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Simple Summary: The Barbarine breed is an authoctonous sheep breed that originated in Tunisia
and was raised in low-input production systems. This study was conducted to estimate the genetic
parameters of several ewe productivity traits in a prolific line of this Barbarine breed selected for
increasing litter size. Estimates of heritabilities were low in general. Genetic correlations between
litter size and growth traits were negative, indicating that genetic selection for litter size will result in
negative genetic responses to growth traits. A selection index including both types of traits could be
proposed to correct for this antagonism. The results from this study can be used as a basis for the
genetic breeding program of this prolific line.

Abstract: This study aimed to assess genetic parameters for ewe productivity in a Tunisian Barbarine
sheep line. The traits studied were litter size (LS), birth weight (BW), weight at 90 days (W90), and
average daily gain between 10 and 30 days (ADG13). A total of 3804 growth and 2726 lambing
records were used. Bivariate linear and threshold animal models were fitted and analyzed using
the Gibbs sampling methodology. Heritabilities for LS obtained with univariate threshold, bivariate
linear, and threshold models were around 0.15, higher than the estimate obtained by a univariate
linear model (0.09 ± 0.03). Direct heritability for growth traits remained consistent across models,
except for W90 in the bivariate linear threshold model. Maternal heritability for growth traits was
higher than direct heritability, ranging from 0.07 to 0.15, except for BW. The covariances between the
direct and maternal effects of growth traits were slightly negative. Repeatability oscillated between
0.16 and 0.62. Direct genetic correlations between LS and the other traits were negative, varying from
−0.18 (LS-BW) to −0.83 (LS-W90). Our results suggest that the threshold model may be the most
appropriate for LS. A selection index including LS and growth traits may be proposed for routine
genetic evaluation in this population.

Keywords: litter size; growth; genetic parameters; bivariate model; threshold; Gibbs sampling

1. Introduction

The Barbarine fat-tailed sheep is the largest breed in Tunisia (64% of the overall sheep
population). It can be found in all environments, but mostly in low-input production
systems. The breed is well adapted to prevailing agroecological environments, with
ecotypes that enable farmers to access specific production niches [1].

Several breeding programs have been implemented to improve Tunisian sheep meat
production, concerning traits as diverse as growth rate, meat quality, environmental adap-
tation, and prolificacy. In conventional Barbarine flocks, growth and carcass traits are the
main breeding objectives [2,3]. Most of the sheep breeds in Tunisia are lowly prolific, with
an average prolificacy of about 1.1 [4]. Thus, a prolificacy-based selection program has
been implemented since 1979 in the research center of Oueslatia, Kairouan, of the Tunisian
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National Institute for Agronomic Research (INRAT), creating a line of prolific ewes of the
fat-tailed Barbarine sheep. This selection process resulted in a prolificacy of 1.6 [4].

The productivity of the Barbarine breed remains low due to the large heterogeneity
of environmental conditions [5]. To solve this problem, reliable estimations of genetic
parameters for each trait are necessary to reach an optimum rate of genetic progress.
However, recent parameter estimates of productivity are not available in this line. Moreover,
genetic parameters have only been estimated in a few studies using the REML (restricted
maximum likelihood) methodology [4–7]. Bivariate animal models that combine litter size
and growth traits, or threshold models, have never been used for this breed.

Litter size is a discrete trait and is not distributed normally. Wright [8] considered that a
linear variable underlies categorical traits, and thresholds define which category is observed.
However, several studies showed that the estimates of heritability or breeding values from
linear and threshold models are highly correlated [9–11]. Furthermore, some studies have
reported that threshold models give biased estimates of variance components [12,13].

Then, the objective of this study was to estimate genetic parameters of productivity
traits in a prolific line of Barbarine sheep using, for the first time, Gibbs sampling applied
to univariate and bivariate linear and threshold animal models.

2. Materials and Methods
2.1. Data

Records of productivity and pedigree information were collected from a Barbarine
prolific line raised at the INRAT research station in Ouesslatia, located in the center–east
of Tunisia. A total of 3804 lamb weights and 2726 lambing records collected from 1989
to 2016 from 985 breeding ewes were used in this study (an average of 3.86 lambs born
and 2.76 parities per ewe). Reproduction was managed within sire families, and one ram
and its replacement were assigned to each family. For mating, females born in a given
family were systematically moved to another family to avoid the increase in inbreeding.
Replacement animals were selected based on litter size records. Mating was practiced in
the spring, and consequently, the lambing season spanned from September to November.
Lambs were weighed at birth and seven other times at intervals of approximately 21 days.
Weaning was at approximately 3 months of age. The rearing system is based mainly on
natural pasture; however, concentrate supplements were given during the breeding and
late gestation periods. The total number of animals in the pedigree was 4443 (987 ewes and
285 rams).

2.2. Traits Analysed

Traits included in this study were litter size (LS) and weight and growth traits: birth
weight (BW), weight at 90 days (W90), and average daily gain between 10 and 30 days
(ADG13). The litter size was recorded on the day of lambing as the total number of lambs
born. Birth weight was defined as the live weight of lamb measured at the latest 24 h after
birth. Weights at 10, 30, and 90 days and average daily gain between 10 and 30 days were
estimated by interpolation between weight dates, bracketing the standard age specified
with the formula of Warwick and Cartwright [14]. Values out of the range defined by the
mean ± 2 standard deviations were excluded. The characteristics of the data used in the
analyses are presented in Table 1.

Table 1. Descriptive statistics for litter size (LS), birth weight (BW), weight at 90 days (W90), and
average daily gain between 10 and 30 days (ADG13) in the prolific Barbarine line.

Trait n Mean ± Sd Minimum Maximum CV (%)

LS (n◦ of lambs) 2725 1.56 ± 0.62 1.0 4.0 40.0
BW (kg) 3804 2.77 ± 0.55 1.50 4.10 19.9
W90 (kg) 3066 14.8 ± 3.87 4.97 26.47 26.1

ADG13 (g) 3090 135.1 ± 54.38 0.90 332.72 40.2
n: number of records; sd: standard deviation; CV: coefficient of variation.



Ruminants 2024, 4 258

2.3. Statistical Analysis

A preliminary analysis using the general linear model implemented in the ‘GLM2’
R package [15] was applied to test the significance of non-genetic effects considered to
influence ewe productivity and to be included in the genetic model. The statistical models
included the year of lambing, the month of lambing, the age of the dam, and a combination
of sex and type of birth.

Univariate and bivariate repeatability animal models were fitted to estimate the vari-
ance components and genetic parameters. Each bivariate model included litter size and one
of the remaining traits. Genetic correlations between direct and maternal genetic effects for
the same trait were taken into account.

The following bivariate animal model was fitted for all traits:

yijklmn = Ai + Mj + STk + Agl + am + mn + pn + eijklmn

where Ai is the effect of year of lambing (28 levels for LS and BW, 26 levels for W90,
27 levels for ADG13), Mj is the effect of the month of lambing (3 levels, from September to
November), STk is the effect of combined sex-type of birth with four levels, Agl is the effect
of the age of the dam with six levels (Agl, l = 2, 3, . . ., 7 and more years), am and mn are
the effects of direct additive and maternal additive genetic effects, respectively, pn is the
permanent environmental effect of the dam and ei is the residual of the model. The model
for litter size had neither the sex type of birth nor the maternal additive genetic effects.

For growth traits, the repeatability of ewe performance was computed as the total
maternal effect (tm) using the formula of Notter [16].

2.4. Bivariate Linear–Linear Model

All traits were modeled as continuous variables and assumed to be sampled from the
following bivariate normal distribution:[

yLS
yG

]
bLS, bG, aLS, ag, mG, pLS, pG, R ∼ N

(
X
[

bLS
bG

]
+ Z

[
aLS
aG

]
+ Z

[
0

mG

]
+ W

[
pLS
pG

]
, R

)
where bLS and bG were random vectors, including the effects of A, M, ST, and age; aLS
and aG were vectors of individual additive genetic effects; mG was a vector of maternal
additive genetic effect; pLS and pG were vectors of permanent environmental effects. X, Z,
and W were known incidence matrices; R was the residual (co)variance matrix.

2.5. Bivariate Threshold-Linear Model

LS was modeled as a categorical trait, as described by Sorensen et al. [17]. We assumed
that LS was related to an unobservable continuous variable (liability), uLS being the liability
vector. Thus, the joint distribution of LS and the other trait records was assumed to be
conditionally normally distributed, as in the case of the bivariate linear–linear model, and
yLS was replaced by uLS (LS reliabilities). The response of LS (yLS) was modeled with the
following distribution as in Casellas et al. [18]:

p
(
yLS

∣∣uLS
)
=

n
∏
i=1

p
(
yLSi

∣∣uLSi
)

=
n
∏
i=1

I(uLSi < t1)I
(
yLSi = 1

)
+ I(t1 < uLSi < t2)I

(
yLSi = 2

)
+ I(t2 < uLSi)I

(
yLSi = 3

)
where I(.) was an indicator function with the argument as defined within parentheses and
t1, t2 and t3 are thresholds defining the three categories of response.
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2.6. Univariate Linear and Threshold Models

Litter size was analyzed separately, with linear [19] and threshold [17] univariate
models to compare with the results from the bivariate models. To compare linear and
threshold models for litter size for goodness-of-fit, the MSE (mean squared error) statistic
was computed according to Casellas et al. [18]. Birth weight, weight at 90 days, and average
daily gain between 10 and 30 days were analyzed under linear univariate models.

The marginal posterior distributions of all unknowns were estimated by Bayesian
inference using Gibbs sampling [19]. The TM software developed by Legarra et al. [20]
was used for all Gibbs sampling procedures. After some exploratory analyses, chains of
1,000,000 samples were used, with a burn-in period of 200,000. One sample of each 100 was
saved to avoid high correlations between consecutive samples. Convergence was tested
using the Z criterion of Geweke [19].

3. Results

The descriptive statistics for litter size and growth traits for the prolific Barbarine line
are presented in Table 1. Average litter size in the prolific Barbarine line was higher than
the one observed in conventional flocks of the same breed (1.13 ± 0.34 in Djemali et al. [21];
1.08 ± 0.23 in Lassoued et al. [22]). For birth weight and growth traits, values were lower
in this prolific line than the ones reported in conventional flocks [5,21,23].

For all traits, coefficients of phenotype variation were high, varying from 19.9% for
BW to 40.2% for ADG13. In the case of litter size, CV was estimated at 40% for this line and
25% for a conventional flock raised at the INRAT research station (result not published).

The estimates of variance components and direct-maternal genetic correlations ob-
tained with univariate and bivariate models are summarized in Tables 2 and 3, respectively.

Table 2. Estimations of variance components (SD within parenthesis) and direct-maternal genetic
correlations (Mcse within parenthesis) of the studied traits were obtained with univariate models in
the prolific Barbarine line.

Trait

Parameter LS a LS b BW W90 ADG13

σ2
a

0.03
(0.01)

0.06
(0.02)

0.04
(0.01)

0.31
(0.24)

89.62
(61.98)

σ2
m - - 0.02

(0.008)
1.17

(0.51)
252.03
(95.29)

σam - - −0.02
(0.008)

−0.25
(0.28)

−86.43
(63.53)

ram - - −0.86
(0.008)

−0.45
(0.029)

−0.66
(0.027)

σ2
p

0.025
(0.01)

0.04
(0.01)

0.04
(0.005)

0.64
(0.26)

144.30
(56.62)

σ2
e

0.29
(0.009)

0.30
(0.01)

0.14
(0.007)

6.29
(0.23)

1526.16
(57.94)

LS: litter size; BW: birth weight; W90: weight at 90 days; ADG13: average daily gain between 10 and 30 days;
a: linear model; b: threshold model; σ2

a: direct additive genetic variance; σ2
m: maternal additive genetic variance;

σam: covariance between direct and maternal genetic effects; ram: correlation between direct and maternal genetic
effects; σ2

p: maternal permanent environmental variance; σ2
e : residual variance.
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Table 3. Estimations of variance components (SD within parenthesis) and direct-maternal genetic
correlations (Mcse within parenthesis) of the studied traits were obtained with bivariate linear and
threshold models in the prolific Barbarine line.

Trait

Parameter LS a LS b BW a BW b W90 a W90 b ADG13 a ADG13 b

σ2
a

0.06
(0.01)

0.06
(0.01)

0.05
(0.01)

0.04
(0.01)

0.21
(0.17)

0.11
(0.16)

120.02
(65.78)

109.73
(58.99)

σ2
m - - 0.025

(0.01)
0.017

(0.007)
1.40

(0.45)
1.44

(0.42)
298.46
(120.8)

275.15
(103.32)

σam - - −0.024
(0.009)

−0.018
(0.006)

−0.25
(0.29)

−0.17
(0.22)

−131.75
(83.42)

−123.38
(57.70)

ram - - −0.74
(0.016)

−0.75
(0.012)

−0.57
(0.055)

−0.32
(0.054)

−0.76
(0.031)

−0.80
(0.024)

σ2
p

0.12
(0.01)

0.18
(0.01)

0.06
(0.007)

0.06
(0.007)

1.00
(0.31)

1.13
(0.30)

253.84
(74.78)

326.19
(78.29)

σ2
e

0.21
(0.008)

0.14
(0.009)

0.16
(0.008)

0.16
(0.008)

6.79
(0.24)

6.95
(0.26)

1583.50
(61.25)

1604.76
(62.06)

LS: litter size; BW: birth weight; W90: weight at 90 days; ADG13: average daily gain between 10 and 30 days;
a: linear model; b: threshold model; σ2

a: direct additive genetic variance; σ2
m: maternal additive genetic variance;

σam: covariance between direct and maternal genetic effects; σ2
p: maternal permanent environmental variance;

σ2
e : residual variance.

The estimates of additive genetic and permanent environmental variances for LS in the
univariate threshold analysis were higher (0.06 and 0.04, respectively, Table 2) than those
in the linear analysis (0.03 and 0.025, respectively, Table 2), but the estimates of residual
variances were similar (Table 2) in both models. In bivariate models, the additive genetic
variance was similar to the value estimated in the univariate threshold model (Table 3). The
permanent environmental variance increased (0.18, Table 3), and the residual variance was
reduced (0.14, Table 3) in the bivariate threshold model.

The estimated parameters for BW were similar in all models (Tables 2 and 3). For W90
and ADG13, few differences were observed between models (Tables 2 and 3). In all models,
the estimated residual variances showed an incremental increase according to the age of the
animal. The maternal components were higher than the direct effects for W90 and ADG13.
However, for BW, direct effects were more important than maternal ones. The estimates of
genetic correlations between direct and maternal effects were high and negative (−0.57 for
W90 in the bivariate linear model to −0.86 for BW in the univariate model), except for W90
in the univariate and bivariate threshold models (−0.45 and −0.32, respectively).

Features of the estimated marginal posterior distributions of heritability and repeata-
bility for the traits studied with univariate and bivariate analysis are summarized in
Tables 4 and 5, respectively. The mean and median were similar for all the traits, showing
that, in all cases, the marginal posterior distributions were symmetric.

The heritability estimate of LS obtained with the univariate threshold model was 0.14,
with a probability of 81% of being at least 0.10 and greater than the estimate obtained with
the linear model (0.08; Table 4). Bivariate linear–linear and linear threshold models resulted
in estimates of h2 similar to those of the univariate threshold model, but with a greater k
value (0.10) and the probabilities of h2 being greater than 0.10 (95% and 97%, respectively,
see Table 5). The estimates of repeatability were quite different between the models. The
highest estimate of repeatability resulted when the threshold model was used in bivariate
analysis, and its respective high-density interval included high values (Table 5).
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Table 4. Heritability (h2) and repeatability (r) of litter size (LS), birth weight (BW), weight at 90 days
(W90), and average daily gain between 10 and 30 days (ADG13) were obtained with univariate
analysis in the prolific Barbarine line.

h2 r

Parameter Median HPD95% P k MCse Median HPD95% MCse

LSlinear 0.08 0.03, 0.15 0.37 0.04 0.00096 0.16 0.11, 0.20 0.00036
LSthreshold 0.14 0.05, 0.24 0.81 0.06 0.00167 0.24 0.18, 0.32 0.0006

BWd 0.18 0.07, 0.32 0.95 0.10 0.003
0.25 * 0.20, 0.30 0.00088BWm 0.07 0.009, 0.17 0.31 0.02 0.00285

W90d 0.03 0.00, 0.10 0.06 0.006 0.00168
0.20 * 0.14, 0.26 0.00103W90m 0.14 0.02, 0.26 0.75 0.04 0.00347

ADG13d 0.04 0.001, 0.11 0.09 0.007 0.00225
0.17 * 0.13, 0.23 0.00073ADG13m 0.13 0.04, 0.23 0.74 0.05 0.00265

‘d’ in subscript denotes direct heritability; ‘m’ in subscript denotes maternal heritability; ‘*’ in superscript denotes
the total maternal effect; HPD95%: high posterior density interval at 95%; P: probability of the heritability being
greater than 0.10; k: limit for the interval [k, +1) of the heritability having a probability of 95%; MCse: Monte
Carlo standard error.

Table 5. Heritability (h2) and repeatability (r) of litter size (LS), birth weight (BW), weight at 90 days
(W90), and average daily gain between 10 and 30 days (ADG13) were obtained with bivariate analysis
in the prolific Barbarine line.

h2 r

Parameter Median HPD95% P k MCse Median HPD95% MCse

Linear

LS 0.14 0.09, 0.20 0.95 0.10 0.00251 0.46 0.41, 0.51 0.00204
BWd 0.20 0.10, 0.27 0.98 0.11 0.00482

0.29 * 0.24, 0.35 0.00226BWm 0.09 0.03, 0.19 0.45 0.03 0.00652
W90d 0.02 0.00, 0.06 0.00 0.001 0.00211

0.24 * 0.19, 0.30 0.0009W90m 0.15 0.06, 0.26 0.88 0.08 0.00367
ADG13d 0.05 0.007, 0.11 0.18 0.01 0.00372

0.22 * 0.17, 0.28 0.00145ADG13m 0.14 0.04, 0.27 0.76 0.05 0.00633

Threshold

LS 0.15 0.09, 0.20 0.97 0.10 0.00258 0.62 0.56, 0.68 0.00172
BWd 0.13 0.08, 0.24 0.93 0.09 0.00374

0.29 * 0.24, 0.33 0.00114BWm 0.06 0.02, 0.13 0.16 0.02 0.00295
W90d 0.001 0.001, 0.03 0.00 0.001 0.00198

0.25 * 0.20, 0.30 0.00167W90m 0.15 0.05, 0.24 0.87 0.06 0.00556
ADG13d 0.05 0.006, 0.10 0.06 0.01 0.0025

0.24 * 0.18, 0.29 0.00138ADG13m 0.12 0.05, 0.23 0.73 0.06 0.00436

‘d’ in subscript denotes direct heritability; ‘m’ in subscript denotes maternal heritability; ‘*’ in superscript denotes
the total maternal effect; HPD95%: high posterior density interval at 95%; P: probability of the heritability being
greater than 0.10; k: limit for the interval [k, +1) of the heritability having a probability of 95%; MCse: Monte
Carlo standard error.

Estimates of direct and maternal heritability for growth traits were generally similar
in all models, except for W90, which showed direct heritability close to zero in the bivariate
threshold model in comparison with the other models (Tables 4 and 5). The direct heritabil-
ity estimate for BW was 0.18, with a probability of 95% being at least 0.10 (k value; Table 4).
Both W90 and ADG13 showed low direct heritability estimates (0.03 and 0.04, respectively,
Table 4) relative to the estimate at birth. Estimates of maternal heritability for growth traits
were greater than direct heritability, except for BW, but both remained relatively small.
Values increased with age and varied from 0.06 for BW to 0.15 for W90 (Tables 4 and 5).
The repeatability estimates of ewe performance were moderate for all traits in all models
except for ADG13, which showed low repeatability in the univariate analysis (0.17, Table 4).
Estimates ranged from 0.20 for W90 (Table 4) to 0.29 for BW (Table 5).
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Features of the marginal posterior distributions of phenotypic correlations between
traits are presented in Table 6. Estimates of phenotypic correlations were negative (P = 1,
Table 6) in all models, and their high-density intervals contained only negative values.
Estimates were slightly lower than the genetic correlations and ranged between −0.34 for
LS-ADG13 and −0.60 for LS-BW.

Table 6. Phenotypic correlations between the traits analyzed: litter size (LS), birth weight (BW),
weight at 90 days (W90), and average daily gain between 10 and 30 days (ADG13) were obtained
with bivariate analysis in the prolific Barbarine line.

Trait Median HPD95% P k MCse

Linear
LS, BW −0.52 −0.58,

−0.46 1.00 −0.57 0.00218

LS, W90 −0.38 −0.44,
−0.31 1.00 −0.43 0.00124

LS, ADG13 −0.34 −0.42,
−0.27 1.00 −0.41 0.0021

Threshold
LS, BW −0.60 −0.65,

−0.55 1.00 −0.64 0.00112

LS, W90 −0.47 −0.53,
−0.40 1.00 −0.52 0.00167

LS, ADG13 −0.44 −0.52,
−0.36 1.00 −0.51 0.00227

HPD95%: high posterior density interval at 95%; P: probability of the phenotypic correlation being less than 0; k:
limit for the interval (–1, k], having a probability of 95%; MCse: Monte Carlo standard error.

Features of the marginal posterior distributions of genetic correlations are shown in
Table 7. All estimates of correlations between the LS and growth traits were moderately
negative with a very low probability of being positive (P value; Table 7), and the high-
density intervals included both positive and negative values. Estimates ranged from −0.18
for LS-BW to −0.83 for LS-W90.

Table 7. Genetic correlations between the traits analyzed: litter size (LS), birth weight (BW), weight at
90 days (W90), and average daily gain between 10 and 30 days (ADG13) were obtained with bivariate
analysis in the prolific Barbarine line.

Trait Median HPD95% P k MCse

Linear
LS, BW −0.18 −0.50, 0.13 0.09 −0.45 0.01585
LS, W90 −0.49 −0.99, 0.47 0.19 −0.92 0.04214

LS, ADG13 −0.53 −0.91, 0.01 0.05 −0.85 0.02072

Threshold
LS, BW −0.24 −0.53, 0.12 0.08 −0.45 0.01154
LS, W90 −0.83 −0.99, −0.37 0.00 −0.99 0.02824

LS, ADG13 −0.42 −0.90, 0.13 0.09 −0.82 0.0239
HPD95%: high posterior density interval at 95%; P: probability of the genetic correlation being greater than 0; k:
limit for the interval (–1, k], having a probability of 95%; MCse: Monte Carlo standard error.

Finally, the standardized average trend in EBVs for the analyzed traits over time is
shown in Figure 1. The estimates of slopes were: 0.0031 for LS, 0.0006 for BW, 0.0003 for
W90, and 0.0004 for ADG13 in standard deviations of traits. A favorable positive increase in
LS was found over time (0.053 lambs in 28 years). For BW, W90, and ADG13, the tendency
did not present a clear pattern, and a slight increase was observed (0.0092 kg, 0.0325 kg,
and 0.609 g for BW, W90, and ADG13, respectively, in 28 years).
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Figure 1. Trend in average standardized EBVs over time for a litter of size (LS), birth weight (BW),
weight at 90 days (W90), and average daily gain between 10 and 30 days (ADG13) in the prolific
Barbarine line.

4. Discussion

Phenotypic values showed that birth weight and growth traits are lower in the prolific
Barbarine line, in contrast with the conventional one. These findings show that selection
based on litter size produces an increase in mean prolificacy and a decrease in individual
lamb weights. The high CV observed for LS can be explained by the existence of multiple
births in the prolific line and could have a positive impact on annual genetic gain in litter
size. Safari et al. [24] reported CV from 6 ± 1 to 19.8 ± 1.5 for growth traits and 34.1 ± 0.6
for litter size in different breeds (wool, dual-purpose, and meat).

Estimates of genetic parameters for LS in the prolific Barbarine line were reported in a
few former studies [4,7]. Estimates were 0.09, 0.13 for h2, and 0.22, 0.62 for r by Ben Gara [7]
and Bedhiaf et al. [4], respectively. Genetic parameters in these studies were estimated
using REML methodology with single trait linear models, and standard errors were not
available. In the prolific Morrocan D’man sheep, obtained h2 and r were 0.09 ± 0.04 and
0.19 through the REML procedure [25].

Several studies comparing linear and threshold models with real and simulated
data have demonstrated the suitability of the threshold model for studying categorical
traits [9,18,26]. Nevertheless, other studies showed that the threshold model gave similar
results as the linear one in terms of predictive ability and goodness-of-fit [11,27].

The estimated residual variances increased according to the age of the animal in all
models. This pattern might be explained by the fact that, at a later age, the lamb is less de-
pendent on its mother and more exposed to environmental conditions. Estimates of genetic
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covariances between direct and maternal effects were all negative, indicating antagonism
between these effects, and this should be considered when formulating breeding goals.

Previous studies on this Barbarine population carried out with the joint data of the
prolific line and the conventional one reported σam moderately positive for BW, W90, and
close to zero for ADG13 [5,28]. These values were estimated using the REML methodology
and presented without standard errors.

A lot of variations in the values of the covariances between direct and maternal genetic
effects on growth traits have been found in the literature. In a review by Safari et al. [24]
on results in several sheep breeds (wool, dual purpose, and meat), most reported genetic
correlations between direct and maternal effects were negative. Robinson [29] suggested
that this negative correlation between direct and maternal genetic effects could be reduced
by including a sire-by-year interaction in the genetic model.

In this study, direct heritability declined and the maternal one increased with increas-
ing age, in contrast to the tendency reported by Safari et al. [24]. The values reported
by those authors were moderate and ranged from 0.15 ± 0.02 (BW) to 0.41 ± 0.02 (adult
weight) for h2

d and from 0.24 ± 0.03 to 0.04 ± 0.01 for the same traits for h2
m. In the prolific

Barbarine line, Ben Gara [7], using the REML procedure, obtained greater estimates of
direct heritability for BW (0.25), W90 (0.24), and ADG13 (0.15), but those values were
reported without SE and maternal heritability was not estimated.

Some studies reported greater direct heritability estimates for BW than maternal
heritability in Brazilian Santa Ines sheep [30,31], similar to or higher in several (wool,
dual-purpose, and meat) sheep breeds [24]. Estimates of greater magnitude for maternal
than direct heritability have also been reported in other studies in a joint analysis with
prolific and conventional Barbarine lines and Santa Ines sheep [5,32].

Linear and threshold analyses showed similar results, except for the case of the genetic
correlation between LS and W90 in the linear threshold model, which was different but
remained negative (−0.83; Table 7). This difference could be explained by the lack of
convergence detected by the Geweke test for this estimate.

Negative correlations estimated in this study indicated that selection based on increas-
ing litter size would have a negative influence on individual weight traits. However, several
studies in this prolific Barbarine line [7,33] and the prolific D’man sheep [34] concluded that
litter size is highly and positively correlated with total ewe litter weights at various lambs’
age values. Estimates of genetic correlations were 0.89 for LS at birth and total litter weight
at birth and 0.70 for LS at weaning and litter weight at weaning [33]. Consequently, despite
the negative impact of the selection of this prolific line due to the negative correlations
between litter size and individual weights, this could be compensated by the positive
correlations of litter size to total litter weights.

To this date, there are no available estimates of phenotypic and genetic correlations
between litter size and growth traits for the prolific and conventional Barbarine flocks.
Estimates of genetic and phenotypic correlations between LS and growth traits in the
literature are abundant and cover a wide range of values, including the ones obtained here
([35] in Merino sheep; [36] in Danish populations of Nordic sheep breeds; [37] in Polypay
sheep). The differences in estimates could be due to different causes: data structure,
methodology of genetic evaluation, production system, farm management, etc.

In sheep, farm profitability depends on the occurrence of multiple litters and lamb
growth. The weight of a lamb is influenced by its genetic potential and its mother’s ability
during the growth period. The selection of replacement females in the prolific line of
Barbarine sheep is currently based on their litter size, ignoring their maternal abilities. The
advantage of the prolific Barbarine line in terms of maternal ability motivates its inclusion
in the breeding goal. This objective can be achieved by fitting an index for female traits,
including litter size and one of the growth traits.
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5. Conclusions

This study showed that the threshold model could be the most appropriate for esti-
mating the genetic parameters of litter size. Higher values of the estimates of maternal
heritability with respect to the direct ones in growth traits indicated that selecting for
maternal ability could have a positive impact on improving weaning weight. However, this
possibility could not be directly exploited because of the existence of antagonism between
litter size and growth traits in this prolific line. A selection index including both traits
should be designed.
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