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Abstract
Automatic crack classification plays an essential role in roadmaintenance. Using
many features for the classification is inefficient for implementing embedded
systems with low computational resources makes it difficult. Therefore, this
work proposes a new data dimensionality reduction (DDR) for crack classifica-
tion algorithms (DDR4CC). DDR4CC reduces the required information about
the cracks to only four features. Using these features, the images can be classified
into longitudinal, transverse, and alligator cracks or healthy pavement. DDR4CC
is comparedwith eight DDRmethods, and the reduced set of features is analyzed
using five different classification algorithms. Besides, five different datasets, gen-
erated by a combination of several public datasets, are used. We are proposing a
simple DDR method with high interpretability of the data, obtaining very fast
computation and high accuracy. Experiments show that DDR4CC enhances the
results of the classification algorithms, providing almost perfect classifiers with
a minimum computation time.

1 INTRODUCTION

An optimal status of the road surface reducesmaintenance
costs. So, one of the early tasks in road health monitoring
is the inspection of the road surface, specifically, the search
for cracks. Traditionally, this activity has been achieved
manually, causing this task to be expensive, tedious, and
inefficient. To mitigate this problem, machine learning
algorithms alongwith computer visionmethods have been
suggested. However, automatic approaches to road surface
condition inspection are not straightforward, and therefore
the problem is divided into two specific tasks as Figure 1
shows: crack detection and crack classification.
Approaches based on crack detection (Chu et al., 2022)

usually have two different objectives. The first objective
is to obtain the regions of interest where defects are
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located. The second one is the creation of a binary image
(typical values between 0 and 255) that emphasizes the
pixels that correspond to the damaged surface (Y. Zhang
& Yuen 2021). These proposals range from algorithms
based on image enhancement (Hoang, 2018), illumina-
tion correction (C. Chen et al., 2021), and edge detection
(Cubero-Fernandez et al., 2017) to others based on more
sophisticated methods, such as minimal path estimation
(Amhaz et al., 2016), shadow removal (Palomar et al.,
2010), or even classic machine learning algorithms (Y. Shi
et al., 2016). Furthermore, the emerging growth of deep
learning algorithms is being used widely, and we will
review it in Section 2.
Approaches based on crack classification need to per-

form the detection task as well, but despite this fact,
the number of proposals is lower than for solely crack
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F IGURE 1 Tasks for road crack classification and the new
optimization feature task.

detection ones (Hamishebahar et al., 2022). Besides, there
is no consensus on the number or the name of the
classes.
For instance, there are proposals focused on a binary

classification to detect whether there is a crack or not
(Mokhtari et al., 2017). Other proposals have been pub-
lished centered on the classification of a single specific type
of cracks, such as potholes (Jana et al., 2022), longitudinal
and transverse cracks (Ibrahim et al., 2019), classification
of lineal cracks (Liang et al., 2018), or even in the classifica-
tion of raveling severity (Tsai et al., 2020). However, despite
the different types into which defects can be classified,
three basic classes can be found that are precursors of later
defects (Garber & Hoel 2008): alligator cracks, transverse
cracks, and longitudinal cracks. These classes were widely
used by different authors employing mixed image process-
ing and machine learning approaches (Cubero-Fernandez
et al., 2017; Hoang & Nguyen 2018; Li et al., 2021; Osman
et al., 2021; Rodriguez-Lozano et al., 2020).
In addition, most studies based on crack classification

usually employ a very large number of features that are
used as the input data for themachine learning algorithms
to learn the relationships between the data. This large
number of features has a large impact on the results of the
subsequent models.
The problem of high dimensionality data in civil engi-

neering problems was introduced by Adeli and Wu (1998).
On the onehand, it has negative consequences on the accu-
racy of the classification algorithms due to a large number
of features, which leads to the generation of complex
models that tend to misclassify the different images into
classes. On the other hand, the high number of features

has an impact on the time used to carry out the classi-
fication because when generating more complex models,
more operationsmust be performed by themodels to reach
the decision-making. This effect is also amplified when
we are dealing with embedded devices that have limited
computational capacity and memory.
We propose the crack classification method for data

dimensionality reduction (DDR4CC).DDR4CC introduces
a new feature optimization task placed between the detec-
tion and classification tasks as shown in Figure 1. DDR4CC
boosts classification accuracy while consuming less time.
It also provides interpretable data and can be used with
images of any resolution.
This paper is organized as follows: A description of

related works is shown in Section 2. Some brief expla-
nations of different DDR approaches are described in
Section 3. Section 4 contains the specifications of sev-
eral machine learning algorithms. Section 5 shows our
DDR proposal. The five datasets used for experimenta-
tion are described in Section 6. The results are analyzed
and discussed in Section 7, demonstrating that our DDR
method takes advantage of the data interpretability obtain-
ing high accuracy with low computing. Finally, the main
conclusions are presented in Section 8.

2 RELATEDWORKS

Recently, a huge amount of data is obtained in different
areas of application, resulting in an exponential growth
in complexity, heterogeneity, dimensionality, and size. The
classical statistical methodologies from an era where the
collection of data was complex, and the magnitude of
datasets was much smaller, are not appropriate (Nanga
et al., 2021). So, there is a challenge in analyzing these
large and sophisticated datasets. DDR is appliedwhen data
with vast dimensions are reduced to lesser dimensions
but ensures that it concisely conveys similar informa-
tion. DDR can be performed through feature selection and
feature extraction. DDR as a result facilitates the classifica-
tion, visualization, and compression of high-dimensional
data. Furthermore, the DDR is used in neural dynamic
classification algorithms (Rafiei & Adeli 2017b), applied
in different problems, such as earthquake early earning
detection (Rafiei & Adeli 2017a), or to detect damage in
highrise building structures (Rafiei & Adeli 2017c).
As mentioned in Section 1, deep learning (DL) tech-

niques are applied for classification. One of themain draw-
backs of the DL techniques is their lack of interpretability
of decision-making. DL techniques are designed as black
boxes, impeding the knowledge of the inner behavior.
Moreover, the hardware requirements these techniques
require are really high, preventing these techniques to be
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executed in real low-end devices, such as the ones that
would be included in maintenance vehicles.
Besides the abovementioned loss of interpretability of

the DL methods, most recent crack classification works
based on lightweight DL are analyzed, in order to state
the quality of the classification (in terms of F1-score met-
ric) and the speed regarding the processing unit used for
the computation. It is to be noted that most of the works
in recent years are focused on crack detection and not on
crack classification. Crack detection is a step to be taken
in a previous step in crack classification; however, they
require differentmodels. Several recent proposals based on
DL were presented, however, mostly for concrete surfaces
(Çelik & König 2022; Chun et al., 2021; Jang et al., 2021;
Kong et al., 2021; Liu & Xu 2022; Xie et al., 2022; Zheng
et al., 2022). Regarding road or pavement cracks, an image-
to-image translation was presented for night images in Liu
and Xu (2022), and finally J. Chen and He (2022) presented
a neural network (NN) for the detection of four types of
pavement cracks.
In the work of Hou et al. (2022), three different methods

are tested: Faster region-based convolutional neural net-
works (R-CNN), YOLOv3, and fast shape-based network
(FS-Net). The authors use 4K images. The timings are 794
ms for Faster R-CNN, 81 ms for YOLOv3, and 83 ms for
FS-Net. The precision metric ranges from 0.894 to 0.943,
which is quite high.However, the recallmetric is extremely
low for all the models (0.0132, 0.0113, and 0.0074). Thus,
the overall quality (in terms of F1-score to be able to com-
pare them with those in our work) is very low. Moreover,
even if the timing is fast, it is to be mentioned that those
processing times are obtained using a very powerful struc-
ture: an Intel Xeon Gold 6151 at 3.0GHz with 128 GB RAM
andwith a NVIDIA TITANRTX 24GBGPU. The hardware
to be used in a maintenance vehicle should be much more
lightweight.
In Espindola et al. (2022) a large review of different

lightweight DL models for crack detection and classifi-
cation was presented. It is stated that a DL network’s
computational load requirement is the number of floating-
point operations per second (FLOPS). Computational
loads of several classifier networks are provided: ResNet-
34, ResNet-50, and The VGG model stands for the Visual
Geometry Group fromOxford (VGG16) range from 4 to 15.5
giga-floating point operations per second (GFLOPS). The
detection using YOLOv3-Darknet53 requires 65 GFLOPS
and segmentation with U-Net using 221 GFLOPS. Fur-
thermore, our proposal does not require floating-point
operations but integer operations, which are much more
efficient. For example, DDR4CC using the typical 640
× 480 resolution (larger than usual DL methods, which
use 300 × 300 or 256 × 256) obtains the four features
reduction in only 0.1202 s, which means 2.5 millions of

instructions per second (MIPS). If we include the Best First
Tree (BFTree) classification model, the complete timing
(both reduction and classification) is 0.2042 s or 1.5 MIPS.
Note that GFLOPS and MIPS are not directly comparable;
however, we could estimate this value as more than 1000
smaller than those from lightweight DLmodels, providing
similar results in terms of classification performance.
Another recent work is Wan et al. (2022). In it, a

lightweight DL you only look once - lightweight method
for road damage detection (YOLO-LRDD) is used and com-
pared to Faster R-CNN. YOLO-LRDD is improved from the
YOLOv5s. YOLO-LRDD takes 11.63 ms per image, while
Faster R-CNN takes 19.61 ms. They are fast; however, the
quality is low: Faster R-CNN scores 0.601, which is higher
than YOLO-LRDD with 0.587. Moreover, the processing
times are obtained with a powerful device (NVIDIA RTX
3060 w/12GB).
A very interesting work is done by (Ali et al., 2022). In

it, they have provided a large survey on DL based on differ-
ent CNN for crack detection (although those cracks are not
classified). They analyze a large number of articles focus-
ing on their quality. They provide F1-score, ranging from
0.489 to 0.9967. They also include the hardware used in
each article (if provided). In all of those articles that declare
the hardware, it is very more powerful. Therefore, the pro-
cessing requirements for DL are much higher than those
required in this work.
Current DL techniques are improving both in quality

and speed processing. They are optimized for lightweight
processing. However,most of the lightweight DL cannot be
executed in real low-end devices such as NVIDIA Jetson
Nano or similar, which would be the one used in mainte-
nance vehicles. Thus, the use of non-DLmethods is clearly
justified for computing processing requirements and for
the interpretability of decision-making.
Therefore, focusing on simple approaches with DDR

techniques, Ibrahim et al. (2019) carry out a study of longi-
tudinal and transverse cracks by applying computer vision
algorithms to extract the binary image and a data trans-
formation before feeding two different versions of the “K
nearest neighbor (KNN)” algorithm. The new features to
feed the KNN classifiers are the length of 𝑋 and 𝑌 axes.
The work proposed by Sheerin et al. (2018) implements

Otsu’s method for several works focused on the detection
and classification of pavement cracks. They suggest a sys-
tem that makes use of the wavelet transform and singular
value decomposition (SVD) to extract and reduce the main
features to perform the classification.
Ahmadi et al. (2018) extract from binary images the

number of rows, columns, standard deviations, and the
number of pixels that represents a crack, and then use prin-
cipal component analysis (PCA) to reduce the number of
features.
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Finally, theybmake a comparison applying KNN, sup-
port vector machines (SVM), and decision trees (DT).
Also, Abdel-Qader et al. (2006) apply three different

approaches to PCA to reduce the number of features in
bridge crack detection applying: raw image data, a lin-
ear structure detector, and, PCA in conjunction with local
principal components, to segment the images in small tiles
of 16 × 16 blocks.
C. Chen et al. (2021) use an image processing method

based on local binary patterns (LBP) to feed an SVM
classifier to classify pavement cracks into transverse, lon-
gitudinal, alligator, and non-crack classes. Furthermore,
PCA is used to reduce the amount of LBP features. The best
results are 76.01% for alligator cracks.
Kusumaningrum et al. (2022) propose a semi-automatic

image processing method for the classification of pave-
ment defects into cracks, potholes, and alligator cracks.
Then, they apply histogram and morphological operations
to extract a binary image representing pavement defects.
They simplify the data by performing a radial vector posi-
tioned at the centroid of the largest defect area, and the
eight cardinal directions are used for the analysis of the
ratio of positive and negative pixels along the line in each
angle direction. These radial vectors are the data used as
representative of the defects in a KNN classifier. It provides
83% accuracy at the highest value.
Ahmadi et al. (2021) compute binary images, apply the

Hough transform, and calculate some angle adjustments to
obtain 24 features divided into three sets to define the dif-
ferent cracks. Then, different classifiers are used in several
stages, using bagged trees to differentiate between longitu-
dinal, transverse, and diagonal/block cracks and using an
SVM classifier to differentiate between diagonal and block
cracks. In addition, they compare different models such
as KNN, NNs, DT, and those described above, obtaining
93.86% overall accuracy.
Xu et al. (2018) classify defects into four types: distress-

free, cracking, pothole, and patching. They obtain four
features from the texture using the linear discriminant
analysis (LDA) method. Also obtain three features from
the shape of the binary images: the average area of all con-
nected components, the area of the maximal connected
component, and the equivalent length of the longest
connected component.
Finally, Cubero-Fernandez et al. (2017) and Rodriguez-

Lozano et al. (2020) obtain a binary image. Then, amethod
known as projections (Gonzalez & Woods 2018) is applied
in order to reduce the number of features of the whole
image to just the number of features in each column and
row of each image. This work focuses on the classification
of the same classes as the current work using an ensemble
of models. Also, the authors compare the obtained results
with other algorithms and methods, providing an average

result of 91.8% and 91.5% according to precision and recall
metrics.
Once the proposals to reduce the number of features

have been reviewed, it is possible to observe that, in
general, there are certain limitations:

1. Classification methods require the resolution (size) of
the image to be changed to feed the trained models.

2. Some of the features selected can be based on the
physical location of the crack in the image. Therefore,
a change in the position of the crack may result in
misclassification.

3. There is no information about any set of features
that performs accurately in several different machine
learning algorithms.

4. The set of features proposed in most works is not
straightforward to understand or calculate.

Ourwork overcomes all the limitations presented above.

3 PRELIMINARIES IN DDRMETHODS

This section provides a light introduction to the DDR
methods used by other authors. Each of them will be
compared with our proposal in Section 7.
LDA (Mai, 2013) is a method used for dimensionality

reduction as well as for classification problems, by provid-
ing class separability with a decision region between the
different classes. The aim of LDA is to find a linear projec-
tion for data that maximizes the variance between classes
relative to the variance for data from the same class.
PCA (Jolliffe & Cadima 2016) is used to find patterns in

the data of a dataset. This method is frequently employed
for data compression. These patterns are discovered by
applying statistical and algebraic operations to the data.
The result is a list of features that summarize a large
amount of data. It is common to select a subset of features
to describe a certain percentage of the variance of a dataset,
for instance, 95% of the variance of the dataset.
PCA-4 PCA provides a list of features from which a sub-

set is usually selected to explain a given percentage of the
variance of the dataset. A different approach is to provide
a sorted list of features, ordered by the amount of percent-
age of the variance of the dataset explained by that feature,
and select the first features of that list. The amount of fea-
tures is a parameter provided by the user. In this case, the
amount of features selected from the ordered list is four.
SVD (Dhumal & Deshmukh 2016) achieves dimension

reduction through matrix decomposition without needing
to calculate the covariance matrix.
t-Distributed stochastic neighbor embedding (TSNE;

van der Maaten & Hinton 2008) captures non-linear
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RODRIGUEZ-LOZANO et al. 2343

relationships in the data and uses conditional probabil-
ities of similarity between points instead of Euclidean
distance. It constructs a probability distribution over pairs
of samples in the original space so that similar samples
receive a high probability of being chosen;meanwhile, very
different samples receive a low probability of being chosen.
Multidimensional scaling (MDS; Hout et al., 2013)

obtains the dimensionality reduction by finding under-
lying attributes or dimensions with more influence. It
models the similarity of data by calculating distances (𝐷)
between each pair of points.
Scalable algorithm for capturing local and global fea-

tures of high-dimensional datasets (IVIS; Szubert et al.,
2019) is a framework for dimensionality reduction of
single-cell expression data that uses a Siamese NN (SNN)
architecture. The IVIS SNN is composed of three identi-
cal base networks with three layers of 128 neurons and the
final embedding layer.
Principal projections (PP). Theuse of projective integrals

in the works of (Cubero-Fernandez et al., 2017; Hoang,
2018; Rodriguez-Lozano et al., 2020) allowed the reduction
of the data required to provide a good classification of the
cracks in a fast mode. These authors proposed a special use
of the projective integrals, in which the amount of edge-
detected pixels is aggregated for every row and column of
the edge-processed images. Thus, the amount of features
required for the classification is reduced from (width ×

height) to (width + height).
All these methods have been proposed to reduce the

number of required data, for further processing, usually
classification. The PPmethod is the only describedmethod
specifically designed for images. All the rest are generic
and may be used with any data scope. All these methods
will be tested against our DDR proposal.

4 PRELIMINARIES INMACHINE
LEARNING ALGORITHMS

This is a brief introduction to the mechanics of some shal-
low machine learning algorithms that will be used to test
our DDR proposal explained in Section 5. These algo-
rithms have been selected because they cover both simple
and complex approaches in their procedures to classify
patterns:
Naïve Bayes (H. Zhang & Jiang 2022) is a probabilistic

classification algorithm that focuses on data labeling by
extracting statistical information from the available data of
the training set.
The KNN (Gou et al., 2022) algorithm labels new pat-

terns based on the distance to existing training data. Thus,
to classify new data, it is necessary to explore all the train-
ing data. As ametric distance, the Euclidean distance is the

most popular one, but other metrics may be used (Alfeilat
et al., 2019).
BFTree (H. Shi, 2007) uses a “divide-and-conquer”

approach to generate a classification treewith binary parti-
tions. In this tree, the nodes are the attributes that separate
the instances in the different classes, the branches are the
decision rules to take a path, and the leaves correspond to
the final labels of the data.
In this method, each division of the tree into nodes is

made by taking the best attribute, which is able to divide
the patterns using the impurity metric.
Partial decision trees (PART; Ibarguren et al., 2016)

generate rules using a tree scheme following a “divide-
and-conquer” approach. This method was developed as an
efficient approach, compared to C4.5 (Quinlan, 1993) and
RIPPER (Cohen, 1995), avoiding complex optimization and
stages or adjustments to modify the individual rules of the
ruleset. In contrast, this method generates the rules using
partial trees, which are then pruned. The metric, Entropy,
used to split the tree into branches is the same as in the
C4.5 algorithm.
SVM (Chang & Lin 2011) is used for classification or

regression purposes. The aim of the SVM is to find a hyper-
plane that separates the data linearly into a positive class
and a negative class.
These are the most usual methods used in machine

learning for classification tasks. In this work, all these
methods are tested in combination with the DDRmethods
described in Section 3 and our proposal.

5 DDR FOR CRACK CLASSIFICATION
ALGORITHMS (DDR4CC)

DDR4CC uses as input binary images obtained from
a binarization method (for instance, Chu et al., 2022;
Cubero-Fernandez et al., 2017; Hoang, 2018; Meng et al.,
2022). Binary images usually contain a great number of
0 values. These values are features themselves; however,
most of them are not useful for the classification step,mak-
ing the machine learning models unnecessarily complex.
Hence, it is necessary to reduce the number of features.
For this reason, the first step of theDDR4CC is to compress
the information of the binary image avoiding all 0 values.
This compression is performed by obtaining the cumula-
tive sum of the column and row pixel values by applying
Equations (1) and (2):

𝑅𝑜𝑤𝐴𝑐𝑐
(
𝐼𝑗
)
=

∑𝐶−1

𝑖=1
𝐼 (𝑖, 𝑗)

255 ⋅ 𝑅
; 𝑗 ∈ [1, 𝑅] (1)

𝐶𝑜𝑙𝑚𝐴𝑐𝑐(𝐼𝑖) =

∑𝑅−1

𝑖=1
𝐼 (𝑖, 𝑗)

255 ⋅ C
; 𝑖 ∈ [1, 𝐶] (2)
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F IGURE 2 Example of accumulated pixels and the newly
acquired features for longitudinal and transverse classes.

F IGURE 3 Example of accumulated pixels and the newly
acquired features for alligator and healthy pavement classes.

Let 𝑅𝑜𝑤𝐴𝑐𝑐 (𝐼𝑗) and 𝐶𝑜𝑙𝑚𝐴𝑐𝑐 (𝐼𝑖) be the vectors of accu-
mulated values of rows and columns, respectively; 𝐼(𝑖, 𝑗)
represents a pixel in the binary image; 𝑖 and 𝑗 are the iter-
ators for each row and column, respectively; and finally,
let 𝑅 and 𝐶 be the total number of columns and rows of
the image. Note that considering 8-bit images, the accu-
mulated values are divided by (255 ⋅ [𝐶, 𝑅]) to normalize
the results into the [0 − 1] range. This avoids, at least par-
tially, any limitation on the size of the used images, as the
accumulated values do not depend on the width or height
of the images.
The accumulated values can help to identify the differ-

ences between longitudinal and transverse cracks, as can
be observed graphically in Figure 2, where the normal-
ized accumulated values are represented with vertical and
horizontal heatmap bars.
Similarly, the result of applying the accumulation Equa-

tions (1) and (2) can be observed in Figure 3 for an alligator
crack sample and a healthy pavement one. Figure 3 shows
graphically that the accumulated values are a powerful tool
to differentiate between alligator cracks and healthy pave-
ment since in this last case all cumulative values are very
close to 0.
However, looking deeper into the results of the accumu-

lations, as can be seen in Figures 2 and 3, there is still some

information that is irrelevant for the classification because
most of the values are 0, especially in healthy pavements,
longitudinal cracks, and transverse cracks. Equations (1)
and (2) reduce the feature space from {𝑅 ⋅ 𝐶} to {𝑅 + 𝐶},
but this new set of features still has a strong correlation
with the Figure 3 example of accumulated pixels and the
newly acquired features for alligator and healthy pavement
classes location of the crack in the image and is not exten-
sible to any arbitrary image resolution since the number of
features of the output is always {𝑅 + 𝐶}.
Hence, in order to overcome these two undesirable lim-

itations, a feature reduction space procedure is applied
again. This time, the normalized accumulated values are
the inputs of Equations (3) and (4). These two equations
transform the feature space in a simple process to gen-
erate understandable features to classify the images into
alligator cracks, transverse cracks, longitudinal cracks, and
healthy pavement.

max𝑉 =
𝑅

max
𝑖=1

(
𝑅𝑜𝑤𝐴𝑐𝑐

𝑖

)
max𝐻 =

𝐶
max
𝑗=1

(
𝐶𝑜𝑙𝑚𝐴𝑐𝑐

𝑗

)

(3)

𝑑𝑉 = max𝑉 −

∑𝑅

𝑗=1
𝑅𝑜𝑤𝐴𝑐𝑐

𝑗

𝐶

𝑑𝐻 = max𝐻 −

𝐶∑
𝑖=1

𝐶𝑜𝑙𝑚𝐴𝑐𝑐
𝑖

𝑅
(4)

Let max𝑉 and max𝐻 be the maximum values of the
accumulated row and column values, respectively. They
are computed by a function denoted bymax. 𝑑𝑉 and 𝑑𝐻 are
the difference between the maximum and the mean value
of the𝑅𝑜𝑤𝐴𝑐𝑐 (𝐼𝑗) and 𝐶𝑜𝑙𝑚𝐴𝑐𝑐 (𝐼𝑖) respectively; 𝑖 and 𝑗 are
the iterators to inspect the values of each vector ∀𝑖 = 1, . . . ,
𝐶; ∀𝑗 = 1, . . . , 𝑅.
After applying the previously stated equations, each

image has been reduced to only four features {max𝑉, 𝑑𝑉,
max𝐻, 𝑑𝐻}, which describe the main characteristics of
healthy pavements and the types of cracks analyzed in
this work. Also, as Figures 2 and 3 show, these new four
features are interpretable and explainable, which enables
the possibility of creating simpler machine learning mod-
els than with other proposals. In contrast, using DDR
approaches the complexity of the process depends on the
size of the images and the relationship of the patterns in the
whole dataset. In addition, feature reduction techniques do
not provide interpretable datasets, which is an undesirable
effect that can affect the performance of machine learning
models and experts’ understanding of how those models
are using the data.
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RODRIGUEZ-LOZANO et al. 2345

6 DATASETS

This section explains how the five datasets used in the
experimentation were created. The first subsection shows
the information from the datasets proposed by other
authors in the field of application of this work, which
are used later in this study. The second subsection shows
the methodology followed for combining those datasets to
create new datasets.

6.1 Previous proposed datasets

This work pursues a DDR that allows, with interpretable
features, the classification of cracks in pavements into
four classes: transverse cracks, longitudinal cracks, alliga-
tor cracks, and healthy pavement. The datasets selected to
carry out this study are publicly accessible:
Cubero-Fernandez et al. (2017): This dataset consists of

healthy pavement images and cracks images labeled as alli-
gator, longitudinal, and transverse. In total, this dataset has
600 labeled images with a resolution of 320 × 320 with
100 alligator crack images, 200 longitudinal crack images,
200 transverse crack images, and 100 healthy pavement
images.
Rodriguez-Lozano et al. (2020): This dataset consists of

1846 images with a resolution of 320 × 320 containing
280 alligator cracks, 390 longitudinal cracks, 358 transverse
cracks, and 828 images of healthy pavement.
AEL (Amhaz et al., 2016): theAigle-RN&ESAR&LCMS

(AEL) dataset consists of 58 images with different resolu-
tions (991× 462, 311× 462, 768× 512, 700× 1000). However,
the images are not labeled into classes as in the works
of Cubero-Fernandez et al. (2017) and Rodriguez-Lozano
et al. (2020). Hence, to use this dataset in this paper, we had
to manually analyze and classify each image, obtaining 18
longitudinal cracks, 34 transverse cracks, and three healthy
pavement images. Also, we included some new images in
this dataset: five longitudinal cracks and three transverse
cracks from TEMPEST2 and LRIS datasets, respectively.
The remaining images cannot be classified into any of the
four types described in Figure 1. Therefore, these images
are not included in any of the datasets on this list.
Crack Forest (Y. Shi et al., 2016): This dataset contains

118 unlabeled images with a resolution of 480 × 320 pixels.
We analyzed and classified manually the images, obtain-
ing five alligator cracks, 10 longitudinal cracks, and 95
transverse cracks images.
Crack200 (Zou et al., 2012): This dataset contains 206

images, with a resolution of 800 × 600. From this dataset,
we labeled 82 images obtaining 64 longitudinal crack
images and 18 transverse crack images.
GAPS384 (Eisenbach et al., 2017; Yang et al., 2020): This

dataset contains a modified portion of the dataset German

F IGURE 4 Datasets relations.

Asphalt Pavement Distress. It contains 509 images with a
resolution of 540 × 440 pixels. We identified 343 longitudi-
nal cracks, 117 transverse cracks, and a healthy pavement
image.
Crack500 (Yang et al., 2020; L. Zhang et al., 2016): This

dataset contains 1896 imageswith a resolution of 360× 640,
where we labeled seven alligator cracks, 388 longitudinal
cracks, 674 transverse cracks, and two healthy pavement
images.
Finally, for the sake of reproducible research experimen-

tation, we have decided to offer publicly all the labels of the
images described above, which can be found in a public
repository (Rodriguez-Lozano, 2023).

6.2 Dataset creations

Some datasets are very small or do not cover the four types
of cracks analyzed in this work. Therefore, the data used in
this work are new datasets created from a combination of
the original ones. The new dataset composition is created
using an incremental approach as shown in Figure 4. It is
detailed as follows:

1. Dataset 1 (DS1): This dataset contains images collected
from the work of (Cubero-Fernandez et al., 2017). Ini-
tially, this dataset can be considered as the simplest
case or as a “naïve” dataset, because the cracks that
are included are mostly perfect with no inaccuracies,
no partial combination of other cracks, or completely
healthy pavement, without any imperfection in the
surface.

2. Dataset 2 (DS2): This is the dataset used in the work of
Rodriguez-Lozano et al. (2020). This dataset includes
the previous dataset (DS1), along with some other
images of different cracks and healthy pavement. With
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2346 RODRIGUEZ-LOZANO et al.

TABLE 1 Number of images in each dataset

Alligator Longitudinal Transverse Healthy
Dataset 1
(DS1)

100 200 200 100

Dataset 2
(DS2)

380 590 558 928

Dataset 3
(DS3)

392 1011 1364 933

Dataset 4
(DS4)

380 997 693 929

Dataset 5
(DS5)

392 1418 1499 934

this inclusion, data are not as perfect as in DS1 since
the cracks of Rodriguez-Lozano et al. and the healthy
pavement images have some small imperfections.

3. Dataset 3 (DS3): In this case, the previous datasets (DS1
and DS2) are extended with the labeled data from AEL
(Amhaz et al., 2016), Crack Forest (Y. Shi et al., 2016),
and Crack500 (Yang et al., 2020; L. Zhang et al., 2016)
datasets. This addition adds more difficulty to the data
and also generates an unbalanced dataset, where the
alligator class is in the minority.

4. Dataset 4 (DS4): This dataset follows a similar organi-
zational scheme as the previous dataset (DS3) taking
the DS1 and DS2 as base datasets. However, in this case,
the additions are GAPS384 (Eisenbach et al., 2017; Yang
et al., 2020) and Crack200 (Zou et al., 2012) datasets.
Similar to the case of DS3, this incorporation creates
two minority classes, the alligator and the transverse
classes.

5. Dataset 5 (DS5): In order to consider all the possi-
ble data, the last dataset is the combination of all
the original datasets: Cubero-Fernandez et al. (2017),
(Rodriguez-Lozano et al. (2020), AEL (Amhaz et al.,
2016), Crack Forest (Y. Shi et al., 2016), Crack500 (Yang
et al., 2020; L. Zhang et al., 2016), GAPS384 (Eisenbach
et al., 2017; Yang et al., 2020), and Crack200 (Zou et al.,
2012). Thus, DS5 is the most challenging dataset among
all the five datasets considered in the experimental
phase.

The number of images of different types in each of the
generated datasets can be seen in Table 1.

7 EXPERIMENTATION AND
DISCUSSION

In this section, the results of the experiments are stated.
The DDR4CC proposal is compared with the other DDR
methods applied as a prior step to the classification stage.

TABLE 2 Number of features

DS1 DS2 DS3 DS4 DS5
Linear discriminant
analysis (LDA)

2

Principal component
analysis (PCA)

18 36 38 43 41

PCA-4 4
Singular value
decomposition (SVD)

4

t-Distributed Stochastic
Neighbor Embedding
(TSNE)

3

Multidimensional
scaling (MDS)

4

IVIS 4
Principal projections
(PP)

1120

Data dimensionality
reduction for crack
classification
algorithms (DDR4CC)

4

Therefore, we will check how each DDR applied impacts
each different classification method in terms of the quality
of the classification with five incremental datasets. After-
ward, we will provide the results of the timing taken by
eachDDRmethod and classification. Finally, wewillmake
a joint comparison of both the quality of the classification
and the timing.

7.1 Classification performance analysis

To carry out a performance analysis of our proposal, we
have used the five datasets generated from the previ-
ous section and employed the classification algorithms
detailed in Section 4. In addition, in order to compare
results, we have used the data reduction methods of Sec-
tion 3 and the proposal of Cubero-Fernandez et al. (2017),
Hoang (2018), and Rodriguez-Lozano et al. (2020) under
the name “PP” on the same datasets.
However, to set a fair comparison of our proposal with

the methods presented in Section 3 and PP, all images in
each dataset are set to the same resolution: 640 × 480.
Hence, after applying each data reduction algorithm, the
total number of features is presented in Table 2.
It should be noted that the number of features in the

above list was set for each of the methods to the number
shown except for LDA, which in the most common cases
uses two features to perform a linear separation of the data.
In addition, there are two different PCA analyses: PCA
where a number of features have been chosen to ensure
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RODRIGUEZ-LOZANO et al. 2347

95% of the variability of the data, and PCA-4 where only 4
features have been taken out.
Once the features for each data reduction technique

were obtained, 10-fold cross-validation was applied to each
dataset to analyze the classification performance of the
algorithms detailed in Section 4. In order to measure the
performance, we selected the F1-score metric (Kulkarni
et al., 2020), which is calculated following Equation (5).

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 +
1

2
(𝐹𝑃 + 𝐹𝑁)

(5)

Let 𝑇 𝑃 be the number of instances that the classifier has
identified correctly; 𝐹 𝑃 the number of instances that the
classifier has identified as a specific class andwhich do not
belong to that class; 𝐹 𝑁 the number of instances that the
classifier identified not belonging to a specific class, which
were incorrect.
Table 3 shows the classification results for each dataset

and machine learning algorithm, applying all DDR meth-
ods. This table shows that for DS1, which is the simplest,
smallest dataset, and with balanced classes, the LDA
method provides the most accurate results, compared to
the other methods. Also, DDR4CC is slightly behind LDA
for the F1-score metric, with a difference of 0.007, 0.007,
0.002, and 0.178 for Naïve Bayes, BFTree, PART, and SVM
algorithms, respectively.
However, for the rest of the datasets, where the images

are complex and classes are unbalanced, DDR4CC outper-
forms the results of most of the methods in all machine
learning algorithms. It can be observed that there are some
cases where the result provided by DDR4CC is not the
highest one, but in the worst case, the difference is very
small, with a value of 0.015 for DS2 using the Naïve Bayes
algorithm. Additionally, it is important to note that PP is
not able to work correctly with the Naïve Bayes algorithm
because it is not possible to obtain an adequate value of the
F1-score metric since there is, at least, one class for which
the algorithm is not able to learn how to classify it with
such input data.
Moreover, this table not only shows information about

the classification performance of the proposed DDR
approaches but also shows that there are algorithms such
as SVM that in general provide less accurate results than
the rest. Similarly, all the results show that the best-
performing algorithms are usually PART and KNN as
(Ahmadi et al., 2018) obtained.

7.2 Timing performance analysis

The previous section analyzed the performance of our pro-
posal, compared to others in terms of the quality of the

classification. However, a comparison taking into account
computing time spent should also be performed.
To carry out the timing analysis and given that one

of the main objectives is its execution in systems with
low computational capacity, we selected a low-resource
embedded hardware “Nvidia Jetson Nano.” This device is
powered by an ARM A57 at 1.43 GHz and 4 GB LPDDR4.
Also, this device is capable of executing machine learning
and computer vision algorithms to perform the detection
step, the feature extraction step, and the classification step,
previously shown in Figure 1.
For the timing analysis, we have considered two differ-

ent approaches:

1. The first approach is to check how much time each of
the proposals takes as the image resolutions change.
This allows visualizing which of those DDR methods
scale worse as the image size increases.

2. The second approach is to analyze how long the
machine learning algorithms takewith each of theDDR
across all datasets. This allows analyzing which of the
algorithms in conjunctionwith eachDDRmethod is the
fastest, thus estimating an indication of the complexity
of the models.

For the first approach, 50 random images fromDS5were
used. After selecting the images, they were resized from a
resolution of 64 × 48 and doubled up to an image resolu-
tion of 2560 × 1920. These resolutions cover a wide range
of values to be able to analyze the behavior. For each reso-
lution in that range, each data reduction method has been
applied 100 times in order to avoid possible fluctuations in
the measured times caused by the execution of any system
task.
The results presented in Table 4 show that IVIS, MDS,

and TSNE take much longer to perform the generation of
all the data than the rest of the techniques. The behav-
ior of the implemented experiments shows that the time
taken by IVIS to process the images is independent of their
resolution, taking on average about 33 s to process all the
images. Next, we find SVD, another method that performs
even worse than MDS and TSNE since when a resolution
of 192 × 144 is reached, it takes more than 1 s to process all
the images. In contrast to this, both PCA and LDA perform
better, but unlike DDR4CC, both methods have a much
steeper time increment, especially, at small resolutions.
Furthermore, Table 4 shows that both PP and DDR4CC
scale best as the image resolution increases. In fact, their
behavior is practically linear because there are no abrupt
changes, and it scales gradually as the resolution increases.
Finally, Table 4 shows that the time differences between
PP and DDR4CC are minimal, with DDR4CC taking an
average of only 0.0003 seconds longer than PP.
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2348 RODRIGUEZ-LOZANO et al.

TABLE 3 Classification results

DS Algorithm LDA PCA PCA-4 SVD TSNE MDS IVIS PP DDR4CC
1 Naïve Bayes 1.000 0.795 0.762 0.763 0.706 0.660 0.661 - 0.993

K nearest
neighbor
(KNN)

1.000 0.983 0.938 0.937 0.940 0.853 0.905 1.000 1.000

Best First Tree
(BFTree)

1.000 0.957 0.940 0.942 0.832 0.833 0.780 0.916 0.993

Partial decision
trees (PART)

0.995 0.935 0.932 0.937 0.850 0.796 0.783 0.958 0.993

Support vector
machines
(SVM)

1.000 0.556 0.533 0.532 0.705 0.599 - 0.743 0.822

2 Naïve Bayes 0.951 0.916 0.887 0.888 0.792 0.806 0.796 - 0.936
KNN 0.942 0.892 0.951 0.951 0.984 0.848 0.948 0.984 0.985
BFTree 0.943 0.946 0.938 0.938 0.933 0.827 0.919 0.933 0.969
PART 0.944 0.954 0.933 0.932 0.943 0.826 0.929 0.955 0.972
SVM 0.945 0.846 0.824 0.827 0.741 0.819 0.760 0.849 0.953

3 Naïve Bayes 0.882 0.870 0.782 0.783 0.879 0.672 0.773 - 0.921
KNN 0.833 0.935 0.932 0.932 0.963 0.880 0.928 0.964 0.963
BFTree 0.872 0.915 0.908 0.910 0.956 0.855 0.900 0.930 0.958
PART 0.878 0.934 0.921 0.918 0.960 0.855 0.902 0.942 0.957
SVM 0.853 0.614 0.571 0.570 0.867 0.576 0.693 0.674 0.932

4 Naïve Bayes 0.920 0.894 0.895 0.895 0.776 0.722 0.789 - 0.946
KNN 0.887 0.889 0.934 0.935 0.972 0.817 0.907 0.974 0.976
BFTree 0.905 0.936 0.928 0.928 0.939 0.802 0.871 0.925 0.971
PART 0.910 0.946 0.930 0.933 0.937 0.800 0.871 0.944 0.965
SVM 0.908 0.723 0.659 0.660 0.735 0.664 0.734 0.732 0.940

5 Naïve Bayes 0.843 0.880 0.775 0.778 0.899 0.624 0.852 - 0.924
KNN 0.789 0.920 0.918 0.917 0.968 0.852 0.923 0.963 0.959
BFTree 0.840 0.920 0.905 0.910 0.954 0.839 0.908 0.930 0.954
PART 0.844 0.928 0.916 0.911 0.961 0.853 0.912 0.951 0.961
SVM 0.792 0.643 0.624 0.624 0.905 0.630 0.688 0.655 0.931

Note: (-) represents a total failure classification in one of the classes. Best results in boldface.

TABLE 4 Evolution of time spent by DDR methods (in seconds)

Resolution LDA PCA PCA-4 SVD TSNE MDS IVIS PP DDR4CC
64 x 48 0.0866 0.0554 0.0547 0.0462 0.7766 0.4249 40.9766 0.0106 0.0108
320 x 240 0.3029 0.2684 2.2162 1.5622 0.8526 0.6919 40.8243 0.0399 0.0400
640 x 480 0.4735 0.4158 2.5839 2.0255 0.9546 0.8722 37.7043 0.1200 0.1202
1280 x 960 0.9431 0.8094 3.1503 2.4759 1.3396 1.3302 26.9136 0.4492 0.4495
1920 x 1440 1.8447 1.4014 3.3937 2.9038 1.9011 2.0290 31.7317 0.9726 0.9729
2560 x 1920 2.6500 2.1466 4.3242 3.7705 2.6749 2.8080 24.1659 1.6898 1.6902

For the second approach stated earlier, wemeasured the
execution times taken by the algorithms described in Sec-
tion 4 for each data reduction method. For this, models
of each algorithm have been trained and used to classify
100 images. As in the previous case, each run was repeated

100 times to avoid the effect on the measured time of any
running tasks in the system except for the classification
experiment.
Table 5 shows a structure similar to Table 3. In this case,

the contents are not the classification performance but the
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RODRIGUEZ-LOZANO et al. 2349

TABLE 5 Classification timing (milliseconds)

DS Algorithm LDA PCA PCA-4 SVD TSNE MDS IVIS PP DDR4CC
1 Naïve Bayes 2.3520 9.7770 5.2130 3.2010 2.7490 2.6140 2.5200 351.6760 1.1000

KNN 92.4130 39.3260 23.3370 18.3070 16.7840 16.9430 16.7520 221.6790 20.1000
BFTree 0.3250 0.8040 0.3060 0.1900 0.2030 0.2350 0.1930 1.1930 0.1410
PART 10.4900 3.9470 2.0680 0.9770 1.1000 1.2640 0.7970 1.0930 0.2480
SVM 25.1750 28.7890 19.1220 28.1080 22.1150 10.5530 9.7380 157.5180 6.1980

2 Naïve Bayes 0.5890 6.8960 0.8090 0.7850 1.6480 2.4870 2.3060 337.6290 1.0300
KNN 111.2290 193.4870 126.7390 108.1570 74.2840 58.9160 61.3680 966.0470 51.1500
BFTree 0.2010 0.3770 0.1520 0.2410 0.1140 0.1200 0.0870 0.6540 0.0950
PART 0.2510 0.2870 02960 0.3420 0.3760 0.3210 0.2920 0.8360 0.2270
SVM 8.7240 170.4380 18.3150 42.0910 65.5060 19.2230 14.0080 788.4210 13.0110

3 Naïve Bayes 0.6610 8.5580 0.7640 0.9800 0.7050 0.8130 0.9330 262.8120 1.1140
KNN 54.0570 61.3870 55.5880 58.5220 61.4950 54.8980 53.8630 807.6850 50.6220
BFTree 0.0710 0.1390 0.0760 0.1280 0.1120 0.1130 0.1160 0.5940 0.0950
PART 0.3070 0.4000 0.3230 0.4180 0.3510 0.3500 0.4780 1.2610 0.2680
SVM 19.2440 253.3800 30.2410 27.0570 30.2750 27.8720 25.3180 502.7120 19.0880

4 Naïve Bayes 0.5480 10.6730 1.5980 1.2680 0.9880 0.9530 0.9910 261.8710 0.9000
KNN 42.6970 48.2660 44.0540 50.0240 43.6080 43.0480 42.6930 484.1880 42.5830
BFTree 0.0710 0.1480 0.1170 0.0850 0.1580 0.1120 0.1180 23.0580 0.0870
PART 0.2920 2.2350 0.2120 0.2670 0.2810 0.3280 0.3010 0.7570 0.2410
SVM 12.8930 233.0670 25.3710 26.1470 41.8870 30.6660 22.7440 228.2170 17.2770

5 Naïve Bayes 0.5020 8.0700 0.9280 1.1000 0.7100 1.2900 0.9130 255.7260 0.9170
KNN 58.5340 69.9560 60.5650 62.7510 64.3780 60.6160 60.6620 900.0370 61.7290
BFTree 0.0780 0.1400 0.0830 0.0970 0.1090 0.1090 0.1190 0.4850 0.0840
PART 0.2450 0.5530 0.3590 0.2500 0.2330 0.3860 0.3220 1.1940 0.2080
SVM 30.3080 283.1990 38.5110 43.9170 28.7470 39.8030 25.7420 230.0830 19.9860

Note: Fastest results in boldface.

execution times, in milliseconds, taken by each method
and technique to classify 100 images.
As shown by the results in this table, LDA and DDR4CC

offer the lowest times. As the results show, LDA provides
in many cases slightly faster results than DDR4CC. This
is mainly because LDA generates a new set of features
in which there are only two features, unlike DDR4CC,
which generates four. This might seem to be a disadvan-
tage of DDR4CC; however, it should be remembered that
in Table 3, DDR4CC outperformed all methods in most of
the datasets, so if both tables are taken into consideration,
DDR4CC clearly provides the best results overall. This is
demonstrated in Section 7.3.
Table 5 shows that methods such as PCA provide worse

time results by generating more complex models in which
more calculations have to be performed to arrive at the
classification of a new pattern. The same can be extrapo-
lated to the PCA-4, SVD, TSNE, MDS, and IVIS methods
since, despite containing three or four features, the gen-
erated models are much more complex due to the low
interpretability of the data. This causes longer execution

times. So, PP method generally obtains the worst results,
taking in many cases 100 times longer than DDR4CC.
Table 5 shows for all datasets, both KNN and SVM

are the most expensive methods to run. On the contrary,
BFTree and PART are themost efficientmethods to classify
the data. Therefore, when choosing a method to carry out
the classification, PART would be chosen because it is the
one that provides the best results in terms of classification
and invested time.
The DDR4CCmethod is specific for crack classification,

it is not a generic option because it depends on the data
interpretability. Thus, it is able to include expert knowl-
edge in the selection of themost relevant features.Methods
such as LDA, PCA, PCA-4, SVD, TSNE, MDS, and IVIS
are mathematically robust, but they rely on the provided
data. If the data are not complete or the given set of sam-
ples does not cover the real variability of the possible
occurrences, the reduction will not be completely effi-
cient. However, the DDR techniques specifically designed
for crack classification include expert knowledge, and the
selected features tend to be more efficient. For instance,
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2350 RODRIGUEZ-LOZANO et al.

PP method, which is a specifically designed DDR method
for crack classification, provides better results than the
rest of the mathematical methods in most cases. How-
ever, DDR4CC outperforms PP method in most cases in
terms of classification performance. In timing comparison,
DDR4CC provides faster results than the PPmethod in any
case.

7.3 Joint discussion of the performance
and timing

The aim of any classification is to provide the best results
in terms of the performance of the quality of that classifica-
tion. However, if the time taken to provide the results is too
high, a reduction of the number of features required for the
classification is applied. Usually, this reduction may pro-
voke a degradation of the performance of the classification.
Therefore, it is needed further analysis on both the time
required for the full processing and the quality obtained.
After a preliminary analysis of the timing, the IVIS

method obtains average classification results and has very
large processing times. The processing times of the IVIS
method along with any classification algorithm are much
higher than any other DDR method. Therefore, we have
decided to remove IVIS from the graphical comparative.
In the following figures, we are comparing each classi-
fication technique with every DDR method. On the left
vertical axis is shown the classification performance using
F1-score, while on the right vertical axis is shown the tim-
ing in milliseconds. The timing comprises both the time
taken by the DDRmethod applied on 640 × 480 images, as
described in Table 4, and the classification time, stated in
Table 5.
Figure 5 shows the graphical analysis of the Naïve Bayes

classification technique with all the DDR methods under
the DS5 dataset. In it, DDR4CC provides the best results in
both the F1-score and the timing. Other techniques, such
as TSNE and PCA, give good F1-Score results, although the
timing is much worse than with DDR4CC.
We present in Figure 6 a comparison of the DDR meth-

ods for the classification algorithm KNN and DS5 dataset.
The best classification results are obtained for TSNE, PP,
and DDR4CC methods. DDR4CC outfits clearly the other
methods. So, TSNE takes a total time of 1018.98 ms (DDR
process takes 954.6 and 64.38 ms for classification); PP
takes 1020.04 ms (120 ms for DDR and 900.04 ms for clas-
sification); and DDR4CC takes only 181.93 ms (120.2 ms
for DDR and 61.73 for classification). We can conclude
that applying KNN for a similar F1-score, DDR4CC is
approximately 5.6 times faster than TSNE and PP.
Likewise, we present in Figure 7 the comparison of the

DDR methods for the classification algorithm BFTree and

F IGURE 5 Comparison of data dimensionality reduction
(DDR) techniques applied to the Naïve Bayes classifier regarding
timing and F1-score performance in the Dataset 5 (DS5) dataset.
DDR4CC, data dimensionality reduction for crack classification
algorithms; LDA, linear discriminant analysis; PCA, principal
component analysis; PP, principal projections; SVD, singular value
decomposition; TSNE, t-distributed stochastic neighbor embedding.

F IGURE 6 Comparison of DDR techniques applied to K
nearest neighbor (KNN) classifier regarding timing and F1-score
performance in the DS5 dataset. DDR4CC, data dimensionality
reduction for crack classification algorithms; LDA, linear
discriminant analysis; PCA, principal component analysis; PP,
principal projections; SVD, singular value decomposition; TSNE,
t-distributed stochastic neighbor embedding.

DS5 dataset. Best classification results are obtained for
TSNE and DDR4CC methods. TSNE takes a total time
of 954.7 ms (DDR process takes 954.6 and 0.109 ms for
classification); DDR4CC takes only 120.3 ms (120.2 ms for
DDR and 0.084 ms for classification). We can conclude
that applying BFTree for a similar F1-score, DDR4CC is
approximately 7.9 times faster than TSNE. DDR4CC again
outperforms clearly the other methods.
The last comparison is presented in Figure 8, and this

is the comparison of the DDR methods for the PART
classification algorithm. The best classification results are
obtained for TSNE, PP, andDDR4CCmethods. TSNE takes
a total time of 954.82ms (DDRprocess takes 954.6 and 0.223
ms for classification); PP takes 121.94 ms (120 ms for DDR
and 1.194 ms for classification); DDR4CC takes only 120.41
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F IGURE 7 Comparison of DDR techniques applied to Best
First Tree (BFTree) classifier regarding timing and F1-score
performance in the DS5 dataset. DDR4CC, data dimensionality
reduction for crack classification algorithms; LDA, linear
discriminant analysis; PCA, principal component analysis; PP,
principal projections; SVD, singular value decomposition; TSNE,
t-distributed stochastic neighbor embedding.

F IGURE 8 Comparison of DDR techniques applied to partial
decision trees (PART) classifier regarding timing and F1-score
performance in the DS5 dataset. DDR4CC, data dimensionality
reduction for crack classification algorithms; LDA, linear
discriminant analysis; PCA, principal component analysis; PP,
principal projections; SVD, singular value decomposition; TSNE,
t-distributed stochastic neighbor embedding.

ms (120.2ms forDDRand 0.208ms for classification). Even
though PP is very close this time, DDR4CC again obtains
the best results.
Similar results than those of Naïve Bayes classifier

(shown in Figure 5) are obtained for the SVM classification
algorithm, as shown in Figure 9, where again DDR4CC
gets the best results, while all the other methods obtain
lower F1-score and higher execution time. In addition,
the 225 confusion matrices resulting from the execution
of all experiments are available in the file “ConfusionMa-
trixResults.txt” in the “DS” folder of the public repository
(Rodriguez-Lozano, 2023).
We can assert after analyzing these five classification

algorithms, and testing for nine DDR methods, that the
DDR4CC data reduction technique obtains the best results

F IGURE 9 Comparison of DDR techniques applied to support
vector machines (SVM) classifier regarding timing and F1-score
performance in the DS5 dataset. DDR4CC, data dimensionality
reduction for crack classification algorithms; LDA, linear
discriminant analysis; PCA, principal component analysis; PP,
principal projections; SVD, singular value decomposition; TSNE,
t-distributed stochastic neighbor embedding.

in execution time and provide the best input data for those
classification algorithms, obtaining the highest F1-score.

8 CONCLUSION

The number of features used for pavement crack classifica-
tion algorithms is usually high, poorly interpretable, and
difficult to obtain. As these features are the ones used by
machine learning algorithms to learn from the data, they
generate more complex models. Therefore, they are highly
penalized by the classification accuracy and the time spent
in classifying the data.
This work proposes the DDR4CC method to reduce

the dimensionality of the data as a step before the clas-
sification. DDR4CC is a simple DDR method with high
interpretability of the data. Thanks to this, we obtain very
fast computation and high accuracy.
We demonstrate in Section 7.3 that the DDR4CC data

reduction technique obtains the best results in execution
time and provide the best input data for those classification
algorithms, obtaining the higher F1-score. The 225 confu-
sionmatrices obtained are available in (Rodriguez-Lozano,
2023).
DDR4CC avoids using thousands of features to iden-

tify longitudinal, transverse, alligator cracks, and healthy
pavement as opposed to the behavior of other meth-
ods. Specifically, DDR4CC generates only four features:
{max𝑉, 𝑑𝑉, max𝐻, 𝑑𝐻}. This set of features has mul-
tiple advantages. One advantage is that these features
are not influenced by the spatial location of the defect
in the images. In addition, they allow the extraction of
such features regardless of the original image resolution.
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Finally, these features boost the classification algorithms
and improve the execution time to classify the image.
So, two main benefits are obtained: Better classifica-

tion is reached in the majority of the experiments. The
reduction of computation will allow real-time detection
and classification on low-consumption devices. This could
really be useful in unmanned aerial vehicules (UAVs).
To analyze the DDR4CC performance, several com-

parisons have been made with five datasets created by
blending different state-of-the-art public datasets. Many
of these datasets did not classify images into longitudi-
nal cracks, transverse cracks, alligator cracks, or healthy
pavement. Therefore, in conjunction with this work, open
public access is provided to the classification index files for
each of the images identified in one of the abovementioned
types.
In addition, eight different DDR techniques have been

applied to each of the datasets to test their effectiveness
against DDR4CC. For this purpose, the performance of
DDR4CC has been analyzed from a classification perfor-
mance point of view using five machine learning algo-
rithms (some as simple as Naïve Bayes). From the obtained
results, it can be deduced that, in general, DDR4CC boosts
the machine learning algorithms obtaining almost perfect
models and better classification results according to the
F1-score metric.
On the other hand, the temporal impact of DDR4CC

related to the rest of the DDR algorithms and of the
classification algorithms on low computational capacity
embedded systems has been analyzed. In the comparison
of the DDRmethods, it can be observed that DDR4CC has
an almost linear behavior, scalingmore uniformly and pro-
gressively as the size of the images increases than the rest of
the comparedmethods. Finally, the time spent by the algo-
rithms shows that DDR4CC, along with the LDA method,
provides the best results in the execution time spent in the
inference stage in the machine learning algorithms. How-
ever, taking into account both the classification ranking
and timing performances, we can conclude that DDR4CC
is themost efficientmethod in low computational capacity
systems for the classification of cracks.
This work should be continued in futureworks. The first

one focused on reaching real-time detection and classifica-
tion of low-consumption devices installed in UAVs; we are
starting an industry collaboration titled INSPECT-ROADS
with SANDO in which we will apply our algorithms to
street and road maintenance in Malaga County (Spain).
The second one is to analyze the impact of DDR4CC in
newer supervised machine learning or classification algo-
rithms, such as the dynamic ensemble learning algorithm
(Alam et al., 2020), and the finite element machine for fast
learning (Pereira et al., 2020).
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