
An approach for the evolutionary discovery of software
architectures

Aurora Ramı́rez, José Raúl Romero∗, Sebastián Ventura

Department of Computer Science and Numerical Analysis, University of Córdoba, 14071
Córdoba Spain

Abstract

Software architectures constitute important analysis artefacts in software
projects, as they reflect the main functional blocks of the software. They
provide high-level analysis artefacts that are useful when architects need to
analyse the structure of working systems. Normally, they do this process
manually, supported by their prior experiences. Even so, the task can be
very tedious when the actual design is unclear due to continuous uncon-
trolled modifications. Since the recent appearance of Search Based Software
Engineering, multiple tasks in the area of Software Engineering have been
formulated as complex search and optimisation problems, where Evolution-
ary Computation has found a new area of application. This paper explores
the design of an evolutionary algorithm (EA) for the discovery of the under-
lying architecture of software systems. Important efforts have been directed
towards the creation of a generic and human-oriented process. Hence, the
selection of a comprehensible encoding, a fitness function inspired by accu-
rate software design metrics, and a genetic operator simulating architectural
transformations all represent important characteristics of the proposed ap-
proach. Finally, a complete parameter study and experimentation have been
performed using real software systems, looking for a generic evolutionary
approach to help software engineers towards their decision making process.

Keywords: Search based software engineering, software architecture
discovery, evolutionary algorithms, ranking aggregation fitness

∗Corresponding author. Tel.: +34 957 21 26 60
Email address: jrromero@uco.es. (José Raúl Romero)

Preprint submitted to Information Sciences January 7, 2015

1. Introduction

Throughout software development, software engineers need to make de-
cisions about the most appropriate structures, platforms and styles of their
designs. The automatic inference and evaluation of different design alterna-
tives is a challenging application domain where computational intelligence
techniques serve to provide support to software engineers, especially when
limited information about the system being developed is still available.

In this context, architectural analysis constitutes an important phase in
software projects, as it provides methods and techniques for handling the
specification and design of software in the earlier stages [9]. It is consid-
ered a human-centered decision process with a great impact on the quality
and reusability of the end product. During high level analysis, component
identification allows the discovery of system blocks, their functionalities and
interactions. For this reason, it is a good practice when dealing with com-
plex systems [35], resulting in more comprehensible software and making its
development and maintenance simpler and more affordable.

Frequently, software engineers need to tackle architectural analysis from
a working system in order to migrate it or extend its functionality [10]. This
could be a difficult task when the underlying system conception has been
perverted due to requirements changes. A more dramatic situation occurs
when reverse engineering techniques from source code are the only way to
extract system information, leading to inappropriate abstractness because of
missing documentation. In these cases, engineers must expend their time
and effort, with their own experience as their only guarantee, in the manual
discovery of these functional blocks.

Architectural optimisation methods in the field of Software Engineering
(SE) have often proposed guidelines and recommendations to modellers for
the identification and improvement of software architectures [5, 6]. Hence,
semi-automatic tools and intelligent systems might be an efficient solution
to support the engineering work in order to obtain quality models.

More specifically, the discovery of the architecture of a software specifi-
cation can also be formulated as the search of the most appropriate distri-
bution of available software artefacts in more abstract units of construction.
Traditionally, proposed approaches are based on the refactoring of source
code [21, 34], implying that architectural blocks are recovered at the end of
the development process without regarding analysis decisions. Besides, it is
frequent that source code is evolved without an exhaustive control from the

2

analysis perspective, and it is likely not to be representative of the origi-
nal conception of the system. Instead, the discovery process can be carried
out using earlier available information, like the detailed analysis models in
the form of class diagrams. These models offer an intermediate view of the
software, between the abstractness of the architecture specification and the
specificity of the code.

Recently, the combination of metaheuristic approaches and Software En-
gineering as problem domain, denominated Search Based Software Engineer-
ing (SBSE), has undergone a huge growth [17]. Since the appearance of
SBSE, Evolutionary Computation (EC) has emerged as the most applied
metaheuristic [16], demonstrating that it constitutes an interesting and com-
plementary way to help software engineers in the improvement of their object-
oriented class designs [33] or user interfaces [36]. In this paper, EC is explored
as a search technique to extract the underlying software architecture of a sys-
tem. It constitutes a novelty in SBSE, where architectural discovery has been
viewed as a re-engineering task from source code, which is more oriented to-
wards maintenance and refactoring purposes. The main research questions
posed in this work are the following:
RQ1: Can single-objective evolutionary algorithms (EA) help the software
engineer to identify an initial candidate architecture of a system at a high
level of abstraction? Such an approach should be heavily oriented towards
the expert domain, looking for the interoperability with software engineering
standards and tools, as well as for the comprehension of the elements involved
within the evolutionary model.
RQ2: How does the configuration of the algorithm influence both the evolu-
tionary performance and the quality of the returned solution? In order to
answer to this question, an in-depth parameter study is required, aiming to
provide useful guidelines on this regard to the software architect.

In the proposed evolutionary approach, class diagrams constitute the
source artefacts used to abstract the software architecture, which is encoded
using a flexible tree structure. Design alternatives are explored by a specific
genetic operator applying domain knowledge. Concepts like cohesion and
coupling guide the search, defining a ranking-based fitness function.

The rest of the paper is structured as follows. Section 2 introduces some
background in SBSE and architectural modelling. Section 3 details the prob-
lem description, whereas the evolutionary model is described in Section 4.
Next, experimentation is presented in Section 5, including a detailed param-
eter study. An illustrative example of the approach is explained in Section 6,

3

and results are discussed in Section 7. Finally, concluding remarks are out-
lined in Section 8.

2. Background

This section presents the most relevant subjects and background related
to our work. More specifically, it introduces Evolutionary Computation as
a technique to solve Software Engineering tasks, as well as the main termi-
nology related to architectural analysis. Finally, previous works on software
architecture optimisation in SBSE are presented.

2.1. Evolutionary Computation in Software Engineering

Evolutionary Computation [7] is one of the first population-based and
bio-inspired metaheuristics for the resolution of optimisation problems. For
this reason, EC has been applied for many years now to a variety of topics
and considerable efforts have been applied in order to propose new techniques
and operators [38] to solve complex applications.

Applying metaheuristics like EC to any domain requires that the scenario
to be solved must be reformulated as an optimisation problem. Software En-
gineering is not an exception [8]. Since the appearance of SBSE, considerable
efforts have been devoted to this field. Although the first and most studied
area has been the automation of test case generation [12], other tasks related
to the rest of phases in the software development, from requirements spec-
ification [39] to software verification [27], have already been studied. The
advances in the field demonstrate that the application of EC to software
enhancement is not only focused in the generation of automated programs,
other activities classically performed by humans present new challenges.

Since SE is mainly a human-centered activity, the automation of the ex-
pert’s reasoning presents a great challenge, especially in the analysis and de-
sign phases [29]. Design tasks considered in SBSE encompass problems like
the conception of both object-oriented [33] and service-oriented [30] archi-
tectures, software module clustering [28] or software refactoring [20]. These
activities are characterised by the need of constructing some type of software
model from requirements. Both module clustering [28] and software refac-
toring [20] are more relevant to software maintenance, since existing software
artefacts must be scrutinised in order to provide design alternatives.

In [33], an evolutionary algorithm is combined with software agents to
extract the most fitting UML class diagram for a given set of methods and

4

attributes from use cases. This type of software requirement information is
also taken as an input of the evolutionary approach proposed in [18], where
logical groups of use cases are identified and put together into component
packages. In this case, the authors presented a generic framework inspired
by clustering techniques. In [30], genetic programming is used to deal with
service composition in order to obtain the best orchestration of web services.

Frequently, popular evolutionary schemes and generic operators are se-
lected and adapted when needed, since EC research history provides sufficient
candidate elements [22]. Quite the opposite occurs when addressing more
complex problems and specific implementations are required [11]. The prob-
lem description determines the need for either generic or specific elements.
In this sense, the genetic algorithms conceived in [18, 28] handle integer
encodings for the allocation of software artefacts, whereas those designed
in [20, 30] require tree structures and special operators for the application of
genetic programming approaches. Additionally, an object-oriented encoding
to represent the set of classes, methods and attributes is proposed in [33].

2.2. Component-based software architectures

According to the ISO Std. 42010 [19], the architecture of a software sys-
tem conceives “the fundamental concepts or properties of a system in its
environment embodied in its elements, relationships, and in the principles
of its design and evolution”. These high-level abstraction models are very
appropriate for guiding and controlling its subsequent development, since it
constitutes a bridge between software requirements and the implementation
with specific programming languages [13]. Ideally, these models should be
considered during the entire process, evolving as the software does. How-
ever, they frequently tend to be shifted during the implementation and the
maintenance phases, since architectures do not have a direct representation
in code artefacts.

A component-based architecture depicts a special type of architectural
model, founded on the idea of constructing the software by means of indepen-
dent artefacts that aim to promote the reuse of functionality. A commonly
accepted definition of component is given by Szyperski [35]: “a component
is a unit of composition with contractually specified interfaces and explicit
context dependencies only”. It is also mentioned that a component “can be
deployed independently and is subject to third party composition”. Internal
objects implement its functionality, although they remain hidden and inac-
cessible beyond the component limits. Relations between components should

5

be defined by means of provided and/or required interfaces. A provided inter-
face is defined as “a set of named operations that can be invoked by clients”,
separating the specification of the functionality from its real implementation.
On the other hand, a required interface specifies the services invoked by the
component, and provided by others. Finally, connectors link two or more
interaction points between interfaces.

The importance of component-based architectures lies in its capability
to represent a variety of software systems by means of abstract units of
construction, without the consideration of the final specific technology or
context in which the software will be deployed. Thus, components could be
implemented as packages, modules or even single classes in object-oriented
systems, as well as a set of services provided in the cloud or distributed
objects in open and large distributed systems.

Software architects require, just like metaheuristics do, mechanisms to
evaluate the adequacy of their models. The most frequently used measures
are related to cohesion and coupling [14]. Cohesion refers to the degree to
which the elements comprising the component are necessary and sufficient
to carry out a single, well-defined function. Coupling is related to the in-
terdependence between components, probably caused by references to other
modules and data flows. Good component-based designs, i.e. specifying co-
hesive components with low dependencies, provide highly scalable software
systems with better encapsulation and modularity. There exist other diverse
metrics that help engineers in either the measurement of non-functional prop-
erties of its component-based designs, like integration [1] or usability [4], or
the quantification of the symmetrical elegance of the software design [32].

2.3. Search-based architectural design

Current SBSE proposals in the context of software architectures can be
viewed from diverse perspectives [2], since there are different kinds of fac-
tors to be considered in an architectural specification. The architecture
definition (i.e. modelling languages, available constructs or the algorithm
representation); the quality attributes to be measured, either functional or
non-functional; the presence of prior components or design patterns, as well
as the design purpose (recovery, refactoring, software implementation and
hardware deployment) present a variety of application problems.

The conception of a low-level architecture from use cases as a software
architecture synthesis problem is proposed in [31]. The authors present a
genetic algorithm that takes as input an initial grouping of classes obtained

6

by a simulated annealing algorithm from a graph of functional dependencies,
previously extracted from use cases. The resulting architectural specification
is composed by classes and interfaces, according to the design patterns that
best fit the requirements.

Next, the process proposed in [21] combines a clustering approach and
a genetic algorithm for the recovery of component-based architectures from
source code. It is a re-engineering model where the genetic search is per-
formed over an initial architecture obtained after the study of relationships
among source code elements (classes, interfaces, packages) from a functional
dependency graph. It requires a complex mapping process, since it consid-
ers a fixed linear encoding representing the distribution of each class into a
component, and needs a transformation mechanism to properly present the
solution to the user. The proposed evolutionary model focuses on the ar-
chitecture reconstruction from source code, its goal being closest to software
maintenance. The software code constitutes a powerful source of detailed
information about how the system works, but it is not clear that high-level
characteristics can be directly extracted from it, since human decisions and
abstract information are commonly faded away throughout the software con-
struction process.

Assembling COTS (Components Off-The-Shelf) is another example of
architecture construction. These COTS already implement specific func-
tionalities whose combination is optimised in order to conform with the
overall system functional requirements. In [24], well-known multi-objective
genetic algorithms are used to generate design alternatives from an initial
component-based architectural model. Besides, the proposal requires precise
annotations of the evaluable metrics on each component from the expert,
i.e. cost or performance, being components considered as black-box arte-
facts. Along the same lines, the authors explore in [3] the selection of the
optimal subset of pre-existing components, which determine the next release
of a system, using simulated annealing and greedy algorithms.

Finally, the framework presented in [23] addresses the issue concerned to
architectural deployment, where software components within a distributed
system must be allocated in hardware nodes in order to properly satisfy the
non-functional requirements given, such as cost, latency and memory con-
sumption. Here, the software specification already exists, so the evolutionary
search is focused on exploring several different platforms where the deployed
software would be executed.

7

3. Problem description

The identification of the architectural models is considered during the
early stages of software conception, when software modellers still want to
modify their current software structure as requirements change or they are
requested to check the correctness of the resulting design.

When source code artefacts are not yet available, architects require other
sources of information in order to discover the intended architecture. Initial
class diagrams, usually the most used representations in the analysis phase,
constitute an interesting starting point for architecture discovery. These
diagrams offer more specific analysis information than source code, and they
use modelling languages like UML 2 [26] instead of programming languages.

Therefore, the originally intended elements that conform a component-
based architecture (components, interfaces and connectors) will be identified
from these analysis models, resulting in an architecture represented with a
UML 2 component diagram. At this point, the semi-automatic discovery of
components including its internal structure, candidate interfaces and connec-
tors can be constrained by the following assumptions:

1. A component is defined as a cohesive group of classes, meaning that they
work together to satisfy the expected behaviour of the component. Thus,
classes within the diagram will be organised searching the best abstraction
of the different functionalities that can be identified in the software.

A very important constraint to consider is that any class in the input di-
agram must be contained in one and only one component in the resulting
architecture. Additionally, any operation or transformation of the archi-
tecture must ensure that no empty components are returned.

2. A directed relationship between classes in the analysis model belonging to
different components represents a candidate interface. Although groups
of related classes should be allocated in the same component, some in-
teractions could remain between classes belonging to other components,
representing operational flows among them. Then, these relationships,
required to perform the overall functionality of the system, will be ab-
stracted as interactions between components, i.e. defining its interfaces.

It can be observed that not all the relationships can constitute a candi-
date interface. For instance, generalizations represent data abstractions,
so they do not imply a flow of operational information. The navigability

8

of the relationship is also important because, if it is not explicitly repre-
sented, it would mean that information is exchanged in both directions,
the corresponding classes being highly dependent. If the navigability is
presented for only one direction, the flow represents a provided or required
candidate service.

Focusing on the interactions between components, isolated components are
not appropriated as they do not provide any service to others. Secondly,
mutually dependent components are not permitted from the architectural
perspective. This latter circumstance occurs when a component requires
and provides services from another component.

3. Connectors can be described as the linkage between a pair of required
/ provided interfaces interconnecting different components. They will be
identified after the discovery of the interfaces created between components.

4. Proposed model for architecture discovery

In this section, the different elements of the proposed evolutionary model
are presented, including the encoding chosen, the fitness function and the
genetic operator. All these elements are conceived with the aim of creat-
ing a comprensible EA as posed by RQ1. Finally, the description of the
evolutionary algorithm is detailed.

4.1. Encoding of solutions

Selecting the most appropriate problem encoding is a key step in any
search algorithm. Usually, a trade-off between the performance and compre-
hensibility must be achieved, especially when genetic algorithms are aimed
at supporting non expert users in metaheuristics. Although the linear en-
codings proposed in Sections 2.1 and 2.3 seem to be efficient representations,
difficult design problems still require its adaptation by means of superstruc-
tures or groups of consecutive genes to represent more complex features. In
these cases, efficiency decreases due to the use of operators which are too
specific or the need for corrective procedures after the application of generic
operators.

Human interpretation is usually hampered by complex genotype / phe-
notype mappings. Therefore, an easier mapping process for software design
problems might be beneficial. Tree structures seem to be an interesting op-
tion, as they have been used successfully in both computational and human

9

A_prov_E

E_req_A

(a) Phenotype

Architecture

Components Connectors

Component_1 Component_2 Connector_1

Classes ClassesProvided
interfaces

Required
interfaces

Provided
interfaces

Required
interfaces

Provided
interface

Required
interface

B A_prov_E E_req_A A_prov_EE_req_AA C D FE G H

(b) Genotype

Fig. 1. The phenotype/genotype mapping process.

domains. Moreover, these types of representation are also familiar to soft-
ware architects, because they are common structures in modelling tools, and
they allow a flexible management of solutions with different sizes, e.g. archi-
tectures with a variable number of components and connectors.

Components, interfaces, connectors and inner elements clearly present a
hierarchical composition. Classes and their relationships may constitute a
component, whose complete specification requires the definition of its pro-
vided and required interfaces. Connectors can be split into the interfaces they
link. Then, mapping a component diagram into a tree structure is feasible
as shown in Fig. 1, where shading nodes constitute the solution frame, com-
prised by those mandatory artefacts appearing in any architectural model.
The rest of nodes represent the elements that can be different from one so-
lution to another, i.e. a number of component and connectors as well as the
distribution of classes and interfaces among them. More specifically, the root
node, Architecture, represents the component diagram that is comprised of
a set of components and connectors. Each component is defined by a node
Component in terms of its internal classes and its interfaces. Similarly, each
connector is described by the pair of required and provided interfaces that
it links. Since they are compound elements, they are represented as non-
terminal nodes. Finally, classes and interfaces constitute the terminal nodes.

4.2. Initial population

From the problem description (see Section 3), it can be noted that the
search space is constituted by all possible combinations of class distribution

10

among components, also identifying its interfaces and the connectors. These
candidate groups of classes, and the way in which interfaces and connectors
are deduced from them, must also guarantee that the correspondent archi-
tecture represents a valid solution.

Firstly, a random number of components is selected between a minimum
and a maximum. Default values are set to a minimum of two and a maximum
of n components, n being the number of classes in the input model. The
higher limit guarantees that no empty components will be generated. Then,
each class is assigned to one component, assuring that each component has
at least one class. After this initial assignment, the rest of the constraints
detailed in Section 3 are omitted, allowing a faster initialisation process. As
will be explained later, the main idea is that these invalid individuals will be
progressively removed along the generations.

4.3. Ranking fitness function

As mentioned in Section 2.2, diverse functional or non-functional proper-
ties can be considered depending on the underlying goal of the architectural
optimisation. In this case, the search process is mainly focused on structural
aspects, closely related to reusability, since it looks for the optimal identifica-
tion of well-defined components, interfaces and connectors. Thus, the fitness
function considers the strength and independence of the inner functionality
of each component.

The fitness function is calculated as an aggregation of rankings. The use
of rankings cancels out the need for standarisation between metrics, which
could result in an artificial procedure when they are not defined in an appro-
priate range for a fair scalarisation and aggregation. Each ranking belongs
to a specific metric related to desirable characteristics in the architectural
design. Therefore, evaluating these design criteria requires the existence of
quantifiable measures applicable to the problem domain.

Firstly, the Intra-Modular Coupling Density (ICD) [15] in Eq. 1 serves to
determine a trade-off between cohesion and coupling. For each component
i, ICDi is calculated as the ratio between internal and external relations,
which has to be maximised. CI ini is the number of interactions inside the
component, i.e. the relationships between classes allocated in the same com-
ponent. CIouti represents the number of relationships between component i
and the others, i.e. the number of candidate interfaces of the component.
Then, every value is properly weighted with the ratio of classes that partic-
ipate in these relationships. Hence, if two components reach the same ratio

11

of interactions, the smaller component, i.e. the one with less inner classes, is
preferable meaning that the density of interactions per class is higher. ICDi

varies in [0,1]. Finally, the ICD of the overall architecture (individual) is
calculated as the average of every ICDi.

ICDi = ((#classestotal −#classesi)/#classestotal) ·
(
CI ini /(CI ini + CIouti)

)

ICD =
n∑

i=1

ICDi/n (1)

The second metric, named External Relations Penalty (ERP), applies a
penalty if some relations are not specified by means of interfaces. The op-
timum value is 0, meaning that no relationship outside the identification of
a candidate interface is presented between classes allocated in different com-
ponents. The minimisation of these dependences between components is an
important characteristic to be considered, as it reflects that only interactions
among interfaces are adequate in good designs. These external relationships
could be generalizations (ge) or not directed relationships like associations
(as), aggregations (ag) and compositions (co), as they do not allow the ab-
straction of candidate interfaces. Dependences are not included because they
always have a direction. Since the software architect might be interested in
setting certain design preferences by demoting some relationships to others,
a weight (wx) can be assigned to the number of occurrences of each type of
relationship (nx). As an example, the modeller may want to avoid dividing
into different components a parent class and its subclasses, i.e. sharing data
structures, which could be more harmful to the overall cohesion than just
splitting a single association between them, usually involving an operational
flow. This would imply assigning a higher weight value to generalizations.
Therefore, ERP is calculated using the expression in Eq. 2, where i and j
represent each pair of components in the architectural solution.

ERP =
n∑

i=1

n∑

j=i+1

(was · nasij + wag · nagij + wco · ncoij + wge · ngeij) (2)

Finally, the Groups/Components Ratio (GCR) metric, presented in Eq. 3,
is inspired by the Component Packing Density (CPD) metric defined in [25].
CPD calculates the ratio between the number of constituents, e.g. oper-
ations, classes or modules, and the number of components in the overall

12

architecture. Here, the constituents are groups of interdependent classes
(cgroups). In a graph visualisation of the model, where classes are the nodes
and its relationships, the edges, each cgroup is a connected component of
this graph. Since software architects prefer a set of components with a well-
defined functionality, the optimal value of GCR is equal to its minimum, 1,
meaning that each component is comprised by an unique group of strongly
interrelated classes.

GCR = #cgroups/#components (3)

Once the three design metrics have been defined, the fitness function can
be calculated as a ranking aggregation, where the best values are the lowest
and, consequently, the overall fitness should be minimised. A ranking method
is applied over the population and independently for each metric, resulting in
three ranking values that are added, as can be seen in Eq. 4, where r returns
the ranking position of a specific individual.

fitnessind =

{
r(ICDind) + r(ERPind) + r(GCRind) if ind is valid

#individuals ·#metrics+ 1 if ind is invalid
(4)

Special attention is given to invalid solutions. In such a case, a high value
is assigned to the individual, i.e. a fitness value even greater than the value
computed for the worst valid individual. If a valid individual would have
reached the worst values in all the metrics, its ranking for each metric would
be equal to the number of individuals in the population, and the aggregate
value would be equal to the product of the number of metrics composing
the ranking and the population size. Thus, an invalid solution always has a
greater fitness than any valid individual just by adding 1 to this value.

4.4. Genetic operator

Genetic operators allow the creation of new solutions from others. Here,
a mutation operator is considered for exploring design alternatives. Due to
the characteristics of the problem, the execution of other kinds of operators
does not seem to be applicable, as they would probably cause the replication
of classes after the combination of components from different individuals.

Five mutation procedures are proposed in order to provide a variety of new
solutions, simulating those architectural transformations that software archi-
tects could manually apply during the discovery process. Domain knowledge

13

is properly used in most cases, being an important success factor, as some
of them have a great impact in the structure of the resulting architecture.
Next, the description of each procedure is detailed.

Add a component. A new component is added to the architecture. Since
empty components are not valid, one or more classes are selected from oth-
ers to be inserted into the new one. The underlying heuristic considers the
number of groups of classes inside the rest of components as a decision fac-
tor. More precisely, components built with more unconnected groups (which
probably do not present a well defined functionality) are considered better
candidates to provide classes than those with a unique group of classes.

At this point, the heuristic procedure uses the expression in Eq. 5 as a
probability threshold of selection of each component i to act as contributor.
As can be seen, this formula calculates a probabilistic value for each compo-
nent i as the ratio between its number of groups of classes (#cgroupsi) and
the maximum number of groups (maxcgroups) corresponding to some compo-
nent j of the architecture. Thus, the higher the number of groups inside the
component i, the greater the probability of selecting some of its groups.

Prob(icontributor) = #cgroupsi/maxcgroups

maxcgroups = max(#cgroupsj) j ∈ [1, n] (5)

The complete heuristic procedure is shown in Algorithm 1. Firstly, vari-
ables are initialised and the probability of “acting as contributor” is calcu-
lated for each component. If a random generated value surpasses the prob-
ability threshold, the groups of classes inside the component are obtained
(lines 4 - 5). If the component comprises more than one group, their size (i.e.
the number of classes composing it) is calculated and the smallest groups
are searched (lines 6 - 13). Notice that small-sized groups are preferable
because the new component could also receive groups of classes from others.
Thus, a group of classes between those candidates, i.e. the smallest groups,
is randomly selected, and its classes are removed and inserted into the new
component, while the rest of the component is copied in the offspring (lines
14 - 16). The process is repeated for each available component in the parent.
If no component in the parent meets the requirements (all of them presents
a unique group of classes), or the randomness of the result cannot be guar-
anteed (only one candidate exists, so the descendant would be always the

14

same), the new component is generated completely at random, extracting
classes from all existing components (lines 18 - 30).

At the end, the new component is added to the offspring (line 31) and the
interfaces and connectors have to be arranged (line 32), considering that the
new distribution of classes may produce changes in the interactions among
components. More precisely, interfaces are moved from the contributors to
the new component if the classes that would implement these interfaces have
been displaced. At this point, two circumstances can occur: (a) an interface
remains in the new component because the interaction target continues to
exist within the original component, or (b) both interfaces must be removed,
since the classes specifying them have been allocated in the new component,
and the interaction only happens internally. Similarly, the movement or loss
of interfaces may also affect the number of connectors.

Fig. 2b corresponds to the resultant individual after the application of
this mutation procedure over the individual shown in Fig. 2a. As can be
seen, the movement of classes F from Comp 2 and B from Comp 1 implies
that interface B req D is also removed from Comp 2 and allocated in the
new one (Comp 3). After that, Comp 1 interacts with Comp 3, providing it
some services, instead of with Comp 2.

Split a component. One component is divided into two new components. The
heuristic firstly tries to randomly select a component among those with more
than one group of classes. In Algorithm 2, candidate components are identi-
fied (lines 3 - 7). If more than one candidate exists, one of them is randomly
selected and each of its inner groups is randomly allocated in one of the
two new components with equal probability (lines 8 - 17). If all components
present a unique group of classes, one component in the parent is chosen and
its classes are randomly distributed (lines 18 - 26). Then, all components
in the parent except the component to be split are copied, and the two new
components are also added (lines 27 - 29). Finally, interfaces and connec-
tors are identified again, as the creation of new components can produce the
appearance of new interactions (line 30).

Remove a component. One component will be removed and its inner classes,
randomly distributed among the remaining components. An aim of this
operator is to improve the solution by reducing the ERP metric. As can be
seen in Algorithm 3, the number of external relations outside the bounds of
each component is obtained and those with the highest value are selected

15

Algorithm 1 Add a component
Require:
Ensure:
1:
2: for all component in do
3: candidates
4: if (random(0,1)> Prob(component)) then
5: allGroups getGroups(component)
6: if (size(groupsOf Classes) > 1) t hen
7: for all groupOf Classes in allGroups do
8: if (size(groupOf Classes) = min) then
9: groupOf Classes
10: end if
11: end for
12: end if
13: end if
14: newComp randomGroup()
15: component
16:
17: end for
18: if (newComp =) then
19:
20: for all component in do
21: for all class in component do
22: if (random(0,1) > 0.5) then
23: class
24: end if
25: end for
26: component
27: newComp
28:
29: end for
30: end if
31: newComp
32:)
33: return

offspring
offspring

offspring

offspring

offspring
offspring

candidates

candidates
candidates

candidates

candidates

candidates
candidates

candidates

offspring

parent

parent

parent
offspring

setInterfacesAndConnectors(

Algorithm 2 Split a component

Require:
Ensure:
1:
2:
3: for all component in do
4: if (numberOfGroups(component) > 1) then
5: component
6: end if
7: end for
8: if (size() > 0) then
9: randomComponent()
10: for all in do
11: if (random(0,1) > 0.5) then
12: component1
13: else
14: component2
15: end if
16: end for
17: else
18: randomComponent()
19: for all class in do
20: if (random(0,1) > 0.5) then
21: component1 class
22: else
23: component2 class
24: end if
25: end for
26: end if
27:
28: component1
29: component2
30:)
31: return

parent

parent

parent

parent

offspring

offspring

offspring
offspring
offspring

offspring

offspring

groupOfClasses

groupOfClasses

groupOfClasses compToSplit

compToSplit

compToSplit

candidates

candidates

candidates
candidatescompToSplit

compToSplit

setInterfacesAndConnectors(

(lines 4 - 8). Then, a random component is chosen among them and the
rest of components are copied in the offspring (lines 9 - 10). Next, the inner
classes of the removed component are randomly distributed in the remaining
components of the offspring (lines 11 - 13).

Finally, interfaces and connectors are checked in the offspring (line 14).
In this case, interfaces from the removed component are either bound to
other components when they have received the corresponding classes, i.e.
those specifying the required or provided service, or removed, if the target
component was the owner of the other interaction point.

Merge two components. The elements of two previously selected components
are all put together into a new component. The proposed procedure, detailed
in Algorithm 4, looks for the reduction of the ERP metric. As can be seen,
one of the two components taking part in the mutation is the component
having the highest number of external relations (lines 4 - 9). When some
components present the highest values, two of them are selected (lines 10 -
11). If not, the other component is randomly selected between the rest of

16

Algorithm 3 Remove a component

Require:
Ensure:
1:
2:
3: maxRel maxNumExtRel()
4: for all component in do
5: if (numExtRel(component)=maxRel) then
6: component
7: end if
8: end for
9: compToRemove randomComponent()
10: compToRemove
11: for all class in compToRemove do
12: randomComponent() class
13: end for
14:)
15: return

parent

parent
offspring

offspring

parent

offspring

offspring

offspring

candidates

candidates

candidates
parent

offspring
setInterfacesAndConnectors(

Algorithm 4 Merge two components

Require:
Ensure:
1:
2:
3: maxRel maxNumExtRel()
4: for all component in do
5: if (numExtRel(component)=maxRel) then
6: component
7: end if
8: end for
9: component1 randomComponent()
10: if (size() > 1) then
11: component2 randomComponent()
12: else
13: component2 randomComponent()
14: end if
15: com ponent1 component2
16: component1∪component2
17:)
18: return

offspring
offspring

offspring
offspring

offspring
offspring

parent

parent
parent

parent

parent

candidates

candidates

candidates
candidates

candidates

(∪)

setInterfacesAndConnectors(

components in the parent (lines 12 - 13). Next, components not selected
in the parent are copied in the offspring, as well as the union of the two
selected components (lines 15 - 16). Finally, interfaces and connectors must
be compacted due to the merge of the two components, so the previous
interactions between them are discarded (line 17).

Move a class. A simple movement of a class from one component to another
is performed. As it is the least destructive procedure in terms of structural
modifications of the original solution, both the class and the source and tar-
get components are always randomly selected (see lines 2 - 4 of Algorithm 5).
The selected class is removed from the origin component and added to the
destination component (lines 5 - 6). Then, the original and modified compo-
nents are copied to the offspring (lines 7 - 9). Since the class repositioning
could also imply the creation of new interfaces in the target component and
its elimination from the source, or vice versa, interfaces and connectors are
revised (line 10).

An example of the application of this procedure is shown in Fig. 2c.
In the original individual (see Fig. 2a), class B is chosen and moved from
Comp 2 to Comp 1. This operation also affects the interaction between both
components, since interfaces D prov B and B req D disappear because the
classes B and D belong now to the same component.

After the explanation of the different mutation procedures proposed, the
mutator itself can be described. As detailed in Algorithm 6, a probabilistic
roulette is built for each parent comprising only those mutation procedures
that could be applied (lines 4 - 8). For example, a component can not be

17

Architecture

Components Connectors

Component_1 Component_2 Connector_1

Classes ClassesProvided
interfaces

Required
interfaces

Provided
interfaces

Required
interfaces

Provided
interface

Required
interface

A_prov_E

E_req_A A_prov_EE_req_A
A C

D
E

G
F

H

B

Provided
interface

Required
interface

Connector_2

D_prov_BB_req_D

D_prov_B B_req_D

Component_1 Component_2

A_prov_E

E_req_A

D_prov_B

B_req_D

(a) Initial individual
Architecture

Components Connectors

Component_1

Component_2

Connector_1

Classes

Classes

Provided
interfaces

Required
interfaces

Provided
interfaces

Required
interfaces Provided

interface
Required
interface

A_prov_E

E_req_A

A_prov_EE_req_A
A

C D

E

G

F

H

B

Provided
interface

Required
interface

Connector_2

D_prov_BB_req_D
D_prov_B

B_req_D

Component_3

Classes

Provided
interfaces

Required
interfaces

B F

B_req_D

A_prov_E

E_req_A

D_prov_B

B_req_D

Component_3

Component_1

Component_2

(b) Add a component mutation procedure
Architecture

Components Connectors

Component_1 Component_2 Connector_1

Classes ClassesProvided
interfaces

Required
interfaces

Provided
interfaces

Required
interfaces

Provided
interface

Required
interface

A_prov_E
E_req_A A_prov_EE_req_A

A

C

E

G

F H

B

Provided
interface

Required
interface

Connector_2

D_prov_BB_req_D

D_prov_B B_req_DB

D

Component_1 Component_2

A_prov_E

E_req_A

(c) Move a class mutation procedure

Fig. 2. Examples of mutation procedures.

removed if the individual already comprises the minimum number of com-
ponents. Once the roulette is completed, a mutation procedure can be ran-
domly selected according to its configured weight (line 9). If the resulting
individual does not satisfy all the architectural constraints, a new mutation
is performed until a valid individual is obtained or a maximum number of
attempts is reached (lines 10 - 19).

If all attempts fail and no valid solution is found, the mutated individual
could survive (lines 20 - 22) depending on the stage of the evolution process.
A probabilistic method is proposed in order to determine whether this invalid
individual will be considered as a candidate to be part of the new popula-
tion, i.e. an offspring in the survival competition. A dynamic threshold,
Thresholdinvalid, which decreases with the elapse of generations (gener), is
calculated in Eq. 6. Notice that, at the beginning of the algorithm, invalid in-
dividuals are permitted. Nevertheless, less invalid solutions generated by the

18

Algorithm 5 Move a class
Require:
Ensure:
1:
2: randomComponent()
3: destination randomComponent()
4: randomClass()
5: removeClass(,)
6: addClass(,)
7:
8:
9:
10:)
11: return

offspring

offspring
offspring
offspring

offspring
offspring

offspring
parent

parent
parent

parent

origin

origin
origin

(origin
origin

destination
destination)

destination

class
class

class

setInterfacesAndConnectors(

∪

Algorithm 6
Require: ,
Ensure:
1:
2:
3:
4: for all mutator in do
5: if (isApplicable(mutator ,)) then
6: mutator
7: end if
8: end for
9: roulet teSelect ion(,)
10: attempts 0
11: inval id TRUE
12: while (inval id = TRUE and attempts < 10) do
13: mutate(,)
14: if (isInvalid()) then
15: attempts
16: else
17: inval id F ALSE
18: end if
19: end while
20: if (isInvalid() and

random(0,1) < invalid) then
21:
22: end if
23: return

++

offspring

offspring

offspring

offspring

parent

parent

parent

parent

offspring

offspring

roulette

roulette

roulette

weights

weights

selectedMutator

selectedMutator

mutators

selectedMutator

Threshold

offspring

Mutation operator

mutator will survive due to the dynamic decrease of the threshold during the
evolutionary process. Then, the replacement strategy determines whether
the invalid individual will finally be part of the next generation.

Thresholdinvalid(gener) = (#generations− gener)/#generations (6)

4.5. Algorithm

The proposed algorithm (see Algorithm 7) follows the classical genera-
tional scheme. Firstly, some preprocessing is required (lines 1 - 3) in order to
extract classes and its relationships from the analysis model (classDiagram).
Then, candidate interfaces are identified using the information comprised by
these relationships. Connectors are not explicitly obtained at this step, as
they depend on the association of two specific candidate interfaces, and this
process is performed during the creation of individuals. Next, these elements
are used in combination with the number of individuals (nInds) and the mini-
mum and maximum in the number of components (minComp andmaxComp
respectively), to initialise the population (line 4). Then, individuals are eval-
uated (line 5) and the iterative process begins. In each generation, parents
are selected (line 8) and mutated (line 9) according to the mutation weights
(weights). Candidate individuals must be evaluated next (line 10), so metrics
are computed over them and the ranking fitness function is calculated. Note
that this evaluation requires both the offsprings and the actual population in

19

Algorithm 7
Require: , , , , ,
Ensure:
1: extractClasses()
2: extractRelat ionships()
3: ident ifyInterfaces()
4: create(, , , ,)
5: evaluate(,)
6: 0
7: while = do
8: select()
9: mutate(,)
10: evaluate(∪ ,)
11: replace(∪)
12:
13: end while
14: best()
15: return

classDiagram nInds maxGen weights minComp maxComp
candidateArchitecture

Proposed evolutionary algorithm

classDiagram
classDiagram

nInds minComp maxComp

maxGen

candidateArchitecture
candidateArchitecture

++

classes

classes

relationships

relationships

relationshipsinterfaces
interfacespopulation

population

population

generation
generation

generation

parents
offspring

parents
weights

population relationships
population offspring

population

offspring

<

population

order to assign rankings in a proper way. Finally, the replacement strategy
(line 11) chooses those individuals that will survive, assigning them to the
next population. When the maximum number of generations (maxGen) is
reached, the evolution ends and the best individual in the current population
is returned as the candidate architecture (lines 14 - 15).

5. Experimentation

The complete approach and all the experiments performed have been writ-
ten in Java. Additionally, its functionalities have been supported by diverse
publicly available Java libraries. SDMetrics Open Core1 offers some utilities
for parsing XMI files, the most commonly used XML format for model inter-
change, providing interoperability and serialisation across different modelling
tools. Thus, the proposed approach provides support to directly collect in-
formation from analysis models created, in this case, with MagicDraw tool2.
The Datapro4j library3 has been used to preprocess and manage internal
data structures. Finally, the evolutionary algorithm has been coded using
the JCLEC framework [37].

The experiments were run on a HPC cluster of 8 compute nodes with
Rocks cluster 6.1 x64 operating system. Each node comprises two Intel Xeon
E5645 CPUs with 6 cores at 2.4 GHz and 24 GB DDR memory.

1http://www.sdmetrics.com/OpenCore.html
2http://www.nomagic.com/
3http://www.uco.es/grupos/kdis/datapro4j

20

Table 1: Problem instances and its internal properties

Problem #Classes
#Relationships

#Interfaces
As De Ag Co Ge

Aqualush 58 69 6 0 0 20 74
Borg 167 44 109 36 38 90 300
Datapro4j 59 3 4 3 2 49 12
Java2HTML 53 20 66 15 0 15 170
JSapar 46 7 33 21 9 19 80
Marvin 32 5 11 22 5 8 28
NekoHTML 47 6 17 15 18 17 46

5.1. Problem instances

Seven system designs were used for experimentation, allowing a variety
of complexity in both number of classes and number of candidate interfaces.
Table 1 shows the characteristics of the problem instances considered. The in-
terfaces column (#Interfaces) represents the number of relationships among
classes where its navigability is explicitly specified, i.e. the number of candi-
date interfaces. Note that the total number of relationships (navigable in one
or both directions) is also included and categorized by the types of relations
defined by UML 2: associations (As), dependences (De), aggregations (Ag),
compositions (Co) and generalizations (Ge).

Focusing on the nature of the software models, it is worth mentioning that
six of them belong to real working systems, whereas the first one, Aqualush4 is
a benchmark used for educational purposes. All of them apart fromDatapro4j
can be accessed from the Java Open Source Code Project Website5.

5.2. Parameter study

Due to the complexity of the problem, the performance of an accurate
parameter study is recommended in order to analyse their suitability and
influence. Firstly, different selection and replacement methods are combined
and proved in order to check its influence in two important factors: the se-
lection pressure and the capability to remove invalid solutions. Additionally,

4http://www.ifi.uzh.ch/rerg/research/aqualush.html
5http://java-source.net/

21

the behaviours shown by setting different weights associated to the roulette
of mutation procedures (see Section 4.4) permit analysing their influence on
the quality and type of returned solutions. Finally, other parameters, like the
number of generations or the population size, need to be considered, since
they represent key aspects in the evolutionary performance.

Regarding RQ2, the aim here is to obtain the most fitting setup for the
proposed algorithm, whilst also providing some guidelines on the parameters
that can be helpful to the software architect, who is likely not to be an expert
in optimisation techniques. In this sense, we want to stress the ability of
the algorithm to serve as a generic framework for architecture optimisation,
where different types of solutions can be simultaneously evolved.

5.2.1. Selection and replacement strategies
Selection and replacement procedures constitute important factors in the

algorithm design. Selection determines the way in which individuals are
chosen to be mutated, whereas the replacement defines the type of survival
competition between them. The selection methods probed are the following:

• Deterministic selector (DS): Each individual in the population is se-
lected to act as a parent.

• Tournament selector (TS): A binary tournament is performed as often
as the number of individuals in the population, in order to generate the
same number of descendants than the previous method.

• Roulette selector (RS): A roulette is applied to select the parents. In
the same way, the process is applied until the number of parents reaches
the population size.

Focusing on the replacement strategies, some special constraints are con-
sidered in the replacement methods that are given below. Firstly, the best
individual in the current population will survive. Secondly, when some type
of competition must be established between a current invalid solution and a
generated invalid descendant, both having the same maximum fitness value,
the descendant is preferred, promoting the evolution of the population. The
strategies considered in the preliminary study are the following:

• Best individuals (BR): The best n individuals from parents and de-
scendants are selected to conform the new population, n being the
population size.

22

• Parent/descendant competition (CR): A competition between each par-
ent and its descendant is performed, and only the best survives.

• Elitism (1) and descendants (EL1R): After saving the best individual
found in the current population, the rest of the population is filled with
the n− 1 best descendants.

• Elitism (10%) and descendants (EL10R): Similar to EL1R, but keeping
a major percentage of individuals from the current population.

• Binary Tournament (TR): all individuals are participants of the tour-
nament, and the n best individuals are selected for the next population.

To perform an accurate experimentation and setup, each selection method
has been combined with the aforementioned replacement strategies, resulting
in 15 different algorithm variants. Then, 30 executions for each algorithm
version have been performed with different random seeds. The rest of the
parameters are fixed to default values. All mutation procedures have the
same probability to be executed, 0.2 being the corresponding weight for each
one. The default minimum and maximum number of components is set to 2
and to the number of classes within the original analysis model, respectively.
Here, the maximum limit has been fixed to 8, providing a wide enough range
of types of solutions for the considered problem instances. The weights for
the different types of UML relationships, used in the ERP metric, are in-
ternally fixed using the following configuration: was = 2, wag = 3, wco = 3,
wge = 5. Finally, 100 individuals and 100 generations complete the parameter
configuration at this point of the study.

The first analysis of the obtained results has consisted in the evaluation
of two important criteria: (a) the ability of removing invalid solutions and
(b) an appropriate convergence of the population. Some variants have been
discarded, as they do not achieve a final population of valid individuals, owing
to an inappropriate selection pressure. This situation frequently occurs with
the replacement based on TR, especially with the most difficult problem
instances. On the contrary, other versions suffer an excessive convergence, so
they too are rejected. In this case, the main factor that promotes this fact is
the replacement strategy, since BR and CR methods strongly encourage the
survival of the best individuals and also lead the search towards the same
type of architectural solutions.

23

After this preliminary study, those variants showing an appropriate be-
haviour in terms of the criteria aforementioned have been analysed consider-
ing the best solutions found for all the problem instances. The Friedman test
was applied to statistically validate these results, where the null hypothesis,
H0, determines that all the remaining variants perform equally well. Next,
the Holm post-hoc test was used when H0 was rejected with a significance
level of 95% (α = 0.05).

Since the ranking value reached by the best individual is relative to the
population to which it belongs, fitness values are not directly comparable
among different executions. Therefore, the aggregate rankings of all the indi-
viduals returned by each variant and execution were recomputed. Adding the
ranking obtained for every individual for a given algorithm, i.e. aggregating
the results of the 30 executions per algorithm, the quality of the obtained
solutions can be estimated in a proper way. The first column in Table 2
compiles the results after applying the Friedman test to these representative
values.

As can be observed, DS-EL10R obtains the lowest ranking value. The
corresponding value of the Iman and Davenport statistics, called z, is 0.4312,
whereas the critical value, according to the F-Distribution with 5 and 30
degrees of freedom, the p− value, is 2.5336. Since p− value > z, H0 cannot
be rejected. At this point, there are no significant differences between them,
and a further analysis is still required.

The preceding procedure has been repeated considering the values of each
metric associated with the fitness formula separately, i.e. ICD, ERP and
GCR. Table 2 shows the average ranking values after performing the Fried-
man test over the corresponding metrics in the best individuals found. The
value of the statistics, according to the aforementioned Iman and Davenport
procedure, and the conclusion about the null hypothesis are also included.
Thus, significant differences exist for the ICD and ERP metrics (highlighted
in bold typeface), z being greater than the p− value (2.5336).

In order to reveal those differences regarding ICD and ERP, the Holm
test has been performed as a post-hoc procedure. Table 3 and Table 4 detail
the obtained results for ICD and ERP metric, respectively. As for the ICD,
the algorithm RS-EL10R obtained the best average ranking in the Friedman
test, so it is the control algorithm. At a significance level of α = 0.05, Holm
test rejects the hypothesis that the algorithm performs equally well than the
control algorithm when p − value < 0.0167. Regarding the correspondent
α/i column, RS-EL10R is statistically better than DS-EL10R and TS-EL1R.

24

Table 2: Friedman rankings for fitness and design metrics

Algorithm Fitness ICD ERP GCR
DS-EL10R 2.8571 4.2857 2.1429 3.0000
TS-CR 4.9286 3.4286 5.4289 5.2143
TS-EL1R 3.3571 5.4286 1.8571 3.1429
TS-EL10R 2.9286 3.1429 3.0000 3.2143
RS-EL1R 3.2857 3.0000 3.6429 2.7143
RS-EL10R 3.6429 1.7143 4.9286 3.7143
z 1.1757 4.9468 9.1546 1.8132
H0 Accepted Rejected Rejected Accepted

Table 3: Holm test results for ICD

i Algorithm z p α/i H0

5 TS-EL1R 3.7143 2.0378 0.0100 Rejected
4 DS-EL10R 2.5714 0.0101 0.0125 Rejected
3 TS-CR 1.7143 0.0865 0.0167 Accepted
2 TS-EL10R 1.4286 0.1531 0.0250 Accepted
1 RS-EL1R 1.2858 0.1985 0.0500 Accepted

Table 4: Holm test results for ERP

i Algorithm z p α/i H0

5 TS-CR 3.5714 3.5504 0.0100 Rejected
4 RS-10R 3.0714 0.0021 0.0125 Rejected
3 RS-EL1R 1.7857 0.0714 0.0167 Accepted
2 TS-EL10R 1.1429 0.2531 0.0250 Accepted
1 DS-EL10R 0.2858 0.7751 0.0500 Accepted

Related to ERP, the same procedure can be realised. In this case, TS-EL1R
acts as the control algorithm, and significant differences can be appreciated
when p − value < 0.0167. As can be seen, TS-EL1R is better, in terms of
ERP, than RS-10R and TS-CR.

After this analysis, some conclusions can be drawn. As shown, ERP and
ICD constitute two conflicting metrics, whilst GCD is easily optimised by

25

the considered algorithms, since there are no significant differences between
them. The algorithm with the best average ranking when comparing by
fitness, DS-EL10R, has not such a proper behaviour, since ICD is heavily
harmed in favour of ERP and GCR. On the contrary, TS-10R comes up as
an interesting option since it shows good performance in terms of its fitness,
having the second better ranking. Moreover, it can be noted that, regard-
ing the ICD and ERP metrics, there is no significant difference between this
and the control algorithm. Usually, this variant is able to discard solutions
where ERP is highly optimised. Consequently, it leads to the loss of qual-
ity in the structure of the final individuals. More specifically, notice that
low values for ICD illustrate the fact that the obtained solutions comprise
large components with only a few interaction paths through interfaces, sim-
ilarly to the case of DS-EL10R. The rest of variants of the algorithm can
only obtain better ICD values by getting a fairly poor performance on the
ERP metric. TS-EL10R achieves an appropriate trade-off between the three
considered metrics, obtaining lower values for ERP and GCR without requir-
ing a considerable decrease of ICD. Furthermore, it performs well in terms
of convergence along the overall evolution. Consequently, TS-EL10R is the
variant selected for the proposed version of the algorithm.

5.2.2. Mutation weights
One important characteristic of the proposed model lies in the existence

of a roulette of mutation procedures as a way to control the diversity of
solutions in the evolutionary process. These weights have a direct effect on
two aspects of the generated solutions: its quality, as each procedure acts
guided by their heuristics, and the diversity of types of solution, since they
apply changes in their structure.

Several experiments have been performed to analyse the aforementioned
characteristics of the generated solutions. The proposed roulette for mutation
method selection comprises, as detailed in Section 4.4, five different proce-
dures, each having an specific weight. Considering increments of 0.1 units,
each mutation procedure could have a weight in the range [0.1,0.6], 126 being
the total number of possible configurations. For each of those combinations,
30 executions have been carried, keeping the default values in the remaining
setup, over all the problem instances. Afterwards, the procedure detailed in
Section 5.2.1 is performed once again to reassign the ranking values of the
best individuals.

Due to space limitations, only two representative instances, Marvin and

26

0

40,000

80,000

120,000

160,000

200,000

To
ta

l r
an

ki
ng

Add a component procedure weight
0.1 0.2 0.3 0.4 0.5 0.6

0

40,000

80,000

120,000

160,000

200,000

To
ta

l r
an

ki
ng

Remove a component procedure weight
0.1 0.2 0.3 0.4 0.5 0.6

0

40,000

80,000

120,000

160,000

200,000

To
ta

l r
an

ki
ng

Merge two components procedure weight
0.1 0.2 0.3 0.4 0.5 0.6

0

40,000

80,000

120,000

160,000

200,000

To
ta

l r
an

ki
ng

Split a component procedure weight
0.1 0.2 0.3 0.4 0.5 0.6

0

40,000

80,000

120,000

160,000

200,000

To
ta

l r
an

ki
ng

Move a class procedure weight
0.1 0.2 0.3 0.4 0.5 0.6

Fig. 3. Box plots of the distribution of best individuals found by the algorithm with
different weights of the roulette in the mutation operator for Marvin problem instance.

Datapro4j, are shown and discussed next. Figs. 3 and 4 represent five box
plots, where each one shows the distribution of the overall ranking value
of the algorithm when each mutator weight is fixed at certain value in the
range [0.1,0.6], whereas the others are combined in order to complete the
roulette (the sum of all weights must be 1). Note that if the weight is fixed
to 0.6, only one configuration can be generated for the rest of procedures
(all fixed to 0.1), so a single line is drawn, representing the global ranking of
this combination, i.e. the sum of the rankings of the best individual found
in each of the 30 executions.

As for Marvin, interesting tendencies of fitness variation in most of the
mutation procedures can be appreciated in Fig. 3. As the probability of the
Move a class procedure is increased, the overall ranking of the algorithm is
significantly punished. On the contrary, addition of components is benefi-
cial. The Merge two components and Split a component procedures show
an intermediate behaviour, where low or median weights seem to be more
appropriate. In general, a trade-off between the removal and the addition
of components is advisable to obtain an improvement of the quality of the

27

120,000

160,000

200,000

240,000

To
ta

l r
an

ki
ng

Add a component procedure weight
0.1 0.2 0.3 0.4 0.5 0.6

120,000

160,000

200,000

240,000

To
ta

l r
an

ki
ng

Remove a component procedure weight
0.1 0.2 0.3 0.4 0.5 0.6

120,000

160,000

200,000

240,000

To
ta

l r
an

ki
ng

Merge two components procedure weight
0.1 0.2 0.3 0.4 0.5 0.6

120,000

160,000

200,000

240,000

To
ta

l r
an

ki
ng

Split a component procedure weight
0.1 0.2 0.3 0.4 0.5 0.6

120,000

160,000

200,000

240,000

To
ta

l r
an

ki
ng

Move a class procedure weight
0.1 0.2 0.3 0.4 0.5 0.6

Fig. 4. Box plots of the distribution of best individuals found by the algorithm with
different weights of the roulette in the mutation operator for Datapro4j problem instance.

solutions without a loss of the population diversity.
Fig. 4 shows the box plots regarding Datapro4j, a problem instance hav-

ing more classes and relationships. The Add a component procedure presents
worse performance than for Marvin, specially for high weight values, so its
variation influences more strongly here than in simpler problems. Remove
a component and Merge to component present an ascendant tendency, low
weights being preferable. On the contrary, the algorithm behaviour with
respect to the Split a component procedure is similar to the observed for
Marvin, Datapro4j having a slightly higher variation for each fixed weight.
Finally, it seems that the search process can get better results for this kind
of problem when the movement of classes is promoted. The algorithm per-
formance is strongly impacted by those procedures that imply a large change
in the solutions.

As can be seen, the algorithm behaviour substantially relies on the cur-
rent weight configuration. In general, high values are not advisable in most
procedures. The removal of components deserves special mention, where low
values are highly expedient to restrict its influence on the overall perfor-

28

mance. The default weight of the Add a component procedure can remain
unaltered, since it contributes to keep the trade-off necessary between the
different problem instances. Considering the results obtained by the proce-
dures Split a component and Merge two components, especially when applied
to small-sized instances, a proper use of these procedures requires increasing
their chances in the roulette selective process. Furthermore, notice that re-
ducing too much the weight of the procedure Move a class could be harmful,
as it is the only procedure maintaining the current structure of the indi-
vidual to be mutated and, consequently, it promotes the convergence of the
algorithm. This scenario is beneficial when going through the last algorithm
iterations, specially for complex instances. In short, after scrutinizing the
results obtained by the weight combinations satisfying all the constraints
aforementioned, the proposed configuration is wadd = 0.2, wremove = 0.1,
wmerge = 0.1, wsplit = 0.3 and wmove = 0.3.

5.2.3. Number of evaluations and population size
The previous experiments were focused on the algorithm needs with re-

spect to its exploration and convergence. Furthermore that, even when the
algorithm is able to properly deal with invalid individuals and diverse solu-
tions, a further analysis of the most appropriate combination between the
number of evaluations and the population size is still required.

Four different population sizes, from 50 to 200 individuals, have been
set. The fitness convergence has been checked every 1,200 evaluations, up to
24,000 evaluations. Notice that previous experiments have reach a maximum
of 10,000 evaluations, 100 individuals being evolved over 100 generations.
Here, each variant of the algorithm has been iterated a different number of
generations to fairly compare by the number of evaluations. These variants
have been executed 30 times, as well.

Since the average fitness for the different runs is not representative, the
following experimentation aims to evaluate the quality of the resulting solu-
tions in terms of the three metrics comprising their fitness value separately.
Again, the discussion is focused on the systems Marvin and Datapro4j due
to space limitations. On the one hand, Fig. 5 shows the convergence of the
evolutionary process for the Marvin problem instance. The average values
of the best individual found along the evaluations in terms of ICD, ERP and
GCR are depicted for each considered population size. Remind that ICD
should be maximised, whereas ERP and GCR should be minimised. As can
be observed, the algorithm tends to perfom worse when the population size

29

0 5,000 10,000 15,000 20,000 25,000

Evaluations

0.40

0.45

0.50

0.55

0.60

0.65

0.70

IC
D

0 5,000 10,000 15,000 20,000 25,000

Evaluations

0

10

20

30

40

50

60

70

80

90

100

E
R

P
Population size

50 100 150 200

0 5,000 10,000 15,000 20,000 25,000

Evaluations

0

1

2

3

4

5

6

7

8

G
C

R

Fig. 5. Convergence of the algorithm for each selected population size (Marvin).

0 5,000 10,000 15,000 20,000 25,000

Evaluations

0.40

0.45

0.50

0.55

0.60

0.65

0.70

IC
D

0 5,000 10,000 15,000 20,000 25,000

Evaluations

0

10

20

30

40

50

60

70

80

90

100

E
R

P

Population size
50 100 150 200

0 5,000 10,000 15,000 20,000 25,000

Evaluations

0

1

2

3

4

5

6

7

8

G
C

R

Fig. 6. Convergence of the algorithm for each selected population size (Datapro4j).

is set to 50 individuals, specially for the ICD metric. On the contrary, the
algorithms evolving 100, 150 and 200 individuals behave similarly for the
three metrics. Actually, a further analysis of the optimization process for
each individual metric in relation to the number of evaluations shows that
the four algorithms remain considerably steady beyond 10,000 evaluations.
In fact, only some slight improvement concerning the ICD is obtained. Thus,
standard values for both the population size and the number of evaluations,
like those considered in previous experiments, still work properly for small
problem instances.

On the other hand, Fig. 6 shows how the evolution for the Datapro4j
problem takes place. In constrast with the Marvin instance, substantial
differences among the different algorithms are noticeable. Firstly, the prob-
lem complexity clearly hampers the jointly optimization of the considered
metrics. In this case, the algorithm with the population consisting of 50

30

individuals is prone to optimize ERP and GCR better than ICD. Just the
opposite occurs when the population size has been set to 200 individuals.
Then, the influence of the number of evaluations becomes important, and
the value previously set to 10,000 is not sufficient to achieve good enough
results.

Summarizing the experimental findings, the recommended population size
is 150, whereas the number of maximum evaluations has to be fixed between
20,000 and 24,000, depending on the problem complexity. Here, the num-
ber of evaluations is set to 20,400 evaluations, which corresponds with 136
generations for the selected population size. In regard to RQ2, this study
has served to find the configuration that best enhances the performance of
the evolutionary algorithm. Given this configuration, the algorithm achieves
good results for all the considered design metrics and problem instances,
satisfactorily keeping the trade-off between exploration and exploitation.

6. An illustrative example of the approach

After explaining the setup process of the proposed algorithm, a more
detailed description about how the evolutionary search operates through the
generations can be illustrative. Due to space limitations, this section focuses
on a simple example, which allows both intermediate and final solutions
to be shown. This example requires a small number of generations and
population size, fixed to 10 and 5 respectively, whilst the other parameters
remain unaltered.

Fig. 7a shows the sample analysis model used as case study. As can
be observed, it has 8 classes related among them with different types of
relationships: 1 association, 2 dependences, 1 composition, 1 aggregation
and 2 generalizations. Moreover, two groups of well-connected classes can
be distinguished: A-B-C-D and E-F -G-H. The rest of snapshots in Fig. 7
represent the phenotype of the best individuals found at different stages of
the search, as well as its quality in terms of the proposed metrics and fitness
values.

As can be seen in Fig. 7b, the best individual in the initial population
presents an architecture composed by 3 components, in which all the classes
are randomly distributed. This architecture is, as expected at this evolu-
tionary step, a non-optimal solution. More specifically, there are some ex-
ternal relationships among classes belonging to different components and a

31

(a)

Component_3

Component_2Component_1

E_req_A

G_req_H

A_prov_E

H_prov_G

ICD=0.17
GCR=2.00

Fitness=7.00
ERP=13.00

(b)

Fitness=5.00 ERP=5.00ICD=0.35 GCR=1.50

A_prov_E

E_req_A

Component_1 Component_2

(c)

Fitness=3.00 ERP=0.00ICD=0.38 GCR=1.00

A_prov_E

E_req_A

Component_1 Component_2

(d)

Fig.7. Phenotype of best individual, for the class diagram which is shown in (a), found in
the initial population (b), after 5 generations (c), and the final solution after 10 generations
(d).

few relationships among the inner classes on each one. Since two gener-
alizations and one composition appear outside the components boundaries,
then ERP = 13.00. Similarly, the GCR can be obtained from the num-
ber of groups (two per component) and the total number of components,
so GCR = 6.00/3.00 = 2.00. Finally, ICD is calculated as the sum of
ICDi (from i = 1...3). For this solution, its first component does not
comprise any internal relationship between its inner classes and therefore
ICD = (ICDComponent 2 + ICDComponent 3)/3 = (0.21 + 0.31)/3.00 = 0.17.
At this stage, the corresponding solution has not the minimum ranking, but
a low value representing that the individual is fairly good enough for some
of the design criteria.

After 5 generations (see Fig. 7c), the ERP metric has been reduced be-
cause the genetic operator has grouped together more related classes. For
example, classes E, F , G and H belong now to the same component, cre-
ating a well-connected group of classes that implement the functionality of
Component 2. GCR has also been improved, since the number of groups of

32

classes has been reduced and only Component 2 presents more than one sep-
arate group. Finally, ICD also achieves a greater value than the previous best
individual, as there is a better trade-off between internal and external inter-
actions of components, i.e. classes are combined more adequately to provide
the functionalities of the system with fewer dependences among components.
As a result of the improvements in all the values, the fitness achieves the min-
imum ranking value, 3.00, meaning that this individual represents the best
solution in all the proposed design characteristics in comparison with the rest
of members in the current population, even though it does not achieve the
optimum value for every metric. For example, ERP = 5.00 since there is a
generalization between the separate classes A and C. Moreover, the struc-
ture of the solution has also been modified, showing that the algorithm has
got to a simpler architecture.

Then, after 10 generations updating the distribution of classes (see Fig. 7d),
the fitness value representing the solution quality has been significantly im-
proved, reflecting the suitability of the solution found in terms of a good
design that effectively identifies both groups of classes. Firstly, all the met-
rics achieve optimal values: each component presents an unique group of
classes that implements its functionality, these classes are highly cohesive
inside the component, and components only interact by means of a pair of
interfaces. The solution also represents the simplest architecture from those
obtained in previous generations, showing that the algorithm is able to adapt
the structure of the solution through the evolution process.

7. Results and discussion

Table 5 shows final average results of the proposed configuration from 30
executions, including the execution time. The standard deviation is shown
as subindexes. An important aspect concerning RQ2 is that the evolutionary
algorithm is able to discover good solutions 6 in the major problem instances.

For example, the algorithm achieves very good GCR results, close to
the minimum, 1.0. Average fitness ranking values are omitted because they
depend on each specific execution and therefore they are not representative.
Nevertheless, low values are usually obtained, meaning that the architecture

6A comparative analysis of the fitness metrics applied to a manually produced software
architecture can be found at http://www.uco.es/grupos/kdis/sbse/RRV14.

33

Table 5: Final results of the proposed algorithm

Problem ICD ERP GCR Time (ms)
Aqualush 0.41240.0604 6.23333.8443 1.08330.1708 116.10198.4891
Borg 0.28200.0689 3.93332.4626 1.16670.2274 2, 489.1223171.2028
Datapro4j 0.64250.0356 33.600014.7436 2.39890.6744 37.11012.8308
Java2HTML 0.25930.0000 0.00000.0000 1.00000.0000 250.45727.4674
JSapar 0.37510.0307 9.00001.5492 1.16670.2981 94.88915.1418
Marvin 0.50800.0187 3.16671.0980 1.67500.1146 14.11940.6885
NekoHTML 0.45940.0345 3.26675.3037 1.23890.3768 57.11503.5524

returned by the discovery process is the best for at least one or two of the
design criteria compared to the rest of solutions found in the final population.

Focusing on the trade-off between ICD and ERP, some differences can
be established between the considered problem instances. Firstly, for soft-
ware designs like JSapar or NekoHTML, smaller architectures are sufficient
to abstract their designs, so the ICD does not need to achieve very high
values. On the contrary, with more complex problem instances (Borg and
Java2HTML), the behaviour of the algorithm is quite different, where the
ERP metric, which is likely to be the most difficult metric to be optimised,
is highly improved. The reason is that these systems are the most complex
ones, as they present a great number of interactions among classes. There-
fore, the algorithm is able to find an equivalent type of solution, consisting in
components that cover many dependent functionalities that cannot easily be
dispersed in smaller components without a dramatic increase of ERP values.

Other interesting analyses can be made with Aqualush and Datapro4j,
which could be considered equivalent problems, because of their similar num-
ber of classes. However, the obtained results clearly show that it is not a
really relevant characteristic for the performance of the algorithm. More
precisely, the identification of the Datapro4j architecture produces the poor-
est ERP value of all the considered instances. The reason is that this system
is strongly hierarchical, presenting a considerable amount of generalizations
in contrast to other problem instances, where associations and dependencies
are the most common relationships in the system specification. This has
an impact in the ERP values, since generalizations determine the maximum
penalty in this measure, i.e. hierarchically-dependent classes usually tend

34

to belong to the same component. Hence, although the number of external
relationships could be similar to those obtained in the other cases, the com-
puted ERP dramatically increases. In contrast, ICD values in Datapro4j are
better than in Aqualush. This behaviour shows that the desirable trade-off
between coupling and cohesion becomes difficult to achieve, not only as the
amount of classes and relationships increases but also depending on the sort
of software specification.

Focusing on the execution time, it is possible to determine some type
of relation between the characteristics of the problem instances and the re-
quired time to perform the process. In this case, the number of relationships
between classes clearly have an impact on the execution time. Medium or
small instances only need a few seconds to complete the process, whereas
more complex software specifications require several minutes. The underly-
ing cause is that as the number of interactions increases, it is more difficult
to generate architectures under the existing constraints, and the algorithm
requires more mutation operations to obtain valid individuals.

Finally, in response to RQ1, some interesting information can also be
extracted after studying the solutions obtained from an architectural per-
spective. The evolutionary algorithm provides solutions that identify and al-
locate well-connected groups of classes into components that correctly match
with the possible intended architecture. In this way, results from the evolu-
tionary process supply the software architect with valuable information that
could be properly used to analyse the strengths and weaknesses of the sys-
tem structure, reconsider some design decisions made and explore different
configurations to appropriately mitigate risks. For example, some large com-
ponents might be returned if the amount of relationships among classes is
excessively high. Here, the software designer should remodel their interde-
pendencies in order to get differentiate functional groups. It would reduce
the system complexity and benefit maintenance and reusability. Moreover,
it can be noted that the presented model is able to evolve and keep solutions
with different architectural structures of interest during the search.

8. Concluding remarks

Making decisions during the software design process requires important
human-centered contributions and skills that could be mitigated by search-
based approaches, which are able to easily cover a great number of design
alternatives. With the ultimate aim of providing support for such a decision

35

making process, this paper presents a single-objective evolutionary approach
for the discovery of component-based software architectures from analysis
models, where classes and their relationships are used in the search of archi-
tectural artefacts, like components and interfaces. This proposal constitutes
the first approximation to semi-automatic architectural analysis as a way to
help software engineers in the improvement of their highly abstract designs
which facilitate the understanding of the software foundation.

The approach is conceived as an exploratory mechanism for decision sup-
port. The underlying methodology is focused on the comprehension of the
metaheuristic formulation of the problem by the software architect. More-
over, the consideration of standards like UML 2 and XMI promotes the inte-
grability of this approach within the software engineering communities and
modelling tools.

The proposed encoding is based on tree structures, similarly to the way in
which specification models are handled by the different tools in this domain,
bringing a flexible and intuitive representation of software architectures. De-
sign alternatives are explored by means of five different types of mutation pro-
cedures based on those architectural transformations that software engineers
usually perform for their specifications. The fitness function is calculated
as the ranking aggregation of design criteria, like coupling and cohesion, as
well as some specific characteristics to the problem formulation. Focusing on
the search for well-defined functionalities, the optimisation model considers
the minimisation of interactions among classes and interfaces, as well as the
presence of well-connected groups on classes inside the components.

The influence of the parameter setup has been discussed in detail in or-
der to properly tune the method for semi-automatic architectural modelling,
which has been tested over diverse software systems. The obtained results
demonstrates the algorithm capabilities in the management of different types
of solutions as well as a trade-off between the conflicting metrics, showing
that the automatic discovery of the system architecture constitutes a difficult
and stimulating problem.

The evolutionary approach has been conceived to deal with component-
based architectures, even when it could serve as a basis for being applied to
other sorts of design paradigms and areas. For example, dealing with service
oriented architectures would imply a further study of the suitability of other
factors, like cost and response time, whilst a model extended to comprise low-
level details, like methods and properties, could serve to deal with refactoring
tasks. Future research will explore the inclusion of the expert’s opinion in

36

the evolutionary search.

Acknowledgements

Work supported by the Spanish Ministry of Science and Technology,
project TIN2011-22408, and FEDER funds. This research was also supported
by the Spanish Ministry of Education under the FPU program (FPU13/01466).

References

[1] M. Abdellatief, A. B. M. Sultan, A. A. A. Ghani, and M. A. Jabar. A
mapping study to investigate component-based software system metrics.
J. Sys. Soft., 86:587–603, 2013.

[2] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Soft-
ware Architecture Optimization Methods: A Systematic Literature Re-
view. IEEE Trans. Softw. Eng., 39(5):658–683, 2013.

[3] P. Baker, M. Harman, K. Steinhofel, and A. Skaliotis. Search based
approaches to component selection and prioritization for the next release
problem. In 22nd IEEE Int. Conf. on Software Maintenance, pages 176–
185, 2006.

[4] M. F. Bertoa, J. M. Troya, and A. Vallecillo. Measuring the usability of
software components. J. Sys. Soft., 79(3):427–439, 2006.

[5] D. Birkmeier and S. Overhage. On Component Identification Ap-
proaches: Classification, State of the Art, and Comparison. In Proc.
12th Int. Symp. on Component-Based Software Engineering, pages 1–
18, 2009.

[6] J. Bosch and P. Molin. Software architecture design: evaluation and
transformation. In Proc. IEEE Conf. and Workshop on Engineering of
Computer-Based Systems, pages 4–10, 1999.

[7] I. Boussäıd, J. Lepagnot, and P. Siarry. A survey on optimization meta-
heuristics. Inf. Sci., 237(0):82–117, 2013.

[8] J. A. Clark, J. J. Dolado, M. Harman, R. M. Hierons, B. F. Jones,
M. Lumkin, B. S. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. J.

37

Shepperd. Reformulating Software Engineering as A Search Problem.
IEEE Proceedings - Software, 150(3):161–175, 2003.

[9] L. Dobrica and E. Niemela. A survey on software architecture analysis
methods. IEEE Trans. Softw. Eng., 28(7):638–653, 2002.

[10] S. Ducasse and D. Pollet. Software Architecture Reconstruction: A
Process-Oriented Taxonomy. IEEE Trans. Softw. Eng., 35(4):573–591,
2009.

[11] R. Etemaadi, M. T. M. Emmerich, and M. R. V. Chaudron. Problem-
specific search operators for metaheuristic software architecture design.
In Proc. 4th Int. Symp. on Search Based Software Engineering, pages
267–272. Springer, 2012.

[12] J. Ferrer, P. M. Kruse, F. Chicano, and E. Alba. Evolutionary Algorithm
for Prioritized Pairwise Test Data Generation. In Proc. 14th Genetic and
Evolutionary Computation Conference, pages 1213–1220, 2012.

[13] D. Garlan. Software architecture: a roadmap. In Proc. 22th Int. Conf.
of Software Engineering, pages 91–101, 2000.

[14] P. D. S. Gui Gui. Measuring Software Component Reusability by Cou-
pling and Cohesion Metrics. Journal of Computers, 4(9):797–805, 2009.

[15] P. Gupta, S. Verma, and M. Mehlawat. Optimization Model of COTS
Selection Based on Cohesion and Coupling for Modular Software Sys-
tems under Multiple Applications Environment. In Computational Sci-
ence and Its Applications, volume 7335 of LNCS, pages 87–102. Springer,
2012.

[16] M. Harman. Software Engineering Meets Evolutionary Computation.
Computer, 44(10):31–39, 2011.

[17] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based Software
Engineering: Trends, techniques and applications. ACM Comput. Surv.,
45(1):11:1–61, 2012.

[18] S. M. H. Hasheminejad and S. Jalili. An evolutionary approach to iden-
tify logical components. J. Sys. Soft., 96(0):24–50, 2014.

38

[19] ISO. ISO/IEC FDIS 42010/D9. Systems and software engineering -
Architecture description, mar 2011.

[20] A. C. Jensen and B. H. Cheng. On the Use of Genetic Programming
for Automated Refactoring and the Introduction of Design Patterns. In
Proc. 12th Genetic and Evolutionary Computation Conference, pages
1341–1348, 2010.

[21] S. Kebir, A.-D. Seriai, A. Chaoui, and S. Chardigny. Comparing and
combining genetic and clustering algorithms for software component
identification from object-oriented code. In Proc. 5th Int. C* Conference
on Computer Science and Software Engineering, pages 1–8, 2012.

[22] C. Le Goues, W. Weimer, and S. Forrest. Representations and operators
for improving evolutionary software repair. In Proc. 14th Ann. Conf. on
Genetic and Evolutionary Computation, pages 959–966, 2012.

[23] S. Malek, N. Medvidovic, and M. Mikic-Rakic. An Extensible Frame-
work for Improving a Distributed Software System’s Deployment Archi-
tecture. IEEE Trans. Softw. Eng., 38(1):73–100, 2012.

[24] A. Martens, D. Ardagna, H. Koziolek, R. Mirandola, and R. Reussner.
A Hybrid Approach for Multi-attribute QoS Optimisation in Compo-
nent Based Software Systems. In Proc. 6th Int. Conf. on the Quality of
Software Architectures, pages 84–101, 2010.

[25] V. L. Narasimhan and B. Hendradjaya. Some theoretical considerations
for a suite of metrics for the integration of software components. Inf.
Sci., 177(3):844–864, 2007.

[26] OMG. Unified Modeling Language 2.4 Superstructure Specification, nov
2010.

[27] C. M. Poskitt and S. Poulding. Using Contracts to Guide the Search-
Based Verification of Concurrent Programs. In Proc. 5th Int. Symp. on
Search Based Software Engineering, pages 263–268, 2013.

[28] K. Praditwong, M. Harman, and X. Yao. Software Module Clustering as
a Multi-Objective Search Problem. IEEE Trans. Softw. Eng., 37(2):264–
282, 2010.

39

[29] O. Räihä. A survey on search-based software design. Comput. Sci. Rev.,
4(4):203–249, 2010.

[30] P. Rodŕıguez-Mier, M. Mucientes, M. Lama, and M. Couto. Composition
of web services through genetic programming. Evol. Intell., 3:171–186,
2010.

[31] O. Sievi-Korte, E. Mäkinen, and T. Poranen. Simulated annealing for
aiding genetic algorithm in software architecture synthesis. Acta Cyber-
netica, 21(2):235–265, 2013.

[32] C. L. Simons and I. C. Parmee. Elegant Object-Oriented Software De-
sign via Interactive, Evolutionary Computation. IEEE Trans. Syst.,
Man, Cybern. C, Appl. Rev, 42(6):1797–1805, 2012.

[33] C. L. Simons, I. C. Parmee, and R. Gwynllyw. Interactive, Evolutionary
Search in Upstream Object-Oriented Class Design. IEEE Trans. Softw.
Eng., 36(6):798–816, 2010.

[34] J. Smith and D. Stotts. SPQR: flexible automated design pattern ex-
traction from source code. In Proc. 18th IEEE Int. Conf. on Automated
Software Engineering, pages 215–224, 2003.

[35] C. Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley Longman., Boston, MA, 2nd edition, 2002.

[36] L. Troiano and C. Birtolo. Genetic algorithms supporting generative
design of user interfaces: Examples. Inf. Sci., 259(0):433–451, 2014.

[37] S. Ventura, C. Romero, A. Zafra, J. A. Delgado, and C. Hervás.
JCLEC: a Java framework for evolutionary computation. Soft Comput.,
12(4):381–392, 2008.

[38] D. Whitley. An overview of evolutionary algorithms: practical issues
and common pitfalls. Inf. Softw. Technol., 43(14):817–831, 2001.

[39] Y. Zhang, M. Harman, and S. L. Lim. Empirical Evaluation of Search
Based Requirements Interaction Management. Inf. Softw. Technol.,
55(1):126–152, 2013.

40

