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Abstract 18 

Near infrared (NIR) spectrophotometers require study of the spectral acquisition process, 19 

so that they can be used for quality and safety assessment of horticultural products. The 20 

aim of this work was to optimize the use of two NIR spectrophotometers for analysing 21 

spinach plants in situ and online: a manual, portable instrument based on Linear Variable 22 

Filter (LVF) technology (MicroNIRTM 1700), suitable for analysis in the field, and during 23 

harvest and storage; and a Fourier Transform (FT)-NIR instrument (Matrix-F) suitable 24 

for the online analysis in the sorting lines. 195 spinach plants were used to predict the 25 

quality (texture, dry matter and soluble solid contents) and safety (nitrate content) 26 

parameters. Using the MicroNIRTM 1700 to take 6 spectra per spinach leaf resulted in 27 

NIRS models of predictive capacity which enable to screen spinach plants in situ and 28 

decide on their industrial destination according to their nitrate content. For the Matrix-F 29 

instrument, a single spectrum taken online for the intact product (either moving or not) 30 

on the conveyor belt was sufficient to establish product quality and safety during 31 

industrial processing. The results also showed that the use of both instruments could form 32 

a complementary strategy for global monitoring, allowing spinach plants to be analysed 33 

throughout the food supply chain. 34 

 35 

Keywords: Spinach plant; New generation NIRS sensors; NIRS analysis optimization; 36 

Quality and safety assessment.  37 
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1. Introduction 38 

 39 

The commercial value of horticultural products depends on their quality, which 40 

can be defined as the sum of properties and characteristics that determine its marketability 41 

and shelf-life (Bruhn, 2002). However, fruit and vegetables constitute a unique class of 42 

food items in a sense that their size, colour, shape and physical-chemical composition 43 

vary, even when harvested at the same place and same time. Consequently, individual, 44 

non-destructive assessment is a key objective for these products (Huang et al., 2008; 45 

Lorente et al., 2012). 46 

When assessing the eating quality and safety of spinach leaves, the main 47 

parameters to take into account are their texture, as well as dry matter content (DMC), 48 

soluble solid content (SSC) and nitrates (Jaworska et al., 2005; Conte et al., 2008; 49 

Gutiérrez-Rodríguez et al., 2013). These attributes depend not only on genotypic 50 

characteristics, but also on a number of other factors, including cultural practices, 51 

harvesting date and postharvest handling practices (Aked, 2000; Gutiérrez-Rodríguez et 52 

al., 2013). 53 

NIR spectroscopy has become one of the most widely-used, flexible techniques 54 

for in-field measurements and online analysis on conveyor belts in the industry due to its 55 

swift response, precision, applicability to multiple products and analytes (Nicolaï et al., 56 

2007; Saranwong and Kawano, 2007; Teixeira Dos Santos et al., 2013; Porep et al., 2015; 57 

Yan and Sisler, 2018).  58 

Sánchez et al. (2018) and Pérez-Marín et al. (2019) demonstrated the feasibility 59 

of using NIRS technology for the in situ measurement of quality parameters (colour, 60 

firmness, DMC, SSC and ascorbic acid) and safety (nitrate content) in spinach using a 61 

handheld, near infrared device, the Phazir 2400, which is based on micro-electrico-62 
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mechanical system (MEMS) technology. However, technological development of NIRS 63 

instrumentation has resulted in phasing out of the original portable, handheld NIRS 64 

devices, such as the Phazir 2400. New portable micro-spectrophotometer devices based 65 

on LVF technology, which are characterized by their extremely small size and weight, as 66 

well as their excellent performance, due to the high-precision implementation of the key 67 

elements in their final device, are now available. The main goal is the successful use of 68 

these sensors to analyse the product directly in the field, in order to carry out the quality 69 

and safety monitoring of products in the field to facilitate real-time decision-making for 70 

crop management practices and harvest decisions. Similarly, these instruments can also 71 

be used by the industry for product evaluation during storage. 72 

 There are no reports in the literature about the use of NIRS instruments in spinach 73 

to classify it according to its destination, decided by the maximum level of nitrates legally 74 

permitted for the different processes (baby food production, preserved, deep-frozen or 75 

frozen spinach and fresh spinach) by the European Union (OJEU, 2011). Evaluation of 76 

NIRS for online analysis requires methodology of this analysis has to be established. 77 

 The objective of this study was to develop, evaluate and optimize a NIRS analysis 78 

methodology to assure quality and safety in spinach production along the food supply 79 

chain, in situ in the field and after harvest, and online during sorting using two new 80 

generation NIR spectrophotometers, one a handheld instrument based on LVF technology 81 

(MicroNIR™ 1700), suitable for the analysis of plants in the field and in storage, and 82 

another based on FT-NIR technology (Matrix-F), which can be incorporated in product 83 

sorting belts. 84 

 85 

2. Materials and methods 86 

 87 



5 
 

2.1. Sampling and reference methods 88 

 89 

A total of 195 spinach plants (Spinacia oleracea L. cv. 'Solomon', 'Novico', 90 

'Meerkat' and 'Gorila'), grown outdoors on different farms in the provinces of Cordoba 91 

and Seville (Spain) were used in this study. The spinach plants were harvested during the 92 

months of January, February and March 2018.  93 

Nitrate content and SSC were measured following Pérez-Marín et al. (2019) using 94 

between 4 and 10 spinach leaves from each plant, while texture, evaluated using the 95 

maximum puncture force (MPF) parameter - defined as the maximum force required to 96 

puncture the leaf - and DMC were measured following Sánchez et al. (2018), using a 97 

single leaf per plant. All measurements were performed in duplicate immediately after 98 

NIR spectrum collection (Pérez-Marín et al., 2019). The standard error of laboratory 99 

(SEL) was calculated from these duplicates (Table 4). 100 

 101 

2.2. NIR spectrum acquisition 102 

 103 

NIR spectra of spinach plants were collected using two instruments adapted to in 104 

situ and online applications, respectively.  105 

A MicroNIR™ 1700 LVF spectrophotometer (VIAVI Solutions, Inc., San Jose, 106 

California, USA), designed for analysis in situ, was used in reflectance mode (log 1/R). 107 

This portable miniature spectrophotometer is extremely light (only 64 g, excluding the 108 

150 g handle and the acquisition/data processing device). Its optical window measures 109 

around 227 mm2, a 910 to 1676 nm spectral range, with a constant interval of 6.2 nm. The 110 

sensor integration time was 11 ms and each spectrum was the mean of 200 scans. The 111 

instrument’s performance was checked every 10 min. A white reference measurement 112 
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was obtained using a NIR reflectance standard (Spectralon™) with a 99% diffuse 113 

reflectance, while a dark reference was obtained from a fixed point in the room.  114 

To measure MPF and DMC, four spectral measurements were taken on each 115 

spinach leaf in two locations (distal and proximal), on both sides (right and left) of the 116 

leaf blade relative to the main vein, on the adaxial side, with an average distance between 117 

measurements of 3 cm (Sánchez et al., 2018). The four spectra were averaged to provide 118 

a mean spectrum for each plant. 119 

In those leaves used for measuring SSC and nitrate content, in addition to the 4 120 

spectra per leaf previously mentioned (Pérez-Marín et al., 2019), two additional spectra 121 

were taken at the end of the blade/beginning of the petiole, one on each side of the main 122 

vein on the adaxial side, making a total number of 6 spectra per leaf. As between 4 and 123 

10 leaves per plant were used for the chemical analyses of SSC and nitrates, a mean 124 

spectrum was obtained for these parameters from the six spectra for each leaf.  125 

The online instrument used for the spectrum acquisition was the FT-NIR 126 

spectrophotometer Matrix-F (Bruker Optik GmbH, Ettlingen, Germany). This equipment 127 

was interfaced to a fibre optic NIR illumination and detection head containing a 10 mm 128 

diameter detector and two NIR light sources which illuminate a sample area around 129 

153.94 cm2. The scattered light was collected and guided via fibre optic cable (5 m in 130 

length) to the spectrometer. Furthermore, the system was equipped with a conveyor belt 131 

to move the sample, with the speed set at 15 kHz. Additionally, a distance of 10 cm 132 

between the instrument head and the conveyor belt was established, which remained 133 

constant throughout the process of taking spectra. The spectra were collected in 134 

reflectance mode in the spectral range from 4000 to 12000 cm-1 (834–2502.40 nm), with 135 

a resolution of 16 cm-1. An internal white reference was also collected every thirty 136 

minutes.  137 
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Since a single leaf was used per plant to measure MPF and DMC, the NIR spectral 138 

acquisition was made when the conveyor belt had been stopped (static mode). Each 139 

spectrum was the mean of 16 scans and 2 spectra were taken per leaf, always on the 140 

adaxial side. 141 

For SSC and nitrate content, online analysis was carried out with the conveyor 142 

belt in motion (dynamic mode), with 16 scans and 2 spectra taken per plant, always on 143 

the adaxial side of the leaf. 144 

 145 

2.3. Optimization of the spectrum-taking procedure  146 

 147 

 Data pre-processing and chemometric treatments were performed using the 148 

WinISI II software package version 1.50 (Infrasoft International LLC, Port Matilda, PA, 149 

USA) (ISI, 2000). 150 

Firstly, the optimum spectral range for both instruments (MicroNIRTM 1700 and 151 

Matrix-F), after eliminating signal noise at the beginning and end of the spectrum, was 152 

selected. To achieve this, the 1,1,1,1 derivation treatment was applied (the first digit being 153 

the number of the derivative, the second the gap over which the derivative is calculated, 154 

the third the number of data points in a running average or smoothing, and the fourth the 155 

second smoothing) without scatter correction, which allows to highlight the areas of the 156 

spectrum where the signal/noise ratio is degraded (Hruschka, 2001). 157 

 In the case of the Matrix-F, once the best suitable spectral range had been selected, 158 

with optimization of the procedure of taking spectra in spinach plants in industrial sorting 159 

processes, two strategies were used to perform the chemometric analysis of the spectra 160 

obtained with this instrument: 161 
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1. Selecting at random a single spectrum per plant with Matlab v. 2017a (The 162 

Mathworks, Inc., Natick, Massachusetts, USA).  163 

2. Using the average spectrum of the 2 spectra taken for each plant. 164 

The first of the two established strategies used attempted to simulate the sorting 165 

processes of the spinach plants carried out in the industry and aimed at allowing to 166 

establish the viability of the full incorporation of NIRS technology in the processing lines. 167 

It is important to note that in the industry, the product travels along the classification 168 

conveyor belt only once, and that is when its quality and destination are measured and 169 

determined, depending on the levels of nitrates present. 170 

The total number of spectra used for the development of the predictive models for 171 

the parameters analysed (MPF, DMC, SSC and nitrate content) was 195, regardless of the 172 

strategy followed (a single spectrum per plant or the average spectrum of the 2 spectra 173 

taken for each plant). NIRS calibration models for the parameters tested were developed 174 

using modified partial least squares (MPLS) regression (Shenk and Westerhaus, 1995a). 175 

Six cross validation steps were included in the process in order to avoid overfitting (Shenk 176 

and Westerhaus, 1995a). 177 

For each analytical parameter, different mathematical pre-treatments were 178 

evaluated. For scatter correction, standard normal variate (SNV) and de-trending (DT) 179 

methods were tested (Barnes et al., 1989). Additionally, a total of two mathematical 180 

derivation treatments were tested: 1,5,5,1 and 2,5,5,1 (Shenk and Westerhaus, 1995b; ISI, 181 

2000). 182 

The statistics employed to select the best equations using MPLS were the 183 

coefficient of determination for cross validation (R2
cv) and the standard error of cross 184 

validation (SECV) (Shenk and Westerhaus, 1996; Williams, 2001).  185 
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The SECV values for the best equations obtained for both strategies were 186 

compared using Fisher’s F test (Massart et al., 1988; Naes et al., 2002). Values for F were 187 

calculated as: 188 

𝐹 =
(𝑆𝐸𝐶𝑉 )

(𝑆𝐸𝐶𝑉 )
 189 

where SECV1 and SECV2 are the standard error of cross validation of two 190 

different models and SECV1 < SECV2. F is compared to Fcritical (1-P, n1-1, n2-1), as read from 191 

the table, with P = 0.05 and n1 is the number of times the measurement is repeated with 192 

method 1, while n2 is the number of times the measurement is repeated with method 2. If 193 

F is higher than Fcritical, the two SECV values are significantly different. 194 

 195 

2.4. Construction and validation of prediction models for the two instruments tested using 196 

a linear regression strategy 197 

 198 

Once the optimal spectral ranges of both instruments and the optimum number of 199 

spectra per plant were established (Matrix-F), the CENTER algorithm was applied to 200 

ensure a structured population selection based solely on the spectral information, in order 201 

to establish the calibration and validation sets (Shenk and Westerhaus, 1991). This 202 

algorithm performs an initial principal component analysis to calculate the centre of the 203 

population and the distance of samples (spectra) from that centre in an n dimensional 204 

space, using the Mahalanobis distance (GH); samples with a GH value > 4 were 205 

considered spectral outliers. A combination of mathematical pre-treatments, SNV and DT 206 

was applied for scatter correction (Barnes et al., 1989), together with the 1,5,5,1 derivate 207 

mathematical treatment (Shenk and Westerhaus, 1995b; ISI, 2000). Once the spectral 208 

outliers had been removed and after ordering the sample sets by spectral distances (from 209 

smallest to greatest distance from the centre), three of every four were selected to be part 210 



10 
 

of the calibration sets (C1 for nitrate content and SSC and C2 for DMC and MPF, the 211 

same for both instruments), while the validation sets were made up of the remaining 25 212 

% (V1 for SSC and nitrate content and V2 for DMC and MPF) (Table 3). NIRS calibration 213 

models for the prediction of the four parameters tested were constructed with the 214 

calibration sets C1 and C2 using MPLS regression. The spectral pre-treatments were the 215 

same as those indicated in section 2.3. Lastly, the best models obtained for the calibration 216 

sets, selected by statistical criteria (Shenk and Westerhaus, 1996; Williams, 2001), were 217 

subjected to external validation using samples not involved in the calibration procedure 218 

(V1 for SSC and nitrate content and V2 for DMC and MPF), following the validation 219 

protocol outlined by Windham et al. (1989). 220 

Due to the fact that the MicroNIRTM 1700 instrument can be used both in the field 221 

and in the industry, a comparison was performed between the predictive models obtained 222 

for the parameters analysed, using the two instruments tested, as they could be used in a 223 

complementary manner in the industry –  the Matrix-F for controlling the quality and 224 

safety of the spinach plants at sorting lines level and the MicroNIRTM 1700 for checking 225 

the quality and safety of the spinach plants during storage. For this purpose, the residual 226 

predictive deviation for cross validation (RPDcv) values, calculated as the ratio of the 227 

standard deviation (SD) of the reference data to the SECV values of the models obtained, 228 

were compared using Fisher's F test, as mentioned above.  229 

 230 

3. Results and discussion 231 

 232 

3.1. Optimal NIR spectral regions for the spectrophotometers tested 233 

 234 
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Before the prediction models were developed, both instruments were evaluated to 235 

establish the optimal spectral work region, so that representative, high-quality spectra 236 

could be obtained which would allow to construct robust models. This aspect is especially 237 

relevant for the Matrix-F, since with this equipment, the spectral signal is transmitted by 238 

fibre optics, which commonly produce a loss of signal quality on extreme wavelengths 239 

(Garrido-Varo et al., 2018; Torres et al., 2019). In the Matrix-F (Fig. 1A), the regions 240 

removed were those between 834-1251 nm and 2425-2502 nm. In the case of the 241 

MicroNIRTM 1700 instrument, as shown in Fig. 1B, the full spectral range of the 242 

instrument was used.  243 

 244 

3.2. Selection of the best spectrum capture strategy for online NIRS analysis of spinach 245 

plants with the Matrix-F instrument 246 

  247 

Table 1 shows the statistical characteristics of the initial sample set for the four 248 

parameters analysed using the Matrix-F instrument. This set was used for the 249 

development of the initial prediction models which would allow to optimize the method 250 

of taking spectra online with this instrument. 251 

Table 2 shows the SECV values of the best calibration models obtained using the 252 

Matrix-F instrument with different strategies for the number of spectra to be taken (1 and 253 

2 spectra per plant analysed), for each of the parameters studied. 254 

No significant differences were found for any of the parameters analysed between 255 

the SECV values of the predictive models developed for the different strategies tested. 256 

Therefore, in view of the results, and since, in the future, the Matrix-F instrument is likely 257 

to be incorporated in industry for the sorting lines, it is clear that the procedure of taking 258 

a single NIR spectrum per plant would be sufficient to measure online the quality and 259 
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safety parameters of spinach plants tested. The results obtained agree with those reported 260 

by McCarthy and Kemeny (2008) and Torres et al. (2019), who showed that when using 261 

FT-NIR instruments, due to the improved signal/noise ratio in these instruments, a smaller 262 

number of spectra per analysed sample was sufficient for the measurement to yield 263 

relevant information. 264 

 265 

3.3. Population characterization for quality and safety prediction of spinach plants 266 

 267 

 To obtain the same calibration and validation sets in both instruments, the samples 268 

considered as outliers (GH > 4) for the Matrix-F were removed for the portable equipment 269 

MicroNIRTM 1700 and vice versa. In the group of samples used to measure the SSC and 270 

nitrate content parameters, 2 were considered spectral outliers, while in the group used 271 

for the DMC and MPF parameters, 4 were considered outliers.  272 

 A detailed study of the spectral outliers in the group of spectra used to measure 273 

SSC and nitrate content showed that the two samples considered as outliers presented a 274 

low nitrate content (below 315 mg kg-1), as well as an atypical chromaticity, which could 275 

affect the representativeness of the spectra obtained. Likewise, for the group of spectra 276 

used to measure DMC and MPF, three of the outlier samples presented a DMC percentage 277 

of over 14.5 %. In the fourth sample, no physical-chemical differences were found which 278 

might account for the anomaly. After removing the outliers, the sets for the parameters 279 

tested were split into calibration (C1 = 146 samples and C2 = 144 samples) and validation 280 

(V1 = 47 samples and V2 = 47 samples), whose statistical characteristics are shown in 281 

Table 3.  282 
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This structured selection based wholly on spectral information proved suitable, in 283 

that the calibration and validation sets displayed similar values for range, mean and SD 284 

for all the study parameters. 285 

Similarly, Table 3 shows that the parameter with the greatest variability is nitrate 286 

content (CVcalibration = 64.30 %, CVprediction = 68.43 %). This variability is due to the 287 

different varietal behaviour in assimilating nitrates and the heterogeneity in the level of 288 

fertilization carried out on the different farms, as well as the fact that the samples were 289 

collected throughout the harvesting period, in which the level of nitrates progressively 290 

decreases. SSC, DMC and MPF all show a lower variability of between 18-30%, which 291 

could be explained by the fact that all the spinach plants tested were collected at the stage 292 

of commercial maturity. 293 

 294 

3.4. Prediction of quality and safety parameters using MPLS regression and NIR spectra 295 

 296 

Table 4 shows the results of the best prediction models obtained for each 297 

parameter analysed (nitrate content, SSC, DMC and MPF) for both instruments using 298 

different pre-treatments of the spectral signal.  299 

For the nitrate content, in the case of the MicroNIRTM 1700 instrument, the models 300 

allow differentiation between high, medium and low values, while the models developed 301 

with the Matrix-F only allow differentiation between high and low values (Shenk and 302 

Westerhaus, 1996, Williams, 2001). 303 

If this parameter is measured in a non-destructive way both in the field and  after 304 

harvest, such as in the sorting lines, it would allow to make a first screening of the product, 305 

by which those plants with a nitrate content below 200 mg kg-1 could be used in the 306 

production of baby foods (OJEU, 2011). 307 
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There are few scientific references available on the use of NIRS technology to 308 

measure nitrates in spinach, and all of these used suitable NIRS instruments exclusively 309 

to analyse the product in situ. Itoh et al. (2011) measured the nitrate content in spinach 310 

plants, using the FANTEC NIR Gun instrument working on transmittance mode in a 311 

spectral range of 600-1100 nm, obtaining values of RPDp = 2.14 and 2.17 with the PCR 312 

and PLS regressions, respectively, which are higher than those obtained in this study. 313 

However, the size and characteristics of the sample group, the form of measurement and 314 

the optical characteristics and range of the instrument are significantly different from 315 

those used in this study. Pérez-Marín et al. (2019) also used a Phazir 2400 based on 316 

MEMS technology, in the spectral range 1600-2400 nm, to obtain values of RPDcv = 1.29, 317 

which in that case were slightly lower than those obtained here, both for the in situ and 318 

the online analysis. 319 

For SSC, which is a crucial parameter when choosing the optimum time for 320 

harvesting, for measuring the shelf-life of spinach and for classifying the product in the 321 

industry, the predictive capacity of the models obtained with the two instruments tested 322 

can be considered to be good when interpreting the coefficient of determination, as 323 

proposed by Shenk and Westerhaus (1996) and Williams (2001), while Nicolaï et al. 324 

(2007) stated that a RPDcv value of between 2 and 2.5 indicates that coarse quantitative 325 

predictions are possible (Matrix-F) and a RPDcv value between 2.5 and 3 corresponds to 326 

good prediction accuracy (MicroNIRTM 1700). 327 

Perez-Marín et al. (2019) using the instrument Phazir 2400 for the in situ analysis 328 

of the spinach plants, obtained models of predictive capacity (RPDcv =2.54) similar to 329 

that obtained here (RPPcv = 2.62) with the MicroNIRTM 1700 instrument, which is also 330 

suitable for the in situ analysis of the product. 331 
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For DMC, the best model developed with the MicroNIRTM 1700 showed a 332 

predictive capacity that can be considered as good, while the best model developed with 333 

the Matrix-F was able to distinguish between high, medium and low values (Shenk and 334 

Westerhaus, 1996; Williams, 2001). Nicolaï et al. (2007) indicated that the RPDcv 335 

between 1.5 and 2 means that the model can discriminate between low and high values 336 

of the response variable. 337 

Conte et al. (2008) showed the importance of the analysis of this parameter in 338 

spinach plants for growers and also for postharvest, since DMC values of around 10-12 339 

% ensure a good resistance to handling and allow a high visual quality to be maintained 340 

during storage. 341 

Sánchez et al. (2018), obtained similar results using the handheld MEMS 342 

spectrophotometer Phazir 2400 for DMC (RPDcv = 1.96) to those found in this work 343 

(RPDcv = 1.83) when analysing spinach plants in situ. 344 

For MPF, the predictive capacity of the models developed with the micro-345 

spectrophotometer allowed differentiation between high, medium and low values, while 346 

the FT-NIR instrument only allowed to distinguish between high and low values (Shenk 347 

and Westerhaus, 1996; Williams, 2001). 348 

Sánchez et al. (2018), who used the Phazir 2400, obtained slightly higher results 349 

for MPF (RPDcv = 1.72) than those obtained in this study (RPDcv = 1.44) with the 350 

MicroNIRTM 1700. This difference can be attributed to the fact that those authors used 351 

calibration groups with a wider variability (CV = 65.15 %) than those used here.   352 

Finally, it is important to note that for the nitrate content and SSC parameters, the 353 

analysis with the Matrix-F instrument was performed in dynamic mode (with the 354 

conveyor belt in movement), which means that these results are of particular interest to 355 
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the industry, since they reinforce the potential use of this equipment as a tool to measure 356 

safety and quality parameters in moving production lines. 357 

 358 

3.5. Comparison between the best models developed with the Matrix-F and MicroNIRTM 359 

1700 instruments. 360 

 361 

Table 4 includes the F values obtained from the comparison between the RPDcv 362 

of each spectrophotometer. For the nitrate content, no significant differences between the 363 

RPDcv values were detected, although the highest RPDcv value was found with the 364 

MicroNIRTM 1700. It is important to take into consideration that the MicroNIRTM 1700 365 

took a greater number of spectra for this parameter (6 spectra * number of leaves per 366 

plant) than the Matrix-F (1 spectrum per plant), and that two of these 6 were specifically 367 

taken in the petiolar area of the leaf, which has the greatest nitrate accumulation (Qiu et 368 

al., 2014). 369 

It is also important to note that with the portable equipment, the measurement is 370 

taken with the head in direct contact with the blade and that the analysis was carried out 371 

in static mode, without the sample moving; while in contrast, with the Matrix-F 372 

instrument, the spectra were taken with the plants in motion and a separation of 10 cm 373 

between the head and the sample. These aspects should be taken into account when 374 

creating robust models in the case of highly complex parameters such as nitrate content. 375 

The results obtained are of particular interest to the industry, as NIRS technology 376 

could be carried out online in the sorting lines and in situ in cold chambers as a routine 377 

method of analysis, in order to measure not only parameters associated with quality, but 378 

also those associated with safety, such as nitrate content. However, for future work, a 379 
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much larger number of samples must be provided to develop more robust calibrations 380 

with both instruments. 381 

For SSC, the highest values were obtained with the MicroNIRTM 1700, while for 382 

DMC and MPF, differences between the RPDcv values were not significant. 383 

 384 

3.6. External validation  385 

 386 

 Validation statistics for the prediction of the safety and quality parameters using 387 

the Matrix-F and the MicroNIRTM 1700 are shown in Fig. 2.  388 

Some samples (1 sample for nitrate content and 3 samples for MPF with Matrix-389 

F; 3 samples for MPF with MicroNIRTM 1700), which were initially part of the V1 and 390 

V2 validation sets, were eliminated before the validation procedure since they were barely 391 

represented in the calibration sets with which the predictive models were designed.  392 

As regards the prediction of nitrate content, 3 samples were predicted by the 393 

models, with negative values assigned for this parameter. However, the predictive NIRS 394 

values for these samples were shown as zero (Fig. 2).  According to the validation 395 

protocol established by Windham et al. (1989) and once the results shown in Fig. 2 were 396 

analysed, the models constructed for predicting SSC in intact spinach with both 397 

instruments, and DMC with MicroNIRTM 1700, met the validation requirements in terms 398 

of the coefficient of determination for prediction, R2
p (R2

p > 0.6), and both the standard 399 

error of prediction corrected for bias (SEP(c)) and the bias were within confidence limits: 400 

the equations thus ensure accurate prediction, and can be applied routinely.  401 

For the rest of the parameters analysed, for both instruments, the models 402 

developed did not attain the recommended minimum value of 0.60 for R2
p. However, it 403 

should be stressed that for nitrate content with the MicroNIRTM 1700 and for DMC with 404 
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the Matrix-F, they were close (R2
p = 0.51 and R2

p = 0.55 respectively). Moreover, the 405 

SEP(c) and bias lay within the confidence limits. The equations can therefore be taken as 406 

an initial approximation to the measurement both in situ and online of quality and safety 407 

parameters in intact spinach. 408 

In general, the standard error of prediction (SEP) is considered a valuable 409 

statistical parameter to evaluate the predictive capacity of an equation, and it is widely 410 

accepted that an SEP value of less than 2*SEL shows that the model has an excellent 411 

predictive capacity (Westerhaus, 1989; Williams, 2001). The SEL values for the 412 

parameters analysed in this work are shown in Table 4. For both instruments and for DMC 413 

and MPF parameters, the SEP values were between 1 and 2, show excellent predictive 414 

capacity of the NIRS models.  415 

The SEP values for the nitrate content and SSC using both devices are much 416 

higher than the measured SEL values, which shows a low predictive capacity of the 417 

models (Westerhaus, 1989; Williams, 2001). However, when interpreting the low SEL 418 

values for SSC and nitrate content in comparison with the SEP values obtained for the 419 

prediction, it should be taken into account that the reference value has been obtained by 420 

liquefying all the analysed leaves. For this reason, a sampling error was not included in 421 

the SEL value. Nevertheless, it is important to stress that all the limits and values 422 

recommended in the literature and mentioned above refer to other NIRS analysis 423 

conditions, e.g. using at-line instruments and using pre-dried and ground samples. In this 424 

study, models were developed with portable or online instruments, using intact and 425 

complex samples with a high level of moisture and a high perishable character. In this 426 

case, the comparison with the limits indicated may be too restrictive. 427 

 428 

4. Conclusions 429 
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 430 

 The results obtained showed the feasibility of NIRS technology for measuring 431 

DMC and SSC in spinach plants along the food supply chain using two new generation 432 

instruments. Additionally, both instruments were able to give accurate information about 433 

high and low levels of nitrate content, allowing to establish the industrial destination of 434 

this vegetable, and also about texture – degree of firmness – which is usually associated 435 

with freshness, the retention of good quality in the spinach plant and its final saleability. 436 

 The Matrix-F instrument is ideally suited for online measurements. The results 437 

showed that a single spectrum of the spinach leaves taken when the product is on the 438 

sorting belts in static or dynamic mode would be sufficient to establish product quality 439 

and safety, which would facilitate the incorporation of this NIR instrument in the 440 

processing industries of horticultural products.  441 

 For the MicroNIRTM 1700, taking 6 spectra per leaf, including 2 spectra taken on 442 

the petiole of the leaf, is suitable for measuring nitrates, both in the field and after harvest. 443 

For industry, the blades and the petioles are processed together, and the largest 444 

accumulation of nitrates occurs in the petioles, which serve to determine the industrial 445 

use of the spinach leaves (baby food, preserved, deep-frozen or frozen spinach, or fresh 446 

spinach).  447 

 Finally, it must be mentioned the importance of optimization of the new 448 

generation NIR instruments before their use for in situ and online analysis. The two 449 

instruments tested here can be used in a complementary way: the MicroNIRTM 1700 for 450 

the analysis of spinach plants while they are growing in the field, during and after harvest, 451 

and the Matrix-F for quality and safety control of the product on the conveyor belts, 452 

allowing the monitoring of product along the food supply chain. 453 

 454 
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Table 1 574 

Number of samples (N), range, mean, standard deviation (SD), and coefficient of 575 

variation (CV) for the initial set for nitrate, soluble solid and dry matter contents, and 576 

maximum puncture force for the Matrix-F instrument. 577 

 Nitrate content (mg kg-1) Soluble solid content (%) Dry matter content (%) Maximum puncture force (N) 

N 195 195 195 195 

Range 67.00-3844.83 4.10-11.45 4.10-19.12 1.03-4.57 

Mean 1340.50 7.81 11.42 2.11 

SD 887.46 1.61 2.47 0.61 

CV (%) 66.20 20.61 21.63 28.91 

 578 

  579 
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Table 2 580 

Comparison between SECV values for the best calibration models for nitrate, soluble 581 

solid and dry matter contents, and maximum puncture force obtained using the Matrix-F 582 

and collecting a different number of spectra per sample; Fisher test (P < 0.05). 583 

Parameter a SECV 

1 spectrum   

SECV 

2 spectra 

F Fcritical 

Nitrate content (mg kg-1) 723.08 741.2 1.05 1.27 

Soluble solid content (%) 0.83 0.89 1.15 1.27 

Dry matter content (%) 1.64 1.59 1.06 1.27 

Maximum puncture force (N) 0.48 0.47 1.04 1.27 

a Standard error of cross validation 584 
 585 

 586 

  587 
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Table 3 588 

Number of samples (N), range, mean, standard deviation (SD), and coefficient of 589 

variation (CV) for the different calibration (C1 and C2) and validation (V1 and V2) sets 590 

for nitrate, soluble solid and dry matter contents, and maximum puncture force in spinach 591 

plants 592 

 
Nitrate content (mg kg-1) Soluble solid content (%) Dry matter content (%) Maximum puncture force (N) 

C1 V1 C1 V1 C2 V2 C2 V2 

N 146 47 146 47 144 47 144 47 

Range 67.00-3844.83 98.00-3243.15 4.10-11.45 4.90-11.30 4.10-19.12 4.30-16.03 1.03-4.57 1.17-3.30 

Mean 1405.16 1185.93 7.74 7.89 11.54 10.90 2.16 1.97 

SD 903.58 811.54 1.64 1.46 2.53 2.11 0.64 0.49 

CV (%) 64.30 68.43 21.19 18.50 21.92 19.36 29.63 24.87 

 593 

 594 



28 
 

Table 4 595 

Calibration statistics for NIR-based models for predicting nitrate, soluble solid and dry matter contents, and maximum puncture force in spinach 596 

plants.  597 

Parameter Instrument Math treatment a N Range b Mean c SD d SECV e R2
cv f RPDcv F Fcritical g SEL 

Nitrate content (mg kg-1) Matrix-F 1,5,5,1 143 67.00-3844.83 1429.18 897.42 676.14 0.44 1.33 1.12 1.32 23.90 

MicroNIRTM 1700 2,5,5,1 143 67.00-3844.83 1430.11 896.22 633.73 0.50 1.41    

Soluble solid content (%) Matrix-F 1,5,5,1 138 4.10-11.15 7.66 1.61 0.72 0.80 2.24 1.37* 1.32 0.10 

MicroNIRTM 1700 1,5,5,1 142 4.10-11.45 7.73 1.65 0.63 0.85 2.62    

Dry matter content (%) Matrix-F 1,5,5,1 140 5.92-17.72 11.52 2.36 1.40 0.65 1.69 1.17 1.32 1.67 

MicroNIRTM 1700 1,5,5,1 138 5.92-17.27 11.47 2.32 1.27 0.70 1.83    

Maximum puncture force (N) Matrix-F 1,5,5,1 140 1.03-3.43 2.12 0.59 0.44 0.44 1.34 1.15 1.32 0.36 

MicroNIRTM 1700 1,5,5,1 140 1.03-3.77 2.12 0.59 0.41 0.52 1.44    

a Number of samples. 598 

b Mean of the calibration set. 599 

c Standard deviation of the calibration set. 600 

d Standard error of cross validation. 601 

e Coefficient of determination of cross validation. 602 

f Residual predictive deviation for cross validation. 603 

g Standard error of laboratory. 604 
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Fig. 1. D1 log (1/R) spectra for spinach samples. Instruments: Matrix-F (A) and 605 

MicroNIRTM 1700 (B). 606 

 607 

 608 
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Fig. 2. Reference and NIR predicted values for quality and safety parameters with Matrix-609 

F (A) and MicroNIRTM 1700 (B) instruments. 610 

A) Matrix-F B) MicroNIRTM 1700 

  

  

  

  

a Number of samples for the validation set 611 
b Coefficient of determination of prediction. 612 
c Standard error of prediction. 613 
d Standard error of prediction corrected for bias. 614 
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