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ABSTRACT 26 

The relative water content (RWC) provides a measurement of the water deficit of the leaf 27 

and may indicate a degree of stress endured under conditions of drought and high 28 

temperatures, its measurement therefore, being essential for the appropriate management 29 

of irrigation. This study sought to ascertain the viability of near infrared spectroscopy 30 

(NIRS), using a handheld portable NIR instrument for the non-destructive and in situ 31 

determination of RWC in olive tree leaves cultivated under higher temperatures than 32 

ambient. Different combinations of pre-treatments and first and second derivative were 33 

assayed to obtain information of spectral data and to develop calibration models. A 34 

calibration equation with enough prediction performance for supporting irrigation 35 

decision-making (standard error of cross-validation, SECV = 1.52%; r2
cv = 0.61; residual 36 

predictive deviation for cross-validation, RPDcv = 2.01) was obtained. The findings 37 

obtained from the external validation of the model (standard error of prediction, SEP = 38 

1.63%; r2
p = 0.64; residual predictive deviation for prediction, RPDp = 2.17) suggest the 39 

viability of the on-tree use of NIRS technology for the instant measurement of RWC in 40 

olive groves, ensuring a major saving in time and avoiding the disadvantage of 41 

transporting samples to the lab, thereby favouring real-time decision-making in the field 42 

regarding the optimal amounts of irrigation to be applied; this is of enormous significance 43 

for the future, given that the availability of irrigation water for such vital crops to the 44 

Mediterranean region as the olive could be limited in years to come by a gradual increase 45 

in planetary temperatures. 46 

 47 

Keywords: Olive grove; In situ RWC measurement; NIRS technology; Irrigation 48 

management; Climate change 49 

 50 
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 51 

1. Introduction  52 

 53 

Olive (Olea europaea L.) is the most prevalent crop in the Mediterranean basin and has 54 

enormous ecological and economic importance to the region. It is well suited to the 55 

Mediterranean climate, which is characterised by hot and dry summers, mild winters, and 56 

relative lack of rainfall. However, the climatic conditions of this region are expected to 57 

change in the near future due to global warming. Climate experts have predicted an 58 

increase in average air temperature in the range of 2–5ºC (Giorgi, 2006; Gualdi et al., 59 

2013; IPCC, 2014) together with more frequent occurrence of extreme events such as 60 

droughts and heat-waves (Giorgi & Lionello, 2008; Tanasijevic, Todorovic, Pereira, 61 

Pizzigally, & Lionello, 2014). In the climatic conditions being predicted for the region 62 

therefore – lower precipitation and higher temperatures – it is likely that this species will 63 

undergo frequent periods of water and heat stress, with concomitant effects on yields. 64 

The leaf is the organ of the olive tree that is most responsive to environmental 65 

conditions (Nevo et al., 2000). The RWC of a leaf is an important indicator of a plant’s 66 

water status. In this sense, RWC provides a measurement of the ‘water deficit’ of the leaf 67 

and may indicate a degree of stress expressed under unfavourable conditions such as 68 

drought or high temperature (Barrs & Weatherley, 1962; Barrs, 1968). This parameter 69 

has long been used as a reliable indicator of plant wellbeing and could be highly useful 70 

in ascertaining whether olive trees subjected to the climate conditions of the future are 71 

suffering from stress at any of the phenological stages of their reproductive cycle (Mullan 72 

& Pietragalla, 2012; Rallo & Cuevas, 2017). It can be useful for indicating plant water 73 

needs (Jones, 2004, 2007) aimed at reducing potential stressful situations for olive trees, 74 
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especially in those phenological stages where the species is more vulnerable to extreme 75 

conditions. 76 

The traditional method used to determine RWC is by measuring the differences in 77 

weight between the fresh, dry and turgid leaf (Stocker, 1929). This method is time-78 

consuming– it requires more than 24 hours – and labour intensive in the laboratory. 79 

Moreover, although the procedure is straightforward, the taking of samples is prone to 80 

errors, because it can be accompanied by a modification in the water content prior to the 81 

start of the analysis. There is therefore a need for a fast and efficient method for the 82 

determination of the RWC in a way that is non-destructive and in situ (on-tree), allowing 83 

growers to make accurate irrigation decisions depending on the water deficit of the tree. 84 

In this context, near-infrared spectroscopy has significant potential as an appropriate 85 

method, since it is a non-invasive, rapid, economical and accurate alternative to traditional 86 

methods. The technology is simple, so fewer errors are introduced than in conventional 87 

analytical techniques (Osborne, Fearn, & Hindle, 1993). At the same time, NIR 88 

spectroscopy is a powerful tool for general process monitoring in real time (De la Roza 89 

et al., 2017; Zhang et al., 2017); this is of particular interest for many agricultural practices 90 

such as irrigation. 91 

NIRS technology has been successfully used to determine various parameters in 92 

the leaves of a range of species, using both laboratory (Menesatti et al., 2010; Fernández-93 

Martínez et al., 2017) and portable equipment (Itoh, Tomita, Uno, & Naomasa, 2011; 94 

Steidle-Neto, Lopes, Pinto, & Zolnier, 2017). In the case of olive leaves, the research that 95 

has been published makes reference to measuring nutrient content (Fernández-Cabanás, 96 

Garrido-Varo, Delgado-Pertiñez, & Gómez-Cabrera, 2008; Rotbart et al., 2013) and 97 

differentiation between juvenile and adult leaves (León & Downey, 2006), both carried 98 

out in laboratory conditions. However, there is no trace in the scientific literature of any 99 
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research into the measurement of RWC in olive leaves using NIRS technology. Several 100 

authors have demonstrated the feasibility of NIRS technology in the non-destructive 101 

measurement of RWC in the fresh leaves of Epipremnum aureum and Miscanthus (M. 102 

sinensis, M. sacchariflorus, M. lutarioriparia, M. floridulus and M. giganteus) (Zhang, 103 

Li, & Zhang, 2012; Jin, Shi, Yu, Yamada, & Sacks, 2017) using lab-based 104 

monochromator instruments, and in seedling eucalyptus leaves using a portable MEMS-105 

NIRS instrument (Warburton, Brawner, & Meder, 2014).  106 

The aim of this study was to evaluate the feasibility of using NIRS technology for 107 

determining RWC in olive leaves growing in situ. The goal is to help growers to make 108 

irrigation decisions to mitigate negative effects of stress on crop performance under future 109 

weather conditions associated to climate change. 110 

 111 

2. Material and methods 112 

 113 

2.1. Plant material  114 

 115 

Olive (Olea europaea L.) leaves from cultivars ‘Picual’ (N = 178 samples) and 116 

‘Arbequina’ (N = 72 samples) were analysed. Each sample consisted of four fully-117 

expanded leaves, which were located at the middle position of the canopy and exposed to 118 

sunlight. Samples were sequentially collected from March 2016 to July 2017 on 17 119 

different days, covering the range of the distinct phenological phases of the olive tree 120 

(Table 1).  121 

These olive trees were located in an experimental field at the Rabanales Campus 122 

of Córdoba University (Spain) and exposed to different temperature treatments (ambient 123 

temperature versus 4 ºC above ambient temperature), by the use of open top chambers 124 
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equipped with heating and ventilation devices. These systems are able to maintain 125 

permanently a day/night temperature gradient between the tree and the surrounding 126 

environment of 4 °C throughout the complete reproductive cycle of this species 127 

(Benlloch-Gónzalez, Sánchez-Lucas, Benlloch, & Fernández-Escobar, 2018). 128 

 129 

2.2. NIRS analysis  130 

 131 

A handheld Micro-Electro-Mechanical System (MEMS) spectrometer 132 

(MicroPHAZIRTM, Thermo Fisher Scientific, Wilmington, MA, USA) was used to collect 133 

the spectra of olive leaves in-situ. This instrument operates in reflectance mode (log 1/R) 134 

across the spectral range of 1600–2400 nm every 8 nm. Internal white reference was 135 

automatically collected every ten minutes.  136 

Olive tree leaves are small and thick, so in order to avoid the loss of light during 137 

spectra collection and to ensure that the field analysis was carried out correctly, without 138 

detaching the leaf from the tree, a circular (15 cm of diameter) black metal plate was used 139 

to hold the leaf. 140 

At first, with the aim of establishing which side of the leaf was most appropriate 141 

for recording spectra, NIRS readings were carried out both on the adaxial and abaxial side 142 

of the leaf. Three spectral measurements were made per leaf (at the upper, middle and 143 

bottom parts) and per side (adaxial and abaxial). Since, four leaves were analysed per 144 

each olive tree, and a total of 12 spectra were obtained for each sample and for each leaf 145 

side. These 12 spectra per side were averaged to provide a mean spectrum for each olive 146 

tree, a mean for each sample and, initially, for each side. 147 

 148 

2.3. Reference method 149 
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 150 

RWC was determined in accordance with the procedure set out by Stocker (1929). 151 

Briefly, leaves were collected at solar noon and quickly put inside a 10 ml-test tube, which 152 

was hermetically sealed with a lid and placed in a container filled with ice to avoid loss 153 

of leaf moisture. Once in the laboratory, the olive leaves were weighed (FW) and then 154 

rehydrated by adding 1 ml of deionised water to the test tube. After incubation at 4 ºC for 155 

24 h, the leaves were re-weighed to determine the turgid weight (TW) and thereafter put 156 

into an oven at 70 ºC for 48 h to determine the dry weight (DW). The leaf RWC (%) was 157 

calculated as follows: 158 

RWC (%) = ((FW-DW)/(TW-DW)) x 100 159 

For the purposes of this research the Standard Error of Laboratory (SEL) was 160 

estimated by analysing 10 duplicated samples. In order to calculate the error, both the 161 

sampling error (selection of two consecutives leaves to analyse) and the error arising from 162 

the process of analysis in the laboratory (analysis was done by duplicated) were 163 

determined. Once these two errors had been calculated, the SEL value was obtained in 164 

accordance with Fearn (1986).  165 

 166 

2.4. Spectral repeatability 167 

 168 

The spectral repeatability was evaluated using the root mean squared (RMS) statistic, is 169 

defined as the averaged root mean square of differences between the different subsamples 170 

scanned at n wavelengths (Shenk & Westerhaus, 1995a, 1996). It indicates the similarity 171 

between different spectra of a single sample, in this case between the three spectra 172 

collected per sample. For this purpose, 10 leaves were selected from which three spectra 173 

were taken in the upper, middle and lower parts using the MEMS-NIR instrument. 174 
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An admissible limit for spectrum quality and repeatability was set following the 175 

procedure described by Martínez, Garrido, De Pedro and Sánchez, (1998) to calculate the 176 

standard deviation (STD) limit from the RMS statistic and obtain an RMS cut-off value. 177 

 178 

2.5. Data processing 179 

 180 

2.5.1. Principal component analysis 181 

 182 

With the goal of studying the relationship between the RWC and the distinct phenological 183 

states in the olive tree’s cycle, as well as conducting the possible identification of 184 

anomalous samples, Principal Component Analysis (PCA) was carried out. In this work, 185 

PCA was performed using the mean spectrum derived from each of the days being 186 

analysed. Matlab software (version 2015a, The Mathworks, Inc., Natick, Massachusetts, 187 

US) was used to conduct PCA, using mean centre, which subtracts the mean spectrum of 188 

the group from each spectrum, as a pre-treatment (Wise et al., 2006).  189 

 190 

2.5.2. Selection of the calibration and validation sets  191 

 192 

Data pre-processing and chemometric treatments were performed using the WinISI 193 

software package ver. 1.50 (Infrasoft International LLC, Port Matilda, PA, USA). For the 194 

development of the model, the total set was divided into a calibration and a validation set. 195 

The selection of these sets was based on spectral information, using the CENTER 196 

algorithm (Shenk & Westerhaus, 1995a). 197 

As spectral pre-treatments, Standard Normal Variate (SNV) and Detrending (DT) 198 

were used to remove scatter interferences (Barnes, Dhanoa, & Lister, 1989) together with 199 
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the first derivative treatment ‘1,5,5,1’, where the first digit is the number of the derivative, 200 

the second is the gap over which the derivative is calculated, the third is the number of 201 

data points in a running average or smoothing, and the fourth is the second smoothing 202 

(Shenk & Westerhaus, 1995b). 203 

Having ordered the population by spectral distances, samples that displayed GH 204 

values > 3 were removed. The validation set was selected by taking one sample out of 205 

every four in the initial set; the remainder constituted the calibration set. 206 

 207 

2.5.3. Calibration development and validation procedure 208 

 209 

Calibration models for the prediction of the RWC of the olive leaf were developed using 210 

Modified Partial Least Squares (MPLS) regression (Shenk & Westerhaus, 1995a) with 211 

six cross-validation groups to avoid overfitting. SNV and DT and Multiplicative Scatter 212 

Correction (MSC) were used as pre-processing for scatter correction (Barnes et al., 1989; 213 

Dhanoa, Lister, Sanderson, & Barnes, 1994). Additionally, four derivative mathematical 214 

treatments were tested: 1,5,5,1; 1,10,5,1; 2,5,5,1; and 2,10,5,1. 215 

Best equations were selected according to the following statistics: coefficient of 216 

determination for calibration (r2
c), standard error of calibration (SEC), coefficient of 217 

determination for cross-validation (r2
cv) and standard error of cross-validation (SECV). 218 

However, in order to standardise the SECV value, another statistic, the residual predictive 219 

deviation (RPD), calculated as the ratio between the standard deviation (SD) of the 220 

calibration set to the SECV, was also calculated.  221 

The best model obtained for the calibration set, as selected by statistical criteria, 222 

was subjected to external validation and evaluated in accordance with the protocol 223 

outlined by Windham, Mertens, and Barton (1989).  224 
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 225 

3. Results and discussions 226 

 227 

3.1. Optimisation of in-situ olive tree analysis 228 

 229 

After the spectra taken from both sides of the leaf at the beginning of the study, it was 230 

decided to take spectra only from the adaxial side, because the leaf of the olive has a 231 

highly-pronounced central vein on the abaxial side, causing greater dispersion of light 232 

during analysis. The procedure of taking spectra only from the adaxial side of the leaf is 233 

consistent with the practice of such authors as Zhang et al. (2012) in Epipremnum aureum, 234 

and Warburton et al. (2014) and Yang et al. (2017). in Eucalyptus leaves. Specifically, 235 

the study carried out by Warburton et al. (2014) on Eucalyptus seedlings, aimed at 236 

determining which side of the leaf was most appropriate for NIRS analysis, concluded 237 

that there were no significant differences enabling a particular part of the leaf to be 238 

established for recording spectra, although it is important to note that Eucalyptus leaves 239 

do not exhibit the very prominent central vein that is a feature of olive leaves. 240 

After that and prior to the model development, it was necessary to optimise the 241 

NIRS analysis by means of the spectrum quality and repeatability measurement.  242 

Firstly, the existence of noise in the spectrum was evaluated (spectral range 1600–243 

2400 nm). To this end, the derivative treatment 1,1,1,1 was applied in order to determine 244 

the area of the spectral range affected by noise, given that it degrades the signal/noise 245 

relationship (Hruschka, 2001). After this process, the spectral range between 2312–2400 246 

nm was eliminated (Fig. 1). 247 

Secondly, spectral repeatability which is crucial to the construction of models that 248 

are both accurate and robust was evaluated. Statistical methods such as defined RMS cut-249 
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off limit can be useful for this purpose. The RMS cut-off was calculated as described in 250 

Section 2.4. 251 

The STDlimit for the samples analysed using the handheld instrument was 42,663 252 

μlog (1/R). Despite the importance of this parameter for fine-tuning new analytical 253 

methodologies and ensuring more robust models, no references have been found in the 254 

scientific literature that calculate STDlimit for the in situ analysis of olive leaves. In the 255 

present research, any sample whose triplicated screening scans yielded an RMS above 256 

this value was eliminated and repeated until values fell below that limit, thus ensuring a 257 

high degree of spectrum repeatability. It was found for example that the samples taken on 258 

16 March 2017 exhibited values far higher than the established STDlimit, despite the 259 

analysis of the leaves being repeated on numerous occasions. A detailed study was carried 260 

out of the various factors that could have affected the analysis on that day, arriving at the 261 

conclusion that the variation arose from the fact that a few days prior to the analysis a 262 

copper-based treatment was been applied, with the consequence that the particles 263 

deposited on the leaves caused the analysis to be distorted. The samples taken on that 264 

particular day were therefore eliminated, leaving a set consisting of the 235 remaining 265 

samples. 266 

 267 

3.2. Principal Component Analysis (PCA) 268 

 269 

PCA was performed on the set comprising the spectra recorded per day (N = 16), after 270 

eliminating those mentioned in section 3.1. Figure 2a shows the PCA loadings for intact 271 

olive leaves in the spectral range 1600–2312 nm, while Fig. 2b displays scores of the 272 

second and third components of the PCA model. These two components were chosen 273 

because although the first two principal components (PC1 and PC2) represented a high 274 
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proportion of the explained variance (82.23% and 16.57%, respectively), they did not 275 

facilitate the grouping of the samples in accordance with the phenological state; this 276 

grouping does however seem to become evident when the latent variables PC2 and PC3 277 

are used.  278 

The graphic representation of the loadings for PC2 and PC3 shows that the main 279 

absorption peaks for differentiating between the various phenological states of the olive 280 

tree are those related to water and carbohydrates respectively. Whereas the PC2 weighting 281 

coefficient exhibits a peak of water around 1900 nm, PC3 exhibits a band that is 282 

characteristic of carbohydrates (~1780 nm) (Shenk et al., 2008). The accumulation of 283 

carbohydrates in the plant differs in accordance with the phenological state that the plant 284 

is in at that time; thus, during the period of fruit formation and ripening; nutrients and 285 

carbohydrates will migrate from the leaf towards the fruit, accumulating in the latter 286 

(Fernández-Escobar, Moreno, & García-Creus, 1999). It therefore follows that the 287 

carbohydrate content in the leaf, represented by the third principal component, aids 288 

discrimination between the states the plant happens to be in.  289 

Score plotting revealed apparent grouping by phenological stages (Fig. 2b), as 290 

shown in Table 1. Six groups emerge, which range from the period of winter dormancy 291 

to the maturation of the fruit, encompassing the intermediate phases of flowering, setting 292 

and growth of the fruit (Rallo & Cuevas, 2017). 293 

In light of the PCA scores and bearing in mind the data set out in Table 1, it may 294 

be said that the phases of winter dormancy and flowering, which fundamentally occurs 295 

during the spring, when evapotranspiration is low (a rainy season), are related to PC2. 296 

The negative PC2 scores are associated with times of restricted water, which place the 297 

plants in situations of more acute hydrological stress. As it has already been mentioned, 298 

PC3 may be linked to carbohydrate content. This becomes particularly evident when 299 
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analysing the group pertaining to the swelling of the fruit, which exhibits a positive PC3 300 

score (Fig. 2b), setting it apart from the other samples and highlighting that in this phase 301 

there is a movement of carbohydrates from the plant’s various organs towards the fruit, 302 

where it is subsequently assimilated (Fernández-Escobar et al., 1999).  303 

León and Downey (2006) used PCA to differentiate between young and adult 304 

leaves in olive trees. They proposed that water content and various chemical compounds, 305 

particularly pigments, were responsible for this separation between the various ages of 306 

the leaf. In accordance with these authors, the distinction between the various 307 

phenological states could be due to the water and carbohydrate content of the leaf, 308 

although a depth study of the spectral characteristics of each state of the plant should be 309 

considered in future research. 310 

 311 

3.3. Population characterisation  312 

 313 

After applying the CENTER algorithm to the overall set (N = 235), two samples were 314 

identified as anomalous spectra. Once spectral outliers were removed, a set consisting of 315 

233 samples was used to develop calibration models. As described in section 2.5, the set 316 

was divided into a training set (N = 174) and a test set (N = 59).  317 

The distribution and statistics of the calibration and validation sets (mean, SD and 318 

CV) for the RWC are shown in Fig. 3. The structured selection based only on the spectral 319 

information treatments, such as CENTER algorithm, proved to be useful because the 320 

statistics for both sets were similar and the range in the calibration set encompassed the 321 

validation set. 322 

Although a priori it may seem that the RWC parameter exhibits a wide range, 323 

both for the calibration (77.23–96.24 %) and for the validation set (78.22–95.61 %), this 324 
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parameter actually exhibits severely restricted variability, as is evident from the low 325 

coefficients of variation obtained (Fig. 3). For the calibration set, 93% of the samples 326 

recorded an RWC of between 85% and 95%, while in the validation set 88% of the 327 

samples fell within this range, with very few samples (9 out of 174 and 5 out of 59 for the 328 

calibration and validation sets, respectively) recording RWC scores below 85%. 329 

The low variability (CVc = 3.37% and CVv = 3.95%) is due to the RWC in olive-330 

tree leaves not subjected to controlled water stress being around 90-95%, so this variation 331 

only derives from periods in which olives are suffering from water stress. Olive trees are 332 

drought tolerant, and leaves can reach extremely low relative water contents (75-80%) 333 

before losing turgor (Lo Gullo & Salleo, 1988). Therefore, values below 80% may 334 

correspond to extreme temperature events, which generally occur during the long dry 335 

season of the Mediterranean areas, where symptoms of dehydration are frequently 336 

observed and are generally associated with a low-potassium nutritional status (Fernández-337 

Escobar, García, & Benlloch, 1994), something that was not applicable in the case of the 338 

current trial. 339 

 340 

3.4. Calibration and validation for the prediction of the relative water content 341 

 342 

Statistics for the best models obtained using the various pre-treatments to determine RWC 343 

in olive leaves measured on-tree are shown in Table 2. 344 

According to Shenk and Westerhaus (1996) and Williams (2001), all models 345 

obtained enable classification of the RWC parameter between high, medium and low 346 

values (0.50 < r2
cv < 0.69), being the best of them the one obtained using MSC and the 347 

first derivative of the spectrum (SECV = 1.52%; r2
cv= 0.61; RPDcv = 2.01). 348 
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In the present study, the estimated SEL was 0.87%. According to Fearn (1986), 349 

the SECV is determined not only by the SEL but also reflects the error of the NIRS 350 

method and the chemometric method. If the value of SECV is less than two times the SEL 351 

of the reference method, the NIRS equation is fit for use (Windham et al., 1989), meaning 352 

that this would be considered as appropriate for use in the field. 353 

In order to compare the results obtained here to those obtained by other authors in 354 

leaves, the RPDcv statistic was used to standardise the SECV value. 355 

No other results have been found for determining RWC in olive leaves. However, 356 

various authors have used the technique to determine this parameter in a range of crops, 357 

initially using monochromator instruments in the laboratory. Zhang et al. (2012) reported 358 

good predictive capability (RPDcv = 2.73) in determining the RWC in Epipremnum 359 

Aureum subjected to various water stress treatments, using a monochromator instrument 360 

with a spectral range of 200–1100 nm and a resolution of 1 nm. Jin et al. (2017) reported 361 

superior results to those obtained here (RPDcv = 2.75) for Miscanthus leaves, using a 362 

monochromator instrument for the NIRS analysis with a wide spectral range (400–2500 363 

nm, every 2 nm). These authors also had a calibration set for the parameter being studied 364 

that exhibited greater variability (CV = 6.53%), compared to the present case (CV = 365 

3.37%), something that enables more robust models to be obtained (Shenk, Westerhaus, 366 

& Berzaghi, 1997). It is important to point out that both studies mentioned above carried 367 

out their RWC determinations with NIRS in the laboratory, whereas in the present study 368 

the analysis was conducted directly on the tree, with the MEMS-NIR instrument 369 

previously described. Moreover, the difference in predictive capacity between the first 370 

two spectrophotometers and the handheld instrument may reflect differences in spectral 371 

ranges, spectral resolution and in measuring area; the MEMS device measures an area of 372 

only around 4 mm2, whereas both monochromators scan the whole sample. 373 
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While there are no reports of the use of portable instruments to measure RWC in 374 

olive leaves, various authors have used this type of instrument to measure RWC in the 375 

leaves of Eucalyptus seedlings. Thus, Warburton et al. (2014) measured RWC using a 376 

MEMS-NIR (MicroPhazirTM NIR spectrometer) instrument in the 1600–2400 nm spectral 377 

range; the results were better (r2
cv = 0.88 and RER = 10.45) than those obtained here (r2

cv 378 

= 0.61 RER = 12.51), possibly owing to the fact that they had a calibration set with a 379 

greater range (15.40–99.30%) than the one in the present study (77.23–96.24%). 380 

According to Fearn (2014), although r2
cv can be useful for studying the predictive 381 

capability of the model, this is closely linked to the range of reference values, and this 382 

may provide a reason why the aforementioned authors reported a higher determination 383 

coefficient than that obtained here. In a similar trial and using a NIRS instrument that 384 

worked in the same spectral range (1600–2400 nm), Yang et al. (2017) obtained, for the 385 

in situ measurement of RWC in Eucalyptus seedlings, a predictive capability model 386 

(RPDc = 2.59) that was slightly higher to the one obtained here (RPDc = 2.09). This may 387 

be due to the fact that the authors in question had a calibration set with greater variability 388 

(SD = 6.33% and CV = 7.9%) than that in the present study (SD = 3.05% and CV = 389 

3.37%), as well as the difficulties implicit in olive leaves in terms of thickness, sheen, 390 

enervation, etc., compared to Eucalyptus leaves, something that may have effect on NIRS 391 

analysis. 392 

It should be noted that all these authors have conducted their experiments under 393 

controlled environmental conditions (temperature, humidity, irrigation, etc.), with 394 

situations involving induced water stress, thereby ensuring a set with a good and even 395 

coverage of the range. As Pérez-Marín, Garrido-Varo, and Guerrero (2005) point out, the 396 

distribution of samples within the calibration set is of great importance, because a uniform 397 
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distribution throughout the range of the parameter being studied helps to obtain robust 398 

models. 399 

Finally, Fig. 4 shows the regression coefficients for the best predictive model for 400 

the RWC parameter. The figure illustrates that the areas of the spectrum with greater 401 

weight in the model are located around 1720 nm, related to the C-H stretch first overtone 402 

and around 1936 nm, which corresponds to O-H bend second overtone (Osborne et al., 403 

1993). This makes sense, because the RWC in olive leaves is very high, at around 90-404 

95%. Furthermore, the area at around 2200 nm could be attributed to the C=O second 405 

overtone (Shenk, Workman & Westerhaus, 2008). 406 

 407 

3.5. External validation procedure 408 

 409 

After the development and analysis of the calibration models, the best model was 410 

subjected to external validation. For this purpose, a sample set not included in the 411 

calibration was used. Validation was performed using a set initially comprising 59 412 

samples. Prior to the validation procedure, four samples were excluded from the 413 

validation set because they displayed values of RWC (78.22, 79.08, 95.60 and 95.61%) 414 

beyond the range obtained after the development of the equation (83.34–95.42%) for the 415 

parameter analysed. A graphic representation of the reference values versus the NIR 416 

predicted values for RWC in olive leaves is shown in Fig. 5.  417 

The model developed for the prediction of the RWC complies with the limit 418 

established in terms of r2
p for its implementation in routine (r2

p > 0.60), as well as the 419 

confidence control limits for bias and SEP(c). The SEP value obtained shows a minor 420 

difference (0,09 %) compared to the SECV, and around 0.12% compared to the mean of 421 

the parameter, thereby confirming that the SECV provides a good estimate of the SEP 422 
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(Shenk et al., 2008). In addition, the slope (slope = 1.09) also falls within the established 423 

slope values (0.90–1.1) (Windham et al., 1989). 424 

These findings suggest that the NIRS equation obtained may be considered as a 425 

first step for the in situ measurement of RWC in olive leaves. This could eventually enable 426 

growers to ascertain the plant’s degree of water stress in real time, and to take appropriate 427 

and informed decisions about the irrigation of the crop.  428 

Under future scenarios, growers could use leaf RWC measures by NIRS 429 

technology to quickly determine in situ whether olive is suffering from water shortage, 430 

trying to prevent stressful conditions and supporting irrigation scheduling. 431 

In a practical sense, the best strategy to follow is to make a protocol in which the 432 

value of RWC corresponding to each phenological stage and specie is established. Values 433 

of leaf RWC rapidly measured using NIRS technology which were below those indicate 434 

that irrigation treatments would be necessary. This would be an excellent complement to 435 

the different routine scanning usually made, such as soil water content and tree 436 

evotranspiration demand. 437 

 438 

4. Conclusions 439 

 440 

The results of this study, which used a handheld NIR spectrophotometer, confirmed the 441 

viability of NIRS technology for the measurement of RWC in olive leaves on the tree. 442 

Non-destructive and rapid determination of this parameter provides a quantitative 443 

measure of the hydration status of the olive tree in the field, enabling optimal and precise 444 

management of irrigation, something that will prove of great importance to olive 445 

cultivation in Mediterranean countries. Climate change forecasts are predicting major 446 

periods of drought and an increase in temperatures in the region, where water will become 447 
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an increasingly scarce resource; this will make it imperative to be able to determine the 448 

RWC of olive trees with a view to maintaining the efficiency of photosynthesis and crop 449 

productivity.  450 

Over the coming years, further studies will be needed in order to improve the 451 

calibration specificity, accuracy and robustness of this procedure. 452 
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Table 1 - Olive phenological stages on date analysis. 610 

Measurement 
date 

Number of 
samples 

Phenological stage Mean temperature 
(ºC) 

Mean relative 
humidity (%) 

Leaf RWC (%) 

Min Max Mean 

1. 03/16/2016 10 Bud dormancy 14.40 74.10 89.81 93.31 92.40 

2. 03/30/2016 15 Flower development  16.60 61.90 89.40 93.10 92.10 

3. 04/06/2016 15 Flower development 17.60 54.80 90.40 95.10 93.20 

4. 04/21/2016 5 Flower development 16.30 68.60 91.50 96.20 93.50 

5. 04/28/2016 15 Flower development 19.20 64.80 91.70 95.80 93.50 

6. 05/04/2016 8 Flower development 20.50 41.00 86.80 93.00 90.50 

7. 05/23/2016 15 Fruit set  23.00 44.40 89.80 94.80 91.30 

8. 06/09/2016 16 Fruit set 29.50 42.10 85.50 89.40 91.80 

9. 06/15/2016 15 Fruit set 23.30 47.80 86.90 95.60 90.70 

10. 06/20/2016 15 Fruit growth  27.70 37.30 89.00 95.40 91.70 

11. 06/30/2016 15 Fruit growth 28.20 50.10 86.60 95.60 92.10 

12. 07/26/2016 22 End of stone 
hardening 

32.60 31.80 83.60 90.00 87.40 

13. 10/06/2016 22 Fruit ripening 24.30 52.90 77.20 88.70 84.10 

14. 11/02/2017 22 Fruit ripening 18.80 67.10 84.60 92.40 89.00 

15. 03/02/2017 15 Flower development 13.70 72.30 90.40 92.60 91.60 

16. 03/16/2017 15 Flower development 12.70 65.60 90.90 95.50 92.40 

17. 04/05/2017 10 Flower development 17.10 49.40 90.40 92.90 91.70 

 611 

 612 

 613 

614 
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Table 2 - MPLS regression statistics for NIR-based models for predicting RWC in 615 

olive leaves. 616 

Scatter 

correction 

Math 

treatment 
N Mean SD SEC r2

c SECV r2
cv RPDcv 

SNV + DT 1,5,5,1 167 90.82 2.55 1.68 0.57 1.78 0.52 1.71 

1,10,5,1 163 90.94 2.45 1.70 0.51 1.73 0.50 1.76 

2,5,5,1 163 90.71 2.50 1.51 0.64 1.58 0.61 1.93 

2,10,5,1 164 90.84 2.45 1.63 0.56 1.68 0.53 1.82 

MSC 1,5,5,1 161 90.79 2.42 1.46 0.64 1.52 0.61 2.01* 

1,10,5,1 163 90.81 2.45 1.58 0.59 1.63 0.57 1.87 

2,5,5,1 162 90.75 2.46 1.49 0.64 1.54 0.61 1.98 

2,10,5,1 166 90.85 2.54 1.82 0.49 1.86 0.47 1.64 

* Best model for RWC prediction. 617 

  618 
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Fig. 1 - First derivative spectra of olive leaves prior to removing the noise. 619 
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Fig. 2 - Loadings weight (a) and score plot (b) for the second (PC2) and third (PC3) 647 

principal components for olive leaf spectra. 648 
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*More information is displayed in Table 1. 672 
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Fig. 3 - Calibration and validation sets structure for the RWC. 675 
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Fig. 4 – Regression coefficients for the RWC predictive model. 680 
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Fig. 5 - Reference vs. NIR predicted data for the validation set. 682 
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