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Abstract: Global population growth and increasing pollution levels are directly related. The effect
does not just apply to outdoor spaces. Likewise, the low indoor air quality is also having a negative
impact on the health of the building residents. According to the World Health Organization, indoor air
pollution is a leading cause of 1.6 million premature deaths annually. Tackling this public health issue,
due to the direct relationship between air pollution levels and mortality and morbidity rates as well
as overall comfort, is mandatory. Many companies have begun to build inexpensive sensors for use
in Internet of Things (IoT)-based applications to pollution monitoring. The research highlights design
aspects for sustainable monitoring systems including sensor types, the selected parameters, range of
sensors used, cost, microcontrollers, connectivity, communication technologies, and environments.
The main contribution of this systematic paper is the synthesis of existing research, knowledge
gaps, associated challenges, and future recommendations. Firstly, the IEEE database had the highest
contribution to this research (48.51%). The results showed that 87.1%, 66.3%, and 36.8% of studies
focused on harmful gas monitoring, thermal comfort parameters, and particulate matter levels
pollution, respectively. The most studied harmful gases were CO2, CO, NO2, O3, SO2, SnO2, and
volatile organic compounds. The cost of the sensors was suitable for people with limited incomes and
mostly under USD 5, rising to USD 30 for specific types. Additionally, 40.35% of systems were based
on ESP series (ESP8266 and ESP32) microcontrollers, with ESP8266 being preferred in 34 studies.
Likewise, IoT cloud and web services were the preferred interfaces (53.28%), while the most frequent
communication technology was Wi-Fi (67.37%). Indoor environments (39.60%) were the most studied
ones, while the share for outdoor environments reached 20.79% of studies. This is an indication
that pollution in closed environments has a direct impact on living quality. As a general conclusion,
IoT-based applications may be considered as reliable and cheap alternatives for indoor and outdoor
pollution monitoring.

Keywords: air quality; sustainable low-cost sensors; environmental contamination; particulate matter

1. Introduction

The urban population is increasing rapidly, particularly in developing countries, all
over the globe. Moreover, it has quickened in the past few decades. In 2018, around 55.3%
of the worldwide population lived in urban zones. This is estimated to grow, reaching 60%
by 2030. The fast expansion in urban areas significantly influences the ecological system.
A major environmental issue linked to the process of urban development is air pollution.
City areas usually have more air contaminants compared to rural areas, which is because
of the high number of automobiles and industries, among other pollutant origins. Polluted
air may lead to numerous illnesses including respiratory and cardiovascular problems [1].
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Pollution is defined as the introduction of substances (solid, liquid, gaseous) or energies
(radioactivity, heat, noise, light) into the natural environment that cause detrimental or
negative changes in the environment. Pollution elements are either extraneous or naturally
available pollutants. Although environmental pollution can be the result of natural acci-
dents, pollution generally refers to anthropogenic activities. Pollution is often categorized
as either point-source or nonpoint-source pollution. In 2015, pollution was responsible for
causing approximately nine million deaths worldwide [2]. Air, light, littering, noise, plastic,
soil, radioactive, thermal, visual, and water are the main pollution types.

In 2019, the exposure to ambient air pollution was found to be the largest factor,
responsible for roughly 50% of deaths from all environmental risk factors. More than 50%
of these deaths from ambient air pollution exposure occur in China and South Asia, while
about 20% of the total global air pollution-related deaths occur in high-income countries
in Europe and North America. Given the extensive evidence of health risks at very low
concentrations of some pollutants, adequate air quality management, even in countries
with relatively low levels of air pollution exposure, is mandatory [3]. The elevated levels
of atmospheric pollutants create significant hazards to the health of individuals and the
ecological balance [4]. Vehicles, industries, and household practices are critical polluting
sources in metropolitan regions. Widespread city air contaminants comprise particulate
matter (PM), SO2, NO2, ozone, CO, and NO. These tiny airborne particles can deeply
penetrate the human physique, compromising the lungs, bloodstream, and heart and
increasing the risk of cancer [5].

The baseline data of the UK Biobank study (2006–2010) were used. Mental disorders
including symptoms of nerves, anxiety, tension, or depression (NATD) and bipolar disorder
were assessed by validated questions. A total of 334,986 participants with measurements
of NATD and 90,706 participants with measurements of major depression and bipolar
disorder were included in the analysis. After adjusting for covariates, the odds for the risk
of NATD symptoms increased by 2.31 (95% CI: 2.15–2.50) times per 10 µg/m3 increase in
PM2.5. The odds for the risk of major depression and bipolar disorder increased by 2.26
and 4.99 times per 10 µg/m3 increase in PM2.5 [6]. Currently, around 55% of the world’s
population lives in cities, and it is expected that by 2050, cities will house 75% of the world
population. In Spain, 81% of the population lives in cities, so the impact on population
health levels is expected to be high [7].

There is a growing worry regarding air pollution and the harmful repercussions on
people’s physical condition. For this reason, reliable and inexpensive pollutant detection
systems are urgently required. Nowadays, pollution is checked by conventional pollution
monitoring stations. However, due to partial data access, large size, high cost, and the lack
of scalability of air monitoring stations, researchers have recently started paying attention to
so-called future pollution monitoring systems. In this sense, the emergence of the Internet
of Things (IoT) has provided a prospect for reforming environmental pollution monitoring.
It allows for instantaneous data retrieval, interpretation, and sharing [8]. Affordable IoT-
based environmental monitoring devices have garnered considerable interest because of
their capability to close the divide. Devices for measuring air quality are cost-competitive,
allowing for the measurement of various environmental variables and enabling access to
a broader user base [9]. The IoT concept is better defined as the ubiquitous presence of
cyber-physical systems with advanced sensing, communication, and capabilities [10]. IoT
is a web of linked devices with sensors and actuators that enable data gathering, analysis,
and sharing through the Internet. Inexpensive pollution surveillance systems use IoT
technologies to deal with problems derived from traditional monitoring practices. Issues
involve high prices, a narrowed scope, and delayed data retrieval [11]. The affordability
and scalability of low-cost pollution monitoring systems have positioned them as attractive
alternatives to conventional monitoring systems, particularly in resource-constrained set-
tings. These systems leverage inexpensive sensors, wireless communication technologies,
and cloud computing platforms. In this way, it helps establish a network of interconnected
devices capable of continuously monitoring various environmental parameters such as air
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quality, water quality, and PM concentration. An illustration of the layers of the concept of
IoT is shown (Figure 1).
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This systematic review aimed to comprehensively explore and evaluate the state-of-
the-art of indoor and outdoor low-cost pollution monitoring systems based on IoT. By
synthesizing the existing literature and analyzing the strengths and limitations of these
systems, this review sought to provide valuable insights into developing and deploying
effective solutions for air pollution monitoring to enhance living environments. The com-
prehensive systematic review may serve as a guide for students, industry, and researchers,
directing their research to meet specific requirements.

2. Methodology

A systematic review is an organized way of extracting, analyzing, and synthesizing
information from existing primary databases concerning a specific set of research questions.
This systematic review was conducted in accordance with the Preferred Reporting Items
for Systematic Review and Meta-Analysis (PRISMA) checklist. It is the most efficient
way for researchers to conduct in-depth research. The process was divided into multiple
steps to address the challenges associated with air quality (AQ) monitoring systems based
on IoT. In the first step, eight specialized questions related to the existing research were
selected, together with specific search strings and keywords. During the selection of the
most relevant manuscripts from existing databases, inclusion and exclusion criteria were
created. After that, data extraction and synthesis were carried out in response to pre-defined
research questions. Furthermore, the Section 3 presents a detailed review of the current
state-of-the-art of AQ monitoring systems based on IoT as well as the potential difficulties,
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limitations, and opportunities. The steps for performing this systematic review are detailed
in the subsections that follow.

2.1. Research Questions

The authors formulated the following research questions (RQ), which this manuscript
sought to answer through a detailed analysis. When defining the study inquiries, thought-
ful deliberation to the most vital elements of affordable pollution tracking systems utilizing
IoT was followed. The main objective was to determine the essential features that im-
proved performance and the affordability of similar systems. The queries intended to
offer a more profound comprehension of the subject while providing valuable data for
subsequent studies.

RQ1: What are the different types of sensors utilized in the field of air quality (AQ)
monitoring?

RQ2: What parameters can these sensors measure in the context of AQ monitoring?
RQ3: What measurement ranges are specified by sensor manufacturers?
RQ4: What microcontroller units (MCUs) are commonly used to connect these sensors?
RQ5: What interfaces are preferred for AQ monitoring sensing in these systems?
RQ6: What communication technologies are commonly utilized in these systems?
RQ7: What are the more frequent environments for the reviewed cases?
The initial two research inquiries, RQ1 and RQ2, were intended to determine the var-

ied assortment of sensors used by researchers and the most harmful parameters responsible
for the impact on air quality. To confirm the measuring capacity of the defined sensors, RQ3
focused on the specified measurement ranges provided by manufacturers. The study helps
to comprehend the operational limits of detectors and their appropriateness for measuring
pollutants. RQ4 aimed to offer an understanding concerning the widely embraced MCU,
which could allow for comprehension of the technical features and application approaches,
focusing on the strengths and weaknesses to shorten the research time by choosing the
model that meets the requirements. RQ5 provided comprehensive analysis about the
preferred interfaces for air pollution parameter presentation. The survey related to com-
munication technologies was the main focus of RQ6. The inquiry sought to determine the
preferred means of communication implemented in pollution monitoring systems using
IoT technology. Through analyzing the dominant patterns in the field of communication,
this analysis aimed to reveal the strategies implemented for exchanging and transmitting
data. RQ7 provided information about the environments for reviewed cases, focusing on
the most harmful to health. Through addressing these specific inquiries, this analysis offers
a complete comprehension of the types of sensors, parameters, measuring ranges, costs,
MCUs, connections, communication technologies, and environments for the reviewed
cases in pollution monitoring systems relying on IoT. Solutions to these inquiries improve
the information repository and aid researchers in making well-informed choices while
developing and deploying productive, budget-friendly pollution monitoring systems.

2.2. Search Process

A thorough investigation was implemented to ensure a rigorous and systematic
examination of pollution detection systems using IoT-based solutions. To conduct this
review, four databases widely recognized in the academic community were used, namely
IEEE Explore, Web of Science, Science Direct, and Google Scholar. Databases were selected
according to their reliability, based on the publication of high-quality research relevant
to this research topic. To ensure the inclusion of relevant documents, a detailed plan
was implemented. In this sense, a mix of search queries and keywords related to the
theme enabled a productive and targeted search. Searches merging the terms “air quality
sensor”, “monitoring system”, and “internet of things” were mainly implemented. The
search approach was uniformly enforced throughout the four chosen databases. The initial
review process was implemented by the ChatPDF platform (the brainchild of Mathis
Lichtenberger, Berlin, Germany) to acquire insights into manuscript summaries; search
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results were forwarded to the Sysrev platform (Insilica, LLC, Bethesda, MD, USA), which
helped in detecting duplicate articles, then removing them from the selected references. The
final analysis and summarization were conducted using the Mendeley Reference Manager
v2.115.0 (Mendeley, UK), which has broad features such as managing references as well
as the ability to download references from relevant databases. In general, we can use
the above-mentioned platforms to evaluate, select, analyze, and finally, summarize the
articles reliably. Initially, the search process yielded 183 publications. These publications
were identified through IEEE Explore, Web of Science, and Science Direct, with 73, 51, and
32 each, respectively. A smaller number of publications were retrieved from Google Scholar,
where only 27 entries were identified. A distribution of studies from the databases shows
that the main findings (39.9%) were from IEEE Xplore, followed by Web of Science (27.9%),
Science Direct (17.5%), and Google Scholar (14.8%).

2.3. Inclusion and Exclusion Criteria

To ensure the relevance of the literature selected for this systematic review, inclusion
and exclusion criteria were established. These criteria helped to identify the most relevant
papers among the 183 studies derived from the initial search query (Table 1). Manuscripts
that comprehensively addressed indoor and outdoor air quality were prioritized. To
focus on the optimal and most common types, clear and detailed sensor information
was included. Finally, manuscripts illustrating the system design methodology, which
enhances an understanding of the research approach, were emphasized. Additionally,
duplicate manuscripts were excluded. Exclusion was extended to manuscripts lacking
sensor details or a clear methodology for system design. Finally, to prioritize original
empirical contributions, secondary studies that deviated from the primary focus were
excluded. These criteria ensured accuracy and appropriateness in the research selection.

Table 1. Inclusion and exclusion criteria for systematic review.

Inclusion Criteria (IC) Exclusion Criteria (EC)

IC1 Publications beyond 2018 EC1 Duplicates

IC2 Inclusion of pollution parameters related to
indoor and outdoor air quality levels EC2 Missing focus on air quality

IC3 Inclusion of clear details about the
used sensors EC3 Missing details about the used

sensors used

IC4 Items based on Internet of
Things techniques EC4 Missing clear design methodology

IC5 Clearly showing the system
design methodology EC5 Secondary studies

2.4. Study Selection

Selected manuscripts were found to comply with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines. After this step, eight dupli-
cate articles were removed, leaving 174 publications for additional evaluation. Following
the implementation of the inclusion and exclusion criteria, 101 studies were considered
eligible to be included in this exhaustive review. To guarantee the significance and quality,
all studies were thoroughly examined. To show precise observations regarding the study
design, an open and thorough selection procedure conforming to the PRISMA flow diagram
(Figure 2) was implemented.
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2.5. Data Extraction and Synthesis

The initial data extraction was applied to all selected publications, leading to the
following information: titles and abstracts of the included literature; authors’ names; pub-
lication year; database; types of used sensors and analyzed parameters (RQ1 and RQ2);
measurement ranges (RQ3); utilized MCUs (RQ4); interfaces and communication technolo-
gies (RQ5, RQ6); environments for the reviewed cases (RQ7).To tackle the investigation
queries described in Section 2.1 (research questions), the information retrieval and inte-
gration procedures were carried out. The chosen articles underwent preliminary data
evaluation, providing essential information to address the research inquiries thoroughly.
Collected information included headings and summaries from the chosen publications, the
author name, year of publication, and originating database. Regarding RQ1 and RQ2, the
sensor types used in AQ monitoring and ND were recognized, along with specific parame-
ters measured by these sensors. Moreover, measurement ranges specified by manufacturers
for these instruments were shown in RQ3. In RQ4, those frequently utilized by MCUs to
establish a connection with the sensors were recognized. RQ5 provided a comprehensive
analysis of the preferred methods and types of interfaces for the selected pollution param-
eters. RQ6 was answered by studying the communication technologies widely adopted
in pollution monitoring systems. Finally, RQ7 showed the preferred environments in the
selected studies.

2.6. Risk of Bias

It is essential to acknowledge that systematic reviews, despite their rigorous method-
ology, are not immune to biases. In this particular review, several potential sources of
bias warrant discussion. The first area of concern pertains to the screening process, where
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subjectivity may arise due to the interpretation and application of the inclusion and exclu-
sion criteria. For instance, this systematic review focused solely on manuscripts related to
air pollution parameters, potentially omitting valuable studies exploring other pollution
types. Another significant risk of bias stems from the initial search query performed on the
databases. The inclusion criteria limited the scope of the review to the literature published
after 2018. Consequently, studies published before this timeframe were not considered,
potentially overlooking relevant research that could contribute to a more comprehensive
understanding of low-cost pollution monitoring systems based on IoT. Moreover, the search
process was limited to a selection of four databases. While these databases are widely
recognized and contain reputable indexed journals, excluding other databases such as
SpringerLink, Scopus, and PUBMED may have introduced a bias by potentially omitting
relevant studies. It is worth noting, however, that the Web of Science provides access to a
substantial number of high-quality journals. To minimize bias and enhance the reliability of
the findings, future systematic reviews on this topic could consider expanding the search to
encompass additional databases, ensuring a more comprehensive coverage of the relevant
literature. Additionally, conducting a systematic review that included studies published
before 2018 could offer a more holistic perspective on the development and advancements
in low-cost pollution monitoring systems based on IoT. However, technological advances
have grown exponentially in the last decade, so significant contributions are not expected
before 2018.

3. Results

After applying the pre-defined inclusion and exclusion criteria, only 101 studies out of
183 were included in this systematic review. Out of these, IEEE Xplore contributed 49 stud-
ies (48.51%), Web of Science provided 23 relevant studies (22.77%), and 18 studies (17.82%)
were included from the Google Scholar database. Finally, Science Direct provided 11 rele-
vant studies (10.89%). However, no studies from the SpringerLink, Scopus, or PUBMED
databases were found to be relevant, as per the selection criteria of this systematic review.
Table 2 shows the year-wise distribution of the included studies from different databases.

Table 2. Publication distribution for each database per year.

Database 2018 2019 2020 2021 2022 2023 No

IEEE Xplore [12–23] [5,24–34] [35–45] [46–56] [57,58] [41,59,60] 49

Web of Science (WoS) [61–67] [68–76] [77,78] [79] [80,81] [82,83] 23

Google scholar [84–90] [91–93] [94–96] [97,98] [89,99,100] 18

Science Direct [101–104] [105–107] [26,108,109] [110] 11

3.1. Answer to RQ1

The studies included in this systematic review provided insights about the 97 different
sensor types for AQ detection, thermal comfort, and PM used by previous researchers
(Table 3). Considering harmful gas sensors, the MQ series (MQ135, MQ7, MQ136, MQ-131,
MQ8, MQ9, MQ6, MQ5, MQ4, MQ2) took the lead by a large margin from the rest of the
sensors, reaching 53 out of 88 studies (59%) due to its ease of installation and low cost.
However, the calibration and accuracy issues should be carefully addressed. This make
was followed by MG 811, MH-Z14, and OX-B431 (four studies each), and the Alpha sensor
series (NO2-B43F, CO-B4) in three studies. The remaining 53 types of sensors were only
mentioned in one or two studies each. For measuring the PM levels, of the 12 sensors in
42 studies, the Sharp GP2Y1010AU0F Dust Sensor was the preferred solution in 20 studies
(47.6%), followed by the PM series (PMS5003, PMS7003, PMS1003, PMS3003) in 8 studies
(19.0%), and DSM501A in 5 studies. Finally, to achieve an ideal thermal comfort, out of the
12 sensors selected in 63 studies, the DHT series (DHT11, DHT22) was the most reliable in
32 studies (49.5%), followed by the BME (280, 680) series in 12 studies, and the SHT series
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(SHT21, SHT30, SHT31, SHT25) in 6 studies. In Figure 3, a simplified distribution of the
proportions of the sensors above-mentioned is shown.

Table 3. Different sensor types used for air quality monitoring.

Sensor Name Measured Parameters Measuring Nominal Range References

MQ135 NH3, NOx, C2H5OH,
C6H6, CO2, smoke

NH3: 10–300 ppm; C6H6:
10–1000 ppm; C2H5OH:
10–300 ppm

[12,15,21–23,25,30–
32,34,42,43,47,49–53,55,56,58–
61,69,76,80,83–85,87,90,92,94–
97,100,105,106,108]

MQ7 CO 20–2000 ppm
[12,14,21,22,30,34,49,50,52,53,
55,56,59,69,70,80,81,90,94,98,
100,105]

MQ2 SnO2 300–10,000 ppm [27,28,34,35,50,56,59,63,70,94]

MQ4 CH4 200–10,000 ppm [12,21,32,50,55,63]

MQ5 LPG, NG, town gas 200–10,000 ppm [42,50,81]

MQ6 LPG, C4H10,
C3H8,C2H5OH, smoke 200–10,000 ppm [12,20,50,59,85,90]

MQ9 CO, fuel gas 10–1000 ppm [12,33,38,41,50,76,83,90]

MQ8 H2, LPG, CO, O3
50 ppb O3
1~200 ppm [43,50,64,70]

MQ-131 O3 10–1000 ppm [26,43,50,70,96]

MQ136 O3 −200–650 ppm [43,70]

MH-Z14 CO2 0–5000 ppm [39,68,78,98]

OX-B431 O3, NO2 20–50 ppm [5,18,24,77]

MiCS-2714 NO2, H2
H2: 1–1000 ppm, NO2:
0.05–10 ppm [64,87]

4-NO2-20 NO2 0–20 ppm [63]

DGS-NO2 968-043 NO2 0–5 ppm [111]

DGS-CO 968-034 CO 1000 ppm [111]

NiSb2O6 oxide CO 0.1–500 ppm [71]

SEN0219 CO2 0–5000 ppm [79]

MG812 CO2 350–10,000 ppm [16]

MG 811 CO2 0–10,000 ppm [22,55,70,72]

S80053 CO2 0–20,000 ppm [29]

MH-Z16 CO2 400–10,000 ppm [88,89]

INE20-CO2P CO2 0–5000 ppm [63]

TDS5008 CO2 ND [77]

Telaire T6713 CO2 0–5000 ppm [64]

MICS-4514 CO, NO2
CO: 1–1000 ppm; NO2:
50–5000 ppb [68,111]

Alpha sensors (NO2B43F) NO2 NO2: −200–−650 ppm [5,18,24,46,77]

Alpha sensors (CO-B4) CO CO: 420–650 ppm [46]

4-CO-500 CO 0–500 ppm [63]

4co-S Carbon Monoxide Elec Sensor CO 0–500 ppm [41]
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Table 3. Cont.

Sensor Name Measured Parameters Measuring Nominal Range References

(MICS 2614 metal-oxide) O3 ND [91]

DGS-O3 968042 O3 0–5 ppm [111]

MiCS2610-11 O3 <100 ppm [90]

SP-61 O3 0–250 ppm [77]

OX-A431 O3 0–18 ppm [63]

ME2-O2 O2 0~25% v/v [22]

CO2Meter K-30 CO2 0–5000 ppm [102]

IRC-A1 CO2 0–5000 ppm [77]

MH-Z19 CO2 0–2000 ppm; 0–5000 ppm [93,99]

CDM7160 CO2 300–5000 ppm [101]

GSNT11 NO2 0–200 ppm [90]

NE4-NO2 NO2 0–30 ppm [41]

SO2-AF SO2 0–50 ppm [90]

4-SO2-20 SO2 0–20 ppm [63]

4-CL2-50 Cl2 0–50 ppm [63]

KG-HO2 HCHO 0–7 mg/m3 [75]

KG-TV2 TVOC 0–3 mg/m3 [75]

KG-C62 C6H6 0–320 mg/m3 [75]

KG-C22 CO2 0–0.5% [75]

KG-C12 CO 0–500 ppm [75]

KG-N22 NO2 0–20 ppm [75]

KG-O3 O3 0–20 ppm [75]

CJMCU-30 TVOC/eCO2 ND [99]

CJMCU-6814 CO, VOC, NH3 NOx
CO: −1000 ppm; NO2:
0.05–10 ppm [99]

SCD30CO2 CO2, RH and T 400–10,000 ppm [37,49,81]

SGP30 TVOC, CO 0–1000 ppm [33,36]

CCS811 TVOC, eCO2
CO2: 400–8192 ppm; VOC:
0–1187 ppm [37,65]

GP2Y1010AU0F Optical Sensor PM2.5, PM10 0–600 µg/m3 [16,30,31,42,46,50,53,56,57,60,
68,80,86,90,95,97,98,102,106]

PMS 5003 PM2.5 0–500 µg/m3 [29,43,49,66]

DSM501A PM2.5 ≤8000 pcs/283 mL [25,26,38,55,90]

PMS7003 and Plantower PM2.5 0–500 µg/m3 [5,48]

SPS30 sensor PM2.5 1, 2.5, 4 and 10 µg/m3 [36,37,111]

SDS021 sensor PM2.5, PM10 0.3–10 µm [28]

KG-PM2 PM2.5, PM10 0–1000 µg/m3 [75]

SEN0177 PM2.5 0~500 µg/m3 [79,103]

SM-PWM-01C PM2.5 1–999 µg/m3 [19]



Sustainability 2024, 16, 4353 10 of 21

Table 3. Cont.

Sensor Name Measured Parameters Measuring Nominal Range References

PMS1003 PM2.5, PM10 0~500 g/m3 [39]

PMS3003 PM2.5 0.3~1.0; 1.0~2.5; 2.5~10 (mm) [35]

PPD42NS PM2.5 0.1 mg/m3 [62]

DHT22 T, RH T = −40–80 ◦C; RH = 0–100% [14,24,39,41,47,53,64,70,87,95,
99,104,108]

DHT11 T, RH T = 0–50 ◦C; RH = 20–90% [5,15,23,25,28,40,50,55,56,60–
62,80,83,90,92,97,105,106]

SHT21 T, RH T = −40–125 ◦C; RH = 0–80% [65,104]

BME280 T, RH, P T = 0–60 ◦C; RH = 0–100%; P
= 300~1100 hPa [36,39,49,63,65,101]

SHT30 T, RH T = −55–125 ◦C; RH =0–100% [29]

SHT31 T, RH T = −40–125 ◦C; RH = 0–100% [19]

SHT25 T, RH T = −40–125 ◦C; RH = 0–100% [88]

HMP60 T, RH T = −40–60 ◦C; RH = 0–100% [102]

MCP9802 T T = −55–125 ◦C [101]

KG-TN2 T, RH, illumination, N T = −40–80 ◦C; RH = 0–99.0%;
I = 0–2000 Lux; N = 0–120 dB [75]

BMP180 P, T P = 300–1100 hPa;
T = −40–85 ◦C [17,38,64,80]

LM35 T T = −55–150 ◦C [16,20,85]

DS18B20 T T = −55 –125 ◦C [17]

BMP280 P, T P = 300–1100 hPa;
T = −40–85 ◦C [33,76]

SY-H5220 T, RH T = 0–60 ◦C; RH = 30–90% [85]

HDC1080 T, RH T = −40–125 ◦C; RH = 0–100% [33]

BME680 RH, VOC, T, P
T = −40–85 ◦C; RH = 0–100%;
P = 300–1100 hPa;
VOC = 0.5–15 ppm

[37,44,72,73,99,110]

MiCS-5524 CO, CH CH2OH, VOC CO: 1–1000 ppm, NH3:1–500
ppm, CH2OH: 10–500 ppm [64]

WSP2110 Air quality, CO, NH3,
NO2

C2H5OH: 10–500 ppm, H2:
1–1000 ppm, NH3: 1–500 ppm,
CH4: >1000 ppm, C3H8:
>1000 ppm, C4H10:
>1000 ppm

[63]

TGS2602 Air quality (VOC, NH3,
H2S) CH2OH: 1~30 ppm [67]

TGS2603 (C3H9N, CH4) CH2OH: 1–10 ppm [67]

TGS2612 CH4, LPG, C3H8, C4H10 1–25% LEL of each gas [67]

TGS2620 CH3CH2OH 50–5000 ppm [67]

TGS-2610 CH3CH2OH, CH4,
C3H8, C4H10

500–10,000 ppm [62]

MICS-6814 C6H5CH, CH4, C6H6,
CH3CH2OH 1~50 ppm [74]
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Table 3. Cont.

Sensor Name Measured Parameters Measuring Nominal Range References

SAMBA
Air and radiant T, RH,
air speed, light levels,
sound, P, CO2, TVOC

102 µg/m3 [107]

Waspmote

CO, CO2, O2, O3, NO,
NO2, SO2, NH3, CH4,
H2S, PM0.1, PM2.5, PM10,
T, RH, P

ND [45,109]

eCO2: equivalent calculated carbon dioxide, P: atmospheric pressure, LEL: lower explosive limits: liquid
petroleum gas, mm: millimeter, NG: natural gas, ND: no data available, PDM: pulse density modulation, PM10:
particulate matter (<10 µm), PM2.5: particulate matter (<2.5 µm), RH: relative humidity, PM0.1: particulate matter
(<0.1 µm): temperature, TVOC: total volatile organic compounds, VOC: volatile organic compounds.
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3.2. Answer to RQ2

Table 3 shows the analysis of two parameters of air pollution, namely toxic gases
and dust, in addition to comfort parameters (humidity and temperature). Toxic gases are
crucial for air pollution. The gases and volatile parts most mentioned in this targeted
study were CO, CO2, NO2, O3, SO2, NH3, C3H8, C4H10, C2H6O, H2, C6H6, CH4, C2H5OH,
HCHO, H2S, H2S, SnO2, and TVOC, where they were mentioned in 87.1% of the selected
studies on air pollution, with 88 studies out of all studies. These were studied as a unity,
instead of separately, as most studies do, because many sensors have the ability to measure
several gases together. For this reason, depending on the factory data of the sensors, only
the most common gases will be mentioned (CO2, CO, NO2, O3, SO2, H2, SnO2, VOC).
Data were followed by the comfort parameters, represented by relative humidity (RH)
and temperature (T), which were mentioned in 67 studies, representing 66.3% of the total
studies. PM2.5 and PM10, two of the most important pollutants, were studied in 42 out of
101 studies selected (41.5%). Results are shown in Figure 4.
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3.3. Answer to RQ3

The analysis of the sensor measurement range is included in Table 3. Manufacturer
specifications play an essential role in sensor selection, since contaminant concentration may
vary depending on the installation environment. A total of 59% of the harmful gas studies
used MQ series sensors, which have ranges between 10 and 1000 ppm (CO2), 10–300 ppm
(NH3), 10–1000 ppm (C6H6), 10–300 ppm (C2H5OH), 20–2000 ppm (CO), 300–10,000 ppm
(SnO2), 200–10,000 ppm (CH4), 10 1000 ppm, 50 ppb (O3), 1200 ppm (H2), 225–650 Na/ppm
(SO2), and −225 to 650 ppm (NO2).The effective range for a widely used dust sensor (Sharp
GP2Y1010AU0F) used in 47.6% of the selected studies was 0–600 µg/m3. Following this, in
the case of the PMS series, the range was lower (0–500 µg/m3). Temperature and humidity
sensors are capable of measuring values on both the negative scale and within a wide
positive range. The most commonly used sensors were DHT11 (T = 0–50 ◦C; RH = 20–90%),
followed by DHT22 (T = −40 to +80 ◦C; RH = 0–100%), and then the BME series (280, 680)
(T = 0–60 ◦C; RH = 0–100%, T = −40 to +85 ◦C, RH = 0–100%). The selection of gas sensors
depends on their sensor range. Multi-gas sensors typically have a higher parts per million
range compared to single gas sensor units. Additionally, there are significant challenges
associated with ensuring accuracy and calibration when it comes to gas sensors. Therefore,
it is essential to establish a careful and interdependent relationship between these factors
when choosing the appropriate sensors. Results are shown in Figure 5.
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On the one hand, most thermal comfort sensors (12 out of 17) are available for an
estimated price under USD 10. Most dust sensors cost under USD 21 (7 out of 11 sensor
types). Finally, anomaly gas sensors, which were the most important in this systematic
study, showed an average cost from USD 5 to USD 30 (34 out of 46). However, because
several products are not available online, we could not provide an accurate pricing analysis
for a number of sensors. Considering the total monitoring system, cost of field calibration,
and setup, additional hardware requirements and installation fees should also be included.

3.4. Answer to RQ4

Table 4 provides an analysis of the MCUs used for the development of AQ monitoring
systems. Based on the results of the 23 MCU models used, ESP (ESP8266 and ESP32)
modules with Wi-Fi built-in were the most preferred ones in 46 studies (40.35% studies).
Gateway MCUs were used instead of slave MCU. In 32 studies, ESP8266 was the most
commonly used one. However, the Arduino series (Uno, Nano, Mega 2560, Yun, and Mega)
was analyzed in 38 studies (33.33%). This was followed by the Raspberry Pi series (2, 3,
and 4) with 26 studies (22.18%) as the most preferred slave and gateway MCU. All of these
MCUs are available as open-source platforms for real-time monitoring applications. For
each MCU model (ATmega328P (Microchip Technology, Chandler, AZ, USA), Waspmote
(Libelium, Zaragoza, Spain), Wemos D1Mini (Wemos, Amsterdam, The Netherlands) and
Pycom Gpy (Guildford, UK)), only two studies were found. However, for the MCUs
mentioned here (M0 microcontroller (STMicroelectronics, Geneva, Switzerland), AVR MCU
(Microchip technology, Chandler, AZ, USA), ARM7 (ARM Holdings, Cambridge, UK),
STM32F103C8T6 MCU (ARM Holdings, Cambridge, UK), Atmel’s AVR MCU (Microchip
technology, Chandler, AZ, USA), ATSAMD21G18 MCU (ARM Holdings, Cambridge, UK),
and PIC16F877A (Microchip technology, Chandler, AZ, USA)), only one study was selected.
The cost is the main concern regarding its implementation. Finally, four studies [82,89,96,108]
did not provide clear details about the used gateway operations or slaves.

Table 4. Microcontrollers used to connect sensors.

Microcontrollers References

Arduino Uno [12,20,22,23,31,34,35,38,42,43,47,51,52,55,61,69,72,79,81,84,
85,91,92,98,102,103,105,107,108]

Arduino Nano [12,56,81,106]

Arduino mega2560 [45,86,111]

Arduino Yun [18]

Arduino mega [39]

ESP8266 [12,14,21–23,25,27,34,35,46,49,50,52–55,59–
62,66,71,73,74,76,82,85,90,93,95,96,104]

ESP32 [26,30,32,37,39,40,50,68,71,77,78,80,88,89,97,99,100,110,111]

Raspberry Pi [5,12,31,38,55,65,83,101]

Raspberry Pi2 [63,87]

Raspberry Pi3 [15,24,28,32,33,39,44,48,70,72,75,76,106]

Raspberry Pi4 [57,82]

ATmega328P [40,59,69,90]

M0 [48]

AVR [13,41]

Wemos D1Mini [53,66]
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Table 4. Cont.

Microcontrollers References

ARM7 [94]

STM32F103C8T6 [29]

Atmel AVR [13]

ATSAMD21G18 [36]

Waspmote, meshlium [45,109]

ATmega328 [16,62]

Pycom Gpy [88,111]

PIC16F877A [21]

3.5. Answer to RQ5

The preferred data consulting methods are presented in Table 5. It shows that 65 stud-
ies (53.28%) focused on the development of a web page or server, an IoT cloud, and an
application programming interface (API) for displaying AQ level characteristics. Moreover,
38 studies (31.15%) used a mobile app to display the real-time status of the measured AQ
parameters. LCD, LED, and OLED displays were preferred in 15 studies (12.30%), and only
three studies used the Serial Monitor IDE. In 26 studies, more than one way of presenting
data was found [21,22,24,25,30,33,40–43,46,56,58,66,67,72,76,82,83,87,96,104,105,111]. How-
ever, several authors did not provide clear details about the preferred data consulting
methods [30,36,39]. Mobile apps provide a reliable solution for real-time measurements
since they allow users to stay up-to-date ubiquitously regarding AQ conditions. An LCD
display also provides on-site updates and off-site tracking solutions. Solutions were mainly
based on the web or in addition to other solutions; the web is considered as the ideal
solution for monitoring from everywhere in the world and any device. The more popular
platforms were ThinkSpeak (https://thingspeak.com/, accessed on 1 August 2023), fol-
lowed by Blayank (https://blynk.io/, accessed on 1 August 2023), which contains a cloud,
displays in real-time, and is open source.

Table 5. Preferred interfaces for air quality monitoring.

Interfaces References

Web services, webpage, IoT cloud, and API

[5,12–14,16,18,20,22,24–
31,35,36,38,39,41,43,45,46,48–54,56,57,59,61–

64,66–70,72–74,76,77,79–82,84,85,87–91,93,95–
98,101–105,107,110]

Mobile app
[12–14,16,18,21,23–25,27,29,30,32,34,39,40,42,

44,47,53,60,62,64,68,72–
74,78,82,83,93,95,96,99,103]

LCD, LED, OLED displays [20,21,35,41,44,50,51,55,59,60,84,86,104,108]

Serial monitor IDE [47,49,92]
API: application programming interface, IDE: integrated development environment, LED: light emitting diode,
LCD: liquid crystal display, app: mobile application, OLED: organic light-emitting diode.

3.6. Answer to RQ6

According to Table 6, it may be found that wireless fidelity (Wi-Fi) is the most preferred
communication technology, followed by the Global System for Mobile Communications
(GSM), in addition to a small wireless networking protocol designed for IEEE 802.15.4
radios and 8-bit microcontrollers (ZigBee) as well as modules, which are embedded so-
lutions providing wireless end-point connectivity to devices (Xbee), long range (LoRa),
and Bluetooth low energy (BLE) technologies, respectively. In total, 64 studies (67.37%)
used Wi-Fi for AQ monitoring systems. However, 11 studies preferred 3/4G and GSM

https://thingspeak.com/
https://blynk.io/
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techniques, followed by RF techniques (ZigBee and Xbee) with 9 studies, while LoRa and
serial port were present in 5 studies each. Eight out of a hundred and one studies did not
include clear details about the communication method, while only one study relied on an
LCD screen to display data. The ESP series (ESP8266, ESP32 and ESP01) ranked first among
used the Wi-Fi technologies, scoring more than 80% in 52 out of 64 studies. The most
preferred protocols for Wi-Fi communication were MQTT and IEEE 802.11 b/n/g, whereas
IEEE 802.15.4 was used for ZigBee communication. Wi-Fi and 3G/4G communication
technologies have gained significant attention. In contrast, other technologies have not
received as much recognition, despite their low power consumption. This is primarily
because they remain constrained by limited coverage, typically not exceeding 2 km at best,
and fail to meet the requirements of the environmental monitoring of sites or cities remotely
and continuously from anywhere in the world.

Table 6. Preferred communication technologies.

Communication Technologies References

Wi-Fi model, shield, or ESP series
[12,14,19,21–24,27,29–35,37,38,40,43–46,49–56,59–
62,64–66,68–70,72–74,76–78,80,82,84,85,90,91,93–

98,100,103–105,109,110]

LoRa WAN [29,36,46,48,62]

ZigBee and Xbee RF [5,13,18,23,24,63,90,102,107]

(BLE) [65]

3/4G modem and GPS/GPRS/GSM [15,20,24,39,41,45,79,81,91,106,109]

Ethernet and USB or serial port [16,45,47,57,92]
BLE: Bluetooth low energy, ESP: Espressif modules, GPS: global positioning system, GPRS: general packet radio
service, GSM: global system for mobile communication, LoRa: long range, USB: universal serial bus, Wi-Fi:
wireless fidelity.

3.7. Answer to RQ7

After analyzing Table 7, indoor environments were found in 40 studies (39.60%), while
outdoor environments were present in 21 studies (20.79%). Finally, 40 studies (39.60%)
either specialized in both indoor and outdoor environments or did not mention it. Interests
seem to be broader in indoor environments, because the risks of pollutants in closed places
are higher and have a direct impact in the short-term. Although the impact of pollution
in outdoor environments is no less dangerous, the risk is considered indirect and in the
long-term.

Table 7. Environments for the reviewed cases.

Environment References

Indoor [17,19,22,23,25,29–34,37,40,42,45,47,53,57,63,64,66–
69,73–75,80,82,87–89,93,95,98,101,102,104,107,110]

Outdoor [5,14,16,18,21,24,28,38,46,48,50,54,55,71,76,79,81,
84,86,91,109,111]

Indoor and outdoor or the environment is
not mentioned

[12,13,15,16,18,20,26,27,35,36,41,43,44,49–52,56,58–
62,65,70,72,77,78,83,85,90,92,94,96,97,99,100,103,

105,106,108]

4. Conclusions

This is the first systematic review paper to highlight air pollution in indoor and
outdoor environments. The highest number of studies was found in the IEEE database
because it specializes in research in electrical and electronic engineering technology. The
MQ series sensor took the lead from the rest of the sensors in the number of selected studies
regarding harmful gas sensors. For measuring the particulate matter (PM) levels, the Sharp
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GP2Y1010AU0F Dust Sensor was the preferred solution. However, the DHT series was
selected regarding the comfort parameters. The majority of the manuscripts focused on
harmful gases (CO2, CO, NO2, O3, SO2, SnO2, and volatile organic compounds), thermal
comfort parameters, and PM levels. Many systems are based on Esp and Arduino series
microcontrollers, with ESP8266 being the preferred. Furthermore, preferred interfaces
focused on the development of a webpage, server, or an Internet of Things cloud for
displaying air quality characteristics. In total, the majority of studies used Wi-Fi for air-
quality-level monitoring systems. The indoor environments achieved the highest attention.
Nevertheless, the current study also has its limitations as the pre-defined inclusion and
exclusion criteria were limited. In a future work, the inclusion of more types of pollutants
(i.e., water and soil ones) is recommended. Furthermore, the studies were provided from
four databases; the inclusion of more databases would strengthen the study.

Author Contributions: O.A.: Conceptualization, formal analysis, data curation, writing-original draft
preparation. S.P.: Methodology, conceptualization. M.D.R.-M.: Conceptualization, formal analysis,
data curation, supervision. M.P.D.: Conceptualization, formal analysis, data curation, supervision,
writing-review and editing, funding acqusition. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Spanish Ministry of Science and Innovation for funding
this research (PID2019-105936RB-C21 and TED2021-130596B-C22).

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al Mamun, A.; Yuce, M.R. Sensors and Systems for Wearable Environmental Monitoring Toward IoT-Enabled Applications: A

Review. IEEE Sens. J. 2019, 19, 7771–7788. [CrossRef]
2. Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review.

Front. Public Health 2020, 8, 505570. [CrossRef] [PubMed]
3. Pozzer, A.; Anenberg, S.C.; Dey, S.; Haines, A.; Lelieveld, J.; Chowdhury, S. Mortality Attributable to Ambient Air Pollution: A

Review of Global Estimates. GeoHealth 2023, 7, e2022GH000711. [CrossRef] [PubMed]
4. Andrade, A.; D’oliveira, A.; De Souza, L.C.; Bastos, A.C.R.d.F.; Dominski, F.H.; Stabile, L.; Buonanno, G. Effects of Air Pollution

on the Health of Older Adults during Physical Activities: Mapping Review. Int. J. Environ. Res. Public Health 2023, 20, 3506.
[CrossRef] [PubMed]

5. Sharma, A.; Mishra, B.; Sutaria, R.; Zele, R. Design and Development of Low-cost Wireless Sensor Device for Air Quality
Networks. In Proceedings of the IEEE Region 10 Annual International Conference, Proceedings/TENCON, Kochi, India, 17–20
October 2019. [CrossRef]

6. Hao, G.; Zuo, L.; Xiong, P.; Chen, L.; Liang, X.; Jing, C. Associations of PM2.5 and road traffic noise with mental health: Evidence
from UK Biobank. Environ. Res. 2022, 207, 112221. [CrossRef] [PubMed]

7. González, L.G.; Linares, C.; Díaz, J.; Egea, A.; Calle-Martínez, A.; Luna, M.; Navas, M.; Ascaso-Sánchez, M.; Ruiz-Páez, R.;
Asensio, C.; et al. Short-term impact of noise, other air pollutants and meteorological factors on emergency hospital mental health
admissions in the Madrid region. Environ. Res. 2023, 224, 115505. [CrossRef] [PubMed]

8. Donta, P.K.; Sedlak, B.; Pujol, V.C.; Dustdar, S. Governance and sustainability of distributed continuum systems: A big data
approach. J. Big Data 2023, 10, 53. [CrossRef]

9. Marques, G.; Pitarma, R.; Garcia, N.M.; Pombo, N. Internet of Things Architectures, Technologies, Applications, Challenges, and
Future Directions for Enhanced Living Environments and Healthcare Systems: A Review. Electronics 2019, 8, 1081. [CrossRef]

10. Barot, V.; Kapadia, V. Air Quality Monitoring Systems using IoT: A Review. In Proceedings of the 2020 International Conference
on Computational Performance Evaluation, ComPE 2020, Shillong, India, 2–4 July 2020. [CrossRef]

11. Firdhous, M.F.M.; Sudantha, B.H.; Karunaratne, P.M. IoT enabled proactive indoor air quality monitoring system for sustainable
health management. In Proceedings of the 2017 2nd International Conference on Computing and Communications Technologies,
ICCCT 2017, Chennai, India, 23–24 February 2017. [CrossRef]

12. Misbah; Astutik, R.P.; Eliyani; Winarno, H.A.; Muklish, A.; Andesta, D. Communication System on Wireless Sensor Networks
using Raspberry Pi and Arduino for Monitoring Gas of Air Pollution. In Proceedings of the 2018 International Seminar on
Intelligent Technology and Its Application, ISITIA 2018, Bali, Indonesia, 30–31 August 2018. [CrossRef]

13. Maurya, S.; Sharma, S.; Yadav, P. Internet of Things based Air Pollution Penetrating System using GSM and GPRS. In Proceedings
of the 2018 International Conference on Advanced Computation and Telecommunication, ICACAT 2018, Bhopal, India, 28–29
December 2018. [CrossRef]

https://doi.org/10.1109/JSEN.2019.2919352
https://doi.org/10.3389/fpubh.2020.00014
https://www.ncbi.nlm.nih.gov/pubmed/32154200
https://doi.org/10.1029/2022GH000711
https://www.ncbi.nlm.nih.gov/pubmed/36636746
https://doi.org/10.3390/ijerph20043506
https://www.ncbi.nlm.nih.gov/pubmed/36834200
https://doi.org/10.1109/TENCON.2019.8929304
https://doi.org/10.1016/J.ENVRES.2021.112221
https://www.ncbi.nlm.nih.gov/pubmed/34656633
https://doi.org/10.1016/j.envres.2023.115505
https://www.ncbi.nlm.nih.gov/pubmed/36805353
https://doi.org/10.1186/s40537-023-00737-0
https://doi.org/10.3390/electronics8101081
https://doi.org/10.1109/ComPE49325.2020.9200053
https://doi.org/10.1109/ICCCT2.2017.7972281
https://doi.org/10.1109/ISITIA.2018.8711371
https://doi.org/10.1109/ICACAT.2018.8933788


Sustainability 2024, 16, 4353 17 of 21

14. Aamer, H.; Mumtaz, R.; Anwar, H.; Poslad, S. A Very Low Cost, Open, Wireless, Internet of Things (IoT) Air Quality Monitoring
Platform. In Proceedings of the 2018 15th International Conference on Smart Cities: Improving Quality of Life Using ICT and IoT,
HONET-ICT 2018, Islamabad, Pakistan, 8–10 October 2018. [CrossRef]

15. Saha, A.K.; Sircar, S.; Chatterjee, P.; Dutta, S.; Mitra, A.; Chatterjee, A.; Chattopadhyay, S.P.; Saha, H.N. A raspberry Pi controlled
cloud based air and sound pollution monitoring system with temperature and humidity sensing. In Proceedings of the 2018 IEEE
8th Annual Computing and Communication Workshop and Conference, CCWC 2018, Las Vegas, NV, USA, 8–10 January 2018;
pp. 607–611. [CrossRef]

16. Alam, S.S.; Islam, A.J.; Hasan, M.M.; Rafid, M.N.M.; Chakma, N.; Imtiaz, M.N. Design and Development of a Low-Cost IoT based
Environmental Pollution Monitoring System. In Proceedings of the 2018 4th International Conference on Electrical Engineering
and Information & Communication Technology (iCEEiCT), Dhaka, Bangladesh, 13–15 September 2018; pp. 652–656. [CrossRef]

17. Russell, L.; Goubran, R.; Kwamena, F. Posture Detection Using Sounds and Temperature: LMS-Based Approach to Enable Sensory
Substitution. IEEE Trans. Instrum. Meas. 2018, 67, 1543–1554. [CrossRef]

18. Barcelo-Ordinas, J.M.; Garcia-Vidal, J.; Doudou, M.; Rodrigo-Munoz, S.; Cerezo-Llavero, A. Calibrating low-cost air quality
sensors using multiple arrays of sensors. In Proceedings of the IEEE Wireless Communications and Networking Conference,
WCNC, Barcelona, Spain, 15–18 April 2018; pp. 1–6. [CrossRef]

19. Krishnan, K.R.; Chinh, H.D.; Panda, S.K.; Wai, T.K. Flexible Indoor Environmental Quality Monitoring for Interoperable
Subsystems in Buildings. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering
and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2018, Palermo, Italy, 12–15 June
2018. [CrossRef]

20. Islam, M.S. An Intelligent System on Environment Quality Remote Monitoring and Cloud Data Logging Using Internet of
Things (IoT). In Proceedings of the International Conference on Computer, Communication, Chemical, Material and Electronic
Engineering, IC4ME2 2018, Rajshahi, Bangladesh, 8–9 February 2018. [CrossRef]

21. Mitra, D.; Saha, A. IoT-based air pollution detection, monitoring and controlling system. J. Discret. Math. Sci. Cryptogr. 2022, 25,
2173–2182. [CrossRef]

22. Muladi, M.; Sendari, S.; Widiyaningtyas, T. Real Time Indoor Air Quality Monitoring Using Internet of Things at University.
In Proceedings of the 2018 2nd Borneo International Conference on Applied Mathematics and Engineering, BICAME 2018,
Balikpapan, Indonesia, 10–11 December 2018; pp. 169–173. [CrossRef]

23. Alexandrova, E.; Ahmadinia, A. Real-Time Intelligent Air Quality Evaluation on a Resource-Constrained Embedded Platform. In
Proceedings of the 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International
Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and
Security (IDS), IEEE, Omaha, NE, USA, 3–5 May 2018; pp. 165–170. [CrossRef]

24. Tian, B.; Hou, K.M.; Diao, X.; Shi, H.; Zhou, H.; Wang, W. Environment-Adaptive Calibration System for Outdoor Low-Cost
Electrochemical Gas Sensors. IEEE Access 2019, 7, 62592–62605. [CrossRef]

25. Hapsari, A.A.; Hajamydeen, A.I.; Vresdian, D.J.; Manfaluthy, M.; Prameswono, L.; Yusuf, E. Real Time Indoor Air Quality
Monitoring System Based on IoT using MQTT and Wireless Sensor Network. In Proceedings of the ICETAS 2019—2019 6th IEEE
International Conference on Engineering, Technologies and Applied Sciences, Kuala Lumpur, Malaysia, 20–21 December 2019.
[CrossRef]

26. Boppana, L.; Lalasa, K.; Vandana, S.; Kodali, R.K. Mongoose OS based Air Quality Monitoring System. In Proceedings of the
TENCON 2019—2019 IEEE Region 10 Conference (TENCON), Kochi, India, 17–20 October 2019; pp. 1247–1252. [CrossRef]

27. Sajjan, V.; Sharma, P. Research on an iot based air pollution monitoring system. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 553–558.
[CrossRef]

28. Gupta, H.; Bhardwaj, D.; Agrawal, H.; Tikkiwal, V.A.; Kumar, A. An IoT Based Air Pollution Monitoring System for Smart
Cities. In Proceedings of the 1st IEEE International Conference on Sustainable Energy Technologies and Systems, ICSETS 2019,
Bhubaneswar, India, 26 February–1 March 2019; pp. 173–177. [CrossRef]

29. Zhao, L.; Wu, W.; Li, S. Design and Implementation of an IoT-Based Indoor Air Quality Detector With Multiple Communication
Interfaces. IEEE Internet Things J. 2019, 6, 9621–9632. [CrossRef]

30. Kodali, R.K.; Rajanarayanan, S.C. IoT based Indoor Air Quality Monitoring System. In Proceedings of the 2019 International
Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 21–23 March 2019;
pp. 1–5. [CrossRef]

31. Pradityo, F.; Surantha, N. Indoor air quality monitoring and controlling system based on IoT and fuzzy logic. In Proceedings of
the 2019 7th International Conference on Information and Communication Technology, ICoICT 2019, Lisbon, Portugal, 29–30
August 2019. [CrossRef]

32. Rodrigues, M.J.; Postolache, O.; Cercas, F. Indoor Air Quality Monitoring System to Prevent the Triggering of Respiratory Distress.
In Proceedings of the 2019 International Conference on Sensing and Instrumentation in IoT Era, ISSI 2019, Lisbon, Portugal, 29–30
August 2019. [CrossRef]

33. Parise, A.; Manso-Callejo, M.A.; Cao, H.; Mendonca, M.; Kohli, H.; Wachowicz, M. Indoor Occupancy Prediction using an IoT
Platform. In Proceedings of the 2019 6th International Conference on Internet of Things: Systems, Management and Security,
IOTSMS 2019, Granada, Spain, 22–25 October 2019. [CrossRef]

https://doi.org/10.1109/HONET.2018.8551340
https://doi.org/10.1109/CCWC.2018.8301660
https://doi.org/10.1109/CEEICT.2018.8628053
https://doi.org/10.1109/TIM.2018.2795158
https://doi.org/10.1109/WCNC.2018.8377051
https://doi.org/10.1109/EEEIC.2018.8494596
https://doi.org/10.1109/IC4ME2.2018.8465667
https://doi.org/10.1080/09720529.2022.2133254
https://doi.org/10.1109/BICAME45512.2018.1570509614
https://doi.org/10.1109/BDS/HPSC/IDS18.2018.00045
https://doi.org/10.1109/ACCESS.2019.2916826
https://doi.org/10.1109/ICETAS48360.2019.9117518
https://doi.org/10.1109/TENCON.2019.8929489
https://doi.org/10.35940/ijitee.I1116.0789S219
https://doi.org/10.1109/ICSETS.2019.8744949
https://doi.org/10.1109/JIOT.2019.2930191
https://doi.org/10.1109/WiSPNET45539.2019.9032855
https://doi.org/10.1109/ICoICT.2019.8835246
https://doi.org/10.1109/ISSI47111.2019.9043669
https://doi.org/10.1109/IOTSMS48152.2019.8939234


Sustainability 2024, 16, 4353 18 of 21

34. Dhingra, S.; Madda, R.B.; Gandomi, A.H.; Patan, R.; Daneshmand, M. Internet of Things Mobile–Air Pollution Monitoring System
(IoT-Mobair). IEEE Internet Things J. 2019, 6, 5577–5584. [CrossRef]

35. Kumar, A.; Kumari, M.; Gupta, H. Design and Analysis of IoT based Air Quality Monitoring System. In Proceedings of the 2020
International Conference on Power Electronics and IoT Applications in Renewable Energy and its Control, PARC 2020, Mathura,
India, 28–29 February 2020. [CrossRef]

36. Meli, M.; Gatt, E.; Casha, O.; Grech, I.; Micallef, J. A novel low power and low cost IoT wireless sensor node for air quality
monitoring. In Proceedings of the ICECS 2020—27th IEEE International Conference on Electronics, Circuits and Systems,
Proceedings, Glasgow, UK, 23–25 November 2020. [CrossRef]

37. Esfahani, S.; Rollins, P.; Specht, J.P.; Cole, M.; Gardner, J.W. Smart City Battery Operated IoT Based Indoor Air Quality Monitoring
System. In Proceedings of the IEEE Sensors, Rotterdam, The Netherlands, 25–28 October 2020. [CrossRef]

38. Prabha, S.; Raghav, R.S.; Moulya, C.; Preethi, K.G.; Sankaran, K.S. Analysis and Monitoring Air Quality System using Raspberry
PI. In Proceedings of the 2020 IEEE International Conference on Communication and Signal Processing, ICCSP 2020, Chennai,
India, 28–30 July 2020. [CrossRef]

39. Zhang, D.; Woo, S.S. Real Time Localized Air Quality Monitoring and Prediction Through Mobile and Fixed IoT Sensing Network.
IEEE Access 2020, 8, 89584–89594. [CrossRef]

40. Saude, N.; Vardhini, P.A.H. IoT based Smart Baby Cradle System using Raspberry Pi B+. In Proceedings of the 2020 Interna-
tional Conference on Smart Innovations in Design, Environment, Management, Planning and Computing, ICSIDEMPC 2020,
Aurangabad, India, 30–31 October 2020; pp. 273–278. [CrossRef]

41. Hussain, M.; Ghazanfar, F.; Aleem, S.; Hai, M.; Karim, A.; Hussain, K. Design of Low Cost, Energy Efficient, IoT Enabled,
Air Quality Monitoring System with Cloud Based Data Logging, Analytics and AI. In Proceedings of the 2020 International
Conference on Emerging Trends in Smart Technologies, ICETST 2020, Karachi, Pakistan, 26–27 March 2020. [CrossRef]

42. Kaur, S.; Bawa, S.; Sharma, S. IoT Enabled Low-Cost Indoor Air Quality Monitoring System with Botanical Solutions. In
Proceedings of the ICRITO 2020—IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions), Noida, India, 4–5 June 2020. [CrossRef]

43. Shah, S.K.; Tariq, Z.; Lee, J.; Lee, Y. Real-Time Machine Learning for Air Quality and Environmental Noise Detection. In
Proceedings of the Proceedings—2020 IEEE International Conference on Big Data, Big Data 2020, Atlanta, GA, USA, 10–13
December 2020; pp. 3506–3515. [CrossRef]

44. Folea, S.C.; Mois, G.D. Lessons Learned From the Development of Wireless Environmental Sensors. IEEE Trans. Instrum. Meas.
2020, 69, 3470–3480. [CrossRef]

45. Ha, Q.P.; Metia, S.; Phung, M.D. Sensing Data Fusion for Enhanced Indoor Air Quality Monitoring. IEEE Sens. J. 2020, 20,
4430–4441. [CrossRef]

46. Ali, S.; Glass, T.; Parr, B.; Potgieter, J.; Alam, F. Low Cost Sensor With IoT LoRaWAN Connectivity and Machine Learning-Based
Calibration for Air Pollution Monitoring. IEEE Trans. Instrum. Meas. 2021, 70, 5500511. [CrossRef]

47. Od, S.; Hsu, H.C.; Wei, J.B. Improve the Indoor Air Quality Based on Internet of Things. In Proceedings of the 3rd IEEE Eurasia
Conference on Biomedical Engineering, Healthcare and Sustainability, ECBIOS 2021, Tainan, Taiwan, 28–30 May 2021; pp. 105–108.
[CrossRef]

48. Yun, J.; Woo, J. IoT-Enabled Particulate Matter Monitoring and Forecasting Method Based on Cluster Analysis. IEEE Internet
Things J. 2021, 8, 7380–7393. [CrossRef]

49. Kalia, P.; Alam Ansari, M. IOT based air quality and particulate matter concentration monitoring system. Mater. Today Proc. 2020,
32, 468–475. [CrossRef]

50. Manikandan, P.; Reddy, B.N.K.; Bhanu, M.V.; Ramesh, G.; Reddy, V.P. IoT Based Air Quality Monitoring System with Email
Notification. In Proceedings of the 6th International Conference on Communication and Electronics Systems, ICCES 2021,
Coimbatre, India, 8–10 July 2021; pp. 616–620. [CrossRef]

51. Janeera, D.A.; Poovizhi, H.; Haseena, S.S.S.; Nivetha, S. Smart Embedded Framework using Arduino and IoT for Real-Time Noise
and Air Pollution Monitoring and Alert system. In Proceedings of the International Conference on Artificial Intelligence and
Smart Systems, ICAIS 2021, Coimbatore, India, 25–27 March 2021; pp. 1416–1420. [CrossRef]

52. Nowshin, N.; Hasan, M.S. Microcontroller Based Environmental Pollution Monitoring System though IoT Implementation. In
Proceedings of the International Conference on Robotics, Electrical and Signal Processing Techniques, Dhaka, Bangladesh, 5–7
January 2021; pp. 493–498. [CrossRef]

53. Waworundeng, J.; Adrian, P.S. Air Quality Monitoring and Detection System in Vehicle Cabin Based on Internet of Things. In
Proceedings of the 3rd International Conference on Cybernetics and Intelligent Systems, ICORIS 2021, Makasar, Indonesia, 25–26
October 2021. [CrossRef]

54. Murshiduzzaman; Kadir, J.; Ismarrubie, Z.; Yussof, H.; Hasan, W.Z.W. Development of IoT Based Dust Density and Solar Panel
Efficiency Monitoring System. In Proceedings of the International Conference on Electrical, Computer, and Energy Technologies,
ICECET 2021, Cape Town, South Africa, 9–10 December 2021. [CrossRef]

55. Nandanwar, H.; Chauhan, A. IOT based Smart Environment Monitoring Systems: A Key to Smart and Clean Urban Living
Spaces. In Proceedings of the 2021 Asian Conference on Innovation in Technology, ASIANCON 2021, Pune, India, 27–29 August
2021. [CrossRef]

https://doi.org/10.1109/JIOT.2019.2903821
https://doi.org/10.1109/PARC49193.2020.236600
https://doi.org/10.1109/ICECS49266.2020.9294927
https://doi.org/10.1109/SENSORS47125.2020.9278913
https://doi.org/10.1109/ICCSP48568.2020.9182410
https://doi.org/10.1109/ACCESS.2020.2993547
https://doi.org/10.1109/ICSIDEMPC49020.2020.9299602
https://doi.org/10.1109/ICETST49965.2020.9080705
https://doi.org/10.1109/ICRITO48877.2020.9197895
https://doi.org/10.1109/BigData50022.2020.9377939
https://doi.org/10.1109/TIM.2019.2938137
https://doi.org/10.1109/JSEN.2020.2964396
https://doi.org/10.1109/TIM.2020.3034109
https://doi.org/10.1109/ECBIOS51820.2021.9510667
https://doi.org/10.1109/JIOT.2020.3038862
https://doi.org/10.1016/j.matpr.2020.02.179
https://doi.org/10.1109/ICCES51350.2021.9489027
https://doi.org/10.1109/ICAIS50930.2021.9396041
https://doi.org/10.1109/ICREST51555.2021.9331020
https://doi.org/10.1109/ICORIS52787.2021.9649627
https://doi.org/10.1109/ICECET52533.2021.9698605
https://doi.org/10.1109/ASIANCON51346.2021.9544596


Sustainability 2024, 16, 4353 19 of 21

56. Godase, M.; Bhanarkar, M.K. WSN Node for Air Pollution Monitoring. In Proceedings of the 2021 6th International Conference
for Convergence in Technology, I2CT 2021, Maharashtra, India, 2–4 April 2021. [CrossRef]

57. Nikolov, N.; Nakov, O.; Gotseva, D. Design and Implementation of a Temperature, Humidity and Air Quality IoT Monitoring
Telemetry System. In Proceedings of the 2022 30th National Conference with International Participation, TELECOM 2022—
Proceedings, Sofia, Bulgaria, 27–28 October 2022. [CrossRef]

58. Manglani, T.; Srivastava, A.; Kumar, A.; Sharma, R. IoT based Air and Sound Pollution Monitoring System for Smart Environment.
In Proceedings of the International Conference on Electronics and Renewable Systems, ICEARS 2022, Tuticorin, India, 16–18
March 2022; pp. 604–607. [CrossRef]

59. Alekhya, K.; Sravya, P.D.; Naik, N.C.; Lakshminarayana, B.J. Ambient Air Quality Monitoring System. In Proceedings of the 2023
International Conference for Advancement in Technology, ICONAT 2023, Goa, India, 24–26 January 2023. [CrossRef]

60. Datta, A.; Islam, M.M.; Hassan, M.S.; Aka, K.B.; Ahamed, I.; Ahmed, A. IoT Based Air Quality and Noise Pollution Monitoring
System. In Proceedings of the International Conference on Robotics, Electrical and Signal Processing Techniques, Dhaka,
Bangladesh, 7–8 January 2023; pp. 202–206. [CrossRef]

61. Das, A.; Sarma, M.P.; Sarma, K.K.; Mastorakis, N. Design of an IoT based Real Time Environment Monitoring System using
Legacy Sensors. MATEC Web Conf. 2018, 210, 03008. [CrossRef]

62. Azmi, N.; Sudin, S.; Kamarudin, L.M.; Zakaria, A.; Visvanathan, R.; Cheik, G.C.; Zakaria, S.M.M.S.; Alfarhan, K.A.; Ahmad, R.B.
Design and Development of Multi-Transceiver Lorafi Board consisting LoRa and ESP8266-Wifi Communication Module. IOP
Conf. Ser. Mater. Sci. Eng. 2018, 318, 012051. [CrossRef]

63. Benammar, M.; Abdaoui, A.; Ahmad, S.H.; Touati, F.; Kadri, A. A Modular IoT Platform for Real-Time Indoor Air Quality
Monitoring. Sensors 2018, 18, 581. [CrossRef] [PubMed]

64. Coleman, J.R.; Meggers, F. Sensing of Indoor Air Quality-Characterization of Spatial and Temporal Pollutant Evolution Through
Distributed Sensing. Front. Built Environ. 2018, 4, 28. [CrossRef]
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