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Summary 21 

The viability of using near infrared (NIR) spectroscopy was studied as a non-destructive 22 

analytical technique with the potential of being applied in situ to establish quality 23 

standards and the postharvest shelf-life of oranges kept in cold storage, as well as to 24 

detect substandard produce. In specific terms, it was applied to assessing the viability of 25 

increasing the period of postharvest storage depending on the quality exhibited by the 26 

produce. Initially, the spectral information from 80 oranges stored for up to four weeks 27 

in refrigeration chambers was used, this being the maximum postharvest storage time in 28 

the citrus industry in the south of Spain, to establish the natural variability in spectra 29 

from refrigerated oranges meeting quality standards. The processing of the spectral data 30 

was carried out using principal component analysis and the spectral distances between 31 

the sets (fruit belonging to weeks 1 to 4 of cold storage) were calculated using n-32 

dimensional statistics such as the Mahalanobis distance. Subsequently, oranges stored 33 

for between five and ten weeks were spectrally analysed and their distances from the 34 

standard or control population, described above, were calculated. The results were 35 

represented in the form of a Shewhart control chart, in which the mean scores and the 36 

corresponding control limits serving as warning systems were established. The findings 37 

suggest that NIR spectroscopy and the use of spectral distances will enable an 38 

innovative quality control system to be developed, based on spectral information that 39 

allows the establishment of quality standards in oranges, and the detection of non-40 

standard produce. 41 
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1. Introduction 46 

 47 

 At present the quality control and traceability of oranges is exclusively based on 48 

destructive pre- and postharvest analyses in the laboratory on a number of samples per 49 

batch, despite the high degree of variability in the produce (Obenland et al., 2009; 50 

Kallsen et al., 2011). Although the traditional physical-chemical methods are accepted 51 

for determining the quality of citrus fruit, they involve a series of disadvantages that 52 

need to be borne in mind; primarily being destructive, time consuming and they do not 53 

enable analysis to be carried out when the fruit is ripening on the tree or in postharvest 54 

cold storage. Moreover, the samples chosen may not be representative of the quality of 55 

the consignment received by the industry, given the variability exhibited by oranges 56 

even within the same variety and batch. 57 

 Once the oranges have been picked, the freshly-processed citrus industry usually 58 

carries out postharvest storage of the fruit in refrigerated conditions at a temperature of 59 

3-8°C, depending on the cultivar, fruit maturity and the production area (Arpaia and 60 

Kader, 1999). 61 

Obenland et al. (2008) point out that during the postharvest cold storage of 62 

oranges, their soluble solid content (SSC) increases while their titratable acidity (TA) 63 

decreases, giving rise to an increase in the ripening index (SSC/TA) as the time in cold 64 

storage is extended. The same authors report that the evaluations of tasting panels 65 

indicated that the “fresh” flavour of oranges diminishes progressively as a result of such 66 

storage. In addition, fruit held in cold storage (5 ºC, HR: 85-90%) for three weeks 67 

exhibit tighter peel compared to those that have just been harvested (0 weeks of cold 68 

storage) or those stored for six weeks at 5 ºC and a relative humidity of 85-90%. 69 
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 For the citrus industry in general and the fresh fruit industry in particular, it is 70 

extremely important not only to classify fruit in terms of their quality upon delivery but 71 

also to have the ability to establish product quality standards and rapid and accurate 72 

automated systems to control the quality. This is necessary in order that the fruit always 73 

exhibits optimal and homogeneous characteristics, enabling batches to be accepted or 74 

rejected on the basis of such quality in a matter of seconds, as well as establishing the 75 

maximum period of cold storage that enables this standard to be maintained. To realise 76 

this rapid and non-destructive analytical technologies that are not limited of cost or 77 

analysis time should be used which will enable decisions to be taken and actions 78 

implemented in real time, aimed at ensuring the quality of citrus fruit and the approval 79 

of batches, in terms not only of the external appearance but also internal quality. 80 

 NIR spectroscopy currently provides one of the most practical ways of meeting 81 

such requirements, since it is non-invasive and combines speed, ease of use and highly 82 

accurate measurements with low analysis costs and considerable versatility (Nicolaï et 83 

al., 2007). This enables its use at various levels of decision-making, both in the field, 84 

prior to harvesting and subsequently, in the industrial setting, allowing postharvest 85 

decisions to be taken concerning the quality and shelf-life of fresh produce during its 86 

cold storage (Sánchez and Pérez-Marín, 2011). 87 

This technology has already been successfully applied in the compound feed 88 

industry for the determination of quality control standards in accordance with the 89 

quality requirements established for the different raw materials comprising the feeds in 90 

question (Montoya et al., 2013); hitherto there have not existed any applications for 91 

establishing quality control tests in the citrus industry. 92 

 Process control is nowadays an indispensable tool in overseeing processes 93 

carried out in the agri-foods industry, once such process being the postharvest 94 
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preservation of fruit in cold storage. One of the oldest process control tools is the 95 

Shewhart chart (Shewhart, 1931) in which statistics derived from measurements on the 96 

process are plotted in time sequence on a chart that has limits defining the variability 97 

expected from an in-control process. These limits come from the assumed distribution 98 

of the statistic, often but by no means always a normal distribution. The application of 99 

tools such as Shewhart control charts enables compliance testing to be conducted and 100 

substandard produce do be identified, facilitating quality control and the process 101 

monitoring. One main advantage of Shewhart control charts is the ability to identify 102 

anomalous variability in the process to be reliably identified, thereby contributing to 103 

enhancements in quality (Gejdoš, 2015). They also offer a more flexible tool for dealing 104 

with any non-compliant produce that is encountered, because the spectrum provides 105 

comprehensive information about the product, encompassing highly diverse aspects 106 

related to quality (Montoya et al., 2013). 107 

 The use of NIR sensors designed for in situ applications enables real-time 108 

decision-making systems to be installed in the food chain, improving the productivity 109 

and quality control of the products in question (Sánchez et al., 2012, 2017; Torres et al., 110 

2016; De la Roza-Delgado et al., 2017; Zhang et al., 2017). This in situ control, much 111 

needed in the fresh orange sector, is made possible thanks to two characteristics of the 112 

recent developments in NIR instrumentation: miniaturisation and portability.  113 

Such sensors have thus been used to determine the quality of oranges on the tree 114 

(Sánchez et al., 2012; Torres et al., 2016). No NIRS studies have been found in the 115 

scientific literature however that address the application of this technology to determine 116 

either the compliance of batches with the quality criteria set out in legislation or by the 117 

fresh fruit-handling industry itself, or the postharvest shelf life in cold storage in a way 118 

that is designed to ensure such standards. 119 
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 The goal of the present research is to develop a methodology involving the in 120 

situ use of portable NIR sensors to establish a quality control system for oranges kept in 121 

cold storage based exclusively on spectral information, and to determine the optimal 122 

duration of postharvest cold storage for these fruits, with the aim of complying with the 123 

standards and despatching the produce with homogeneous characteristics. 124 

 125 

2. Material and methods 126 

 127 

2.1. Sampling 128 

 129 

 190 oranges (Citrus sinensis, L. cv. ‘Navelina’), grown in Palma del Río 130 

(Córdoba, Spain), were picked at commercial maturity on 10 January 2017. The oranges 131 

were taken to the premises of Zamefruit, S.L.L. (Palma del Río, Córdoba, Spain) where 132 

they were industrially processed (washing and disinfection, waxing and size sorting) 133 

and placed in cold storage at 4 ºC and 90% RH, for a maximum storage period of 10 134 

weeks, and subjected to a weekly sampling process (20 oranges per week, except the 135 

eighth week, in which 10 samples were analysed).  136 

During cold storage, all the oranges were weighed on a weekly basis and given a 137 

visual examination in order to detect possible disorders. 138 

 The oranges were subjected to both a spectral and a physical-chemical analysis 139 

at the laboratories of the University of Córdoba. Prior to the spectral acquisition and the 140 

physical-chemical analyses, the oranges were equilibrated to room temperature (20 ºC). 141 

 142 

2.2. NIRS spectral acquisition 143 

 144 
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For the purposes of acquiring the NIR data of the intact oranges a Phazir 2400 145 

(Polychromix, Inc., Wilmington, MA, USA) was used in reflectance mode. This is a 146 

compact and manual instrument, with a built-in DTS-NIR spectrophotometer based on 147 

micro-electro-mechanical system (MEMS) technology and a tungsten light source to 148 

illuminate the sample in the near infrared region. The reflected light is collected and 149 

measured using a single InGaAs photodetector, and the instrument has no moving parts. 150 

The spectrophotometer scans in a non-constant interval of 8 nm, over a range of 151 

wavelengths covering 1600-2400 nm. The integration time of the sensor is 600 ms. The 152 

MEMS device measures an area of approximately 4 mm2 and is equipped with quartz 153 

protection to prevent dirt from entering and to facilitate cleaning of the contact area.  154 

For the NIR spectral readings, four measurements were carried out at the equator 155 

of each fruit, located 90º from each other. The four spectra were averaged to obtain a 156 

mean spectrum per fruit. 157 

 158 

2.3. Reference data 159 

 160 

 Individual oranges were weekly weighed using an electronic balance (0-1,000 ± 161 

0.01 g; P1000 N, Metter-Toledo, GmbH, Greifensee, Switzerland). The firmness of the 162 

fruit was determined as the resistance of the peel and the pulp to penetration, according 163 

to the Magness-Taylor method with a Universal Testing Machine (model 3343, single 164 

column, Instron, Norwood, MA, USA). The velocity was set at 0.0016 m/s (100 165 

mm/min), using a load cell of 1000 N. The firmness was defined as the force necessary 166 

to penetrate an orange to a depth of 10 mm, using a 6 mm diameter probe. The fruit was 167 

placed with the peduncle-calyx axis in a horizontal position for two measurements, the 168 

first in a position around the equator of the fruit, and the second having turned it 180º. 169 
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Thereafter the oranges were individually squeezed using a domestic juicer, to determine 170 

SSC and TA in accordance with Obenland et al. (2008). BrimA was calculated using the 171 

equation established by Jordan et al. (2001): 172 

𝐵𝑟𝑖𝑚𝐴 = 𝑆𝑆𝐶 − 𝑘(𝑇𝐴) 173 

where k is a constant that reflects the greater sensitivity of the tongue to TA 174 

compared to SSC. K was assigned a value of 4, in accordance with Obeland et al. 175 

(2009).  176 

All the samples were analysed in duplicate and the standard error of laboratory 177 

(SEL) was estimated from these duplicates. 178 

 179 

2.4. Processing the spectral and reference data and constructing the Shewhart control 180 

charts  181 

 182 

 To determine the optimal duration of postharvest cold storage for oranges and 183 

the quality parameters that have the greatest impact on the postharvest shelf-life, a 184 

methodology based on Shewhart control charts (Sanusi et al., 2017) was used, based on 185 

the values of spectral distances (Mahalanobis distance, GH) and also the reference 186 

values exhibited by the quality parameters: weight, firmness, SSC, TA and BrimA. 187 

 First, following the procedure set out by Montoya et al. (2013), a quality 188 

standard for oranges kept in cold storage (4 ºC; 90% RH) was spectrally defined using 189 

principal component analysis (PCA); this comprised oranges kept in cold storage for a 190 

maximum duration of four weeks (N = 80 samples), the typical postharvest storage time 191 

for fruit among companies handling fresh oranges in the south of Spain. Next, the 192 

standard was spectrally compared to the one exhibited by the rest of the oranges kept in 193 

cold storage for a maximum period of ten weeks, with comparisons being independently 194 
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carried out on fruit pertaining to weeks: five (N = 20 samples), six (N = 20 samples), 195 

seven (N = 20 samples), eight (N = 10 samples), nine (N = 20 samples) and ten (N = 20 196 

samples). The standard that had been established was used to verify whether the 197 

samples stored for the remaining weeks (weeks five to ten in cold storage) continued to 198 

comply with the quality standard initially established, in other words a quality control 199 

test was applied. The data were processed using WinISI II software package ver. 1.50 200 

(Infrasoft International LLC, Port Matilda, PA, USA) to calculate the PCA and the 201 

spectral distances based on GH (Shenk and Westerhaus, 1991). 202 

The limits for the Shewhart charts are the extreme percentiles of the in-control 203 

distribution of the plotted statistic. When these are means, this is usually assumed to be 204 

normal. However, the distribution of GH is non-normal, so in order to calculate the 205 

warning limit and action limits for GH, a program was developed in MatLab software 206 

(version 2015a, The Mathworks, Inc., Natick, Massachusetts, USA). The GH statistic in 207 

WinISI is defined as D/p, where D is the Mahalanobis distance and p is the number of 208 

principal component or partial least squares (PLS) factor scores used to calculate D. For 209 

data originating from a normal distribution, the distribution of D is 2 with p degrees of 210 

freedom. This distribution has mean p, so GH=D/p has mean 1. To construct a control 211 

chart, the mean line is positioned at level 1, while the upper warning and action limits 212 

are positioned at the levels that correspond to the 97.5% and 99.5% percentiles of 2
p 213 

divided by p. Small GH values are not indicative of problems, so the chart does not 214 

require lower limits.  215 

Subsequently, the GH calculated for the various samples stored for between five 216 

and ten weeks were represented in the aforementioned chart, with the goal of identifying 217 

the orange fruit that did not fulfil the quality standard established by the industry. In 218 
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addition, the data was used to determine whether the optimal period of cold storage, 219 

complying with this standard, could or could not exceed four weeks. 220 

 Then, in order to interpret the results of the preceding spectral analysis and 221 

employing the reference data for the quality standards i.e. weight, firmness, SSC, TA 222 

and BrimA, the Shewhart control charts were created for these parameters. The mean of 223 

the parameter and the standard deviation was calculated with the reference data of the 224 

80 samples comprising the standard, as well as warning and action limits, in this case ± 225 

2 and 3 times the standard deviation, assuming a normal distribution for the plotted 226 

statistics. These charts displayed the values exhibited by the selected quality parameters 227 

for samples kept for between five and ten weeks in cold storage.  228 

In order to explore further a PLS analysis was carried out for each of the 229 

firmness and SSC parameters, again creating Shewhart control charts for the GH values 230 

from these PLS analyses, using the GH values of the 80 control samples to set limits 231 

and then displaying and the GH values exhibited by the samples kept for between five 232 

and ten weeks in cold storage, and comparing them to the established standard. 233 

 234 

3. Results and discussion 235 

 236 

3.1. Definition of the quality standard, determination of the optimal storage time and 237 

analysis of conformity 238 

 239 

 Having defined the quality standard based on the PCA with the samples kept for 240 

between one and four weeks in cold storage, established the warning and control limits 241 

and plotted the rest of the samples in terms of these axes (Fig. 1), the samples from 242 

weeks five to ten that did not meet the standard were identified. Thus, in storage weeks 243 
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five and six, one sample was found beyond the limit in each respectively, three samples 244 

exceeded the action limit in week seven, two samples exceeded the action limit in week 245 

eight, three samples exceeded the action limit in week nine, and one sample exceeded 246 

the action limit in week ten. 247 

 Figure 1 shows how, in weeks five and six, samples 91 and 118 were clearly 248 

anomalous samples from the outset, in other words, the reason they exceeded the limits 249 

was not their postharvest evolution, but rather than from the outset they had exceeded 250 

the normal limits for samples of oranges of the type being analysed. Thus, sample 91 251 

has a lower weight (160.70 g) than all the samples of that week when the mean for week 252 

five was 244.16 g, while sample 118 had a considerably higher titratable acidity score 253 

than the rest of the samples that week, with a citric acid reading of 1.08%, when the 254 

mean citric acid score for week six was 0.74% (data not shown). 255 

These results suggest that, although the postharvest duration of oranges kept in 256 

cold storage by the citrus industry in the south of Spain has been set at four weeks, this 257 

period could be extended by another two weeks, up to six weeks without compromising 258 

quality standards. This option would enable the industry to adapt to demand and to 259 

fluctuations in prices by prolonging postharvest cold storage for up to two weeks in 260 

periods when this would prove advantageous. However, from week seven onwards the 261 

samples start to deviate more often from the standard, exceeding the warnings and 262 

limits in place. 263 

 Subsequently, by employing the evolution of the quality parameters data during 264 

cold storage, Shewhart control charts were created in order to better understand which 265 

factors have a bearing on the postharvest deterioration of the produce and what is the 266 

most limiting parameter or parameters for maintaining postharvest quality during cold 267 

storage (Fig. 2 and 3). 268 
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 Analysis of the control charts shows that in the control chart for firmness the 269 

scores of the samples fall progressively over the course of the cold storage between 270 

weeks five and ten, and sample 188 in week ten exceeds the lower warning limit. In the 271 

SSC control chart, sample 83 in week five, sample 120 in week six, and samples 151, 272 

160 and 162 in week nine exceed the upper warning limit, while sample 104 in week six 273 

and sample 136 in week seven exceed the upper action limit. 274 

 Analysing the control charts for the physical-chemical parameters (control charts 275 

for weight, TA and BrimA not shown) being studied, it is evident that the firmness and 276 

SSC parameters are decisive in establishing the evolution of the quality of the oranges 277 

during cold storage, which is consistent with Obeland et al. (2008).  278 

 For the results, a further PLS analysis was carried out with the spectral data for 279 

the firmness and SSC parameters in order to further elucidate a deeper exploration of 280 

the results obtained in the PCA. 281 

 Both the PLS analysis for firmness (Fig. 4) and the one for SSC (Fig. 5) revealed 282 

31 samples that exceeded the action limit. Samples 85 and 91 (week five), 118 (week 283 

six), 128, 129, 131, 134 and 137 (week seven), 141, 144 and 148 (week eight), 163, 164 284 

and 169 (week nine), and 173, 178, 181, 188 and 190 (week ten) all exceeded the 285 

established action limit both in the firmness and the SSC PLS analysis, which indicates 286 

that these parameters are linked and are determinant in maintaining the established 287 

quality standards during the postharvest cold storage of oranges. 288 

 Analysis of Figures 4 and 5 shows that the samples of weeks five and six are the 289 

ones that best met the established quality standard, given that all the samples complied, 290 

except the samples 85, 91 and 118 in weeks five and six, respectively, for both 291 

parameters and the sample 97 for the firmness parameter. Moreover, the samples 85 and 292 

97 exhibited two of the highest citric acid scores in week five (0.73 and 0.81% citric 293 
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acid, respectively) when the mean for that week was 0.68% citric acid. The failure of 294 

samples 91 and 118 to comply with the quality standards has already been alluded to. 295 

The PLS analysis, like the PCA analysis, confirms that the postharvest cold storage of 296 

the oranges could be extended by another two weeks, i.e., six weeks from the time of 297 

harvesting, while maintaining the standard established by the industry. It is evident from 298 

the Shewhart control chart for the PCA that the samples exhibit less variation in weeks 299 

five and six than in the Shewhart control chart based on the PLS analysis of firmness 300 

and SSC. This is an indication, revealing that these two factors clearly determine the 301 

postharvest cold storage time of oranges, with the firmness parameter being the most 302 

determinant of the two in establishing the commercial shelf-life. 303 

 304 

4. Conclusions 305 

 306 

 The results suggest that spectral NIR analysis combined with the Shewhart 307 

control charts derived from the spectral information and the physical-chemical analyses 308 

carried out constitute a highly useful tool for monitoring oranges during cold storage, 309 

and for determining the maximum postharvest period. The data enables cases of non-310 

compliance with the quality standards established by the industry to be detected. The 311 

research may be considered as a viability study for fine-tuning a methodology that 312 

enables the application of NIR spectroscopy to the monitoring of processes and 313 

products and the establishment of quality control tests in the citrus industry, providing it 314 

with a highly flexible and innovative quality control strategy consistent with its goals. 315 

Future research will need to employ a broader and more varied set of samples enabling 316 

the definition of the quality standard to be more universal, thereby ensuring a more 317 

robust model for detecting non-compliant fruit. 318 
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Fig. 1. Shewhart control chart based on the GH values derived from the PCA analysis.  
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Fig. 2. Shewhart control chart for the firmness parameter.  
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Fig. 3. Shewhart control chart for the SSC parameter.  
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Fig. 4. Shewhart control chart based on the GH values derived from the PLS analysis for the firmness parameter.  
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Fig. 5. Shewhart control chart based on the GH values derived from the PLS analysis for the SSC parameter.  
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