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Abstract 24 

BACKGROUND: The ability of near infrared (NIR) spectroscopy to authenticate 25 

individual bell peppers as a function of the growing system (outdoor or greenhouse) 26 

was tested using partial least squares discriminant analysis (PLS-DA). 394 bell 27 

peppers grown outdoors (130 samples) or in a greenhouse (264 samples) during the 28 

2015 and 2016 seasons, were selected for this purpose and analysed using a portable, 29 

handheld MicroPhazir MEMS instrument (spectral range 1600-2400 nm), working 30 

in reflectance. Subsequently, the potential of NIRS as a non-destructive sensor for 31 

in-situ quality (dry matter and soluble solid content) measurements, was 32 

investigated. 33 

 34 

RESULTS: The models correctly classified 89.73% and 88.00% of the samples by 35 

growing system, when trained with unbalanced and balanced sets, respectively, 36 

mainly due to the differences in physical-chemical attributes between bell peppers 37 

cultivated in both growing systems. Separate classification models for bell peppers 38 

grouped by ripeness (judged by the colour), allowed to classify 88.28%-91.37% of 39 

the samples correctly. The standard error of cross-validation (SECV) values for the 40 

quantitative models were 0.66% fw and 0.75 ºBrix for dry matter and soluble solid 41 

content, respectively.  42 

 43 

CONCLUSIONS: The results showed that NIRS can be used successfully for 44 

predicting the growing systems used in bell pepper production, which is of 45 

particular value to guarantee the authentication of outdoor-grown peppers. 46 

Additionally, the results showed that NIRS can be used simultaneously as a rapid 47 

preliminary screening technique to measure quality. 48 



3 

 

 49 

Keywords: NIR spectroscopy; Bell pepper; In situ authentication; Quality; portable NIR 50 

device. 51 

  52 



4 

 

INTRODUCTION 53 

In Spain, peppers are grown almost exclusively indoors - in greenhouses - although in 54 

some regions, as in the case of Andalusia, cultivation may take place outdoors.1 55 

 Bell peppers can be grown in greenhouses more compactly than outdoors. They 56 

are also pruned and trained differently: the former are cut back more severely in order to 57 

aerate the plants more inside the greenhouse, while in the latter system, the plants are 58 

allowed to grow more foliage to protect the peppers from the sun and chilly night-time 59 

temperatures.2 60 

 Likewise, peppers grown indoors have to be trained securely to support the fruits 61 

and prevent them from touching the ground or the branches from splitting, since the plants 62 

can reach up to 2 meters in height and the stems are far more tender than those grown 63 

outdoors. In contrast, peppers grown outdoors reach only one metre in height and do not 64 

need to be supported, as the stems are sturdier and do not grow high enough to bend or 65 

break.3 66 

 The variations in growing conditions between peppers grown outdoors and in a 67 

greenhouse can make an important difference to the quality of the product, especially in 68 

terms of the organoleptic characteristics linked to dry matter and sugar content. It should 69 

also be noted that consumer demand currently puts a high value on products which are 70 

local, seasonal and traditional, and peppers grown outdoors are favoured by these 71 

consumers.4 72 

 In general, consumers are interested in buying horticultural products obtained 73 

using this particular cultivation system and attribute higher quality standards to bell 74 

peppers grown in this specific way. It is therefore desirable for the horticultural 75 

production sector to have access to non-destructive technology which can carry out fast, 76 

highly accurate, in-situ analyses to guarantee the authenticity of the growing system. In 77 



5 

 

this way, the consumer will receive accurate information about the differences in quality 78 

between vegetables produced using different agronomic techniques and about their 79 

origin. In this field, NIR spectroscopy has proved to be an ideal way of providing 80 

authentication/certification of raw horticultural materials produced using different types 81 

of agricultural methods, as well as for the authentication of varieties.5-8 82 

 However, no papers in the scientific literature are dealing with the authentication 83 

of peppers using NIRS technology based on their origin (outdoor or greenhouse 84 

cultivation) and the possible differences in quality between fruits from the different 85 

growing systems. In fact, there are very few articles which incorporate the use of this 86 

technology to measure quality parameters in pepper. Thus, Sánchez et al.9 assessed the 87 

viability of NIRS to measure pesticide residues in intact, crushed, and dry extract system 88 

for infrared analysis (DESIR) peppers, while other authors10-13 carried out the analysis of 89 

a number of quality parameters in different types of peppers. 90 

 The aim of this study was to evaluate the viability of NIR spectroscopy in 91 

providing non-destructive, in situ authentication for the growing system - outdoor or in a 92 

greenhouse - of bell peppers. In addition, quantitative models were developed to predict 93 

two of the main quality parameters (dry matter content and soluble solid content) in intact 94 

bell peppers, which could help to classify peppers more easily by their origin. Particular 95 

attention was paid to the robustness of the models. 96 

 97 

MATERIALS AND METHODS 98 

Sampling 99 

394 bell peppers (Capsucicum annum L.) of different colours (green, red and yellow, 100 

depending on the degree of ripeness), grown outdoors (N = 130 bell peppers: green = 50, 101 

yellow = 41, red = 39) and in a greenhouse (N = 264 peppers: 88 of each colour), picked 102 
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in the 2015 and 2016 seasons, were analysed. The greenhouse samples were grown in the 103 

Region of Murcia (Spain), while the outdoor peppers were harvested in Santaella 104 

(Córdoba, Spain). 105 

 106 

Spectral set 107 

A handheld MEMS (micro-electro-mechanical system)-based NIR digital transform 108 

spectrometer (MEMS-NIRS) (MicroPhazir, Polychromix Inc., Wilmington, MA, USA), 109 

working in reflectance mode in the spectral range 1600-2400 nm with a non-constant 110 

interval of around 8 nm was used to collect the NIR spectra of all the samples in 111 

reflectance mode. Sensor integration time was 600 ms. The device was equipped with 112 

quartz protection to prevent dirt accumulation. Each spectrum was the mean of 5 scans 113 

with a lamp warm-up time of 45 seconds. To obtain the NIR spectra, four measurements 114 

were taken at the equatorial region of the fruits, which were then rotated 90° after each 115 

measurement. The four spectra were averaged to provide a mean spectrum for each fruit. 116 

 117 

Measurement of physical-chemical quality parameters  118 

Dry matter content was measured by desiccation at 105ºC for 24 h14; the final dry weight 119 

was calculated as a percentage of initial wet weight. Soluble solid content (SSC) in ºBrix 120 

was measured as the refractometer reading for the pepper juice, using a temperature-121 

compensated digital Abbé-type refractometer (model B, Zeiss, Oberkochen, Würt, 122 

Germany). 123 

All the samples were analysed in duplicate and the standard error of laboratory 124 

(SEL) was estimated from these duplicates (Table 7). All the measurements were 125 

performed immediately after taking the NIRS measurements. 126 

 127 
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Data Processing 128 

Before the spectral data was processed and using the WinISI II software package version 129 

1.50 (Infrasoft International, Port Matilda, PA, USA), a study was conducted to select the 130 

most suitable spectral range for the instrument to carry out the authentication and quality 131 

control of peppers. To achieve this, the 1,1,1,1 derivation treatment was applied (the first 132 

digit being the number of the derivative, the second the gap over which the derivative is 133 

calculated, the third the number of data points in a running average or smoothing, and the 134 

fourth the second smoothing) without scatter correction, which allows to highlight the 135 

areas of the spectrum where the signal/noise ratio is degraded.15 136 

 137 

Spectral repeatability 138 

Spectrum quality was evaluated using the Root Mean Square (RMS).16-17 This statistic 139 

indicates the similarity between different spectra of a single sample: in this case, between 140 

the four spectra collected per sample. To establish a threshold for this statistic, 36 bell 141 

peppers were selected, from which four spectra were taken in the equatorial region, 142 

rotating the fruit 90º after each measurement. An admissible limit for spectrum quality 143 

and repeatability was set following the procedure described by Martínez et al.18 to 144 

calculate the standard deviation (STD) limit from the RMS statistic and obtain an RMS 145 

cut-off value. 146 

 147 

Principal component analysis 148 

In order to study the relationship between the quality (dry matter and SSC) of the bell 149 

pepper and the growing system used (outdoor or greenhouse), Principal Component 150 

Analysis (PCA) was carried out.  151 
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PCA is a mathematical procedure that reduces the dimensionality of the data to 152 

uncorrelated variables, including in each component the maximum residual variance of 153 

the data, and each component therefore contains a representation of the data variation.19 154 

The PCA scores represent the weighted sums of the original variables without significant 155 

loss of useful information, and loadings (weighting coefficients) were used to identify the 156 

major variables responsible for specific features appearing in the scores. Matlab software 157 

(version 2015a, The Mathworks, Inc., Natick, Massachusetts, USA) was used to conduct 158 

PCA, using the mean centre, by which the mean spectrum of the group is subtracted from 159 

each spectrum, as a pre-treatment.20 160 

 161 

Authenticating bell peppers by growing method using NIR spectroscopy 162 

To carry out the non-destructive authentication of bell peppers according to their growing 163 

system, discriminant models were designed to classify the peppers into two groups: bell 164 

peppers grown outdoors and bell peppers grown in a greenhouse.  165 

Firstly, the spectral structure and variability of the sample population was studied 166 

to select the samples which would make up the training group. The CENTER algorithm 167 

was used for this, which is included in the WinISI II version 1.50 software. This algorithm 168 

was applied separately to each of the two training groups (130 outdoor-grown bell peppers 169 

and 264 greenhouse bell peppers). The mathematical treatments SNV (Standard Normal 170 

Variate) and DT (Detrend) for scatter correction were applied,21 and the 1,5,5,1 derivate 171 

mathematical treatment.22-23 After PCA, the center of the spectral population was 172 

determined in order to detect outlier samples. The Mahalanobis distance (GH) was 173 

calculated between each sample and the center; samples with a GH value greater than 4.5 174 

were considered outliers or anomalous spectra.16 After discarding outliers, the sampling 175 
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groups consisted of 128 samples of bell pepper grown outdoors and 259 samples of 176 

greenhouse-grown bell pepper. 177 

After ordering the sample set by spectral distances (from smallest to greatest 178 

distance from the center), a structured selection of an external validation set (28 samples 179 

for each classification group) was performed following Shenk and Westerhaus.24 180 

The difficulty involved in obtaining balanced learning groups in terms of the 181 

number of samples per class or classification category meant that its influence on the 182 

predictive capacity of the models had to be assessed. The results obtained were therefore 183 

contrasted with balanced and unbalanced classification models as regards the number of 184 

samples per class. 185 

The samples of the balanced groups were selected using the SELECT algorithm 186 

included in the WinISI II software package version 1.50.24 This algorithm enables spectral 187 

selection of a number of samples which are representative of the population as a whole, 188 

by calculating the ‘NH’ distance (Mahalanobis neighbour distance) between two spectra. 189 

An ‘NH’ of less than 0.6 implies that two spectra are too similar to each other 190 

(‘neighbours’). After this algorithm was applied, 100 samples of the ‘greenhouse-grown 191 

peppers’ group were selected, thus leaving the number of samples of the training group 192 

for the two classes equal, and the classification models were then developed. 193 

Discriminant models were constructed to authenticate bell peppers according to 194 

their growing system, using PLS-DA for supervised classification.23 Briefly, PLS-DA 195 

uses a training set to develop a qualitative prediction or calibration model that may 196 

subsequently be applied for the classification of new unknown samples. This model seeks 197 

to correlate spectral variations (X) with defined classes (Y), attempting to maximise the 198 

covariance between the two types of variable. In this type of approach, the Y variables 199 

used are not continuous, as they are in quantitative analysis, but rather categorical 200 
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‘dummy’ variables created by assigning different values to the different classes to be 201 

distinguished. Specifically, the PLS2 algorithm was applied, using the ‘‘Discriminant 202 

Equations’’ option in the WINISI II version 1.50 software. 203 

 All the models were designed using four cross validation groups (i.e. the 204 

calibration set was divided into four groups, and each group was then predicted using a 205 

calibration obtained from the other samples), a spectral range from 1600 to 2168 nm, 206 

signal noise eliminated at the end of the spectral range, and combined SNV+DT treatment 207 

for scatter correction. First- and second-derivative treatments were tested by applying 208 

1,5,5,1 and 2,5,5,1.22 209 

The precision of the models obtained was evaluated using the percentage of 210 

correctly-classified samples, both for the model and for each class. In addition, the 211 

standard error of cross validation (SECV) was evaluated. Most of the papers use the value 212 

of 1.5 as discrimination limit, so that, if one sample obtain a variable value over the limit 213 

for a given class, it will be classified as belong to this class. However, in this paper it was 214 

also used the minimum difference (MD) value, calculated as the product of the value of 215 

the model’s uncertainty factor (1.5) by the SECV, for the detection of uncertain samples 216 

when interpreting the results obtained. Samples with a MD higher than the MD value 217 

calculated should be considered as uncertain.25  Regression coefficients were also used to 218 

discuss the contributions of individual wavelengths to the qualitative PLS models. 26  219 

Next, after selecting the best classification model for each of the established types 220 

(unbalanced and balanced models), these were validated. In this case, an external 221 

validation procedure was also carried out to determine the predictive capacity of the 222 

model using a sample group different to that used in the training of the model. In both 223 

models (unbalanced and balanced), 56 samples were selected in a structured way (28 224 

samples for each of the culture systems: outdoor or greenhouse).24 225 
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Then, after analysing the results of the statistical tests which evaluated the 226 

influence of the cultivation systems and the state of ripeness (reflected by colouration) on 227 

the quality of the bell peppers harvested, new classification models were developed for 228 

the peppers according to the growing system, but also taking into account the colouration 229 

(green, yellow and red). 230 

For each of the colours analysed, the structure and spectral variability of the 231 

sample population was studied for each of the growing systems, using the same 232 

methodology described above. A structured selection of the external validation set (5 233 

samples for each classification group due to the low number of samples in the ‘outdoor-234 

grown’ category, once the bell peppers were separated by colour), solely on the basis of 235 

spectral data, was performed following Shenk and Westerhaus.24 236 

 237 

Quantitative models: sets, calibration development and validation procedure 238 

Quantitative models were built to predict the parameters of dry matter and SSC, using all 239 

the available bell pepper samples, independently of the cultivation system used. The 240 

samples for the calibration and validation groups were selected by applying the CENTER 241 

algorithm in the 1600-2168 nm spectral range. The pre-treatments SNV and DT were 242 

used for scatter correction,21 and one derivative mathematical treatment (Norris 243 

derivative) was performed (1,5,5,1).22-23 Thus, having ordered the sample set by spectral 244 

distances (from smallest to greatest distance to the centre) and once outlier spectrum 245 

samples were eliminated (N = 2), the 130 samples forming the validation set were selected 246 

by taking one of every 3 samples in the initial 392-sample set; the calibration set thus 247 

comprised the remaining 262 samples. 248 

Modified partial least squares (MPLS) regression16 was used to obtain equations 249 

for predicting dry matter and SSC. All the models were constructed using four cross-250 
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validation groups. The same signal pre-treatments and spectral region described earlier 251 

for authentication analysis were used for designing the quantitative models. The statistics 252 

used to select the best equations were: standard error of calibration (SEC), coefficient of 253 

determination of calibration (r2
c), standard error of cross-validation (SECV), coefficient 254 

of determination for cross-validation (r2
cv), RPDcv or ratio of the standard deviation of the 255 

original data (SD) to SECV and the coefficient of variation (CV), defined as the 256 

percentage ratio of the SECV to the mean value of the reference data for the calibration 257 

set. These latter two statistics enable SECV to be standardized, facilitating the comparison 258 

of the results obtained with sets of different means.27 Regression coefficients were also 259 

used to discuss the contributions of individual wavelengths to the quantitative models.26 260 

The best models obtained for the calibration set, as selected by statistical criteria, 261 

were subjected to evaluation using samples not involved in the calibration procedure. A 262 

test set composed of 130 samples, not used previously in the model, was evaluated 263 

following the protocol outlined by Windham et al.28 264 

 265 

Statistical analysis 266 

All the quantitative analyses were expressed as mean values ± standard deviation. The 267 

data for each attribute (dry matter and SSC) for outdoor and greenhouse bell peppers were 268 

analysed statistically by analysis of variance (ANOVA) using Statgraphics Centurion XV 269 

(StatPoint Inc., Warrenton, North Virgina, USA), and initially considering the origin of 270 

the pepper (outdoor or greenhouse cultivation) as a factor. Next, in order to study the 271 

influence of both the growing technique and the pepper colouring in the dry matter and 272 

soluble solids contents, a two-factor ANOVA variance analysis was carried out.  273 
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In both cases, the difference between the means were compared with the Fisher's 274 

Least Significant Difference (LSD) test, and differences at P < 0.05 were considered to 275 

be significant. 276 

 277 

RESULTS AND DISCUSSION 278 

Optimal spectral region and spectral repeatability 279 

Prior to the model development, it was necessary to optimise the NIRS analysis by means 280 

of the spectrum quality and repeatability measurement. 281 

The existence of noise in the spectrum was evaluated (spectral range 1600-2400 282 

nm). To this end, the derivative treatment 1,1,1,1 was applied in order to determine the 283 

area of the spectral range affected by noise, given that it degrades the signal/noise 284 

relationship.15 After this process, the spectral range between 2169–2400 nm was 285 

eliminated, and all the models were designed using the spectral range 1600–2168 nm. 286 

Spectral repeatability is crucial to the construction of models that are both accurate 287 

and robust. Statistical methods such as a defined RMS cut-off limit can be useful for this 288 

purpose.  289 

The mean STD for the samples analysed was 108,733 µlog (1/R), representing an 290 

RMS cut-off of 122,144 µlog (1/R).18 Any sample whose quadruplicated screening scans 291 

yielded an RMS above this value was eliminated and the scan was repeated until values 292 

fell below that limit, thus ensuring a high degree of spectrum repeatability. 293 

No reference to the calculated RMS cut-off value for intact peppers has been 294 

found in the literature, although this statistic is essential for generating the representative 295 

libraries. 296 

The mean spectrum of the four replicates of each sample was used for further 297 

analysis. 298 
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 299 

Principal Component Analysis 300 

PCA was performed on the set comprising the spectra recorded for each growing system 301 

(outdoor or greenhouse) of intact bell peppers. 302 

Fig. 1a displays scores of the second and third components of the PCA model. 303 

These two components were chosen because, although the first two principal components 304 

(PC1 and PC2) represented a high proportion of the explained variance 94.18% and 305 

5.46%, respectively, they did not facilitate the grouping of the samples according to the 306 

growing system used; this grouping does however seem to become more evident when 307 

the latent variables PC2 and PC3 are used. Fig. 1b shows the PCA loadings for intact bell 308 

peppers in the spectral range 1600-2168 nm.  309 

The graphic representation of the loadings for PC2 and PC3 (Fig. 1b) shows that 310 

the main absorption peaks for differentiating between the two growing systems of the bell 311 

peppers are those related to carbohydrates and water, respectively. The PC3 weighting 312 

coefficient exhibits a band of water around 1930 nm.29 The peak points down so more 313 

water (less dry matter) means a more negative score on PC3, which is exactly what the 314 

greenhouse-grown peppers show (Table 1). PC2 exhibits a band that is characteristic of 315 

carbohydrates (~1680 nm)29.  316 

 In the light of the PCA scores (Fig 1a) and bearing in mind the results of the 317 

ANOVA and LSD tests (Table 1) about the similarities or not in physical–chemical 318 

composition between bell peppers cultivated outdoors or in a greenhouse, it may be said 319 

that dry matter is indeed related to PC3 and significant differences (P < 0.05) were found 320 

for dry matter between both types of bell peppers. The positive PC3 scores are associated 321 

with fruits of higher dry matter content, while the negative PC3 scores are linked to fruits 322 

with lower dry matter values. As has already been mentioned, PC2 may be linked to 323 
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carbohydrate content, and considering that no significant difference (P > 0.05) was found 324 

for SSC between outdoor and greenhouse bell peppers (Table 1), no grouping of samples 325 

by SSC was apparent using this component.  326 

 327 

Authentication of bell peppers by NIRS 328 

Values obtained for number of samples (N), range, mean, standard deviation (SD), and 329 

coefficient of variation (CV) for each of the quality parameters measured for the training 330 

and validation sets used in the discriminant models for the authentication of bell peppers 331 

by growing system are shown in Table 2. 332 

Table 3 shows the results for the best classification models obtained, using PLS-333 

DA, to authenticate the origin of the intact bell peppers analysed (grown outdoors or in a 334 

greenhouse). 335 

The most accurate models were achieved using D1 log (1/R), for both unbalanced 336 

and balanced sets. The total percentages of correctly classified samples were 89.73% and 337 

88.00% for the unbalanced and balanced model, respectively. These results, regardless of 338 

the population size, confirm those obtained by Pérez-Marín et al.30, who showed that 339 

PLS2 is less sensitive to the fact that the populations are unbalanced. 340 

For the unbalanced model, 74 samples of the 100 forming the training group of 341 

outdoor-grown peppers were correctly classified, while for the greenhouse-grown 342 

peppers, 223 samples out of 231 were correctly classified. It is also important to note that 343 

of the 26 samples poorly classified in the outdoor-grown bell pepper category, 17 were 344 

within the 1.5 ± MD limit, while for peppers grown in the greenhouse, 7 out of the 8 345 

poorly classified samples are also within this limit. 346 

For the balanced model, 88 samples of the 100 contained in each of the two 347 

established training groups (outdoor and greenhouse) were correctly classified. In this 348 
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case, 11 out of the 12 samples poorly classified in the ‘outdoor-grown bell pepper’ 349 

category were within the limits established by the uncertainty factor ± MD, while for the 350 

greenhouse pepper category, the 12 misclassified samples were also within this limit. 351 

The models were then validated, using samples not included in their design. In the 352 

models created from the unbalanced populations, the percentage of correctly classified 353 

samples was 78.57% and 100.00%, for the outdoor and greenhouse cultivation systems, 354 

respectively (Fig. 2 and Table 3). Out of the 6 badly-classified samples in the ‘outdoor-355 

grown’ bell pepper category, 4 were in the interval between the uncertainty factor ± MD. 356 

In the case of the balanced populations, 85.71% of the peppers grown outdoors 357 

and 96.43% of greenhouse-grown bell peppers were correctly classified (Fig. 2 and Table 358 

3). It is important to note how the 4 poorly classified samples in the ‘outdoor-grown bell 359 

pepper’ category were within the range of 1.5 ± MD, which was the same case as the 360 

single badly-classified sample from the ‘greenhouse-grown bell pepper’ category.  361 

For the balanced model, the point clouds hardly change, but the threshold moves 362 

towards the outdoor-grown samples in that case (Fig. 2). The consequence of this is that 363 

for the smaller group the total accuracy is 78.57% when using the unbalanced set and 364 

increases to 85.71% when using the balanced set. Despite a low reduction in the accuracy 365 

of the larger set (100% versus 96.43%) when using the balanced set, the results for the 366 

smaller group set improve.  367 

To examine more deeply the results of the classification models obtained, the 368 

results of the ANOVA (dry matter and SSC) tests and the LSD (dry matter) test (Table 1) 369 

were also considered, along with the results of the PCA (Fig. 1). Significant differences 370 

(P < 0.05) were detected in terms of the dry matter content between both types of bell 371 

peppers (the dry matter content was significantly higher in peppers grown outdoors), and 372 

the SSC content was higher - although not significantly (P > 0.05) - in the outdoor group. 373 
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Likewise, as stated above, it is the PC3 related to water content and, therefore, to dry 374 

matter content, which facilitates the classification of bell peppers according to the 375 

cultivation system in which they are grown. 376 

An ANOVA analysis was later carried out to study both the influence of the 377 

cultivation system used and the colouring of the pepper, which indicates its state of 378 

ripeness, on the dry matter and SSC in the bell peppers analysed. The results of the 379 

ANOVA test for the parameter dry matter content pointed to the existence of significant 380 

differences (P < 0.05) between the cultivation systems and colouration, as well as in the 381 

interaction between the cultivation system and the colouration. For SSC, no significant 382 

differences (P > 0.05) were detected between the cultivation systems and in the 383 

interaction between the cultivation system and the colouration. However, significant 384 

differences were detected (P < 0.05) between peppers of different colourations. The 385 

results of the Fisher’s tests are shown in Table 4. 386 

After analysing the results of the ANOVA and Fisher’s tests, new models were 387 

designed to classify the peppers according to the cultivation system used and taking the 388 

colour into account.  389 

Values obtained for number of samples (N), range, mean, SD and CV for each of 390 

the quality parameters measured for the training and validation sets used in the 391 

discriminant models for the authentication of green, yellow and red bell peppers by 392 

growing system are shown in Table 5. 393 

The results obtained for the best classification models for bell peppers according 394 

to the cultivation system used and taking the colour into account are shown in Table 6. 395 

For peppers with green colouration, 113 samples of the 128 available were 396 

correctly classified; of these, the model correctly classified 35 of the 45 samples in the 397 

outdoor-grown category and 78 of the 83 samples in the greenhouse category. When these 398 
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models were externally validated, all the samples were correctly classified in the right 399 

category. 400 

For yellow bell peppers, the percentage of samples correctly classified in the 401 

training group was 91.37% (106 out of 116), with percentages of 87.87% (29 of 33) and 402 

92.77% (77 of 83) for peppers grown outdoors and in the greenhouse, respectively. When 403 

the models were validated, the 5 selected samples of outdoor-grown peppers were 404 

correctly classified, while 80% of the greenhouse peppers were correctly classified. 405 

In the case of red bell peppers, 107 out of the 118 samples were correctly classified 406 

(90.67%). Category by category, 28 out of 35 samples were in the outdoor category and 407 

79 out of 83 in the greenhouse category. When the models were validated, 80% and 100%, 408 

respectively, of the peppers from the outdoor and greenhouse categories were correctly 409 

classified. 410 

 The results of the classification models obtained (Tables 3 and 6) show that using 411 

NIR technology to predict the cultivation system of the intact bell peppers is a feasible 412 

option and it can be used to authenticate the origin of these vegetables. 413 

Fig. 3 shows characteristic peaks and valleys that indicate which wavelength 414 

ranges are important for the balanced classification model of bell peppers by growing 415 

system. The figure indicates that the most relevant regression coefficients are located in 416 

the region 1660-1880 nm which is associated to the absorption band of a C-H stretching 417 

first overtone corresponding to sugars. 31-32 Other relevant coefficients appear in the 418 

regions 1930-1990 nm, related to water absorption 31 and 2064-2144 nm, also related with 419 

different types of sugars. 32 420 

In the scientific literature, no predictive models have been found based on NIRS 421 

to authenticate the origin of bell peppers depending on the culture system used. Only 422 

Sánchez et al.9 assessed the feasibility of using NIR spectroscopy to classify peppers 423 
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according to the presence of pesticide residues, confirming that NIRS technology may be 424 

used to provide swift, non-destructive preliminary screening for pesticide residues.  425 

  426 

Predicting quality parameters in bell peppers using MPLS regression 427 

Table 7 shows the characteristics of the calibration and validation sets used to develop 428 

the predictive models for dry matter and SSC.  429 

Structured selection based wholly on spectral information, using the CENTER 430 

algorithm, proved suitable, in that the calibration and validation sets displayed similar 431 

values for range, mean and SD for all the study parameters; moreover, the established 432 

ranges of the validation lay within those of the calibration set.  433 

Table 8 shows the best calibration equations for the two quality parameters 434 

selected in bell peppers. For predicting dry matter and SSC in bell peppers, the models 435 

constructed allow to discriminate between high, medium and low values of these 436 

parameters.17, 27  437 

As regards the dry matter parameter, Ignat et al.12 reported predictive capacity 438 

(RPDcv = 3.8) higher than those obtained here using a diode array instrument (spectral 439 

range: 477-950 nm), although these authors used a wider calibration set since they chose 440 

fruits picked during the growing season, from the 34th day after anthesis (DAA) until full 441 

ripening (88th DAA), and when fully grown. 442 

For the SSC parameter, Penchaiya et al.10 used a diode array spectrophotometer 443 

(spectral range 780-1690 nm) to obtain predictive capacity (RPDcv = 2.08) superior to 444 

that of this research work, although the window for the spectrophotometer used (Corona 445 

Fiber VIS / NIR, Carl Zeiss Jena GmbH, Germany) was much wider than that of the 446 

instrument used here, and its measurement range was also different. In addition, these 447 
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authors used a wide range of sample attribute in the calibration set, obtained by random 448 

harvesting at various stages of ripeness. 449 

Also, for SSC, Ignat et al.12 used the same instrument and spectral range and 450 

obtain predictive capacity (RPDcv = 3.9); it is important to stress the greater variability of 451 

the fruits used, which also affected the ‘dry matter’ parameter, as aforementioned. 452 

Toledo-Martín et al.13, using an instrument based on MEMS technology with a 453 

1000-1800 nm spectral range, obtained models for SSC with a predictive capacity (RPDcv 454 

= 1.7) very similar to that obtained in this work. 455 

When these results are compared with those of other authors, the importance of 456 

the spectrophotometer’s measurement window can be seen for the robustness of the 457 

developed models. While MEMS instruments perform isolated readings on the product 458 

being studied with measurement windows of an area of only around 4 mm2, the diode 459 

array instruments tested by the authors quoted above perform a scan of the whole sample, 460 

which is of vital importance in hollow, irregularly-shaped vegetables such as bell peppers. 461 

Validations of the best calibration models obtained were performed using a set 462 

comprising 130 samples (Fig. 4). 463 

For dry matter and SSC, it should be stressed that bias lay within confidence limits 464 

for both parameters, although SEP(c) and r2
p results did not attain the recommended 465 

values for their routine use in equations,28 indicating that the NIRS equations constructed 466 

should be regarded as a first step in the finetuning of NIRS technology for the in-situ 467 

monitoring of internal quality parameters in this type of pepper.  468 

The SEL values for dry matter and SSC were 0.21% fw and 0.06 ºBrix, 469 

respectively (Table 7). Such a small SEL for SSC must be correctly interpreted when it 470 

is compared with the SEP value obtained for the prediction model. Firstly, it must be 471 

considered that sugar distribution is heterogenous in the fruit. It is for this reason that in 472 
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the NIR analysis four spectra were taken in the equatorial region of the fruit. However, 473 

the reference value was obtained as the refractometer reading for the pepper juice. It 474 

means that the sampling error is included in the SEP value but not in the SEL value. 475 

Consequently, NIRS model developed for SSC was characterised by questionable 476 

performance, since SEP value obtained exceeded 5*SEL.15 For dry matter, SEP fell 477 

between 3 and 4 SEL, indicating acceptable performance of NIRS model developed.  478 

These findings must be considered for the correct interpretation of the statistic 479 

SEP in intact fruits and vegetables. Likewise, the use of handheld NIRS spectrometers is 480 

justified given the fact that they ensure in a short period of time, a more precise and 481 

accurate guarantee of internal quality of the horticultural product analysed, allowing 482 

increased sampling either on the surface of the product tested or in the batch produced. 483 

Finally, the regression coefficients for the best predictive models for dry matter 484 

and SSC are illustrated in Fig. 5. These regression coefficients show significant 485 

importance for the region around 1650–1850 nm which correspond to the first overtone 486 

of the C-H stretching bonds and at around 1920-1960 nm due to O-H group contribution. 487 

The absorbance region at 2040–2100 nm could be attributed to NH and OH stretching 488 

modes besides C=O vibration bands. 29  489 

It is also important to point out that the most relevant peaks and valleys coincide 490 

in Fig. 3 (qualitative model) and in Fig. 5 (quantitative models). These results reinforce 491 

the idea that the discrimination between outdoor-grown and greenhouse-grown bell 492 

peppers has a scientific explanation based on the differences in dry matter and SSC 493 

between both type of bell peppers. Nicolaï et al. 33  indicate that the water absorption 494 

bands dominate the spectrum of fruit and vegetables, and it is not likely that minor 495 

constituents can be measured well. The authors also state that evidently, when the 496 

concentration of such a minor constituent is correlated to, e.g., sugar content, the 497 
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calibration results may seem reasonable. From the observation of Fig. 5, it can be detected 498 

that while peaks and valleys at 1680-1690 nm and 1800 nm are relevant for both, dry 499 

matter and SSC, the valley at 1776 nm only dominates in the SSC spectrum. The scientific 500 

literature concerning absorptions bands in fruits and vegetables are dominated by papers 501 

which use a more limited range of wavelengths that the considered in this study, due to 502 

many of them use transmittance instruments. Therefore, further studies are needed to 503 

confirm the bands indicated as the most relevant ones in the spectral region analysed. 504 

 505 

CONCLUSIONS 506 

The results confirm that NIR spectroscopy using a portable manual instrument based on 507 

MEMS technology can be used at any time in the food chain (from the field to the dinner 508 

table) to authenticate intact bell peppers depending on the type of cultivation (outdoor 509 

versus greenhouse) used for growing the crop. Also, NIRS technology could be used as a 510 

fast and in-situ preliminary screening technique for the classification of bell peppers by 511 

dry matter and SSC. However, further research is needed to make the quantification of 512 

these parameters more robust. 513 
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Table 1.  Dry matter and SSC in outdoor-grown and greenhouse-grown bell peppers  620 

Growing system Parameter 

Dry matter (% fw) SSC (ºBrix) 

Outdoor 7.02 (1.30) a 6.38 (1.38) a 

Greenhouse 6.63 (1.10) b 6.37 (1.30) a 
1 Standard deviations in brackets 621 

2 Different letters in the same column indicate statistical significance (P < 0.05) 622 

 623 
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 624 

Table 2. Number of samples (N), range, mean, standard deviation (SD), and coefficient of variation (CV) of the quality parameters for the 625 

different training and validation sets used in the discriminant models for the authentication of bell peppers by growing system.  626 

 Training set Validation set 

Unbalanced model Balanced model 

Outdoor Greenhouse Outdoor Greenhouse Outdoor Greenhouse 

DM 1 SSC 2 DM SSC DM SSC DM SSC DM SSC DM SSC 

N 100 100 231 231 100 100 100 100 28 28 28 28 

Range 4.48-11.37 3.85-9.50 4.52-9.94 3.85-10.05 4.48-11.73 3.85-9.50 4.74-9.24 3.90-10.05 4.74-9.49 4.20-9.15 5.05-8.67 4.50-8.50 

Mean 7.03 6.44 6.65 6.41 7.03 6.44 6.51 6.23 7.07 6.19 6.48 6.11 

SD 1.27 1.38 1.13 1.34 1.27 1.38 1.07 1.35 1.42 1.41 0.93 1.07 

CV (%) 18.07 21.43 16.99 20.90 18.07 21.43 16.44 21.67 20.08 22.78 14.35 17.51 

1 DM: Dry matter (% fw) 627 

2 SSC: Soluble solid content (ºBrix) 628 

 629 
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Table 3. Discriminant models for the authentication of bell peppers by growing 630 

system. PLS-DA  631 

Qualitative Group Unbalanced model Balanced model 

Percentage of correctly-classified samples: 

89.73% (297/331) 

Percentage of correctly-classified 

samples: 88.00% (176/200) 

Model SECV: 0.32 Model SECV: 0.35 

Number of synthetic variables: 11 Number of synthetic variables: 9 

Mathematical treatment: 1,5,5,1-SNV+DT Mathematical treatment: 1,5,5,1-

SNV+DT 

Growing system Training set Validation set Training set Validation set 

Outdoor 74.00% (74/100)  78.57% (22/28) 88.00% (88/100) 85.71% (24/28) 

Greenhouse 96.54% (223/231) 100.00% (28/28) 88.00% (88/100) 96.43% (27/28) 

 632 

 633 
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Table 4. Dry matter and SSC in outdoor-grown and greenhouse-grown bell peppers  634 

Growing system Parameter 

Dry matter (% fw) SSC (ºBrix) 

Green Yellow Red Green Yellow Red 

Outdoor 5.91 (0.70) b 7.46 (0.96) d 7.96 (1.16) e 5.06 (0.63) a 6.77 (0.81) b 7.61 (1.00) c 

Greenhouse 5.62 (0.59) a 6.58 (0.67) c 7.69 (0.83) d.e 4.92 (0.49) a 6.62 (0.65) b 7.59 (0.88) c 

1 Standard deviations in brackets 635 

2 Means with different superscripts differ significantly (P < 0.05) 636 

 637 
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Table 5. Number of samples (N), range, mean, standard deviation (SD), and coefficient of variation (CV) of the quality parameters for the different training 638 

and validation sets used in the discriminant models for the authentication of bell peppers of different colours by growing system.  639 

 640 

 Green bell peppers Yellow bell peppers Red bell peppers 

Training set Validation set Training set Validation set Training set Validation set 

Outdoor Greenhouse Outdoor Greenhouse Outdoor Greenhouse Outdoor Greenhouse Outdoor Greenhouse Outdoor Greenhouse 

DM1 SSC2 DM SSC DM SSC DM SSC DM SSC DM SSC DM SSC DM SSC DM SSC DM SSC DM SSC DM SSC 

N 45 45 83 83 5 5 5 5 33 33 83 83 5 5 5 5 35 35 83 83 5 5 5 5 

Range 4.48-

7.68 

3.85-

7.90 

4.52-

7.23 

3.85-

6.10 

5.26-

7.33 

4.60-

6.00 

5.33-

6.21 

4.65-

5.60 

4.97-

9.64 

4.80-

8.35 

5.14-

8.33 

5.30-

8.40 

7.04-

8.63 

6.40-

7.40 

5.53-

7.69 

5.90-

8.25 

5.11-

11.73 

5.05-

9.20 

5.66-

9.50 

5.60-

10.05 

8.09-

8.82 

7.30-

9.50 

6.80-

9.94 

6.70-

8.80 

Mean 5.90 5.06 5.61 4.92 6.07 5.10 5.76 4.95 7.43 6.80 6.56 6.60 8.05 6.93 6.80 6.91 7.87 7.47 7.67 7.57 8.28 8.38 7.98 7.80 

SD 0.69 0.75 0.60 0.50 0.83 0.58 0.35 0.38 0.93 0.82 0.66 0.64 0.64 0.42 0.85 0.87 1.22 0.98 0.81 0.88 0.30 0.88 1.23 0.87 

CV (%) 11.68 14.93 10.74 10.21 13.75 11.43 6.15 7.69 12.56 12.01 10.12 9.71 8.00 6.03 12.56 12.60 15.50 13.10 10.52 11.67 3.66 10.49 15.37 11.18 

1 DM: Dry matter (% fw) 641 

2 SSC: Soluble solid content (ºBrix) 642 

 643 
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Table 6. Discriminant models for the authentication of bell peppers of different colours by growing system. PLS-DA  644 

Qualitative 

Group 

Green bell peppers Yellow bell peppers Red bell peppers 

Percentage of correctly-classified samples: 88.28% 

(113/128) 

Percentage of correctly-classified samples: 91.37% 

(106/116) 

Percentage of correctly-classified samples: 90.67% 

(107/118) 

Model SECV: 0.34 Model SECV: 0.35 Model SECV: 0.33 

Number of synthetic variables: 3 Number of synthetic variables: 10 Number of synthetic variables: 3 

Mathematical treatment: 2,5,5,1-SNV+DT Mathematical treatment: 1,5,5,1-SNV+DT Mathematical treatment: 1,5,5,1-SNV+DT 

Growing system Training set Validation set Training set Validation set Training set Validation set 

Outdoor 77.77% (35/45)  100.00% (5/5) 87.87% (29/33) 100.00% (5/5) 77.77% (28/35)  80.00% (4/5) 

Greenhouse 93.97% (78/83) 100.00% (5/5) 92.77% (77/83) 80.00% (4/5) 93.97% (79/83) 100.00% (5/5) 

 645 

 646 
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Table 7. Number of samples (N), range, mean, standard deviation (SD), and coefficient of variation (CV) for the calibration and validation 647 

sets and standard error of laboratory (SEL) 648 

Parameter Calibration set Validation set SEL 

N Range Mean SD CV N Range Mean SD CV 

Dry matter (% fw) 262 4.48-11.73 6.78 1.16 17.10 130 4.52-9.64 6.68 1.20 17.96 0.21 

SSC (ºBrix) 262 3.85-10.05 6.39 1.29 20.18 130 3.85-10.05 6.33 1.39 21.95 0.06 
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35 

 

Table 8.  Calibration statistics for NIR-based models for predicting quality parameters in 650 

intact bell peppers 651 

Parameter Math treatment Mean SD SECV r2
cv RPDcv CV 

(%) 

Dry matter (% fw) 1,5,5,1-SNV+DT 6.72 1.08 0.66 0.62 1.64 9.82 

SSC (ºBrix) 1,5,5,1-SNV+DT 6.31 1.24 0.75 0.63 1.65 11.88 

652 
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Figure 1. Scores plot (a) and loadings weight (b) for the second (PC2) and third (PC3) 653 

principal components for intact bell peppers. 654 
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Figure 2. Values of the discriminatory variable obtained for the different validation 681 

groups. Unbalanced and balanced models. 682 
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Figure 3. Regression coefficients for the bell pepper discriminant analysis. Balanced 684 

model. 685 
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Figure 4. Reference versus NIR predicted concentration of dry matter (a) and SSC (b) 707 

in bell pepper. 708 
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Figure 5. Regression coefficients for bell pepper dry matter and soluble solid content 712 
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