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ABSTRACT 22 

The non-destructive on-tree measurement of the chemical quality attributes of fruits 23 

belonging to the Citrus genus using rapid spectral sensors is of vital interest to citrus 24 

growers, allowing them to carry out a selective harvest of any species of citrus fruit. 25 

With this objective, the viability of using of a handheld portable near infrared 26 

spectroscopy (NIRS) instrument to predict soluble solid content (SSC), pH, titratable 27 

acidity (TA), maturity index and BrimA, in order to measure the optimum harvest time 28 

in a group made up of 608 samples belonging to the Citrus genus (378 oranges and 230 29 

mandarins) was evaluated. For each of the parameters analysed, both non-linear 30 

regression (LOCAL algorithm) and linear regression (Modified Partial Least Squares, 31 

MPLS) strategies were designed and compared. The use of the LOCAL algorithm in the 32 

sample group of oranges and mandarins for all the parameters analysed allowed to 33 

obtain more robust models than those obtained with MPLS regression, and it could also 34 

be extended more easily when routinely applied. The results confirm that NIRS 35 

technology combined with non-linear regression strategies such as the LOCAL 36 

algorithm can indeed respond to the needs of the citrus growers and help them to set the 37 

optimum harvest time, in this case of oranges and mandarins, by predicting the chemical 38 

quality parameters in situ. 39 

 40 

Keywords: NIR spectroscopy; Citrus genus; In situ analysis; Chemical quality; LOCAL 41 

algorithm; Optimum harvest time. 42 
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1. Introduction 44 

 45 

Since oranges and mandarins are non-climacteric fruits, the harvest should be 46 

timed for when the fruit has reached its commercial maturity [1]. 47 

For both these citrus species, the harvest indices generally used are based on 48 

maturity index values (ratio of SSC to TA), BrimA (an abbreviation for Brix minus 49 

Acids) and a minimum yellow-orange colour of the peel [2–5].  50 

On-tree intact measurement of these harvest indices for all the fruits is 51 

particularly critical for these non-climateric fruits due to the fact that the physiological 52 

maturation process has finished at harvest, and since flavour perception of these fruits is 53 

closely linked to these quality attributes (SSC and TA) [4, 5]. Since consumer 54 

acceptance of the fruits is based on flavour and sweetness, measuring these values of the 55 

fruits on the tree would allow them to be harvested selectively and then sold according 56 

to their quality [6]. 57 

Therefore, due to the need to test and measure the chemical quality parameters 58 

of individual Citrus fruits, the Citrus sector requires the introduction of non-destructive, 59 

fast, versatile, environmentally-friendly and cost-effective technologies such as NIR 60 

Spectroscopy, which allows to measure the quality of the fruit directly on the tree 61 

during the maturation process, regardless of the species analysed. 62 

Most applications which use NIR spectroscopy to measure quality chemical 63 

parameters (SSC, pH, TA, maturity index and vitamin C) in fruits of the Citrus genus 64 

refer to studies carried out with laboratory equipment for a single species using linear 65 

regression techniques, such as Partial Least Squares (PLS), Multiple Linear Regression 66 

(MLR) and Principal Component Regression (PCR) [7–10].  67 

 68 
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However, very few works have focused on taking readings directly on the tree to 69 

establish the optimum harvest time [11-13]. Sánchez et al. [11, 12] used portable 70 

equipment based on micro-electro-mechanical system (MEMS) technology, with a 71 

1600-2400 nm spectral range to measure quality parameters (SSC, TA, pH, maturity 72 

index) in mandarins and oranges separately. Similarly, Cavaco et al. [13] measured the 73 

on-tree quality of oranges through internal quality parameters (SSC, pH, TA and 74 

maturity index), using portable VIS/NIR equipment with a charge-coupled device array 75 

detector and a reduced range of measurement (680-1100 nm).  76 

In addition to in situ measurements, it would be highly advantageous in practical 77 

and commercial applications to be able to use universal equations for different citrus 78 

species, to measure physical-chemical quality, thus permitting the staggered collection 79 

of the fruits depending on when they reach their full maturity. Despite this need for 80 

universally-applicable equations, there are few published works which refer to 81 

developing NIRS models for multi-product groups in plants [14-17], and the work 82 

published by Torres et al. [17] is the only one dealing with analysing citrus species 83 

intact on the tree as a way of measuring the morphological and physical quality of the 84 

fruits. 85 

In the case of heterogeneous spectral libraries (multispecies libraries), the 86 

application of non-linear regression methods based on local calibrations allow a better 87 

management of the population available, since the characteristics of the samples 88 

selected by the algorithm to be used for calibration are specific in each case and for each 89 

of the samples to be predicted, thus making it easier for producers to develop models 90 

[17-20]. 91 

A number of works, in products which are not fruits, have confirmed that the use 92 

of non-linear regression techniques with multispecies libraries allows to obtain models 93 
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with a higher predictive capacity and, most importantly, facilitates the routine 94 

management of prediction models and especially their recalibration, since it is simply a 95 

case of expanding the calibration database, rather than having to recalculate the models 96 

as in classic global strategies. Thus, Godin et al. [21] compared their results obtained by 97 

applying non-linear and linear regression methods (LOCAL versus MPLS algorithms) 98 

to predict neutral and acid detergent fibre residues, acid detergent lignin and mineral 99 

compound content in a set composed of different fibrous plants. They concluded that 100 

the reliability of non-linear models is greater, since they fit in better with the non-101 

homogeneity associated with a multispecies database. 102 

Similarly, in fruits, the potential of local regression techniques for increasing the 103 

robustness of prediction models has been demonstrated by different authors, although 104 

these models have been developed for individual species [12, 22-24]. 105 

In the particular case of citrus species (oranges and mandarins), Torres et al. [17] 106 

applied the LOCAL algorithm in a previous work to measure morphological parameters 107 

(weight, equatorial and axial diameter), colour (L*, a*, b*, C* and h*) and physical 108 

parameters (firmness, pericarp thickness and juice mass). When this non-linear 109 

regression algorithm was applied instead of the MPLS regression, the predictive 110 

capacity of the models increased for all parameters and the prediction error decreased. 111 

The aim of this study was to develop predictive models based on non-linear 112 

regression strategies (LOCAL algorithm), in order to measure the main chemical quality 113 

parameters which indicate the optimum harvest time and allow to carry out selective 114 

harvesting in fruits of the Citrus genus, regardless of the species, growing-season and 115 

crop practices, using NIRS technology together with a handheld portable MEMS-NIR 116 

spectrophotometer. 117 

 118 
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2. Material and Methods 119 

 120 

2.1. Fruit Samples 121 

 122 

The initial sample set comprised 608 samples belonging to the genus Citrus – 123 

378 oranges (Citrus sinensis L. cv. ‘Powell Summer Navel’) and 230 mandarins (Citrus 124 

reticulata Blanco cv. ‘Clemevilla’) – grown in a commercial plantation in La Campana 125 

(Seville, Spain), under four different irrigation regimes.  126 

In the case of orange, each experimental plot comprised three rows of four trees, 127 

with four repetitions for each irrigation regime; oranges were monitored on the two 128 

central trees in each plot. Thus, ripening was monitored on eight trees for each of the 129 

four irrigation regimes, giving a total of 32 trees. A total of six oranges were labeled on 130 

each of the 32 trees: one for each of the four possible orientations (north, south, east, 131 

and west) and one for each of two heights on the tree (1.25 and 1.75 m), thus giving a 132 

total of 384 oranges. However, in the course of the study, six ripe oranges dropped off 133 

the tree and were thus excluded. The final sample set thus comprised 378 oranges. 134 

For mandarins, each experimental plot comprised three rows of four trees, with 135 

four repetitions for each irrigation regime; oranges were monitored on the two central 136 

trees in each plot. Thus, ripening was monitored on eight trees for each of the four 137 

irrigation regimes, giving a total of 32 trees. A total of eight mandarins were labeled on 138 

each of the 32 trees: one for each of the four possible orientations (north, south, east, 139 

and west) and one for each of two heights on the tree (1.25 and 1.75 m), thus giving a 140 

total of 256 oranges. However, in the course of the study, twenty-six ripe mandarins 141 

dropped off the tree and were thus excluded. The final sample set thus comprised 230 142 

oranges. 143 
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On arrival at the laboratory, the harvested oranges and mandarins were kept in 144 

refrigerated storage at 5ºC and 90% RH until the following day, when laboratory testing 145 

was performed. Prior to each test, the samples were allowed to reach room temperature 146 

of 20ºC, suitable for conducting the analysis.  147 

 148 

2.2. Reference Data 149 

 150 

The chemical parameters (SSC, TA and pH) of the oranges and mandarins were 151 

measured in the same way as Sánchez et al. [11]. The maturity index was also 152 

calculated as an SSC/TA ratio and the BrimA index was calculated using the equation 153 

described by Jordan el al. [4]: 154 

𝐵𝑟𝑖𝑚𝐴 = 𝑆𝑆𝐶 − 𝑘(𝑇𝐴), 155 

where k is a constant that reflects the tongue’s higher sensitivity to TA compared 156 

to SSC. The value of the constant k was 4, which was suggested for oranges by 157 

Obenland et al. [5] in order to avoid the generation of negative BrimA values.  158 

 159 

2.3. NIR Analysis 160 

 161 

NIR analysis of both fruits were performed in reflectance mode (log 1/R) using a 162 

handheld MEMS spectrophotometer Phazir 2400 (Polychromix, INC., Wilmington, 163 

MA, USA) that incorporates all the essential components to deliver on-tree applications. 164 

This instrument scans at 8 nm non-constant intervals in the spectral range 1600-2400 165 

nm. Four spectral measurements were made for each fruit (orange and mandarin) in the 166 

equatorial zone whilst on the tree, taking orientation (north, south, east and west) into 167 

account. The four spectra were averaged to provide a mean spectrum for each sample. 168 
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 169 

2.4. Definition of Calibration and Validation Sets 170 

 171 

Principal component analysis (PCA) was performed on each individual data set 172 

(378 oranges and 230 mandarins) in order to structure and compress the data matrix. 173 

After PCA, the centre of the spectral population was fixed in order to detect outlier 174 

samples. The Mahalanobis distance (GH) was calculated between each sample and the 175 

centre of the population. Samples with a GH value greater than 4 were considered 176 

outliers [25]. As signal spectral pre-treatments, the standard normal variate (SNV) plus 177 

detrending (DT) procedures [26] were used to remove the multiplicative interferences of 178 

scatter, and the Norris first derivative mathematical treatment was performed (1,5,5,1), 179 

where the first digit is the order of the derivative, the second is the gap over which the 180 

derivative is calculated, the third is the number of data points in a running average or 181 

smoothing and the fourth is the second smoothing [27]. 182 

After removing the outliers (in this case, 3 oranges and 1 mandarin), each of the 183 

resulting sets, consisting of 375 oranges and 229 mandarins, was divided into two: a 184 

calibration set containing about 75% of the samples and a validation set containing the 185 

remaining 25%. These samples were selected following the method outlined by Shenk 186 

and Westerhaus [28] using the CENTER algorithm included in the WinISI II software 187 

package version 1.50 to calculate the distance to the centre of the population based on 188 

the Global Mahalanobis distance (GH), with three out of every four samples selected to 189 

be part of the calibration set [29]. Additionally, the calibration and validation sets of 190 

oranges and mandarins were merged to make new calibration and validation sets of 191 

citric fruits with the two species tested together. The differences in the number of 192 

samples available for the different parameters analysed in both the calibration and 193 
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validation groups were due to the fact that, in some of them, the pH and TA 194 

measurements or the parameters derived from titratable acidity (maturity index and 195 

Brim A) could not be recorded since the fruits had a very low juice content. 196 

 197 

2.5. Construction of Prediction Models using the LOCAL Algorithm. Comparison with 198 

Models Obtained Using Linear Regression Strategy 199 

 200 

The LOCAL algorithm was performed for each dataset (oranges, mandarins and 201 

oranges and mandarins). LOCAL operates by searching for, and selecting, samples in 202 

large databases containing spectra similar to the sample being analysed. The selected 203 

samples are then used to compute a specific calibration equation, based on PLS 204 

regression, to predict the constituents of an unknown sample [18].  205 

Selection of the calibration samples is controlled by the value of the coefficient 206 

of correlation between the spectrum of the unknown sample and those comprising the 207 

spectral database [18]; the samples with the highest correlation are selected. A 208 

minimum correlation cut-off is available to ensure that the selected samples are highly 209 

correlated [30]. 210 

Different parameters must be evaluated in order to optimize the LOCAL 211 

algorithm. In this work, an optimization design was set up by varying the number of 212 

calibration samples (k) from 80 to 140 in steps of 20, and the number of factors (l) from 213 

14 to 16 in steps of 1. This gave a factorial design of 4 x 3 or 12 runs. Finally, it was 214 

established that the first four PLS factors should be removed. 215 

Furthermore, for each parameter analysed, the different mathematical signal pre-216 

treatments were evaluated. For scatter correction, the SNV and DT methods were tested 217 
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[26]. Additionally, four derivative mathematical treatments were tested in the 218 

development of NIR calibrations: 1,5,5,1; 2,5,5,1; 1,10,5,1; 2,10,5,1 [27].  219 

The effect of the different settings on the performance of the LOCAL algorithm 220 

was evaluated by comparing the standard error of prediction (SEP) obtained for each 221 

set, the coefficient of regression for external validation (r2
p) and the RPDp (ratio of the 222 

standard deviation (SD) of the reference data for validation to the SEP). 223 

In addition, in order to compare the results obtained with the LOCAL algorithm, 224 

global models using linear regression were developed. 225 

To achieve this, MPLS regression was used to obtain equations for each data set 226 

and for each parameter analysed [25]. During the development of the MPLS equation, 227 

the same signal pre-treatments used with LOCAL algorithm were used (SNV + DT, and 228 

the four derivative mathematical treatments). The best predictive models obtained for 229 

the calibration sets, selected by statistical criteria (the standard error of cross validation 230 

(SECV) and the coefficient of determination for cross validation (r2
cv), were subjected 231 

to evaluation using the validation sets, which consisted of samples not involved in the 232 

calibration procedure.  233 

The SEP values of the predictive models for the parameters tested obtained 234 

using the LOCAL and MPLS regression algorithms were statistically compared using 235 

Fisher’s F test [31]. The values for F were calculated as: 236 

𝐹 =    237 

where SEP1 and SEP2 are the standard error of prediction of two different 238 

models and SEP1 < SEP2. F is compared to Fcritical (1- P, n1-1, n2-1) as read from the 239 

table, with P = 0.05 and n1 the number of times the measurement is repeated with 240 

method 1; n2 is the number of times the measurement is repeated with method 2. If F is 241 

higher than Fcritical, the two SEP values are significantly different. 242 
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 243 

3. Results and Discussion 244 

 245 

3.1. Population Distribution of Chemical Quality Parameters  246 

 247 

Perez-Marín et al. [20] showed the importance of the population distribution 248 

used in calibration to obtain robust models. For multispecies or multiproduct groups, 249 

using local rather than global calibrations has particular advantages in those parameters 250 

where different populations are observed for each species [17]. 251 

The distribution of the chemical quality parameters tested for oranges, 252 

mandarins, and oranges and mandarins, is shown in Fig. 1, together with their mean and 253 

standard deviation. Since the maturity index and BrimA parameters are obtained from 254 

the SSC and TA content, in the discussion the distributions shown for the latter, 255 

together with their pH values are focused on. 256 

 257 

For SSC, the set composed of oranges shows a non-normal distribution, more 258 

similar to a bimodal distribution, with a valley around 12% and a maximum around 259 

10.5%, while mandarins show a normal distribution, with a maximum around 12.5%. It 260 

could be said that mandarins (ranging from 9.95 to 15.65) were sweeter than oranges 261 

(ranging from 6.80 to 15.30). If the groups of oranges and mandarins are joined, a new 262 

group is formed (oranges and mandarins) with a distribution close to normal, with a 263 

range between 6.80 and 15.6% and a maximum around 12.5%. 264 

In the case of pH and similar to SSC, the mandarins group shows a normal 265 

distribution with a range from 2.08 to 4. The oranges group also has a normal 266 

distribution, with a range of 3.01-4.15. Since there are more oranges than mandarins, 267 
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when the two groups are joined, the average value (3.53) is closer to that of the oranges 268 

group (3.69), and its deviation (0.30) is higher than that of both groups (0.20 in both 269 

cases) and losing the normal distribution. 270 

Taking the groups of oranges and mandarins individually, they show a normal 271 

distribution for titratable acidity, with maximum values of 0.60 and 1.10% of citric acid 272 

for oranges and mandarins, respectively. For both groups together, there is a positive 273 

asymmetric distribution, with a clear maximum value around 0.60% for citric acid and a 274 

standard deviation of 0.34% citric acid. 275 

 276 

3.2. Descriptive Data for NIR Calibration and Validation Sets 277 

 278 

As it was explained in the Material and Methods section, the CENTER 279 

algorithm was applied to the individual spectral databases in order to structure the 280 

populations according to GH. A total of 3 oranges and 1 mandarin presented values of 281 

GH greater than 4, and these were therefore considered outliers. A detailed analysis of 282 

the chemical characteristics of these samples could determine that these samples have 283 

different characteristics from the rest; the three oranges considered as outliers had low 284 

values of SSC (7, 7.35 and 9.11%, respectively), being cases of samples collected 285 

before complete maturation, whereas the mandarin sample showed a high value of SSC 286 

(15.45%), being a sample collected in an over-ripe state. 287 

Once the outliers have been removed, the remaining samples were used to create 288 

the calibration and validation sets. The statistics obtained (number of samples, range, 289 

mean, standard deviation and coefficient of variation) for each of the parameters 290 

analysed in the calibration and validation sets for oranges, mandarins and the set 291 

composed by oranges and mandarins are shown in Table 1. For each parameter, the 292 
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ranges for the validation set lay within the range for the calibration set; it could be 293 

affirmed that the validation set comprised representative samples of the whole variance. 294 

Furthermore, both sets of the same group of samples displayed similar values for mean, 295 

SD and CV.  296 

For both the calibration and validation groups, the group that has the greatest 297 

variability is the one consisting of oranges and mandarins for the TA, pH and maturity 298 

index and in the case of SSC and BrimA, the variability of the oranges set is practically 299 

identical to that of the oranges and mandarins set.  300 

 301 

3.3. Optimization of Settings for the Development of Predictive Models using the 302 

LOCAL Algorithm 303 

 304 

The SEP values obtained for the best mathematical treatments for the set 305 

composed of oranges and mandarins using the LOCAL algorithm, for each one of the 306 

combinations of the number of samples (k) and the number of PLS factors, are shown in 307 

Fig. 2.  It must be highlighted that LOCAL was tuned (i.e. the pre-treatments, numbers 308 

of factors and calibration set size) on the validation set. This could give LOCAL a slight 309 

advantage over PLS; in this case PLS was tuned by the cross-validation. 310 

As regards the SSC parameter, it can be seen in Fig. 2 that, when 16 PLS factors are 311 

used, the SEP value increases as the number of samples increases, while for 14 and 15 312 

factors, there is a slight decrease in SEP when the number of samples reaches 120; the 313 

lowest SEP value is obtained when 80 samples and 16 PLS factors are used. This shows 314 

that when there is a group with a uniform distribution (Fig. 1), the LOCAL algorithm 315 

used fewer samples (80 samples) for predicting the external validation set than the 316 

global regression techniques (456 samples), since only those samples whose spectra 317 
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were considered representative of the sample of the calibration set to be predicted were 318 

used. It should also stress the importance of having a large sample group with a wide 319 

variability in order to obtain robust prediction models, since having a wide, varied 320 

spectral library available, thanks to the samples selected for development from the 321 

specific models carried out by the LOCAL algorithm, allows to obtain better prediction 322 

results [23]. 323 

As it is shown in Fig. 2, the pH does not follow a fixed trend in terms of the 324 

evolution of SEP values obtained and the number of samples used to develop the 325 

models, and the lowest SEP value (0.15) is obtained when 100 samples and 16 PLS 326 

terms were used. For titratable acidity, the lowest SEP value (0.14% citric acid) is 327 

obtained when 80 samples and 14 PLS factors are used. In general, it could be said for 328 

both parameters that the more samples used, the higher the value of SEP obtained.  329 

For maturity index and BrimA, the SEP values decrease as the number of 330 

samples used increases, and the lowest SEP values for both parameters are obtained 331 

initially when 140 samples are used (Fig. 2). The need for a greater number of samples 332 

shows that these modelling parameters are more complex, since they are derived from 333 

the relationship between simpler ones, such as SSC and TA. In addition, since in this 334 

case it was not clear if the minimum SEP value had been obtained with the number of 335 

samples tested (up to 140), it was decided to extend the number of samples used to 336 

evaluate this optimization parameter of the model (number of samples, k) to 200. For 337 

the maturity index, the minimum SEP value was obtained with 160 samples and 16 PLS 338 

factors, while for the BrimA parameter, the lowest SEP value was obtained with 140 339 

samples and 14 PLS factors. It can therefore be confidently asserted that the lowest SEP 340 

values for maturity index and BrimA are 2.98 and 0.84, respectively (Fig. 2 and Table 341 

2). 342 
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 343 

3.4. Validation Statistics for Predicting Chemical Quality Parameters in Citrus Fruits 344 

using the LOCAL and MPLS Algorithms 345 

 346 

The validation statistics used to predict the chemical quality parameters in 347 

oranges, mandarins, and oranges and mandarins using LOCAL and MPLS regression 348 

algorithms are shown in Table 2. This table shows SEP, r2
p, RPDp and the settings 349 

(LOCAL algorithm) used for the best mathematical treatment for both regression 350 

strategies.  351 

The set including all the samples (oranges and mandarins) obtained a good 352 

predictive capacity for all the parameters tested using the LOCAL algorithm, displaying 353 

values of r2
p between 0.72 and 0.84 [32]. In general, the values of r2

p obtained with the 354 

non-linear regression algorithm for the set composed of both species are greater than the 355 

values obtained for the individual sets, except for the set of oranges in the case of SSC 356 

and BrimA, and the set of mandarins for pH and maturity index, whose r2
p values are 357 

slightly higher.  358 

Furthermore, the validation statistics used to predict the chemical quality 359 

parameters show that models obtained using the LOCAL algorithm improved the 360 

predictive capacity (higher values of r2
p) and the accuracy (lower values of SEP) with 361 

respect to MPLS regression for all the parameters, except for titratable acidity and 362 

maturity index in the set composed of oranges, whose predictive ability (r2
p values) 363 

using LOCAL algorithm fell by 4% and 3%, respectively. For the other models 364 

developed, the improvement obtained with the LOCAL algorithm was 7–17% for r2
p, 365 

with the mandarins group the highest for the SSC parameter and the oranges group for 366 

pH, with 46% and 67%, respectively; in the same way, the decrease in SEP values when 367 
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applying the non-linear regression algorithm ranged from 4 to 18%, except in the case 368 

of pH for the mandarins group and titratable acidity in oranges, where there was no 369 

difference in terms of the errors obtained with the algorithms tested. 370 

On the other hand, comparisons using Fisher’s F test of the SEP values in the 371 

models obtained for the different parameters analysed, using different regression 372 

strategies (LOCAL and MPLS algorithms) for the groups of oranges, mandarins, and 373 

oranges and mandarins, pointed to the existence of significant differences (P < 0.05) for 374 

the SSC parameters in the oranges group, and for titratable acidity and maturity index 375 

both in the mandarins and the oranges and mandarins groups. For the other remaining 376 

parameters, the differences in SEP values were not significant (P > 0.05) (Table 2). 377 

As regards the SSC and BrimA parameters, although there were no significant 378 

differences between the SEP values when applying the LOCAL algorithm or MPLS in 379 

the group of oranges and mandarins, Fig. 1 clearly shows that the range available for the 380 

oranges group covers that of the mandarins and makes no distinction between the 381 

populations. For this reason, there are no important benefits is applying local 382 

regressions, except for the advantages of a routine handling of the spectral databases 383 

and the possibility of updating the models more easily if LOCAL is used. 384 

In terms of r2
p and considering the LOCAL algorithm, the SSC models obtained 385 

a good predictive capacity for oranges (r2
p = 0.81) and for the set composed of oranges 386 

and mandarins (r2
p = 0.78), whereas in the case of mandarins, the model constructed 387 

could only distinguish between low, medium and high values (r2
p = 0.57) [32]. 388 

However, according to Nicolaï et al., [33] the RPDp values obtained for the models 389 

developed for oranges (RPDp = 2.23) and for the oranges and mandarins group (RPDp = 390 

2.09) indicate that coarse quantitative predictions are possible for this parameter (RPDp 391 

= 2–2.5), while the model obtained for mandarins (RPDp = 1.51) can discriminate low 392 
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from high values (RPDp = 1.50–2.00). This reduced capacity obtained for the mandarins 393 

group can be attributed to its lower variability, according to the CV value given (Table 394 

1). As shown in Table 2, the predictive capacity obtained for the oranges and mandarins 395 

group is very similar to that of the oranges group, and there are no significant 396 

differences (P > 0.05) between their SEP values, which stresses the effectiveness of the 397 

LOCAL algorithm to measure SSC in two species simultaneously, using the same 398 

equipment and prediction model. 399 

The only study found in the bibliography which measures SSC in a multispecies 400 

group of the Citrus genus was the work by Clark [15], who analyzed a group made up 401 

of samples of grapefruit, interspecific hybrids (including kumquats, orangequats and 402 

citranges), lemon-lime, mandarins and oranges, using FT-NIR (Bruker Alpha 403 

spectrometer) equipment and applying PLS regression. This author, however, analyzed 404 

samples of the juice, which is much more homogeneous than the whole fruit. 405 

For the prediction of pH and titratable acidity, the results obtained for the 406 

oranges and mandarins group show a good predictive capacity for both parameters (r2
p = 407 

0.72 and RPDp = 1.93 for pH and r2
p = 0.84 and RPDp = 2.43 for TA) using the LOCAL 408 

algorithm [32], while for RPDp, the models developed for these parameters allow to 409 

distinguish between high and low pH values and to make a coarse prediction for TA 410 

[33]. 411 

With the LOCAL algorithm, the predictive capacity improves considerably both 412 

for pH and for titratable acidity in the oranges and mandarins group compared with the 413 

oranges group. When both species are taken together, r2
p increases by 188% and 87%, 414 

for pH and TA respectively, compared with the oranges group, which could be due to 415 

the increase in range which occurs when mandarins are added to the oranges group.  416 
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In the same way, there is also a 10% improvement in the accuracy of the model 417 

for titratable acidity compared with the mandarins group (r2
p= 0.76), while for pH, with 418 

both groups combined, there is a significant increase in the SEP value (around 36%) 419 

compared with the mandarins group, which may be caused by the fact that, when both 420 

species are taken together, the mean value is higher than that of the latter group. 421 

As regards the maturity index and BrimA parameters for the oranges and 422 

mandarins group, both parameters have r2
p values of 0.70 - 0.90, thus showing a good 423 

predictive capacity [32]. In terms of SEP, when LOCAL is applied to all the samples, 424 

the error decreases relative to the oranges group, while there is a significant increase in 425 

the error (P < 0.05) compared with the mandarins group: 163% and 20% for maturity 426 

index and BrimA, respectively. However, these SEP values refer to mean values of 427 

uncertainty, which means that they vary depending on the mean of the calibration group 428 

used to produce each individual model, although individual uncertainty values can vary, 429 

being in some cases higher and in others lower [34]. Nevertheless, this lack of precision 430 

is to a large extent compensated for by the opportunity of having a model which 431 

includes different species, which is of great interest to the citrus fruit industry. In the 432 

same way, although maturity index and BrimA are two parameters related to the 433 

perception of sweetness or tartness in the fruit, different authors have defined the latter 434 

as more useful [4,5], and it obtained a slightly higher predictive capacity than that of the 435 

maturity index (RPDp = 2.15 for BrimA versus RPDp = 2.08 for maturity index) when 436 

LOCAL algorithm is applied. 437 

In general, it is important to stress the usefulness of the LOCAL regression 438 

algorithm compared with the linear regression algorithm MPLS to predict chemical 439 

quality parameters in the oranges and mandarins group. In particular, as mentioned by 440 

other authors [12, 23, 35], the most important factor is the increased robustness attained 441 
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when applying the LOCAL algorithm to measure quality parameters in fruits, which is 442 

notable in this work in the case of pH and titratable acidity parameters, which are both 443 

of great interest for the industry and the consumers of these products. 444 

There are no references in the bibliography to authors applying LOCAL 445 

regression models in order to measure chemical parameters in groups made up of 446 

several species of citrus fruit. However, a number of authors have demonstrated the 447 

potential of local regression techniques to measure chemical parameters in oranges [12], 448 

grapes [22], nectarines [23], and apples [24], all of which show increased precision and 449 

accuracy when non-linear regression techniques are used, as opposed to linear ones. 450 

 451 

3.5. Effective Wavelengths for the parameter BrimA 452 

 453 

Given the value of the BrimA parameter to the citrus industry [5], it was 454 

considered important to study the wavelengths that influence its measurement. 455 

To do this, the loading plot corresponding to the best model obtained using 456 

MPLS regression to predict BrimA in a set composed of oranges and mandarins using 457 

the Phazir 2400 is shown in Fig. 3. This figure shows the areas of the spectral range 458 

where covariance has influenced the computing of the MPLS model to a greater or 459 

lesser degree, and the direction (positive or negative). A representation of the latent 460 

variables (LV5 to LV8) used in constructing the calibration equation shows that the 461 

areas of the spectrum exerting higher weight on model were 1730, 1830, 1900 and 2350 462 

nm, related to the absorption of glucides and water [36].  463 

 464 

4. Conclusions 465 

 466 
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These results confirm that NIR spectroscopy could be an advantageous 467 

technique to predict chemical parameters in a set composed by two species belonging to 468 

the Citrus genus using the LOCAL regression algorithm in order to establish the quality 469 

and maturity indexes of the citrus fruits on-tree. Using the LOCAL algorithm not only 470 

represents an improvement in the predictive capacity of the models obtained, but also 471 

allows to use multispecies spectral libraries. This is extremely important for the citrus 472 

fruit sector, as the libraries can easily be extended to include other citrus species, thus 473 

allowing us to obtain universal models. In addition, the results confirm the advantages 474 

of using portable equipment which allows to analyse the fruit in the field, in order to 475 

harvest the fruits selectively at the optimum time and to obtain a product of the highest 476 

quality which is intended both for fresh consumption and for the processing industry.  477 

From a practical point of view, this could be extremely useful for citrus growers, 478 

since it permits them to measure maturity indices such as BrimA quickly and without 479 

damaging the fruit, which is essential for setting the optimum harvest time and 480 

producing fruit which is acceptable to the consumers. 481 

 482 
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Table 1 627 

Statistics for each set and parameter. 628 
629 
Parameter Samples Set Number of 

samples 
Range Mean SD CV (%) 

Soluble solid 
content (%) 

Oranges Calibration 283 6.80-15.30 10.73 1.91 17.80 

Validation 92 7.50-14.35 10.68 1.78 16.67 

Mandarins Calibration 173 9.95-15.65 12.51 1.19 9.51 

Validation 56 9.95-15.00 12.58 1.07 8.51 

Oranges + 
mandarins 

Calibration 456 6.80-15.65 11.41 1.88 16.48 

Validation 148 7.50-15.00 11.40 1.80 15.79 

pH  Oranges Calibration 283 3.01-4.15 3.69 0.21 5.69 

Validation 92 3.28-4.03 3.70 0.18 4.86 

Mandarins Calibration 166 2.08-3.80 3.25 0.20 6.15 

Validation 55 2.86-3.69 3.26 0.21 6.44 

Oranges + 
mandarins 

Calibration 449 2.08-4.15 3.52 0.30 8.52 

Validation 147 2.86-4.03 3.54 0.29 8.19 

Titratable 
acidity (% 
citric acid) 

Oranges Calibration 282 0.36-1.21 0.62 0.14 22.58 

Validation 92 0.37-1.02 0.62 0.15 24.19 

Mandarins Calibration 155 0.68-2.15 1.21 0.28 23.14 

Validation 50 0.79-1.77 1.89 0.27 14.29 

Oranges + 
mandarins 

Calibration 437 0.36-2.15 0.83 0.34 40.96 

Validation 142 0.37-1.77 0.82 0.34 41.96 

Maturity index 
(SSC/TA) 

Oranges Calibration 282 8.24-40.03 18.14 5.42 29.88 

Validation 92 8.55-35.79 18.55 6.02 32.45 

Mandarins Calibration 155 5.41-17.27 10.86 2.32 21.36 

Validation 50 6.68-15.68 11.00 2.42 22.00 

Oranges + 
mandarins 

Calibration 437 5.41-40.03 15.56 5.74 36.89 

Validation 142 6.68-35.79 15.59 6.21 39.83 

BrimA index 
(%) 

Oranges Calibration 282 4.29-13.31 8.26 1.93 23.37 

Validation 92 4.63-12.22 8.22 1.98 24.09 

Mandarins Calibration 155 2.93-10.33 7.70 1.42 18.44 

Validation 50 4.63-10.28 7.75 1.40 18.06 

Oranges + 
mandarins 

Calibration 437 2.93-13.31 8.06 1.73 21.46 

Validation 142 4.63-12.22 8.05 1.81 22.48 
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Table 2 630 
Validation statistics for predicting chemical quality parameters in Citrus fruits using non-linear (LOCAL) and linear (MPLS) regression 631 
algorithms and standard errors of laboratory (SEL) 632 

Parameter Set LOCAL  GLOBAL F Fcritical SEL 

Settings SEP r2
p RPD p SEP r2

p RPD p 

Soluble solid content 
(%) 

Oranges 100, 16, 4 0.80 0.81 2.23 0.97 0.75 1.84 1.47 1.40* 0.11 

Mandarins 140, 16, 4 0.71 0.57 1.51 0.84 0.39 1.27 1.40 1.43 0.07 

Oranges + mandarins 80, 14, 4 0.86 0.78 2.09 0.95 0.72 1.89 1.22 1.40  

pH Oranges 100, 16, 4 0.16 0.25 1.13 0.18 0.15 1.00 1.27 1.40 0.02 

Mandarins 80, 16, 4 0.11 0.74 1.91 0.11 0.74 1.91 1.00 1.50 0.06 

Oranges + mandarins 100, 16, 4 0.15 0.72 1.93 0.17 0.64 1.71 1.28 1.36  

Titratable acidity (% 
citric acid) 

Oranges 100, 15, 4 0.11 0.45 1.36 0.11 0.47 1.36 1.00 1.40 0.004 

Mandarins 100, 15, 4 0.13 0.76 2.08 0.18 0.65 1.50 1.92 1.48* 0.020 

Oranges + mandarins 80, 14, 4 0.14 0.84 2.43 0.18 0.75 1.89 1.65 1.40*  

Maturity index 
(SSC/TA) 

Oranges 140, 16, 4 3.56 0.65 1.69 3.70 0.67 1.63 108 1.36 0.13 

Mandarins 100, 16, 4 1.13 0.79 2.14 1.38 0.68 1.75 1.49 1.48* 0.15 

Oranges + mandarins 160, 16, 4 2.98 0.77 2.08 3.52 0.72 1.76 1.40 1.31*  

BrimA index (%) Oranges 100, 15, 4 0.85 0.82 2.33 0.89 0.80 2.22 1.10 1.40 0.11 

Mandarins 140, 16, 4 0.70 0.75 2.00 0.79 0.68 1.77 1.27 1.45 0.10 

Oranges + mandarins 140, 14, 4 0.84 0.78 2.15 0.94 0.73 1.93 1.25 1.32  

* Values with significant differences (P < 0.05).633 
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Fig. 1. Population distribution of chemical quality parameters for oranges (O), 634 

mandarins (M) and oranges and mandarins together (O + M). 635 
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Fig. 2. SEP values obtained for the prediction of chemical quality parameters in the set 638 

composed of intact oranges and mandarins using the LOCAL algorithm.  639 

 640 

 641 

 642 

 643 

                  Mathematical treatment: 2,5,5,1                Mathematical treatment: 1,10,5,1 

                   Mathematical treatment: 1,5,5,1                 Mathematical treatment: 1,10,5,1 
 

 
 
 
 
 
 
 
 
 

 
 

 
                                                                                   Mathematical treatment: 1,5,5,1 

0,83

0,86

0,89

0,92

60 80 100 120 140 160 180 200

SE
P

 (
%

)

Number of samples (k) 

BrimA

14 Factors

15 Factors

16 Factors

0,84

0,86

0,88

0,90

0,92

0,94

60 80 100 120 140

SE
P

 (
%

)

Number of samples (k) 

Soluble Solid Content

14 Factors

15 Factors

16 Factors

0,15

0,16

0,17

60 80 100 120 140
SE

P
Number of samples (k) 

pH

14 Factors

15 Factors

16 Factors

0,13

0,14

0,15

0,16

60 80 100 120 140

SE
P

 (
%

 c
it

ri
c 

ac
id

)

Number of samples (k) 

Titratable Acidity

14 Factors

15 Factors

16 Factors

2,90

3,00

3,10

3,20

3,30

3,40

60 80 100 120 140 160 180 200

SE
P

 

Number of samples (k) 

Maturity Index

14 Factors

15 Factors

16 Factors



31 
 

-1,80

-1,35

-0,90

-0,45

0,00

0,45

0,90

1,35

1,80

1600 1700 1800 1900 2000 2100 2200 2300 2400

X
-L

oa
di

ng
 w

ei
gh

t

Wavelength (nm)

LV5 (2.63%)

LV6 (2.13%)

LV7 (1.38%)

LV8 (0.63%)

 644 

Fig. 3. Loadings for BrimA. 645 
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