3 1385.33 <0.001
Architecture (A) 1.37 3 193.54 <0.001
Methodology (M) 17.70 3 2505.40 <0.001
D.A Interaction 2.70 9 127.28 <0.001
D.M Interaction 7.59 9 358.24 <0.001
A.M Interaction 1.82 9 85.92 <0.001
D.A.M Interaction 6.75 27 106.13 <0.001
Residual 4.37 1856

Table 3.6: ANOVA III table for the CCR results

Source Sum of Squares Degrees of freedom F-ratio Sig. level

Dataset (D) 10.22 3 4413.39 <0.001
Architecture (A) 1.70 3 734.01 <0.001
Methodology (M) 13.50 3 5832.93 <0.001
D.A Interaction 2.17 9 312.51 <0.001
D.M Interaction 3.20 9 460.41 <0.001
A.M Interaction 2.17 9 313.11 <0.001
D.A.M Interaction 2.69 27 129.03 <0.001
Residual 1.43 1856

Table 3.7: ANOVA III table for the AvAUC results
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Source Sum of Squares Degrees of freedom F-ratio Sig. level

Dataset (D) 22.25 3 390.27 <0.001
Architecture (A) 14.12 3 247.62 <0.001
Methodology (M) 35.49 3 622.46 <0.001
D.A Interaction 15.64 9 91.43 <0.001
D.M Interaction 34.82 9 203.60 <0.001
A.M Interaction 57.49 9 336.13 <0.001
D.A.M Interaction 60.50 27 117.90 <0.001
Residual 35.27 1856

Table 3.8: ANOVA III table for the RMSE results

Source Sum of Squares Degrees of freedom F-ratio Sig. level

Dataset (D) 59.21 3 6584.14 <0.001
Architecture (A) 6.12 3 680.42 <0.001
Methodology (M) 15.23 3 1694.04 <0.001
D.A Interaction 10.58 9 392.27 <0.001
D.M Interaction 9.76 9 361.70 <0.001
A.M Interaction 13.66 9 506.41 <0.001
D.A.M Interaction 12.62 27 155.87 <0.001
Residual 5.56 1856

Table 3.9: ANOVA III table for the 𝑟𝑠 results

Source Sum of Squares Degrees of freedom F-ratio Sig. level

Dataset (D) 59.76 3 6744.61 <0.001
Architecture (A) 6.24 3 704.17 <0.001
Methodology (M) 16.21 3 1829.51 <0.001
D.A Interaction 10.86 9 408.55 <0.001
D.M Interaction 14.75 9 555.08 <0.001
A.M Interaction 14.56 9 547.65 <0.001
D.A.M Interaction 12.30 27 154.22 <0.001
Residual 5.48 1856

Table 3.10: ANOVA III table for the 𝜅 results
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CCR

Methodology Subsets

1 2 3

QWK 0.422
CLM 0.608
Nominal 0.654
OBD 0.656

𝑝-values 1 1 0.994

AvAUC

Methodology Subsets

1 2

QWK 0.624
OBD 0.809
CLM 0.817
Nominal 0.825

𝑝-values 1 0.142

RMSE

Methodology Subsets

1 2 3

QWK 1.263
Nominal 0.986
CLM 0.985
OBD 0.905

𝑝-values 1 1 1

𝑟𝑠

Methodology Subsets

1 2 3

QWK 0.399
Nominal 0.575
OBD 0.596 0.596
CLM 0.628

𝑝-values 1 0.545 0.185

𝜅

Methodology Subsets

1 2

QWK 0.395
Nominal 0.581
OBD 0.608
CLM 0.624

𝑝-values 1 0.051

Table 3.11: Results of the Tukey’s HSD test for all testedmetrics. Methodologies are grouped such that
the elements within a subset are not significantly different, while the differences between
each group are significant. The first subset contains the worst methodologies, while the
last subset groups the best methodologies. The best performing subset is highlighted in
bold
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Figure 3.13: Confidence intervals for the Tukey’s HSD test for al tested metrics. OBD methodology
highlighted in blue, all other overlapping methodologies in grey and the rest in red. All
overlapping methodologies form groups corresponding to those in Table 3.11.



4
COMPUTER-A IDED DIAGNOS I S FOR PARK INSON ’ S D I SEASE : AN
APPL ICAT ION OF ORD INAL DATA AUGMENTAT ION FOR 3D IMAGE
IMBALANCED DATASETS

Having proposed in the previous chapter an output architecture for CNNs suited to ordinal
regression tasks, we proceed to tackle a real problem using a novel dataset.
We have had the opportunity to work alongside the Nuclear Medicine unit from the

Hospital Universitario ‘Reina Sofía’, where doctors deal with the task of evaluating the
neurological damage of Parkinson’s disease (PD) patients from a volumetric scan of the
brain. The evaluation consists on assigning an ordinal label in a discrete scale, which maps
perfectly to the ordinal regression framework.

However, this task presents a unique series of challenges that have to be overcome, namely
(a) the volumetric (that is, 3D) nature of the images, (b) a relatively low sample size and
(c) an acute class representation imbalance.

This chapter is dedicated to the development of a comprehensive methodology including
a native 3D CNN architecture and a data augmentation procedure capable of tackling this task.
Two versions of this methodology are presented: one where the ordinal information is
ignored as well as another one where it is exploited in both the network output and the data
augmentation method. In this last regard, several different configurations are considered to
find the best performing one. The nominal scheme is then compared to the ordinal approach
in order to show the better performance of the latter.

associated publication: Javier Barbero-Gómez, Pedro-Antonio Gutiérrez, Víctor-
Manuel Vargas, Juan-Antonio Vallejo-Casas and César Hervás-Martínez. ‘An Ordinal CNN
Approach for the Assessment of Neurological Damage in Parkinson’s Disease Patients’. In:
Expert Systems with Applications 182 (15th Nov. 2021), p. 115271. doi: 10.1016/j.eswa.2021.
115271.

JCR (2021): 8.655. Ranking position in Computer Science, AI: 21/145 (Q1)

4.1 related work

The diagnosis of PD has been studied extensively in the literature, with some already existing
work on applying ML techniques.

PD is a neurodegenerative disorder that primarily affects the nervous system andmanifests
with motor-related symptoms such as tremors, gait disturbances, slowness, and walking
difficulties. Additionally, patients may experience symptoms related to sleep, emotions,
and sensory functions. The societal cost of PD increases as the disease progresses, with a
substantial portion allocated to patient care and nursing home expenses. In the UK alone,
the annual cost has been estimated to range from £ 445 million to £ 3.3 billion [33].
Assessing the severity of neurological damage in PD patients is critical for appropriate

treatment. Administering an excessively high dose of levodopa, the most common medic-
ation for PD, can exacerbate symptoms in the long term [93]. Physicians assess patients’
motor capabilities through observations [61] and employ imaging techniques such as Mag-
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netic Resonance Imaging (MRI) [61] and nuclear tomography methods like single-photon
emission computed tomography (SPECT) or positron emission tomography (PET) [3].
In recent years, there has been a growing interest in applying ML techniques to such

medical images, eliminating the need for prior assumptions about RoI or relevant areas
for the given task. These methods autonomously determine where and what to examine
in images, relying solely on data previously labelled by medical professionals. Popular
methods address binary classification tasks (e. g. healthy control or disease) [103] or
nominal classification with multiple disease categories [1].
Several datasets related to PD are accessible online for research purposes, such as the

Parkinson’s Progression Markers Initiative (PPMI)1 and the LRRK2 Cohort Consortium
(LCC)2. All of the available datasets deal only with binary or nominal diagnostic labels.

4.1.1 Data augmentation

In classification tasks, especially in the medical domain, dealing with imbalanced data is a
common challenge, given the prevalence of healthy cases compared to the relatively rare
occurrence of diseases. Moreover, the process of gathering and accurately labelling medical
data is often costly and time-consuming. In such scenarios, the use of data augmentation
techniques becomes essential to enhance the performance of ML models.
One of the fundamental strategies for augmenting spatial data such as medical images,

involves operations like image translation, rotation, flipping, and cropping [70]. The selection
of specific augmentation techniques depends on the nature of the task at hand. For instance,
tasks like object detection, including anomaly or lesion detection, can benefit from the
utilization of cropped RoI as augmented samples [76].

While classic techniques like SyntheticMinority Oversampling (SMOTE) [16, 78] perform
well with low-dimensional data, more advanced techniques such as Autoencoders [43] and
Generative Adversarial Networks (GANs) [37] are capable of harnessing convolutional
operations, improving performance and efficiency with spatial data. However, it’s worth
noting that these advanced techniques require a substantial amount of training data and
tuning efforts to avoid challenges like mode collapse.

To meet the demand for larger datasets, recent efforts have introduced more sophisticated
data augmentation methods for medical data. For instance, the authors of [81] combine
GANswithMarkov Random Fieldmodels to augment 3D functionalMRI data frommultiple
subjects, resulting in enhanced multiclass classification performance.

Additionally, data augmentation techniques have evolved to consider the ordinal inform-
ation within class labels to improve the generation of synthetic data. One family of such
methods, presented by [71], are the Ordinal Graph-based Oversampling (OGO) methods.
These techniques involve constructing a graph that captures the latent manifold structure
in the data by leveraging ordinal information in the labels. Subsequently, the edges of this
graph are employed to generate synthetic samples, akin to the principles of SMOTE.

Furthermore, established techniques like SMOTE and OGO can be adapted to work with
spatial data. This adaptation involves initially training a CNN model to learn a projection
from high-dimensional data to a lower-dimensional space. Subsequently, traditional data
augmentation methods can be applied to the resulting low-dimensional data.

1 https://www.michaeljfox.org/news/parkinsons-progression-markers-initiative-ppmi

2 https://www.michaeljfox.org/news/lrrk2-cohort-consortium

https://www.michaeljfox.org/news/parkinsons-progression-markers-initiative-ppmi
https://www.michaeljfox.org/news/lrrk2-cohort-consortium
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4.2 goals

To the best of our knowledge, prior research has not explored the application of MLmethods
to assess the severity of brain damage from a patient’s brain SPECT 3D image. Thesemethods
have the potential to assist healthcare professionals in diagnosing and treating conditions like
PD and other parkinsonisms through computer-aided diagnosis (CAD) systems. Moreover,
they can contribute to alleviating the public health costs associated with these diseases.
The primary objectives of this chapter relate to objectives 2 and 3 from Section 2.2. They

are the following:

1. Investigating the potential enhancement in classification performance by leveraging
ordinal label information.

2. Adapting classical data augmentation and class balancing techniques for spatial 3D
data.

3. Evaluating the methodologies developed in points 1 and 2 using a novel and extensive
database of SPECT images obtained from the Hospital Universitario ‘Reina Sofía’
(Córdoba, Spain).

4. Examining the possibility of refining the data augmentation methodology presented
by [71] by implementing a more appropriate probability distribution for generating
synthetic samples at class boundaries.

4.3 task description

The task at hand is the evaluation of the level of neurological damage in PD patients using
SPECT imaging of the brain. This technique uses a specific radiopharmaceutical called
radioligand that binds to a specific targeted receptor. The radiation emitted by this chemical
can then be detected and an image can be formed, highlighting regions with high activity of
the receptor. In the case of PD, doctors are interested in the dopaminergic activity inside the
brain as one of the main markers. Ioflupane (123I), commercially known as DaTscan, is a
neuroimaging drug frequently used to evaluate dopaminergic activity in the nigrostriatal
dopaminergic pathway, especially in the early stages of the disease [22]. It is injected into the
patient’s bloodstream before conducting a SPECT scan to visualize the brain’s dopaminergic
activity. Assessing this damage often necessitates significant expertise.

4.3.1 Dataset

The data collected for this experimentation consists of 508 3D SPECT images of PD patients,
all of them collected and labelled in a scale from 1 to 4 according to their level of neurological
damage by experts in the Nuclear Medicine clinical unit at the Hospital Universitario ‘Reina
Sofía’.
Of these, 314 (61.8 %) are labelled as healthy patients (𝒞1), 42 (8.3 %) present a slight

alteration (𝒞2), 52 (10.2 %) show a more advanced alteration (𝒞3) and 100 (19.7 %) show
a severe alteration (𝒞4). Like it is common in medical diagnosis datasets, it presents an
intense class imbalance, with more than 60 % of samples corresponding to healthy patients.
The gradual nature of the degenerative process makes this an ordinal regression task,

which allows us to apply ordinal-specific techniques in order to exploit this information.
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(a) 𝒞1 (b) 𝒞2 (c) 𝒞3 (d) 𝒞4

Figure 4.1: Transverse sections of example images from the dataset for each class.

To standardise the resolution, orientation and scale of the images, automatic linear re-
gistration is performed using the FMRIB’s Linear Image Registration Tool (FLIRT) from
the FMRIB Software Library (FSL) [88]. Specifically, all images were transformed to the
MNI152 standard space [31] with a resolution of 2mm using a T2 SPECT template, making
the final images have a resolution of 91 × 109 × 91 voxels.

A sample of this data can be seen in Fig. 4.1, including one image from each class.

4.4 model architecture

The CNN model employed in this study features a modular architecture designed to ef-
fectively process brain SPECT 3D images. It comprises convolutional blocks composed of
repeated layers which progressively reduce the image size while increasing the number of
feature maps.

Each convolutional block is composed of a 3D convolution layer followed by a batch nor-
malization layer. Parameters such as kernel size and stride for the convolution are subject to
cross-validation during the training phase. The output from each block undergoes a LReLU
activation function, chosen for its advantageous properties, including scale-invariance and
1-Lipschitz continuity [91, 97].

The low resolution feature maps generated by the convolutional blocks serve as inputs for
a fully connected neuron layer. The number of neurons in this layer is another parameter
subject to cross-validation during training, and it employs LReLU as the activation function.
The final classification is computed by the output layer, and the model’s weights are updated
in the training phase using the Adam optimization algorithm [52] to align the outputs with
the annotated labels.

Two distinct architectures, which are described in Chapter 3 will be tested: a conventional
architecture designed for nominal classification (detailed in Section 3.3) and an ordinal
architecture that takes into account the order of class labels (the OBD with ECOC consensus
method as described in Section 3.4.3). Both architectures share the same convolutional
structure, but they differ in their approach to computing the final output. An illustration of
both can be seen in Fig. 4.2.
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Figure 4.2: The two network architectures for classifying 3D brain SPECT images: conventional
(above) and ordinal (below).
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1 − 𝛿
𝛿

x𝑖

x𝑗x′

𝒞1

𝒞2

𝒞3

Figure 4.3: Example of the SMOTE procedure. First, x𝑖 (highlighted in green) is selected, then x𝑗 is
selected from its neighbours (highlighted in blue) and finally x′ (in black) is generated
by interpolating between the two according to 𝛿.

4.5 class balancing

In scenarios characterized by class imbalance, such as medical diagnosis, where certain
classes have significantly fewer samples than others, it is crucial to take specific measures
during the training process to prevent biases that could compromise the model’s ability to
generalize effectively.
Various techniques, including class balancing, offer effective solutions to address this

issue. These methods primarily aim to equalize the proportion of training samples from
each class presented to the classifier during training.

4.5.1 SMOTE

The Synthetic Minority Oversampling technique, commonly known as SMOTE [16] is able
to create new samples for the minority class (or any other class) by interpolating between
similar real samples of said class directly in the feature space. It is particularly effective
when dealing with datasets with a manageable number of features which take continuous
values. Its procedure is as follows:

1. Let 𝐷𝑞 be the subset of the original dataset 𝐷 containing all the samples of class 𝒞𝑞 to
be augmented: 𝐷𝑞 = {x𝑖 ∣ (x𝑖, 𝑦𝑖) ∈ 𝐷 ∧ 𝑦𝑖 = 𝒞𝑞}. Select a random sample x𝑖 ∈ 𝐷𝑞.

2. Based on some distance measure (e. g. the euclidean distance) select a second random
sample x𝑗 ∈ 𝐷𝑞 from the same class in the neighbourhood of the 𝑘 nearest samples to
x𝑖 of class 𝒞𝑞.

3. Draw a value 𝛿 from a uniform random distribution between 0 and 1: 𝛿 ∼ 𝑈(0, 1).

4. Generate a new sample x′ = (1 − 𝛿)x𝑖 + 𝛿x𝑗.

5. Add the new synthetic training example (x′, 𝒞𝑞) to the augmented training dataset.

An illustration of this procedure can be seen in Fig. 4.3.
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4.5.2 OGO-SP

While SMOTE is able to generate samples in the intra-class regions (that is, in the regions in
between samples of the same class) it is unable to generate them in the inter-class or border
regions (the regions of the space in-between classes). Moreover, because of this limitation, it
cannot exploit the order relation between class labels present in an ordinal regression task.
The Ordinal Graph Oversampling via Shortest Paths (OGO-SP) [71] method aims to

solve these limitations by defining a way to construct a graph which captures the relations
between samples of neighbouring classes, considering the ordering information provided
by the class labels.
When augmenting class 𝒞𝑞, it consists on creating an undirected graph 𝐺𝑞 = (𝑉𝑞, 𝐸𝑞)

where 𝑉𝑞 is the set of vertices corresponding to a subset of samples in dataset 𝐷 and 𝐸𝑞 is
the set of edges representing neighbouring samples:

𝑉𝑞 ⊆ {𝑣1, 𝑣2, … , 𝑣𝑁}, (4.1)

𝐸𝑞 ⊆ {{𝑣𝑖, 𝑣𝑗} ∣ ∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉𝑞, 𝑖 ≠ 𝑗}. (4.2)

In order to construct 𝐺𝑞 we first construct a different graph 𝐺′
𝑞 of the same form from

other three sub-graphs 𝐺𝑞−1,𝑞, 𝐺𝑞,𝑞 and 𝐺𝑞,𝑞+1:

𝐺𝑞−1,𝑞=(𝑉𝑞−1,𝑞,𝐸𝑞−1,𝑞), (4.3)
𝐺𝑞,𝑞 =( 𝑉𝑞,𝑞, 𝐸𝑞,𝑞), (4.4)
𝐺𝑞,𝑞+1=(𝑉𝑞,𝑞+1,𝐸𝑞,𝑞+1), (4.5)

𝐺′
𝑞 = (𝑉′

𝑞, 𝐸′
𝑞) = (𝑉𝑞−1,𝑞 ∪ 𝑉𝑞,𝑞 ∪ 𝑉𝑞,𝑞+1,

𝐸𝑞−1,𝑞 ∪ 𝐸𝑞,𝑞 ∪ 𝐸𝑞,𝑞+1).
(4.6)

The edges of graph 𝐺𝑞−1,𝑞 are determined by the intersection of two different sets obtained
from a neighbourhood analysis based on the distance relation 𝑑:

𝔑𝑑(𝐷𝑎, 𝐷𝑏, 𝑘) = {{𝑣𝑖, 𝑣𝑗} ∣ (x𝑖 ∈ 𝐷𝑎) ∧ (x𝑗 ∈ 𝐷𝑏) ∧ (x𝑗 ∈ 𝑛𝑛𝑑(x𝑖, 𝐷𝑏, 𝑘))}, (4.7)

𝐸𝑞−1,𝑞 = 𝔑𝑑(𝐷𝑞−1, 𝐷𝑞, 𝑘) ∩ 𝔑𝑑(𝐷𝑞, 𝐷𝑞−1, 𝑘), (4.8)

where 𝑛𝑛𝑑(x𝑖, 𝐷𝑏, 𝑘) is the set of the 𝑘 nearest neighbours of x𝑖 in 𝐷𝑏 and 𝔑𝑑(𝐷𝑎, 𝐷𝑏, 𝑘) is the
𝑘-neighbourhood of 𝐷𝑎 with respect to 𝐷𝑏. The vertices 𝑉𝑞−1,𝑞 are all those that appear in
any edge from 𝐸𝑞−1,𝑞:

𝑉𝑞−1,𝑞 = {𝑣𝑖 ∣ ∃𝑒 ∈ 𝐸𝑞−1,𝑞 , 𝑣𝑖 ∈ 𝑒}. (4.9)

Using the intersection of both neighbourhoods ensures that only the connecting regions
of each class are considered. Parameter 𝑘 controls how broad the region to consider is.
Graph 𝐺𝑞,𝑞+1 is defined analogously:

𝐸𝑞,𝑞+1 = 𝔑𝑑(𝐷𝑞, 𝐷𝑞+1, 𝑘) ∩ 𝔑𝑑(𝐷𝑞+1, 𝐷𝑞, 𝑘), (4.10)

𝑉𝑞,𝑞+1 = {𝑣𝑖 ∣ ∃𝑒 ∈ 𝐸𝑞,𝑞+1, 𝑣𝑖 ∈ 𝑒}, (4.11)
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and finally, 𝐺𝑞,𝑞 is simply defined as:

𝐸𝑞,𝑞 = 𝔑𝑑(𝐷𝑞, 𝐷𝑞, 𝑘), (4.12)

𝑉𝑞,𝑞 = {𝑣𝑖 ∣ ∃𝑒 ∈ 𝐸𝑞,𝑞 , 𝑣𝑖 ∈ 𝑒}. (4.13)

For the case of the extreme classes (𝒞1 and 𝒞𝑄), one of 𝐺𝑞−1,𝑞 or 𝐺𝑞,𝑞+1 will be empty and
only the connecting region to the one adjacent class is considered.
Based on the ordinal regression hypothesis that the distance to adjacent classes is lower

than the distance to non-adjacent classes, the final graph 𝐺𝑞 = (𝑉𝑞, 𝐸𝑞) is constructed based
on the previously constructed 𝐺′

𝑞. Ideally, a distance-based manifold exists in the class labels
such that 𝐷𝑞 lies in the space between 𝐷𝑞−1 and 𝐷𝑞+1. In reality, some outliers may exist
in 𝐷𝑞 that are not desirable in the over-sampling procedure. In order to identify the key
samples which lie between the adjacent classes, the shortest paths between the samples of
𝐷𝑞−1 and 𝐷𝑞+1 are used to decide the edges present in the final graph 𝐺𝑞.
A path between two vertices 𝑣𝑛1

and 𝑣𝑛𝑧
of the graph is defined as the sequence 𝑃 =

⟨𝑣𝑛1
, 𝑣𝑛2

, … , 𝑣𝑛𝑧
⟩ such that any two consecutive vertices 𝑣𝑛𝑖

and 𝑣𝑛𝑖+1
are connected by an

edge: {𝑣𝑛𝑖
, 𝑣𝑛𝑖+1

} ∈ 𝐸′
𝑞 ∀1 ≤ 𝑖 < 𝑧. If a cost function 𝑐 ∶ 𝐸′

𝑞 → ℝ assigning a cost to every
edge is defined, the shortest path 𝑃𝑛1,𝑛𝑧

between any two vertices 𝑣𝑛1
and 𝑣𝑛𝑧

is that which
minimizes the total sum of the costs of the edges ∑𝑧−1

𝑖=1 𝑐({𝑣𝑛𝑖
, 𝑣𝑛𝑖+1

}). In this case, the cost
function selected is the same as the distance 𝑑 used for 𝑛𝑛𝑑, which is the 𝐿2 norm or euclidean
distance:

𝑐({𝑣𝑛𝑖
, 𝑣𝑛𝑖+1

}) = 𝑑(x𝑛𝑖
, x𝑛𝑖+1

) = ‖x𝑛𝑖
− x𝑛𝑖+1

‖2. (4.14)

In order to find those patterns in 𝐷𝑞 lying in the latent ordinal manifold, all the shortest
paths between all the vertices in 𝑉𝑞−1,𝑞 and all in 𝑉𝑞,𝑞+1 will be computed using Dijkstra’s
algorithm [26], and only the edges contained in one or more of these paths will be included
in 𝐸𝑞:

𝐸𝑞 = {{𝑣𝑖, 𝑣𝑗} ∣ 𝑖 ≠ 𝑗, ∃𝑣𝛼 ∈ 𝑉𝑞−1,𝑞, 𝑣𝜔 ∈ 𝑉𝑞,𝑞+1

s. t. (⟨𝑣𝑖, 𝑣𝑗⟩ ∈ 𝑃𝛼,𝜔) ∨ (⟨𝑣𝑖, 𝑣𝑗⟩ ∈ 𝑃𝜔,𝛼)},
(4.15)

𝑉𝑞 = {𝑣𝑖 ∣ ∃𝑒 ∈ 𝐸𝑞 , 𝑣𝑖 ∈ 𝑒}. (4.16)

Note that, if 𝑞 is any of the extreme classes, 𝑉𝑞,𝑞 will have to be used instead of 𝑉𝑞−1,𝑞 or
𝑉𝑞,𝑞+1, depending on the case.

An example of the graph construction procedure is shown in Fig. 4.4.
Finally, new synthetic samples can be generated from 𝐺𝑞: in order to generate sample

(x′, 𝒞𝑞), a random edge 𝑒 = {𝑣𝑖, 𝑣𝑗} ∈ 𝐸𝑞 is selected so that x′ lies in the segment between x𝑖
and x𝑗 the same way as in SMOTE:

x′ = (1 − 𝛿)x𝑖 + 𝛿x𝑗 (4.17)

where 𝛿 is a random variable in the range [0, 1]. However, this time the distribution from
where 𝛿 is sampled will depend on the selected edge 𝑒:

• If both 𝑦𝑖 = 𝒞𝑞 and 𝑦𝑗 = 𝒞𝑞 (i. e. 𝑒 is an intra-class edge), then 𝛿 is sampled from a
uniform distribution 𝑈(0, 1) in the same manner as SMOTE.
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𝒞2
𝒞3
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Figure 4.4: Example of the OGO-SP graph construction procedure. The markers represent samples of
the dataset. The graph 𝐺2 = (𝑉2, 𝐸2) corresponding to 𝒞2 is constructed. The top diagram
shows 𝐸1,2 (in red) and 𝐸2,3 (in blue). The bottom diagram shows the shortest path
between two vertices in 𝑉1,2 and 𝑉2,3 (in green) and the edges of the final constructed
graph 𝐸2 (in black).

• If 𝑦𝑖 = 𝒞𝑞 but 𝑦𝑗 ≠ 𝒞𝑞 (i. e. 𝑒 is an inter-class edge), then 𝛿 is sampled from an
asymmetrical distribution so that the new synthetic sample favours the augmented
class but is able to capture the class transition phase. In the original OGO-SP paper 𝛿
follows a gamma distribution 𝛿 ∼ Γ(𝑘 = 2, 𝜃 = 0.15).

4.5.3 Limitations of OGO-SP

While the gamma distribution used in the inter-class region generation procedure presents
the desired asymmetry, it is not without problems. This distribution is not bounded, i. e. it
generates a 𝛿 in the range 𝛿 ∈ [0, ∞), meaning that P(𝛿 > 1) > 0. Because of this, samples
could be generated outside the selected edge of the graph which would no longer constitute
as interpolation.

To solve this, we propose using a more appropriate distribution like the beta distribution,
controlled by two parameters 𝛼, 𝛽 > 0 [49].This distribution is bounded in the [0, 1] interval
and its parametrization allows it to be skewed towards any of the two extremes depending
on the values of 𝛼 and 𝛽, which the gamma distribution only allows for the lower bound of
0.
This distribution has been used to model the behaviour of finitely bounded variables in

a variety of disciplines. In its standard form, its probability density function 𝑓 (𝑥; 𝛼, 𝛽) is
defined as:

𝑓 (𝑥; 𝛼, 𝛽) =
1

B(𝛼, 𝛽)𝑥𝛼−1(1 − 𝑥)𝛽−1, (4.18)
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where 0 < 𝑥 < 1, 𝛼, 𝛽 > 0 and B is the beta function which acts as a normalization constant
defined as:

B(𝛼, 𝛽) = ∫
1

0
𝑡𝛼−1(1 − 𝑡)𝛽−1d𝑡. (4.19)

Several basic properties can be derived from this definition:

• If 𝛼 ≥ 1 then 𝑓 (0) = 0. Similarly, if 𝛽 ≥ 1, then 𝑓 (1) = 0.

• For both 𝛼, 𝛽 > 1, the mode is unique and equal to 𝛼−1
𝛼+𝛽−2 .

• If 𝛼 = 𝛽 the distribution is symmetric. The special case where 𝛼 = 𝛽 = 1 is equivalent
to a uniform distribution.

This modified version of OGO-SP with beta inter-class distribution will be referred to as
OGO-SP-𝛽.

Based on the two distinct possibilities for the endpoints represented by 𝑓 (0) and 𝑓 (1), we
can derive four unique asymmetric shapes for this distribution. However, we exclude one of
these shapes, characterized by parameters 𝛼 > 1 and 𝛽 < 1, as it tends to concentrate more
of the probability mass on the neighbouring class side of the distribution. To ensure this,
we impose a quantile constraint, requiring that P(𝛿 < 0.5) = 0.75. This constraint ensures
that the majority of the probability mass is concentrated on the side corresponding to the
augmented class.

The authors of [95] have demonstrated that employing two quantile constraints is sufficient
to parametrize the beta distribution, and they have devised a numerical method to calculate
the values of 𝛼 and 𝛽 that satisfy these constraints. To create the three distinct shapes, we
employ three additional quantile constraints, each in combination with the previous one.
Using the aforementioned method, we derive the values of 𝛼 and 𝛽 for each distribution:

(a) Beta distribution with P(𝛿 < 0.5) = 0.75 and P(𝛿 < 0.65) = 0.9 → 𝛿 ∼ Beta(𝛼 =
1.558, 𝛽 = 2.827)

(b) Beta distribution with P(𝛿 < 0.5) = 0.75 and P(𝛿 < 0.75) = 0.9 → 𝛿 ∼ Beta(𝛼 =
0.513, 𝛽 = 1.186)

(c) Beta distribution with P(𝛿 < 0.5) = 0.75 and P(𝛿 < 0.85) = 0.9 → 𝛿 ∼ Beta(𝛼 =
0.243, 𝛽 = 0.642)

These three configurations will be tested and compared to the original OGO-SP with
gamma distribution. We expect the beta distribution will be a better candidate for synthetic
sample generation for certain datasets, like the one presented in Section 4.3.1. Configuration
(a) is similar to the original gamma distribution just for comparison, while configurations
(b) and (c) of OGO-SP-𝛽 exploit the versatility of the beta distribution.

A visual representation of the probability density function’s shape for all the proposed
configurations can be observed in Fig. 4.5. It becomes evident thatwhen 𝛼 < 1, the probability
density function exhibits an infinite value at 𝛿 = 0, as it allocates a greater portion of
probability mass toward that extreme. Similarly, when 𝛽 < 1 and 𝛿 = 1, a comparable
trend occurs. Consequently, this approach enables precise control over the probability of
generating samples in the inter-class region while promoting the generation of samples near
the augmented class region, relative to the neighbouring class.
In the context of this study, the dataset described in Section 4.3.1 exhibits significant

class imbalance, making data augmentation a critical factor for enhancing the classification
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Figure 4.5: Shape of the probability density function for the four different distributions of 𝛿: the
original gamma distribution from [71] and the three proposed configurations of the beta
distribution. The labelled shaded regions indicate the imposed quantile constraints.

model’s performance. We contend that the OGO-SP-𝛽 algorithm is particularly well-suited
for this scenario, primarily owing to the ordinal nature of the problem. The gradual progres-
sion of dopaminergic activity alteration implies that more pronounced damage is expected
in the later stages of the disease, and vice versa. Additionally, given that the intermediate
classes constitute the minority, the utilization of the beta distribution inherently promotes
the generation of samples within these class regions.

4.5.4 Application to spatial data

Directly using techniques such as SMOTE or OGO-SP for spatial data, like images or 3D
scans, is not a suitable approach. These methods fail to capture the complex positional
variability of various objects within a scene or anatomical elements in a CT scan. Applying
such techniques directly to the original image space leads to the generation of entirely
unnatural and unsuitable synthetic samples, adversely affecting the model’s generalization
capabilities.

Conversely, the convolutional segment of a CNN strives to project data from the original
space into a reduced-dimensional space, better suited for interpolation and the application
of class-balancing methods such as SMOTE and its derivatives. Consequently, in this study,
we propose a two-step training process for class balancing:

1. Initially, the entire network (comprising both the convolutional and fully connected
components) is trained on the original dataset 𝐷.
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2. Upon reaching the stopping criterion, the convolutional component of the network, 𝑔,
is employed to project the original dataset 𝐷 into a new space with reduced dimen-
sionality, yielding 𝐷′:

𝐷′ = {(𝑔(x𝑖), 𝑦𝑖) ∣ (x𝑖, 𝑦𝑖) ∈ 𝐷}, (4.20)
𝑔 ∶ ℝ𝑚 → ℝ𝑚′, (4.21)

where 𝑚 represents the original dimensionality of the data, and 𝑚′ is the new, reduced
dimensionality.

3. Subsequently, new synthetic samples for each class 𝒞𝑞 are generated using SMOTE
in the nominal case and OGO-SP/OGO-SP-𝛽 in the ordinal case. Let 𝑁𝑞 denote the
number of samples labelled as 𝒞𝑞 in 𝐷′. The set of generated samples for 𝒞𝑞 is referred
to as 𝐷′

+𝑞. The objective is to generate samples to balance the number of training
samples for all classes, which means no synthetic sample will be generated for the
majority class:

∣𝐷′
+𝑞∣ = ( max

1≤𝑘≤𝑄
𝑁𝑘) − 𝑁𝑞. (4.22)

4. The synthetic samples are then merged with the dataset 𝐷′ to create the augmented
dataset 𝐷′

+:

𝐷′
+ = 𝐷′ ∪ ⎛⎜⎜

⎝

𝑄
⋃
𝑞=1

𝐷′
+𝑞

⎞⎟⎟
⎠

.

5. Finally, training is resumed only for the fully connected component of the original
model using 𝐷′

+, with the same stopping criterion.

4.6 experimentation

The four different methodologies previously described (one nominal and four ordinal for
the different distributions of 𝛿) will be compared against each other in order to evaluate
the effect of using ordinal information in the learning process. This includes both the CNN
architecture as well as the data augmentation procedure. More specifically, the nominal
architecture will be paired with SMOTE and the ordinal architecture will be paired with
OGO-SP and OGO-SP-𝛽 in its three different configurations proposed in Section 4.5.3.

4.6.1 Experimental design

A stratified 5-fold cross-validation process is conducted over the entire dataset. This process
involves splitting the dataset into 5 roughly equal-sized subsets while ensuring that the class
distribution is balanced within each fold. During each step of this cross-validation, one of
the subsets is designated for testing, while the remaining subsets serve as training samples.
Within each of these 5-fold steps, the first phase entails model selection, wherein the

algorithm’s hyperparameters are fine-tuned. To accomplish this, three 90/10 holdout splits
are produced from the training folds and all feasible combinations of the following parameter
values are explored:

• Learning rate (𝜂): {10−3, 10−4}.
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• Hidden layer size (𝐻): {2048, 4096}.

• Convolution kernel size (𝑘): {3, 5}.

• Neighbourhood size for the data augmentation technique: {3, 5}.

The parameter combinations are assessed based on the meanMAE score across the three
splits, and the optimal combination for each fold is selected for further evaluation.
Following the hyperparameter selection phase, the optimal parameter combination is

used in the second phase for the final evaluation. The model is initialized with a different
random seed and trained with a different 90/10 holdout split for train/validation 30 times.
The trained models are then evaluated using the test fold.

This identical procedure is iterated for each of the data folds. An illustration of this process
is depicted in Fig. 4.6.
In all cases a training batch size of 32 is used and the validation set is used to monitor

the training process: when the loss over the validation set does not increase for 50 epochs
training is stopped and the best performing weights are restored.

4.6.2 Evaluation metrics

While CCR is typically the predominant criterion in classification tasks, its relevance dimin-
ishes in cases of significant class imbalance [75]. In such scenarios, models that disregard
minority classes can still yield high CCR scores, which is undesirable. Therefore, a focus
on per-class sensitivity becomes imperative [83]. It’s worth noting that while optimizing
sensitivity, there may be a trade-off in terms of specificity, necessitating close attention.
Furthermore, CCR fails to consider the extent of deviation of each prediction from the

ground truth. It is primarily designed for general multiclass classification problems, where
all errors are equally penalized. However, in the context of ordinal regression, it is more
desirable to prioritize a classification error of only 1 class over an error of 2 classes. Hence,
rank differencemetrics such as theMeanAbsolute Error (MAE), Spearman’s rank correlation
coefficient (𝑟𝑠), Kendall’s rank correlation coefficient (𝜏𝑏) [14], and the weighted Cohen’s
kappa coefficient (𝜅) [10] prove to be more suitable for evaluating model performance.
Additionally, in scenarios with high class imbalance, it’s valuable to consider per-classMAE.

Additionally, when assessing per-class metrics, examining the extreme values becomes
essential to ensure that performance improvements do not come at the cost of neglecting
certain classes.
Therefore, the metrics monitored in the test subset for this study are:

• For general classification performance:
– Correct Classification Rate (CCR).

• For ordinal regression performance:
– Mean Absolute Error (MAE)
– Quadratic weighted Cohen’s kappa (𝜅).
– Kendall’s rank correlation coefficient (𝜏𝑏).
– Spearman’s rank correlation coefficient (𝑟𝑠).

• For class balancing performance:
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Whole dataset

Split into 5 folds

Combine 4 of
the data folds as
the training set

Use the remaining
data fold as the test set

Sample 3 random
90/10 holdout splits

Evaluate each
parameter com-
bination on the 3

splits and select the
one with the best
average MAE score

Sample 30 random
90/10 holdout splits
for train/validation

Train the model
using the selected
hyperparamet-
ers over the 30
random splits

Evaluate each
trained model
on the test set

Figure 4.6: Cross-validation scheme used for the validation of hyperparameters and evaluation of
the models
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Nominal OGO-SP OGO-SP-𝛽 (a) OGO-SP-𝛽 (b) OGO-SP-𝛽 (c)

Mean Std. dev.Mean Std. dev.Mean Std. dev.Mean Std. dev.Mean Std. dev.

CCR (↑) 0.7448 0.0412 0.7121 0.0422 0.7048 0.0487 0.7108 0.0644 0.7255 0.0423
GMS (↑) 0.1927 0.2015 0.4256 0.1847 0.4134 0.1891 0.4239 0.1734 0.4403 0.1830
MinS (↑) 0.0679 0.0774 0.2426 0.1611 0.2297 0.1575 0.2235 0.1475 0.2460 0.1451
GMSp (↑) 0.8898 0.0179 0.8979 0.0138 0.8957 0.0146 0.8977 0.0229 0.9009 0.0170
MinSp (↑) 0.7691 0.0569 0.8276 0.0407 0.8223 0.0406 0.8294 0.0601 0.8312 0.0512
AvAUC (↑) 0.8486 0.0344 0.8588 0.0345 0.8553 0.0385 0.8567 0.0331 0.8596 0.0366
MAE (↓) 0.3826 0.0737 0.3738 0.0586 0.3791 0.0643 0.3729 0.0751 0.3639 0.0649
AvMAE (↓) 0.6803 0.1127 0.5671 0.1131 0.5668 0.1070 0.5631 0.1038 0.5594 0.1186
MaxMAE (↓) 1.1427 0.1328 0.9043 0.2148 0.9021 0.2005 0.9187 0.1800 0.9113 0.1896
𝜏𝑏 (↑) 0.7119 0.0565 0.7323 0.0442 0.7282 0.0496 0.7343 0.0467 0.7389 0.0481
𝜅 (↑) 0.7663 0.0602 0.7901 0.0534 0.7882 0.0539 0.7926 0.0561 0.7910 0.0571
𝑟𝑠 (↑) 0.7702 0.0600 0.7980 0.0516 0.7968 0.0527 0.8011 0.0512 0.7986 0.0548

Table 4.1: Summary of evaluation results. Best and second best results are highlighted in bold and
italics, respectively

– Minimum sensitivity (MinS).
– Geometric mean of the sensitivities (GMS).
– Minimum specificity (MinSp).
– Geometric mean of the specificities (GMSp).
– Average MAE (AvMAE).
– MaximumMAE (MaxMAE).
– Average area under the ROC curve (AvAUC).

All of these metrics are defined in Section 1.2.5.

4.7 results

Table 4.1 includes a summary of all the results from the 150 executions of the five different
methodologies, based on the different performance metrics introduced in the previous
subsection.
From these results, it is evident that the (c) configuration of OGO-SP-𝛽 consistently

outperforms all other configurations of the beta distribution across most metrics. Comparing
OGO-SP-𝛽 with the nominal methodology and the original OGO-SP, it always outperforms
both except for CCR, where the nominal methodology achieves the best results, with OGO-
SP-𝛽 (c) securing the second position.

A close examination of the GMS and MinS metrics reveals that the nominal methodology
fails to address the prevailing class imbalance. It tends to disregard the minority classes, es-
sentially grouping most test samples into a couple of the majority classes, which significantly
lowers the scores, often resulting in zeros across multiple evaluation splits.
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Figure 4.7: ROC obtained for each of the four classes by three of the evaluated methodologies. The
curves are obtained according to the output scores of each model using a OvR scheme for
each class

Comparing OGO-SP-𝛽 in its three configurations with the original OGO-SP, it is evident
that OGO-SP-𝛽 consistently delivers better average performance across all splits, especially
in terms ofMAE.
Both ordinal methodologies clearly outperform the nominal approach. Figure 4.7 illus-

trates the corresponding ROC curves for the four classes in the problem, constructed in a
OvR fashion. Both ordinal methodologies exhibit a significant advantage in the intermediate
minority classes, particularly for 𝒞2, which has the fewest samples.
To assess the significance of the performance difference introduced by OGO-SP-𝛽 com-

pared to both the purely nominal methodology and the original OGO-SP approach with
gamma inter-class distribution, we conduct a two-sided Wilcoxon signed-rank test across all
metrics [106]. This non-parametric statistical test is well-suited for our scenario since the
results cannot be assumed to follow a normal distribution. We formulate the null hypothesis
that the performance rank difference for the compared methodologies is symmetrical about
zero, with the alternative hypothesis suggesting an asymmetry. If the achieved 𝑝-value is
less than 𝛼 = 0.05 the null hypothesis is rejected and the sign of the Wilcoxon statistic 𝑇
(sum of signed ranks) will indicate which of the two methodologies is favoured.

The 𝑝-values for a two-tailed test for each metric are provided in Table 4.2.
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OGO-SP-𝛽 (c) vs. Nominal OGO-SP-𝛽 (c) vs. OGO-SP

𝑇 𝑝-value 𝑇 𝑝-value

CCR −4481 <0.001 3482 0.001
GMS 9246 <0.001 1174 0.271
MinS 9647 <0.001 493 0.643
GMSp 7473 <0.001 2500 0.019
MinSp 9110 <0.001 1155 0.278
AvAUC 4767 <0.001 911 0.393
MAE 3549 <0.001 2148 0.044
AvMAE 10 531 <0.001 1494 0.161
MaxMAE 9495 <0.001 −295 0.782
𝜏𝑏 6123 <0.001 1913 0.073
𝜅 5485 <0.001 479 0.653
𝑟𝑠 6577 <0.001 451 0.672

Table 4.2: Two-tailed Wilcoxon signed rank test results. 𝑝-values less than 𝛼 = 0.05 have been
highlighted in bold. A positive value of 𝑇 means that the first methodology is favoured
and a negative value means otherwise

Significant differences in performance consistently favour the ordinal methodology over
the nominal one across all metrics except for CCR. As anticipated, the nominal methodology
prioritizes improving CCR at the expense of other ordinal metrics, which are generally more
relevant for ordinal-type classification problems. Additionally, the nominal approach tends
to neglect minority classes, leading to notably poorer results in GMS,MinS, GMSp,MinSp,
and AvAUC. Furthermore, OGO-SP-𝛽 exhibits significant improvements in CCR, GMSp, and
MAEwhen compared to the original OGO-SP using the gamma distribution.
Even in cases where the statistical tests do not reveal significant differences, OGO-SP-𝛽

consistently demonstrates superior overall performance in ordinal metrics. The uncertainty
observed in imbalance-sensitive metrics (GMS, MinS, MinSp, and MaxMAE) could be at-
tributed to their inherent instability, resulting in a larger standard deviation and making it
more challenging for the tests to reach conclusive outcomes.

4.8 comparison to state-of-the-art

Given the absence of prior literature addressing the diagnosis of presynaptic damage stages in
PD, certain binarymetrics can be derived from the results for the sole purpose of comparison
with existing studies. These previous works typically focus on the binary classification
problem of distinguishing PD patients from healthy controls. Directly comparing metrics
like CCR against the context of a binary classifier would be inappropriate and biased, as
the multiclass metric is more demanding, requiring classification into four distinct classes
instead of just two.

To facilitate this comparison, all labels corresponding to 𝒞1 will be treated as the ‘negative
class’ or healthy control label, while the remaining labels (𝒞2 through 𝒞4) will be regarded
as the ‘positive class’ or PD label. This classification scheme allows the extraction of a binary
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confusion matrix and so accuracy, sensitivity and specificity can be obtained as discussed in
Section 1.2.5.1.

These results will be compared to the following works from the literature:

• Rizzo et al. (2016) [79]: a meta-analysis of 20 different studies, all using different
techniques, between 1988 and 2014.

• Fuente-Fernández (2012) [36]: an aggregation of 2 different studies both using SPECT
imaging.

• Martinez-Murcia et al. (2017) [62]: a CNN approach for binary classification from
SPECT imaging.

• Orozco-Arroyave et al. (2016) [69]: an application of radial base Support Vector
Machines to running speech audio samples from patients.

• El Maachi, Bilodeau and Bouachir (2020) [30]: an application of neural networks to
gait sensor data from patients.

It is important to highlight beforehand that the task addressed in these studies differs, as
the various potential positive labels for neurological damage are not distinguished, signi-
ficantly reducing the complexity. Despite this distinction and acknowledging the greater
informativity of the proposed models, alongside variations in experimental setups and
datasets, we can deduce from the results shown in Table 4.3 that the performance achieved
by our proposals is competitive. This is particularly evident when aiming for a balance
across the three binary metrics. In essence, the additional information provided by the
proposed multi-class classifiers does not compromise performance in the binary task.

Method/work Type Data Accuracy Sensitivity Specificity

Nominal A I 87.62% 77.52% 93.84%
OGO-SP A I 87.30% 86.74% 87.64%
OGO-SP-𝛽 (a) A I 86.94% 86.67% 87.09%
OGO-SP-𝛽 (b) A I 87.14% 87.10% 87.16%
OGO-SP-𝛽 (c) A I 88.19% 86.21% 89.38%
Rizzo et al. (2016) a H C 86.4% 86.6% 84.7%
Fuente-Fernández (2012) b H I 84% to 98% 98% 67% to 94%
Martinez-Murcia et al. (2017) A I 95.5% 96.2% -
Orozco-Arroyave et al. (2016) c A S 85% to 97% 76.7% to 98% 93.3% to 96%
El Maachi et al. (2020) A G 98.7% 98.1% 100%

a Values are taken from the refined clinical diagnosis by experts
b Ranges represent the performance between early and established diagnosis, when provided.
c Ranges represent the worst and best performance across all three tested languages.

Table 4.3: Binary metric results for the five tested methodologies and five additional studies. Rows
labelled as ’A’ represent automatic methods, while rows labelled as ’H’ pertain to studies
involving human expert diagnosis. The Data column specifies the reference data employed
for diagnosis: imaging (I), speech (S), gait (G), or a detailed clinical diagnosis (C)
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4.9 conclusions

In this chapter, experimental confirmation has been obtained regarding the enhancement
of performance in a complex task, specifically the assessment of altered brain activity in
individuals with PD, through the exploitation of ordinal information. This enhancement is
attributed to various factors, including the model architecture, optimization objectives, and
data augmentation techniques. Notably, an extension of the repertoire of models utilizing
ordinal information is achieved, exemplified by a fully 3D CNN.
The class imbalance issue is effectively addressed by the proposed methodology, which

simultaneously enhances ordinal performance metrics. Application potential is observed
in existing ordinal regression tasks within the medical domain, where class imbalance is a
prevalent challenge.

Furthermore, improved performance in both ordinal and nominal metrics, in comparison
to the original OGO-SP, is demonstrated by the introduced OGO-SP-𝛽 ordinal augmentation
algorithm.

Fromamore conventional binary diagnosis perspective, adequate performance is exhibited
by our methodology, as evidenced in the comparison against expert diagnoses and other
ML techniques.





5
EXAMIN ING THE DEC I S ION PROCESS OF ORD INAL CNNS

Despite the remarkable success of CNN models for image classification, a notable challenge
lies in their interpretability, hindering debugging, validation, and auditing processes. In
response to this challenge, a variety of explanationmethods have been devised by researchers
to shed light on the internal mechanisms of CNN models. This is empowering to both
developers of CNN models as a debugging tool and to final users for which more context is
given on the model’s decision. In the medical field, where high levels of accountability and
transparency are necessary, this is especially crucial [92].
However, there exists a gap in research concerning the validity of these methods when

applied to ordinal regression tasks. Having introduced an output architecture for CNNs
tailored to ordinal regression tasks in the preceding chapters, our focus shifts to addressing
the explainability problem inside the ordinal framework. The nature of the output variable
in these types of tasks can be fundamentally different, necessitating more specially tailored
methods.

This chapter is thus dedicated to the validation of existing explanation methods on ordinal
regression tasks in addition to the development of two different ordinal-specific adaptations
compatible with and specially adequate to the architectures presented in the previous
chapters. In the process, a visual explanation evaluation procedure is proposed which can
capture the level of ordinal performance achieved by each method.

associated publication: Javier Barbero-Gómez, RicardoCruz, Jaime S. Cardoso, Pedro
Antonio Gutiérrez and César Hervás-Martínez. ‘Evaluating the Performance of Explanation
Methods on Ordinal Regression CNN Models’. In: International Work-Conference on
Artificial Neural Networks (IWANN 2023). Ponta Delgada, Portugal, June 2023.

5.1 explainable ai

Explainable AI (XAI), sometimes synonymous with Interpretable AI or Explainable Ma-
chine Learning (XML), entails ensuring that an AI system remains comprehensible and
transparent to humans [8]. This field encompasses both the concept of maintaining human
oversight over AI systems and the methodologies employed to achieve this transparency.
The central objective is to clear up the rationale behind the decisions or predictions made by
AI, mitigating the inherent ‘black box’ nature commonly associated with ML. In contrast
to scenarios where the decision-making process is opaque, XAI strives to make AI systems
more understandable, allowing humans, including the system’s designers, to grasp the
underlying reasoning.

5.2 explanation methods: problem definition

Explanation methods for CNNs are a set of techniques designed in the pursuit of more
explainable CNN models. Their aim is to create an explanation map that identifies the
significant regions of an input image utilized by the model for its classification decision 𝒞𝑞.

69
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This map is denoted by a matrix 𝐸𝑞 ∈ ℝ𝐻×𝑊, where 𝐻 and 𝑊 correspond to the height and
width of the input image, respectively. Each entry in 𝐸𝑞 assumes values between 0 and 1,
where 0 signifies no relevance, and 1 signifies maximum relevance, for every pixel in the
original image.

5.3 related work

Various methods have been developed to explain the decisions made by CNNs. These
approaches span from basic occlusion analysis [109] to more advanced techniques like
back-propagation of gradients, which result in the generation of saliency maps [4, 66, 86,
89]. Class Activation Map (CAM) methods integrate these gradients with layer activations
[85, 112], with Grad-CAM standing out as one of the widely embraced algorithms [85].
Additionally, the Information Bottleneck for Attribution (IBA) method [84] introduces a
perturbation in the network, resulting in a bottleneck capable of evaluating the importance
of each region for the final output. It is worth noting that the resulting explanation maps
obtained through any of these methods are commonly employed for object localization tasks
[45].
Beyond post-hoc explanations methods, more recent research lines explore the option

of including the explanation generation inside the model architecture itself [77]. While
potentially more powerful, this approach requires a substantial modification of existing
models and a multi-objective training process which is difficult to fine-tune.

Despite the prevalence of these explanation methods, there is a noticeable gap in research
regarding their applicability and validity for ordinal regression tasks.

5.4 goals

In the previous chapters, it was shown that ordinal-specific models were able to outperform
nominal classifiers in relevant metrics. We now turn our attention towards explanation
methods in the ordinal setting. The performance of existing explanation methods has not
yet been evaluated when applied to ordinal tasks and models. It could be possible that
incorporating order information in the explanation proceduremay lead to better insights into
the classification process. This is a motivation to try to devise specific ordinal explanation
methods able to further exploit ordinality and improve the explanations obtained.
The specific goals of this chapter, encompassed by objective 4 from Section 2.2, can be

summarized as follows:

• Proposing an evaluation procedure for explanation maps that takes into account
ordinal regression performance.

• Proposing the Gradient OBD Class Activation Map (GradOBD-CAM) and Ordinal
Information Bottleneck Attribution (OIBA) explanation methods as modifications to
Grad-CAM and IBA, respectively, integrating ordinal information in the explanation
map building process.

• Comparing the performance of existing explanation methods against these new pro-
posals on ordinal regression tasks using the evaluation procedure.
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5.5 nominal explanation methods for cnn models

The following explanation methods were designed within a general nominal classification
framework, with no regard for the potential order relationship between the class labels.

5.5.1 CAM

Anearly approach to explanationmethods forCNNswereClassActivationMaps (CAMs) [112].
Thismethod is limited to CNNarchitectureswith an output stage consisting of GAP followed
by a fully connected layer. It is expected of said architectures that the activations on the stage
prior to GAP correspond to specific visual patterns which may or may not contribute posit-
ively or negatively to each output class score. For this reason, the CAMmethod proposes
generating the explanation map as a linear combination of these activations. Consequently,
CAM and its derivatives are considered activation-based methods.
For a network with 𝐾 feature maps right before GAP, let 𝐴𝑘 be the activation of the 𝑘-th

feature map and 𝑤𝑘
𝑞 be the weight of the contribution of 𝐴𝑘 on the output activations for

class 𝒞𝑞. CAM defines the explanation map 𝐸𝑞 for class 𝒞𝑞 to be:

𝐸𝑞(𝑖, 𝑗) = ReLU⎛⎜
⎝

𝐾
∑
𝑘=1

𝑤𝑘
𝑞𝐴𝑘(𝑖, 𝑗)⎞⎟

⎠
, (5.1)

where 𝐸𝑞(𝑖, 𝑗) and 𝐴𝑘(𝑖, 𝑗) are the pixel in the 𝑖-th row and 𝑗-th column of explanation map
𝐸𝑞 and feature map 𝐴𝑘, respectively. The element-wise ReLU function, defined in Eq. (1.29),
discards negative activations in order to highlight only positively correlated regions.

5.5.2 Grad-CAM

The architectural requirements of CAMmean that it is impossible to apply it to any network
with a different output computation. Not only that, but the resolution of the explanation
map is limited to the resolution of the last convolutional layer.
Grad-CAM [85] is designed as a generalization of CAM with the goal of overcoming

these limitations. Now, any intermediate layer may be selected, and the weights of the linear
combination are derived from the average gradient with respect to the class score.

Let the output score for class 𝒞𝑞 be 𝑠𝑞 and the selected intermediate layer 𝐴 have a height
and width of 𝐻𝐴 and 𝑊𝐴, respectively. According to Grad-CAM, the explanation map 𝐸𝑞
for class 𝒞𝑞 is defined as:

𝐸𝑞(𝑖, 𝑗) = ReLU⎛⎜
⎝

𝐾
∑
𝑘=1

𝑤𝑘
𝑞𝐴𝑘(𝑖, 𝑗)⎞⎟

⎠
, (5.2)

𝑤𝑘
𝑞 =

1
𝐻𝐴 × 𝑊𝐴

𝐻𝐴

∑
𝑖=1

𝑊𝐴

∑
𝑗=1

𝜕𝑠𝑞

𝜕𝐴𝑘(𝑖, 𝑗)
. (5.3)
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5.5.2.1 Grad-CAM++

Improvements to the feature map weighting of Grad-CAM have been proposed in the
literature, such as Grad-CAM++ [15]. Its authors pose that Grad-CAM is less effective
when trying to localize multiple occurrences of the same object class or just the whole of
an object in the input image. Thus, they introduce a per-pixel weighting scheme in the
computation of 𝑤𝑘

𝑞:

𝛼𝑘
𝑞(𝑖, 𝑗) =

(
𝜕𝑠𝑞

𝜕𝐴𝑘(𝑖,𝑗)
)

2

2(
𝜕𝑠𝑞

𝜕𝐴𝑘(𝑖,𝑗)
)

2
+ ∑𝐻𝐴

𝑎=1 ∑𝑊𝐴
𝑏=1 𝐴𝑘(𝑎, 𝑏)(

𝜕𝑠𝑞

𝜕𝐴𝑘(𝑖,𝑗)
)

3 , (5.4)
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5.5.2.2 Score-CAM

Score-CAM [104] drops the use of gradients entirely and assigns weights to each feature
map based on an increase of confidence measure, i. e. the amount of influence that the regions
with high activations in 𝐴𝑘 really have over the class output score 𝑠𝑞.

To this end, first the baseline score ̄𝑠𝑞 that the model assigns to a baseline empty image
(all zeroes) is obtained. Then, after obtaining 𝐴𝑘 and 𝑠𝑞, 𝐴𝑘 is upsampled to the input image
size 𝐻 × 𝑊, normalized between 0 and 1, and used as a mask over the original input image.
The new output score for the masked input 𝑠′

𝑞 is obtained and the increase of confidence
contributed by 𝐴𝑘 is used as the weight 𝑤𝑘

𝑞 of the 𝑘-th feature map for the explanation map
𝐸𝑞:

𝑤𝑘
𝑞 = 𝑠′

𝑞 − ̄𝑠𝑞. (5.6)

5.5.3 IBA

The IBA method, as proposed by [84], is a perturbation-basedmethod, meaning that some
kind of information is introduced in the computation in order to study its effects in the
output of the model. However, unlike other perturbation methods that alter the information
at the input of the model, it consists of injecting a perturbation amidst its information flow,
creating a bottleneck in the network. This bottleneck helps evaluate the impact in the output
of the regions from the input image.
To achieve this, it introduces a new random variable 𝑍 that maximizes the amount of

information it shares with the output score of the target class 𝑠𝑞 while minimizing the
information it shares with the model input x:

max 𝐼[𝑠𝑞; 𝑍] − 𝛽𝐼[x; 𝑍], (5.7)
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where 𝐼 denotes the mutual information and 𝛽 controls the trade-off between predicting the
labels well and using little information of the input. 𝑍 ∈ ℝ𝐻𝐴×𝑊𝐴 acts as a substitute for
the output of one of the intermediate layers 𝐴 adding a certain noise 𝜖 ∈ ℝ𝐻𝐴×𝑊𝐴:

𝑍 = 𝜆(x)𝐴 + (1 − 𝜆(x))𝜖, (5.8)

where 𝜆(x) ∈ [0, 1]𝐻𝐴×𝑊𝐴 adjusts how much of the original signal is passed along.
In order to obtain a value of 𝜆(x) that aligns with the objective posed in Eq. (5.7), a loss

function ℒ𝜆 to optimize is designed. To estimate how much information from 𝐴 is passed
along in 𝑍, mutual information is used:

𝐼[𝐴; 𝑍] = 𝔼𝐴[DKL[P(𝑍 ∣ 𝐴) || P(𝑍)]], (5.9)

where P(𝑍 ∣ 𝐴) and P(𝑍) are the respective probabilities, DKL is the Kullback-Leibler di-
vergence and 𝔼𝐴 the expectation over 𝐴. This, however, is an unmanageable computation,
so an approximation 𝑄(𝑍) = 𝒩(𝜇𝐴, 𝜎𝐴) is made assuming that all dimensions of 𝑍 are
distributed independently and normally, which overestimates the real value:

𝐼[𝐴; 𝑍] = 𝔼𝐴[DKL[P(𝑍 ∣ 𝐴) || 𝑄(𝑍)]] − DKL[P(𝑍) || 𝑄(𝑍)]. (5.10)

Finally, the information loss function ℒI is defined as:

ℒI = 𝔼𝐴[DKL[P(𝑍 ∣ 𝐴)||𝑄(𝑍)]], (5.11)

and the final loss function ℒ𝜆 is defined as the combination of ℒI and the cross-entropy loss
ℒCE as specified in Eq. (1.37):

ℒ𝜆 = ℒCE + 𝛽ℒI. (5.12)

This can now be used to optimize 𝜆(x), parametrised as 𝜆(x) = 𝜎(𝛼(x)) (where 𝛼 ∈
ℝ𝐻𝐴×𝑊𝐴 and 𝜎 is the sigmoid function), by minimizing ℒ𝜆 using any stochastic gradient
descent algorithm such as the Adam back-propagation method [52].
Regions of the image with relevant information will present a 𝜆 value close to 1 and,

conversely irrelevant parts will present a value close to 0. For this reason, the output
explanation map 𝐸 is just 𝜆 upsampled to the original input size.
A diagram of the bottleneck architecture of IBA can be seen in Fig. 5.1.

5.6 ordinal explanation methods for cnn models

Although the effectiveness and performance of the techniques discussed in the preceding
section have been assessed in the context of conventional nominal classification tasks, it is
imperative to note that neither Grad-CAM nor IBA explicitly considers the inherent order
relationship between class labels in ordinal regression tasks.

In this section, we introduce two novel explanation methods tailored for CNN OBD mod-
els. These methods, built upon Grad-CAM and IBA, respectively, are specifically designed
to incorporate order information into their processes. The aim is to enhance the explanat-
ory power of the resulting maps in the context of ordinal regression, acknowledging and
leveraging the ordinal relationships among class labels for improved model interpretability.
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Figure 5.1: Bottleneck architecture of IBA

5.6.1 GradOBD-CAM

We present a novel explanation method derived from Grad-CAM, tailored to leverage
gradient information concerning the activation of all output neurons 𝑝𝑞 of the OBD model.
In an OBD model designed for 𝑄-class ordinal regression, there exist 𝑄 − 1 output neurons,
each corresponding to successive class threshold probabilities: P(𝑦 ≻ 𝒞1 ∣ x), P(𝑦 ≻ 𝒞2 ∣ x),
..., P(𝑦 ≻ 𝒞𝑄−1 ∣ x). Emphasizing feature maps contributing positively to the output
probabilities P(𝑦 ≻ 𝒞𝑞 ∣ x) for 𝑦 ≻ 𝒞𝑞 and de-emphasizing those contributing negatively for
𝑦 ⪯ 𝒞𝑞 is crucial. This objective introduces a new parameter 𝜈𝑘

𝑐 , facilitating the incorporation
of ordinality into the class activation map computation:

𝑤𝑘
𝑞 =

𝑄−1
∑
𝑐=1

𝜈𝑞
𝑐

1
𝐻𝐴 × 𝑊𝐴

𝐻𝐴

∑
𝑖

𝑊𝐴

∑
𝑗

𝜕𝑜𝑐
𝜕𝐴𝑘(𝑖, 𝑗)

, (5.13)

𝜈𝑞
𝑐 =

⎧{
⎨{⎩

+1 if 𝑐 < 𝑞,

−1 if 𝑐 ≥ 𝑞.
(5.14)

The introduction of 𝜈𝑞
𝑐 ensures that the resulting class activationmap alignsmore naturally

with the ordinal structure of the output and, consequently, adheres more closely to the
principles of the OBD approach. Thus, we name this approach the Gradient OBD Class
Activation Map method (GradOBD-CAM).

5.6.2 OIBA

Moreover, our proposed extension to the perturbation-based IBAmethod involves leveraging
the ordinal loss inherent in the OBD model during the optimization of 𝐸 = 𝜆(x). This
enhancement, which we term Ordinal IBA (OIBA), aims to further refine the explanation
map generation process.

The information bottleneck is comprehensively addressed by the information loss ℒI term
as defined in Eq. (5.11). However, the cross-entropy loss ℒCE poses limitations in the context
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of ordinal regression. To address this, we propose substituting the cross-entropy loss with
the MSE loss ℒMSE, as outlined in Eq. (3.11):

ℒ𝜆 = ℒMSE + 𝛽ℒI. (5.15)

By introducing this modification, we enable the explanation map construction process to
adeptly harness information from all outputs of the model in its native representation. This
adjustment ensures that the Ordinal IBA method aligns more closely with the nuances of
ordinal regression, offering a refined and tailored approach to generating explanation maps
in the context of ordinal tasks.

5.7 evaluating the performance of explanation methods

To evaluate the influence of specific regions in an image on the classification decision,
perturbation analysis is a common technique which involves occluding parts of the input
images and observing the resulting changes in the model’s outputs. For a given explanation
denoted as 𝐸𝑖, the identified relevant regions are occluded and if the model’s classification
performance shows a pattern of decline, these regions are deemed impactful.

Amethod proposed by [15] provides a simple implementation of this concept. Itmultiplies
the input x𝑖 by the explanation 𝐸𝑖 to obtain an occluded image x̃𝑖:

̃x𝑖 = x𝑖 ∘ 𝐸𝑖, (5.16)

where ∘ denotes element-wise multiplication. The average drop in the score of the target
class 𝒞𝑞, denoted as 𝑓 𝑞(x), is calculated for instances where the score decreases:

Average drop =
1
𝑁

𝑁
∑

𝑖

max(0, 𝑓 𝑞(x𝑖) − 𝑓 𝑞(x̃𝑖))
𝑓 𝑞(x𝑖)

. (5.17)

The goal is to minimize the average drop, as a good explanation should result in minimal
score reduction. However, this metric does not consider the ordering information among
class labels. Specifically, as the confidence in the target class decreases, it is preferable for
the confidence in nearby classes to increase rather than distant ones, a factor not captured
by the average drop metric.

An alternative method proposed by [84] involves dividing the explanation map into tiles
(e. g. 8 × 8) and ranking them based on the total sum of relevance within each tile. The
input image is then occluded tile by tile, starting from the most relevant and progressing
to the least relevant. This generates the Most Relevant Features (MoRF) curve, plotting
the target class score against the level of image degradation (i. e. the number of occluded
tiles). A meaningful explanation map is expected to result in a sharp decrease in score at
the beginning when the most relevant parts of the image are occluded. The same procedure
in reverse order of relevance produces the Least Relevant Features (LeRF) curve, where
the score should not significantly drop until the most relevant parts are occluded at the
end. Normalizing the extremes of these curves between 0 and 1 and computing the signed
area between them yields the degradation score. A substantial area between the MoRF and
LeRF curves indicates a relevant explanation map, which makes this a maximization score.
An illustrative example is presented in Fig. 5.2.
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Figure 5.2: Example of MoRF and LeRF curves and the area between them, which constitutes the
degradation score

Note how there may be undesirable instances where the MoRF curve raises above the
LeRF curve. In cases like this, the area above the LeRF curve and below the MoRF curve
is considered negative, reducing the degradation score. This sometimes leads to negative
results.

This approach offers an advantage by enabling the study of the behaviour of any metric,
not limited to the target score. Thus, we propose examining the degradation of the following
classification performance metrics defined in Section 1.2.5, most of them specific to ordinal
regression:

• For general classification performance:
– Correct Classification Rate (CCR).

• For ordinal regression performance:
– Mean Absolute Error (MAE).
– Quadratic weighted Cohen’s kappa (𝜅).
– Spearman’s rank correlation coefficient (𝑟𝑠).

• For class balancing performance:
– Average area under the ROC curve (AvAUC).
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Figure 5.3: Example explanations maps for each dataset and explanation method

5.8 experiment design

We compare the performance of the already existing methods described in Section 5.5
with the ordinal versions described in Section 5.6 when applied to an ordinal OBD model
with ECOC decision rule, which was introduced in Section 3.4.3. We do this to evaluate
the performance difference when assumptions about ordinality are introduced into the
explanation method.

A ResNet34 CNN model, initially pre-trained on ImageNet-1K [24], serves as the founda-
tion for this study. The model undergoes training on the four distinct ordinal regression
datasets described in Section 3.5.1.

This is done under 60 distinct random initializations of the model parameters as well as
a corresponding random 80/10/10 split for training, validation, and testing. The training
employs the Adam back-propagation method [52], with batches of 64 samples, lasting a
maximum of 200 epochs. Early stopping occurs when the validation set’s loss fails to improve
for 20 consecutive epochs. Subsequently, six explanation methods are applied: the three
CAM methods, namely Grad-CAM [85], Grad-CAM++ [15] and Score-CAM [104], are
compared against GradOBD-CAM (from Section 5.6.1) and IBA [84] is compared against
OIBA (from Section 5.6.2). The degradation of various metrics is assessed following the
guidelines in Section 5.7. These metrics are CCR, AvAUC,MAE, 𝜅, and 𝑟𝑠.

5.9 results

In Table 5.1 mean results for each metric degradation and dataset are shown. Some example
of the explanation maps are shown in Fig. 5.3.

The overall performance of GradOBD-CAM demonstrates superiority over Grad-CAM++
and Score-CAM, while also being comparable to or better than Grad-CAM across various
datasets. Notably, the Adience dataset exhibits the most significant performance difference,
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CCR MAE 𝜅 𝑟𝑠 AvAUC

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

Adience

Grad-CAM −0.0363 0.0504 −0.0350 0.0565 −0.0282 0.0476 −0.0232 0.0475 −0.0154 0.0374
Grad-CAM++ −0.1343 0.0456 −0.1202 0.0757 −0.0917 0.0495 −0.0750 0.0557 −0.1001 0.0343
Score-CAM −0.1723 0.0449 −0.1580 0.0756 −0.1264 0.0508 −0.1095 0.0580 −0.1371 0.0352
GradOBD-CAM 0.0273 0.0471 0.0088 0.0478 −0.0016 0.0504 0.0042 0.0495 0.0247 0.0417

IBA 0.1296 0.0301 0.1548 0.0376 0.1653 0.0333 0.1611 0.0336 0.1410 0.0223
OIBA 0.1251 0.0281 0.1614 0.0363 0.1767 0.0322 0.1722 0.0330 0.1474 0.0230

CBIS-DDSM

Grad-CAM 0.4269 0.4855 0.3902 1.6636 0.1957 0.1255 0.1812 0.1287 0.1799 0.1079
Grad-CAM++ −0.0197 0.1646 −0.0084 0.2074 0.0098 0.0575 0.0007 0.0578 −0.0069 0.0523
Score-CAM −0.0734 0.1586 −0.0696 0.1919 −0.0118 0.0665 −0.0219 0.0628 −0.0367 0.0617
GradOBD-CAM 0.4285 0.4820 1.7691 7.3760 0.1974 0.1381 0.1780 0.1394 0.1709 0.1256

IBA 1.9412 3.9603 1.9521 4.9261 0.5361 0.1554 0.5485 0.1602 0.5244 0.1105
OIBA 1.7439 3.3878 2.2170 5.2769 0.5499 0.1385 0.5577 0.1501 0.4713 0.1039

Retinopathy

Grad-CAM 1.0257 1.0351 0.5367 0.4947 0.2196 0.0967 0.2899 0.1382 0.2103 0.0912
Grad-CAM++ −0.1231 0.4273 −0.1043 0.2267 0.0478 0.0545 0.0522 0.0601 0.0357 0.0572
Score-CAM 0.0621 0.4485 0.0330 0.1957 0.0170 0.0486 0.0130 0.0373 −0.0059 0.0290
GradOBD-CAM 1.0476 1.0501 0.5515 0.5020 0.2237 0.0954 0.2898 0.1362 0.2155 0.0917

IBA 0.3918 0.8463 0.2165 0.3509 0.1660 0.0768 0.2303 0.0690 0.2172 0.0603
OIBA 0.5082 0.8553 0.2829 0.3619 0.2191 0.1013 0.2668 0.1310 0.2915 0.1162

Herlev

Grad-CAM 0.1876 0.0951 0.1638 0.0902 0.1318 0.0730 0.1377 0.0753 0.2121 0.1309
Grad-CAM++ 0.0162 0.0646 0.0133 0.0696 0.0130 0.0685 0.0143 0.0676 0.0026 0.0656
Score-CAM −0.0056 0.0694 −0.0056 0.0716 −0.0087 0.0674 −0.0024 0.0673 −0.0083 0.0772
GradOBD-CAM 0.2149 0.0930 0.1884 0.0969 0.1479 0.0786 0.1565 0.0847 0.2712 0.1720

IBA 0.1341 0.0913 0.1292 0.0981 0.1145 0.0787 0.1077 0.0804 0.1142 0.1056
OIBA 0.1315 0.0984 0.1292 0.1055 0.1141 0.0845 0.1036 0.0859 0.1067 0.1099

Table 5.1: Summary of the results of the experimentation for each dataset. Columns correspond to
the degradation of each metric, as explained in Section 5.7. Best results in each group of
explanation methods for each dataset are highlighted in bold
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although other datasets also display discernible variations. Concerning IBA methods, OIBA
consistently outperforms IBA across all metrics in the Adience and Retinopathy datasets,
with marginal or negligible differences in performance observed for the CBIS-DDSM and
Herlev datasets.

It is also of note that some negative results are obtained. This could be explained by some
of the studied datasets requiring more complex or abstract explanations which are more
difficult to produce.
To validate these results rigorously, statistical hypothesis testing is conducted. A one-

sided Wilcoxon signed-rank test is executed for each metric and dataset to assess whether
the performance rank difference with GradOBD-CAM is either symmetrical about zero
or skewed towards the other method (null hypothesis) or significantly skewed towards
GradOBD-CAM (alternative hypothesis). Similarly, the same test is performed to compare
OIBA with IBA. A standard significance level of 𝛼 = 0.05 is applied to all tests, and the
outcomes are detailed in Table 5.2.
The test results reveal that GradOBD-CAM consistently exhibits superior median per-

formance across all metrics and datasets compared to both Grad-CAM++ and Score-CAM.
Compared to the original Grad-CAM, performance varies notably across datasets. GradOBD-
CAM shows good performance in the Adience, Retinopathy and Herlev datasets, although
it underperforms in CBIS-DDSM.
Concerning OIBA, it attains a higher median performance in two out of the four tested

datasets (Adience and Retinopathy). In all other cases, the performance remains consistent
across all metrics without significant drops.

5.10 conclusions

This chapter introduced and evaluated two novel explanation methods, GradOBD-CAM
and OIBA, tailored for interpreting ordinal regression tasks in the context of the OBDmodel.
GradOBD-CAM adapts the Grad-CAM attribution technique to the ordinal regression
scenario, leveraging the distinctive characteristics of the OBD model. On the other hand,
OIBA incorporates the ordinal loss function native to the OBD model into the explanation
process.
We proposed an explanation evaluation procedure focusing on the degradation score of

ordinal metrics through the occlusion of regions deemed most/least relevant. Our findings
underscore the superiority of GradOBD-CAM over all its CAM counterparts, demonstrating
statistically significant improvements in three out of four datasets, presenting compelling
evidence for its efficacy. OIBA, our second proposed method, consistently outperformed
IBA across all ordinal metrics in two datasets, showcasing its effectiveness in enhancing
interpretability.
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GradOBD-CAM vs.
Grad-CAM

GradOBD-CAM vs.
Grad-CAM++

GradOBD-CAM vs.
Score-CAM

OIBA vs. IBA

𝑇+ 𝑝-value 𝑇+ 𝑝-value 𝑇+ 𝑝-value 𝑇+ 𝑝-value

Adience

CCR 1816 <0.001 1830 <0.001 1830 <0.001 213 0.999
MAE 1747 <0.001 1816 <0.001 1828 <0.001 1730 <0.001
𝜅 1691 <0.001 1806 <0.001 1826 <0.001 1797 <0.001
𝑟𝑠 1667 <0.001 1775 <0.001 1819 <0.001 1749 <0.001
AvAUC 1736 <0.001 1830 <0.001 1830 <0.001 1627 <0.001

CBIS-DDSM

CCR 870 0.630 1811 <0.001 1816 <0.001 617 0.986
MAE 1342 0.001 1810 <0.001 1814 <0.001 703 0.941
𝜅 1007 0.249 1791 <0.001 1789 <0.001 1136 0.052
𝑟𝑠 892 0.567 1768 <0.001 1782 <0.001 1065 0.135
AvAUC 773 0.852 1816 <0.001 1822 <0.001 244 0.999

Retinopathy

CCR 1525 <0.001 1828 <0.001 1766 <0.001 1451 <0.001
MAE 1670 <0.001 1825 <0.001 1762 <0.001 1684 <0.001
𝜅 1578 <0.001 1823 <0.001 1823 <0.001 1751 <0.001
𝑟𝑠 909 0.518 1828 <0.001 1826 <0.001 1335 0.001
AvAUC 1448 <0.001 1827 <0.001 1828 <0.001 1760 <0.001

Herlev

CCR 1520 <0.001 1830 <0.001 1830 <0.001 836 0.720
MAE 1568 <0.001 1828 <0.001 1830 <0.001 892 0.567
𝜅 1458 <0.001 1808 <0.001 1823 <0.001 938 0.433
𝑟𝑠 1487 <0.001 1812 <0.001 1826 <0.001 824 0.749
AvAUC 1571 <0.001 1830 <0.001 1830 <0.001 708 0.936

Table 5.2: One-sided Wilcoxon test results for each metric. In cases where the 𝑝-value is less than
𝛼 = 0.05 (highlighted in bold) the performance difference significantly favours the first
method



6
ADDIT IONAL WORKS

During the development of this thesis other related additional works were developed along-
side several other authors. This chapter contains a brief summary of the contributions of
each one.

6.1 activation functions for cnns

associated publication: VíctorManuelVargas, PedroAntonioGutiérrez, Javier Barbero-
Gómez and César Hervás-Martínez. ‘Activation Functions for Convolutional Neural Net-
works: Proposals and Experimental Study’. In: IEEE Transactions on Neural Networks and
Learning Systems (2021), pp. 1–11. doi: 10.1109/TNNLS.2021.3105444.

As discussed in Section 1.5, CNNs are constructed by assembling various computations
known as layers, primarily involving convolutions, pooling operations, and fully connected
layers. To introduce non-linearity into the model, a transformation is applied to the output
of these layers, known as activation functions.

The functions used in the preceding chapters along with some widely adopted ones, are
summarized in Section 1.4.1. However, a diverse range of proposed alternatives exists in the
literature. This work introduces two alternative activation functions based on the softplus,
defined in Eq. (1.32), and the ELU, defined in Eq. (1.31). More specifically a parametrized
version of the softplus and a linear combination of the softplus and ELU.

These alternatives are then compared against 19 other previously proposed functions,
encompassing various variations of the ReLU and softplus functions. A classification of
these functions is presented based on several aspects:

• Presence of negative activation (‘leakiness’).

• Presence of learnable parameters (‘parametric’).

• Presence of a random component (‘randomized’).

Drawing from the work of [91], a discussion is conducted on two desirable properties of
activation functions: scale invariance and 1-Lipschitz continuity.

Following extensive experimentation across six different image classification tasks (with
a focus on the ILSVRC dataset [80]) using two distinct CNN architectures, it is concluded
that, apart from a few worst-performing ones, most exhibit similar performance overall.
Notably, for the large-scale dataset, the two proposed functions demonstrate significantly
superior performance compared to ReLU and ELU, the two most commonly used activation
functions.

6.2 soft labelling based on triangular distributions

associated publication: VíctorManuelVargas, PedroAntonioGutiérrez, Javier Barbero-
Gómez and César Hervás-Martínez. ‘Soft Labelling Based on Triangular Distributions
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for Ordinal Classification’. In: Information Fusion 93 (1st May 2023), pp. 258–267. doi:
10.1016/j.inffus.2023.01.003.

In complex real-world scenarios, such as medical images, the assignment of labels involves
the input of multiple expert opinions [90]. In situations where only the combined outcome
of opinions is accessible, without knowledge of the underlying probability distribution,
multi-label classification methods become impractical.
To tackle this issue, a soft labelling approach, briefly introduced in Section 1.2.4 and

named unimodal regularization, is proposed. This approach assumes that expert opinions for
ordinal problems are distributed over an interval centred around the ground truth label.
Previous works have explored the use of various discrete and continuous distributions, such
as truncated Poisson, binomial [9], exponential function followed by softmax [57], and
beta distribution [100], to generate soft labels. These methods aim to adjust the encoding
of ordinal labels to improve loss function computation when only aggregated labels are
available.
Building on the successes of earlier approaches in addressing ordinal problems, this

study introduces a novel unimodal regularization technique that utilizes a combination of
triangular distributions. The main advantage of this method lies in its simplicity, requiring
adjustment of only one parameter that determines the upper limit of the errorwithin adjacent
classes. Additionally, the method outlines a procedure to compute all triangular distribution
parameters based on this single adjustable parameter.
A series of experiments is designed to evaluate the performance of this approach on six

different ordinal regression tasks, comparing it to other unimodal regularization techniques
and a case with no regularization. The results of the experiments indicate that the use of the
triangular distribution led to improved outcomes, surpassing both the baseline and other
soft labelling methodologies. Furthermore, a statistical analysis confirmed the significance
of this enhancement.

https://doi.org/10.1016/j.inffus.2023.01.003
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7
CONCLUS IONS AND FUTURE WORK

7.1 summary of contributions

This thesis addressed the challenges and opportunities presented by ordinal regression
tasks in the realm of deep learning, particularly focusing on CNNs. The contributions can
be summarized as follows.

7.1.1 Native ordinal representations for CNNs

In Chapter 3, we proposed a novel output architecture for CNNs designed explicitly for
ordinal regression tasks. The OBD model, coupled with a matching class assignment rule
based on the ECOC scheme, demonstrated superior performance in comparison to traditional
nominal methods and existing ordinal techniques across various datasets. Importantly, our
methodology provided enhanced RMSE performance without compromising other metrics,
highlighting its adaptability and efficiency.

7.1.2 An application of ordinal regression techniques: computer-aided diagnosis for Parkinson’s
disease

Chapter 4 extended our ordinal CNN architecture to address the unique challenges posed
by 3D images in the context of diagnosing PD. The proposed methodology, incorporating
a native 3D CNN architecture and data augmentation procedure, showcased significant
improvements in the assessment of altered dopaminergic brain activity. The versatility of
the methodology, applicable to different input types, positions it as a promising tool for
ordinal tasks, especially in medical domains.

7.1.3 Examining the decision process of ordinal CNNs

Chapter 5 focused on the explainability of ordinal CNN models, a crucial aspect often
overlooked in the literature. We introduced and validated two novel explanation methods,
GradOBD-CAM and OIBA, designed specifically for ordinal regression tasks. Our results
demonstrated the superiority of GradOBD-CAM over existing methods, offering a robust
solution for explaining the decision-making process of ordinal CNN models.

7.2 achievement of proposed goals

goal 1: development of new cnn architectures for ordinal regression The
primary goal of developing new CNN architectures capable of handling ordinal response
variables natively has been successfully achieved. The introduction of the OBD model,
designed specifically for ordinal regression tasks, showcased its effectiveness across vari-
ous datasets. This novel architecture demonstrated improved ordinal performance metrics

85
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without compromising other classification metrics, addressing the unique challenges presen-
ted by ordinal relationships between class labels.

goal 2: proposal of new data augmentation techniques The goal of propos-
ing innovative data augmentation techniques to address class imbalance issues in ordinal
regression tasks was realized through the introduction of the OGO-SP-𝛽 ordinal augment-
ation algorithm. This technique, which exploits ordinal information, demonstrated its
effectiveness in mitigating class imbalance challenges. The adaptability and performance
enhancements observed across different datasets underscore the success in achieving this
goal.

goal 3: application to real medical image diagnosis problems The application of
the developed methodologies to real medical image diagnosis problems, including both 2D
and 3D image datasets, has been a central focus of this research. The successful application
of the proposed OBD model to diagnose neurological damage in Parkinson’s disease using
volumetric brain scans demonstrates the practical utility of the developed architectures.
The methodology’s effectiveness in addressing the challenges posed by medical image data
reaffirms the accomplishment of this goal.

goal 4: proposal of new explanation methods for ordinal information The
goal of proposing new explanation methods that incorporate ordinal information to im-
prove the detection of relevant input features has been realized through the introduction of
GradOBD-CAM and OIBA. These methods offer insights into the decision-making process
of ordinal CNNs and outperform existing methods in various datasets. The successful
development of these explanation methods attests to the achievement of this goal, enhancing
the interpretability of ordinal regression tasks.

In conclusion, the proposed goals have been successfully achieved, demonstrating the
effectiveness of the developed methodologies in addressing the unique challenges posed by
ordinal regression tasks, particularly in medical image diagnosis problems. These accom-
plishments contribute to the advancement of deep learning applications in domains where
ordinal relationships between classes play a crucial role.

7.3 overall conclusions

This thesis presents a comprehensive exploration of ordinal regression tasks within the deep
learning paradigm, emphasizing the development of tailored methodologies and addressing
the interpretability challenges. The proposed OBD model, along with its adaptations for 3D
image datasets, has shown consistent improvements in performance across various metrics.
Furthermore, the introduced explanation methods, GradOBD-CAM and OIBA, contribute
significantly to understanding the decision process of ordinal CNNs, offering insights into
their inner workings.
The successful adaptation of ordinal methodologies to diverse datasets and tasks un-

derscores the versatility and generalizability of the proposed approaches. Future research
can explore enhancements in addressing class imbalance challenges and further investiga-
tions into interpretability methods, potentially extending their application to other ordinal
regression models.
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In conclusion, this thesis not only contributes to the theoretical understanding of ordinal
regression in deep learning but also provides practical solutions and methodologies that can
find applicability across different domains. The achieved improvements in performance and
interpretability pave the way for more robust and transparent applications of deep learning
in ordinal regression scenarios.

7.4 future work

The future exploration of ordinal regression methodologies in deep learning opens avenues
for refinement and extension. The following are promising opportunities opened up by the
research carried out in this thesis.

7.4.1 Ordinal CNN architectures

Investigating the impact of different ECOC configurations on the ordinal regression perform-
ance could enhance the adaptability of the method across diverse datasets. Additionally,
exploring the integration of ECOCwith other ordinal regression architecturesmay contribute
to a broader understanding of its applicability and effectiveness.
Furthermore, the inclusion of ordinal structure in the model architecture is not limited

to the output stage. New computation layers can be designed to take into account the
ordinal structure of the output, as well as the possible ordinality of input and latent features.
These could guide the training process (e. g. a dropout procedure) or intrinsically alter the
information flow along the network.

7.4.2 Computer-aided diagnosis (CAD)

Newadvancements in the automatic diagnosis of Parkinson’s disease can be pursued through
expanded data acquisition efforts. Collecting additional ordinal task datasets and explor-
ing those publicly available for ordinal information could provide a more comprehensive
understanding of the model’s performance across diverse populations.
Additionally, there is promise in exploring 3D ordinal applications beyond the medical

field, allowing for a broader assessment of the methodology’s efficacy in varied contexts.
This could open up the possibility of transfer learning (i. e. the use of pre-trained models as
a starting point for a potential convergence and performance improvement) to medical 3D
image analysis tasks, which is currently very limited.
Regarding the deployment of these models into comprehensive CAD systems, further

performance improvements are needed to meet the reliability demands of the medical field.
These improvements could potentially alleviate the workload on medical professionals and
enhance the overall diagnostic quality.

7.4.3 Explainability of ordinal models

The development of improved explainability methods remains an ongoing area of research.
Future work can focus on enhancing the robustness and generalizability of GradOBD-
CAM and OIBA. Exploring ways to make these methods more adaptive to different ordinal
regression architectures would contribute to their versatility. Additionally, investigating
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the potential of GradOBD-CAM to promote ordinality within the latent feature space offers
a promising direction, opening new possibilities for understanding how models capture
ordinal relationships in their internal representations.

Furthermore, considering the inherent challenges associated with ordinal regression tasks,
future research could delve into the exploration of novel explanation methods specifically
tailored to address the nuances of ordinal data. This could involve the development of
techniques that provide more insights into the decision-making process by including the
explanation generation procedure into the model alongside the classification procedure,
something known as an ‘in-model’ or ‘intrinsic’ approach. Additionally, the exploration of
visualization tools and metrics tailored for ordinal regression could enhance the interpretab-
ility of models in this domain.
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