
1 

 

An innovative non-targeted control system based on NIR spectral 1 

information for detecting non-compliant batches of sweet almonds. 2 

 3 

 4 

Miguel Vega-Castellotea, María-Teresa Sáncheza,*, Irina Torresa, Dolores Pérez-Marínb,* 5 

 6 

 7 

 8 

a Department of Bromatology and Food Technology, University of Cordoba, Rabanales 9 

Campus, 14071 Córdoba, Spain. 10 

b Department of Animal Production, University of Cordoba, Rabanales Campus, 14071 11 

Córdoba, Spain. 12 

 13 

 14 

*Corresponding authors. Tel.: +34 957 212576; fax: 34 957 212000  15 

E-mail addresses: teresa.sanchez@uco.es (M.T. Sánchez) or dcperez@uco.es (D. Pérez-16 

Marín). 17 

  18 

mailto:teresa.sanchez@uco.es
file:///D:/../Users/user/AppData/Local/Microsoft/Windows/Documents%20and%20Settings/victor/Configuración%20local/Archivos%20temporales%20de%20Internet/Users/teresa/AppData/Local/Microsoft/Windows/Users/teresa/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/CN3J8KXU/dcperez@uco.es


2 

 

Abstract 19 

 20 

Nowadays, there is growing awareness about the need to develop new methodologies to 21 

fight against deliberate fraud. This study explored the use of near infrared spectroscopy 22 

(NIRS) as an instantaneous, non-targeted method for detecting non-compliant products; 23 

in this case, when used to detect sweet almond batches adulterated with bitter almonds. 24 

For this purpose, we simulated the adulteration of batches by preparing four different 25 

types of mixed samples which contained 5%, 10%, 15% and 20% of bitter almonds, 26 

respectively, using 90 samples of sweet almonds and 50 samples of bitter almonds. For 27 

each of the adulteration percentages, 21 samples were produced. The samples were 28 

analysed using the Aurora and the Matrix-F spectrophotometers. The procedure initially 29 

constructed the desired standard or target using only the spectral information provided by 30 

the sweet almond population (control population). To achieve this, after principal 31 

components analysis, the spectral warning and action limits were calculated using the n-32 

dimensional statistic Mahalanobis global distance. Next, the spectral distances from the 33 

product standard defined for those samples not belonging to the control population, 34 

including the adulterated sweet almonds, were calculated and represented as Shewhart 35 

control charts. The implementation of NIRS technology throughout the almond supply 36 

chain enabled to identify 87 % (73/84) of the adulterated sweet almond batches. These 37 

findings suggest that NIRS technology and the use of spectral distances could enable to 38 

establish an innovative, non-targeted control system based only on spectral information 39 

to assess almond batches. This system allows to carry out conformity tests both in situ 40 

and online of the batches of almonds received and processed in the industry, as well as 41 

establishing fast, cost-efficient anti-fraud alert systems, which would help to reduce the 42 
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number of batches to be analysed by expensive and time-consuming confirmatory 43 

methods.   44 

Keywords: NIR spectroscopy; Almond adulteration; Fraud detection; Non-targeted 45 

method; Shewhart control chart 46 
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1. Introduction 48 

 49 

Food fraud and deliberate adulteration is a perennial problem which, 50 

unfortunately, is still very prevalent these days, and causes significant health and 51 

economic impacts as well as giving rise to an understandably high level of consumer 52 

distrust in the food supply chain. Consumers, on their part, demand foods of high 53 

‘integrity’, which is a comprehensive term referring to a nutritive, healthy, tasty, 54 

authentic, traceable, as well as ethically, safely, environment-friendly and sustainably 55 

food product [1]. 56 

To verify integrity in marketed products, the current analytical and sampling 57 

control systems need to be renewed, through the development of non-invasive, fast, 58 

massive and cost-effective analytical methods to monitor all the steps in the food supply 59 

chain. A new, innovative strategy which could be implemented is to adopt ‘non-targeted’ 60 

methods to provide information on quality, safety and authenticity [2-5]. In this case, the 61 

objective is to evaluate the product in an integrated way through patterns, i.e. analysing 62 

whole matrix characteristics and identifying differences in order to establish early alert 63 

systems. In contrast, the traditional targeted approach evaluates the products compound-64 

by-compound. 65 

The nature and versatility of near infrared spectroscopy (NIRS) sensors, combined 66 

with specific data processing techniques, fit perfectly with both targeted and non-targeted 67 

strategies, enabling rapid, non-destructive, accurate and cost-effective analysis of large 68 

volumes and numbers of samples and the measurement of multiple parameters in raw 69 

materials, products and processes [6-9]. 70 

One of the main advantages of NIRS technology is the large quantity of the 71 

product that can be inspected when it is used online, in continuous mode in the sorting 72 
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lines at an industrial level. NIRS provides a unique digital fingerprint of each product, 73 

which is essential for meeting the current requirements of industry and consumers 74 

regarding food integrity [9,10]. In the almond sector, the presence of bitter almonds in 75 

different proportions in batches of sweet almonds can result in strange, unpleasant 76 

flavours, due to the presence of cyanogenic compounds such as amygdalin, which is 77 

present in high concentrations in bitter almonds, thus altering the sensory quality (taste 78 

and aroma), safety and acceptability of the product [11]. It must also take into account 79 

that the intake of high doses of amygdalin is harmful to the human body, although the 80 

unpleasant taste of benzaldehyde – which is produced when it comes into contact with 81 

saliva, acts as a warning sign, preventing the eater from swallowing the hydrocyanic acid 82 

in amounts considered toxic for humans [12,13]. This may hinder the commercialization 83 

of lots of sweet almonds in both national and international markets, and it is therefore of 84 

maximum importance to eradicate this type of almond from the batches of sweet almonds 85 

produced for the market. 86 

 Since it is extremely difficult to distinguish bitter almonds from sweet ones 87 

visually in adulterated batches, it would be of great interest to the almond sector to be 88 

able to use analytical tools with a high throughput which were suitable for continuous, 89 

instantaneous discrimination. Thus, the implementation of NIRS sensors at receipt and in 90 

the industrial sorting lines for detecting the adulteration of sweet almond batches with 91 

bitter ones, could answer this demand.  92 

The combination of the NIRS spectral data of the product, generated using tools 93 

such as the Shewhart charts [14], allows to carry out conformity tests and product 94 

deviations in comparison to the established standards, thus enabling to ensure product 95 

integrity, monitor the production process and establish early warning systems. One of the 96 

benefits of this approach is that it enables to reliably detect anomalies in the production 97 
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process. In this way, we can improve control and monitoring of the product quality 98 

systems [15], using a tool which provides greater flexibility to deal with common non-99 

conformities in the product, since near infrared spectra provide comprehensive 100 

information about the product encompassing highly diverse aspects related to its integrity 101 

[5,16]. 102 

 There are no articles in the scientific literature which explore the potential of NIRS 103 

technology for detecting the presence of bitter almonds in lots of sweet almonds. Some 104 

authors have used NIRS to classify sweet versus bitter almonds, by analysing them when 105 

ground or as individual intact almond kernels and including only batches of sweet or bitter 106 

almonds separately, not mixtures of both, which is the commonest way the fraud is 107 

committed [17,18]. 108 

 The aim of this research, therefore, was to analyse the viability of using NIRS 109 

technology to detect the adulteration of batches of sweet almonds with bitter almonds, 110 

establishing a non-targeted control procedure based exclusively on spectral information 111 

to guarantee the integrity of product when received and processed in the industry, in order 112 

to certify that the entire product is composed of sweet almonds. Different percentages of 113 

adulterated samples were also assessed to establish the minimum limit that could be 114 

detected with this methodology. 115 

 116 

2. Material and methods 117 

 118 

2.1. Sampling  119 

 120 

A total of 140 samples of shelled almonds, of which 90 belonged to sweet varieties 121 

(Prunus dulcis Mill., cv. ‘Antoñeta’, ‘Belona’, ‘Guara’, ‘Lauranne’, ‘Soleta’ and 122 
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‘Vairon’) and 50 to various non-specific bitter varieties harvested during the 2018-2019 123 

season, were analysed in this study. To conduct this work, the batch mixing process was 124 

simulated by preparing four different types of mixtures: M5 (95 % sweet almonds and 5 125 

% bitter almonds), M10 (90 % sweet almonds and 10 % bitter almonds), M15 (85 % 126 

sweet almonds and 15 % bitter almonds) and M20 (80 % sweet almonds and 20 % bitter 127 

almonds), ending up finally with 21 samples of each class M5, M10, M15 and M20. To 128 

obtain the mixtures M5, M10, M15 and M20, samples were randomly chosen from the 129 

90 samples of sweet almonds (class M0) and the 50 samples of bitter almonds (class 130 

M100) available. The mixtures were prepared by weighing 400-500 g of sweet almonds 131 

and 25-100 g of bitter almonds, depending on the percentage of the sample to be prepared, 132 

using an electronic scale (model PB3002-S, Mettler Toledo, Barcelona, Spain). Once 133 

weighed, a V mixer (Afau, Zaragoza, Spain) was used to mix the two types of almonds. 134 

 135 

2.2. Instrumentation and NIRS spectra acquisition  136 

 137 

NIR spectra of the shelled almonds were collected using two NIRS instruments, 138 

the Aurora and the Matrix-F spectrophotometers, which were considered suitable for the 139 

in situ and online analysis of the product, respectively.  140 

The Aurora spectrophotometer (GraiNit S.r.l., Padova, Italia) is a handheld, robust 141 

and compact instrument based on the diode array technology, which works in reflectance 142 

mode in the spectral range 950-1650 nm (taking data every 2 nm), with an optical window 143 

of 12.56 cm2. The sensor integration time was 6.57 ms and each spectrum was the mean 144 

of 50 scans. This instrument is equipped with an internal white reference, which was 145 

collected after the analysis of each sample. The UCal 4TM software (Unity Scientific LLC, 146 

Milford, MA, USA) was used to acquire the spectral information. To acquire the spectra, 147 
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the samples were uniformly distributed on a white plastic tray covering the whole surface. 148 

For the analysis, four spectra were taken per sample in dynamic mode, i.e. moving the 149 

sensor along the tray with the almonds, covering all the area of the tray. The four spectra 150 

were averaged to provide a mean spectrum per sample.  151 

The Matrix-F spectrophotometer (Bruker Optik GmbH, Ettlingen, Germany) is a 152 

Fourier Transform (FT)-near infrared (NIR) instrument interfaced to a fibre optic NIR 153 

illumination and detection head. The light was collected and guided via fibre optic cable 154 

(5 m length) to the spectrophotometer. Furthermore, the system was equipped with a 155 

conveyor belt to move the sample. A distance of 10 cm between the instrument head and 156 

the conveyor belt was established, which remained constant throughout the process of 157 

taking spectra. The area illuminated by this instrument was around 154 cm2. The spectra 158 

were collected in reflectance mode in the spectral range from 4000 to 12000 cm−1 (834–159 

2502 nm), with a resolution of 16 cm−1 (1.07 nm). Each spectrum was the mean of 32 160 

scans. An internal white reference was also collected every fifteen minutes. OPUS 161 

7.0.122 software (Bruker Optics GmbH, Ettlingen, Germany) was used for spectra 162 

acquisition. The samples were placed on the conveyor belt, covering the surface, and 163 

illuminated by the instrument’s own source of light and analysed in static (conveyor belt 164 

stopped) and dynamic (conveyor belt in motion) modes. The static mode of analysis was 165 

performed by keeping the samples in a fixed point, under the light source with the 166 

conveyor belt stopped. To perform the dynamic mode, a conveyor belt speed of 3.5 cm/s 167 

was set. For each analysis mode, two measurements per sample were taken and averaged. 168 

 169 

2.3. Data processing  170 

 171 
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Data pre-processing and chemometric treatments were performed using the 172 

WinISI II software package version 1.50 (Infrasoft International LLC, Port Matilda, PA, 173 

USA) and Matlab software version 2019a (The Mathworks, Inc., Natick, MA, USA).  174 

To assess whether some parts of the spectral range presented low signal quality 175 

levels – i.e. inappropriate levels of noise – the 1,1,1,1 derivation pre-treatment was 176 

applied in order to highlight those spectrum areas where the signal to noise ratio was 177 

degraded [19]. The first digit of the 1,1,1,1 derivation treatment refers to the order of the 178 

derivative, the second to the gap over which the derivative is calculated, the third to the 179 

number of data points in a running average or smoothing and the fourth to the second 180 

smoothing [20]. This procedure was applied to both instruments. 181 

The next step was to study the structure and spectral variability of the population 182 

of sweet samples that would be used to fix the standard. To achieve this, we applied the 183 

CENTER algorithm [21] to class M0 (N = 90 samples) of the group of sweet almonds 184 

analysed, with both the Aurora instrument in dynamic mode and the Matrix-F in static 185 

and dynamic modes. This algorithm was applied using a combination of mathematical 186 

pre-treatments, standard normal variate (SNV) and de-trending (DT) for scatter correction 187 

[22], together with the 1,5,5,1 Norris derivative treatment, which enabled to classify the 188 

samples based on their distance from the centre of the population. The CENTER 189 

algorithm performed a principal component analysis (PCA), and the Mahalanobis global 190 

distance (GH) of each sample to this centre was then calculated. We then studied those 191 

samples considered as spectral anomalies (GH > 3.5) in order to demonstrate whether or 192 

not these samples could be justifiably removed from the M0 group. To compare results, 193 

the samples identified as outliers in any of the three NIRS assays carried out were 194 

removed at the same time from the three available groups (the samples were analysed 195 

with the Aurora (dynamic mode) and Matrix-F instruments in static and dynamic modes). 196 
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 197 

2.3.1. Constructing the Shewhart control charts  198 

To detect the presence of bitter almonds in batches of sweet almonds, a 199 

methodology based on the Shewhart control charts was followed [5,23] using the values 200 

of the spectral distances (Mahalanobis global distance, GH) of each of the samples tested 201 

against a standard sample of sweet almonds. 202 

Two different strategies, in terms of the number of samples included in the 203 

standard, were followed. Initially, approximately 75 % of the samples belonging to the 204 

M0 group were used to construct the standard and the remaining 25 % to validate the 205 

conformity test performed, i.e. to assess the quality of that standard (Strategy I). Strategy 206 

II consisted of using all the samples available of the M0 group to form the standard. 207 

The set of samples analysed with the Aurora instrument in dynamic mode was 208 

used to select the samples that would define the product standard (unadulterated sweet 209 

almonds), following Strategy I. Once the spectral outliers were removed, and after 210 

ordering the sample sets by spectral distances, in Strategy I a set consisting of 89 samples 211 

was used to construct the M0standard1 and M0test sets. To achieve this, approximately 75% 212 

of the samples from the M0 group were selected, choosing 3 out of every 4 samples, to 213 

make up the M0standard1 set (N = 68), while the remaining samples (N = 21) were used to 214 

validate the standard (M0test). Similarly, the same samples were selected to make up the 215 

M0standard1 and (M0test) sets, analysed in static and dynamic modes with the Matrix-F. 216 

Likewise, and once the spectral outliers were removed from the M0 set, all the samples 217 

(N = 89) were used to build the standard (M0standard2) for Strategy II. 218 

For the spectral definition of the two standards (strategies I and II), a new PCA 219 

was conducted using the sample sets M0standard1 and M0standard2, respectively. Next, the 220 

M0standard1 was compared independently with each of the 6 classes of analysed samples 221 
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(M0test, M5, M10, M15, M20 and M100), each consisting of 21 samples, while the 222 

M0standard2 was compared with classes M5, M10, M15, M20 and M100. To do this, each 223 

one of these samples was projected in the new n-dimensional space obtained with the 224 

PCA defined with the product standard, in order to set up a compliance test and an early 225 

warning system to control the integrity of the analysed product. This system was based 226 

exclusively on spectral information obtained from the GH spectral distances of each of 227 

these samples compared with the standard initially established. 228 

The Shewhart chart warning and action limits were defined as the extreme 229 

percentiles of the in-control distribution of the normalised Mahalanobis distance or GH 230 

statistic. As this statistic is non-normally distributed, a program was developed in Matlab 231 

software version 2019a (The Mathworks, Inc., Natick, MA, USA) to calculate these limits 232 

for GH, following the methodology proposed by Pérez-Marín et al. [5]. In the WinISI II 233 

software, GH is defined as D/p, where ‘D’ is the Mahalanobis distance and ‘p’ the number 234 

of principal component factor scores utilised to calculate ‘D’. For data originating from a 235 

normal distribution, the distribution of D is χ2 with p degrees of freedom. As this 236 

distribution has a mean of p, GH = D/p has a mean of 1. In the Shewhart control chart, 237 

the mean line was plotted as a straight line with a constant value of 1 and the action and 238 

warning limits were positioned at the levels corresponding to the 97.5% and 99.5% 239 

percentiles of χ2
p divided by p. Lower limits were not considered, since small GH values 240 

were not indicative of a problem. Next, the calculated GH values of the samples, which 241 

were compared with the standard, were represented in the Shewhart control chart with the 242 

previously calculated warning and action limits, in order to identify any samples 243 

containing bitter almond kernels which would not comply with the industry’s aim of 244 

eliminating the presence of bitter almonds in batches of sweet almonds. 245 

 246 
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3. Results and discussion 247 

 248 

3.1. Selection of optimal spectral work region and identification of outlier samples  249 

 250 

The first derivative pre-treatment applied to the spectra of those samples analysed 251 

using the Aurora and the Matrix-F instruments in dynamic mode (Fig. 1A and Fig. 1B, 252 

respectively) showed that in the case of Matrix-F, it can be seen that at the beginning and 253 

the end, the sides of the spectral signal were degraded. With this instrument, the spectral 254 

signal is transmitted by optical fibre, which commonly produces a loss of signal quality 255 

on extreme wavelengths [24]. Consequently, the regions between 834-1165 nm and 2370-256 

2502 nm were removed to define the optimal spectral region for study. In the case of the 257 

Aurora instrument, the whole spectral range 950-1650 nm was used. 258 

After selecting the optimal spectral range for each instrument, the samples that 259 

presented a GH > 3.5 were studied. No samples were identified as spectral outliers in the 260 

groups of samples analysed using the Aurora instrument and the Matrix-F instrument in 261 

static mode. However, when the samples were analysed using the Matrix-F in dynamic 262 

mode, one sample presented a GH = 7.31. This sample was removed from the three groups 263 

of sweet almond samples obtained in the three tests carried out. 264 

 265 

3.2. Definition of the quality standard  266 

 267 

In Strategy I, the limits for the Shewhart charts were calculated using 7 principal 268 

components (PCs) in the test carried out using the Aurora instrument in dynamic mode; 269 

9 and 8 PCs were used when the test was carried out using the Matrix-F instrument in 270 

static and dynamic mode, respectively. When Strategy II was followed, 9, 10 and 9 PCs 271 
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were used, respectively. The number of PCs were selected using the CENTER algorithm 272 

which recommends the number of PCs that make the differences in explained variance 273 

non-significant. The values obtained for the warning and action limits (Table 1) were 274 

2.56, 2.44, 2.34, 2.26 and 3.15, 2.97, 2.83, 2.71, when the standards were calculated using 275 

7, 8, 9 and 10 PCs, respectively [5]. More complex models, i.e. models in which a larger 276 

of principal components are used, would involve more restrictive limits. 277 

After calculating the warning and action limits and the GH statistic values of each 278 

of the samples in the principal components space defined by the standard (control 279 

populations: M0standard1 and M0standard2), we identified those samples which did not meet 280 

the established criteria, with the aim of ensuring product integrity.  281 

In Strategy I, when comparing the M0test group (unadulterated samples used to 282 

validate the compliance test) with the standard (M0standard1), no samples presented a GH 283 

value higher than the action limit in the three NIRS assays carried out (Fig. 2A, Fig. 3A 284 

and Fig. 4A). These results confirm that the standard we constructed was suitable, since 285 

when samples with spectral characteristics similar to the group of M0standard1 sweet 286 

almonds were projected in the principal components space defined by the target group, 287 

they were below the established action limit. 288 

 289 

3.3. Identification of adulterated sweet almond batches using NIRS technology 290 

 291 

3.3.1. In situ analysis of conformity using the handheld diode array NIRS instrument  292 

The samples corresponding to mixtures of sweet and bitter almonds with different 293 

percentages of adulteration (M5, M10, M15 and M20) and the bitter samples (M100) 294 

were projected against the standard M0standard1 (Fig. 2A) and M0standard2 (Fig. 2B). 295 
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When Strategy I was followed, 9/21 (43 %) of the bitter almond samples (M100) 296 

were identified as ‘non-compliant produce’ (GH value over the action limit); this figure 297 

rose to 18/21 (86 %) when Strategy II was followed. In addition, it must be noted that the 298 

average GH value for the M100 class following Strategy I was lower compared to the one 299 

obtained using strategy II (Table 1). The differences between Strategy I and II confirm 300 

that a key aspect in this methodology is to define the standard carefully, since it is clear 301 

that when the standard covers a wider variability, the later discrimination is more 302 

accurate. Consequently, in view of the results presented above, the detection of samples 303 

of mixtures (M5, M10, M15 and M20) has certain limitations when Strategy I is followed. 304 

After analysing the samples of mixtures, we observed that the total number of 305 

samples identified as ‘non-compliant produce’ following Strategy I and II were 31/84 (37 306 

%) and 44/84 (52 %), respectively. In particular, for Strategy I, 6/21 (29 %), 8/21 (38 %), 307 

5/21 (24 %) and 12/21 (57 %) samples, analysed in each of the 4 groups of mixtures M5, 308 

M10, M15 and M20, respectively, presented GH values above the action limit. For 309 

Strategy II, the number of samples that showed a GH value higher than this limit (Table 310 

2) improved the percentages of adulteration detected —compared with those provided by 311 

Strategy I— for all the groups except for M10, which remained exactly the same. We also 312 

observed a large number of samples which exceeded the warning limit both with Strategy 313 

I – (8/21 (38 %), 12/21 (57 %), 7/21 (33 %) and 12/21 (57 %) samples of those analysed 314 

for groups M5, M10, M15 and M20 respectively – but especially with Strategy II (Table 315 

2). In addition, when Strategy II was followed, we noticed that a large number of samples 316 

belonging to the M5 group – in which the amount of bitter almond in the mix was very 317 

low (5%) – were identified as 'non -compliant produce'. 318 

The results obtained are of particular interest, since they show that this portable 319 

manual instrument could be used at the product reception points in the industry to carry 320 
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out an initial check, aimed at identifying any batches of sweet almonds which may have 321 

been adulterated with bitter almonds. This would prevent parts of the batches which may 322 

have been adulterated with bitter almonds being received by the industry and then being 323 

processed, thus saving time and money. It is vital, however, to stress the difficulty of 324 

carrying out a dynamic analysis of products with an irregular surface when the instrument 325 

used is a contact instrument, as is the case with the Aurora device; on the other hand, the 326 

spectrum obtained is more representative of the sample than when using one-off 327 

measurements. 328 

 329 

3.3.2. Online analysis of conformity using the FT-NIR instrument  330 

The number of samples of mixtures (M5, M10, M15 and M20) identified as 'non-331 

compliant produce' in the test carried out in static mode (Fig. 3) following Strategies I 332 

and II was 35/84 (42 %) and 29/84 (35 %), respectively. In comparison, when the test 333 

was carried out in dynamic mode (Fig. 4), a total of 41/84 (49 %) and 65/84 (77 %) of 334 

'non-compliant produce' when Strategies I and II were followed. The detailed study of the 335 

number of samples classified as 'non-compliant produce' for each of the groups M5, M10, 336 

M15 and M20 reveals that, for the M10 and M15 groups when Strategy I was followed 337 

and in all cases in which Strategy II was followed, the number of samples identified as 338 

'non-compliant produce' was higher in the test carried out in dynamic mode than when 339 

the analyses were carried out in static mode.  340 

Furthermore, studying the average GH value per category (Table 1) shows that, 341 

for the test carried out in dynamic following both strategies, a greater number of bitter 342 

almonds present in the sample mixture led to a sharp rise in the GH value, although the 343 

increase was not so noticeable when the test was carried out in static mode following both 344 

strategies. These results highlight the great importance of both sampling and acquiring 345 
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spectral information which is representative of the sample as a whole, which according 346 

to Kuiper and Paoletti [25] and Adame-Siles et al. [26] are just as important as the 347 

analytical methodology itself to achieve reliable results. In the analysis carried out in 348 

dynamic mode, an average spectrum is obtained which allows to define the whole sample 349 

more accurately compared to the spectrum obtained when the analysis is carried out in 350 

static mode. 351 

The results obtained in the test carried out in dynamic mode (Fig. 4) show that the 352 

number of samples identified as 'non-compliant produce' was always higher when 353 

Strategy II was followed, i.e., when the standard consisted of all the available sweet 354 

samples. In fact, the greatest difference in terms of the number of samples showing a GH 355 

value over the action limit when comparing Strategies I and II was obtained for the M5 356 

and M10 groups, respectively, with 11 and 8 more samples above the limit in the NIRS 357 

assay carried out with the Matrix-F instrument in dynamic mode, following Strategy II.  358 

The close similarity between the standard group (pure sweet almonds) and the M5 359 

and M10 groups (sweet almonds adulterated with only 5 % and 10 % of bitter almond 360 

kernels) highlights the great importance of an accurate definition of the target when 361 

identifying adulterated samples with small amounts of unwanted product. Consequently, 362 

collecting a sufficient number of samples to build the standard is a key factor when 363 

working with non-targeted systems, in order to cover all the possible variations inherent 364 

in the target product [4]. Furthermore, it is also essential to define accurately the product 365 

to be analysed and the quality of the standard, as can be seen in terms of the number of 366 

samples belonging to the M100 group identified as ‘non-compliant produce’ and the 367 

average GH values (Table 1) of the M100 group when the analyses were carried out in 368 

dynamic versus static modes and when the Strategy I rather than Strategy II was followed. 369 

The number of samples which presented GH values above the action limit when Strategy 370 
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I was followed (Fig. 3A and Fig. 4A) was 8/21 (38 %) and 21/21 (100 %) when the tests 371 

were carried out in static and dynamic modes, respectively, which in turn presented 372 

average GH values for the M100 group of 2.84 and 5.74. When the Strategy II was 373 

followed (Fig. 3B and Fig. 4B), a total of 10/21 (48 %) and 21/21 (100 %) were identified 374 

as 'non-compliant produce' in the tests carried out in static and dynamic mode, with mean 375 

GH values of 2.97 and 6.44, respectively. 376 

In view of these results, we can confirm the suitability of using the Matrix-F 377 

instrument in dynamic mode for online detection in the sorting lines of batches of 378 

adulterated sweet almonds which have not been detected in the reception controls when 379 

the raw material is received in the industry, thus enabling us to discard those batches from 380 

the production process. 381 

 382 

3.4. Implementation of NIRS technology throughout the almond supply chain to detect 383 

bitter almonds in sweet almond batches 384 

 385 

The fact that the two instruments used in this study can be used in a 386 

complementary way throughout the almond supply chain allows to identify in the process 387 

lines any batches of sweet almonds which include bitter almonds which may not have 388 

been detected using the portable manual instrument at the product reception points in the 389 

industry. We therefore proceeded to study the results of all the conformity analyses for 390 

Strategy II together, which were obtained when the product was analysed dynamically in 391 

situ and online. Thus, the number of samples analysed dynamically which exceeded the 392 

warning and action limits with the Aurora portable manual instruments and the online 393 

Matrix-F for groups M5, M10, M15 and M20 following strategy II (Table 2) shows that 394 
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the largest number of samples of sweet almonds adulterated with bitter almonds that were 395 

not identified by either of the two NIRS assays belonged to class M5.  396 

We can therefore state that, although the percentage of samples identified as 'non-397 

compliant produce' in the M5 group was high – 16/21 (76 %) –, it is more difficult to 398 

identify adulterated samples when they have a percentage of bitter almonds of 5 % or 399 

less, and so the detection capabilities of the system developed in this study for this type 400 

of mixture need to be improved. 401 

In addition, we should note that from classes M10, M15 and M20, only 10%, 5% 402 

and 14% of the samples adulterated with bitter almonds, respectively, did not exceed the 403 

value of the action limit in any of the two tests carried out in dynamic mode with the 404 

handheld and online NIR instruments. Admittedly, the heterogeneity of the mixture can 405 

make it difficult to obtain a representative measure of the sample in those cases in which 406 

a layer of sweet almonds covers the surface to be analysed and the bitter almond kernels 407 

lie below that layer. Next, a detailed study of those samples belonging to the M5, M10, 408 

M15 and M20 groups which were not identified as ‘non-compliant produce’ by any of 409 

the instruments working in dynamic mode was made. This study revealed that 7 out of 410 

the 11 samples that were not identified were prepared using the sweet variety ‘Belona’ – 411 

3 belonging to M5 group, 2 to M10 and 2 to M20 – which has a large, flat kernel which 412 

tends to completely cover the testing surface and hide the bitter almond kernels. 413 

These results are extremely promising as regards the use of this non-targeted fraud 414 

identification approach as a suitable way of carrying out both in situ and online screening 415 

of the product when it is received in batches and processed in the industry. In addition, 416 

the results obtained confirm the great utility of the non-targeted system used in this study, 417 

since it allows to reduce the number of analyses conducted by a confirmatory system by 418 

employing a fast, economical method using spectral information, which could be limited 419 
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exclusively to carrying out an analysis of those samples identified as 'disconformities' by 420 

the non-targeted system [27,28].  421 

This constitutes a major benefit, since some of the confirmatory systems used can 422 

be expensive, complex, slow and destructive, such as the traditional method for 423 

measuring cyanogenic compounds in almonds using high performance liquid 424 

chromatography [18]. 425 

 426 

4. Conclusions 427 

 428 

 The results obtained illustrate that spectral NIR analysis combined with the 429 

Shewhart control charts derived from the spectral information acquired with the Aurora 430 

and Matrix-F instruments provide an extremely useful tool for detecting adulterated 431 

batches of sweet almonds in the processing industry, both on receipt and on the sorting 432 

lines. This approach to non-targeted fraud identification enables to detect cases of non-433 

compliance with the standards for sweet almonds established by the industry. The results 434 

confirm the importance of accurately defining the standard, in terms of setting the 435 

objectives and the variability of the population: here, it is important to highlight that 436 

larger, more comprehensive databases would allow to define in a more universal way the 437 

desired target of the produce, which would provide a more robust approach to detecting 438 

non-compliant batches. In future research, the number of samples detected as ‘non-439 

compliant product’ when the percentage of bitter almonds in the sweet almond batches is 440 

less than 5 % should be increased, with readjusted action and warning limits to take into 441 

consideration not only GH statistical distribution but also the population characteristics 442 

of the samples used to set the standard, thereby ensuring a more robust model for 443 

detecting non-compliant batches. 444 
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Table 1 561 

Number of principal components (PCs) used to calculate the control limits, values of the control limits and average GH value for the groups of 562 

mixtures analysed using the handheld and online NIRS instruments. 563 

Instrument Analysis 

mode 

Standard 

strategy 

PCs Control limits Average GH value 

 Warning Action M5 (95 % sweet + 

5 % bitter) 

M10 (90 % sweet + 

10 % bitter) 

M15 (85 % sweet + 

15 % bitter) 

M20 (80 % sweet + 

20 % bitter) 

M100 (100% 

bitter) 

Aurora Dynamic I 7 2.56 3.15 2.56 4.17 2.79 3.42 3.84 

II 9 2.34 2.83 3.05 4.70 3.67 3.69 7.78 

Matrix-F  Static I 9 2.34 2.83 2.01 2.19 3.39 3.33 2.84 

II 10 2.26 2.71 1.72 1.85 2.92 2.93 2.97 

Dynamic I 8 2.44 2.97 2.06 3.12 5.57 3.99 5.74 

II 9 2.34 2.83 3.74 5.08 7.99 6.89 6.44 

 564 
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Table 2 565 

Number of samples showing GH values over the warning and action limits, analysed in dynamic mode in different steps of the almond supply 566 

chain for Strategy II.  567 

Industrial step  Instrument Limits Mixture  

 M5 (95 % sweet + 5 

% bitter) 

M10 (90 % sweet + 10 

% bitter) 

M15 (85 % sweet + 15 

% bitter) 

M20 (80 % sweet + 20 

% bitter) 

M100 (100% 

bitter) 

Reception Aurora Warning 14/21 (67 %) 11/21 (52 %) 12/21 (57 %) 15/21 (71 %) 19/21 (90 %) 

  Action 12/21 (57 %) 8/21 (38 %) 11/21 (52 %) 13/21 (62 %) 18/21 (86 %) 

Processing lines Matrix-F Warning 12/21 (57 %) 17/21 (81 %) 20/21 (95 %) 18/21 (86 %) 21/21 (100 %) 

  Action 12/21 (57 %) 16/21 (76 %)  20/21 (95 %) 17/21 (81 %) 21/21 (100 %) 

Reception + 

Processing lines  

Aurora + 

Matrix-F 

Warning 17/21 (81 %) 19/21 (90 %) 20/21 (95 %) 18/21 (86 %) 21/21 (100 %) 

Action 16/21 (76 %) 19/21 (90 %) 20/21 (95 %) 18/21 (86 %) 21/21 (100 %) 

 568 
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Fig. 1. First derivative spectra for the different mixtures of almond samples analysed in 569 

dynamic mode using the Aurora and the Matrix-F spectrophotometers. 570 

 

 

. 571 
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Fig. 2. Shewhart control chart based on the GH values derived from the Principal 572 

Component Analysis following Strategy I (A) and II (B) for the samples analysed using 573 

the Aurora instrument in dynamic mode. 574 

 

 
 575 

  576 
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Fig. 3. Shewhart control chart based on the GH values derived from the Principal 577 

Component Analysis following Strategy I (A) and II (B) for the samples analysed using 578 

the Matrix-F instrument in static mode. 579 

 

 
 580 

  581 
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Fig. 4. Shewhart control chart based on the GH values derived from the Principal 582 

Component Analysis following Strategy I (A) and II (B) for the samples analysed using 583 

the Matrix-F instrument in dynamic mode. 584 

 

 
 585 


