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Abstract 23 

The citrus sector seeks rapid, economical, environmentally-friendly and non-destructive 24 

technologies for monitoring the external and internal changes in physical quality taking 25 

place in fruit during on-tree ripening, thus allowing fruit quality to be evaluated at any 26 

stage in the ripening process. The use of portable NIRS sensors based on MEMS 27 

technology, in conjunction with chemometric data treatment models, has already been 28 

studied for quality-control purposes in two citrus species: oranges and mandarins. The 29 

critical challenge is to develop robust and accurate universal mathematic models based 30 

on hundreds of highly heterogeneous citrus samples in order to design quality prediction 31 

models applicable to all fruits belonging to the genus Citrus, rather than models that can 32 

only be applied successfully to a single citrus species. This study evaluated and compared 33 

the performance of MPLS and LOCAL regression algorithms for the prediction of major 34 

physical-quality parameters in all citrus fruits. Results showed that, while models 35 

developed using both linear (MPLS) and non-linear regression techniques (LOCAL) 36 

yielded promising results for the on-tree quality evaluation of citrus fruits, the LOCAL 37 

algorithm additionally increased the predictive capacity of models constructed for all the 38 

main parameters tested. These findings confirm that NIRS technology, used in 39 

conjunction with large databases and local regression strategies, increases the robustness 40 

of models for the on-tree prediction of citrus fruit quality; this will undoubtedly be of 41 

benefit to the citrus industry. 42 
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1.  Introduction 47 

Citrus fruits, which play a significant role in the human diet (Liu, Heying, & 48 

Tanumihardio, 2012), are among the world’s major crops, and the highest value fruit crop 49 

in international trade (Magwaza et al., 2012b). The market price of harvested citrus fruit 50 

is at present based largely on external color, size and weight (Olmo, Nadas, & García, 51 

2000; Nicolaï et al., 2007; Magwaza et al., 2012a); it would be useful to introduce, in the 52 

near future, quality-based pricing systems, using both external and internal quality 53 

indices.  54 

In response to growing demand from producers, consumers and the industry, 55 

recent years have seen the development of rapid, accurate, economical and above all non-56 

destructive technologies for determining food-produce quality. NIRS is one flexible and 57 

versatile technology, which has been successfully applied for the prediction of quality 58 

parameters in various citrus fruit species, and especially in oranges and mandarins. 59 

Numerous authors, including Fraser, Jordan, Künnemeyer, & McGlone (2003), Guthrie, 60 

Walsh, Reid, & Lienberg (2005a), Guthrie, Reid, & Walsh (2005b), Hernández-Gómez, 61 

He, & Pereira (2006), Sun, Zhang, & Liu (2009), Liu, Sun, Zhang, & Aiguo (2010b), 62 

Antonucci et al., (2011), Magwaza et al., (2012b, 2013b, 2014), Magwaza, Opara, Cronje, 63 

Landahl, & Terry (2013a) and Sánchez, De la Haba, & Pérez-Marín (2013a) have 64 

confirmed the potential of NIRS for predicting quality in mandarins; similar findings have 65 

been reported for oranges by Cayuela (2008), Cayuela & Weiland (2010), Liu, Sun, & 66 

Ouyang (2010a), Zheng et al., (2010), Magwaza et al., (2013c) and Sánchez, De la Haba, 67 

Serrano, & Pérez-Marín (2013b). 68 

At the same time, the citrus sector is increasingly demanding methods for the on-69 

tree monitoring of fruit quality parameters throughout the ripening process, with a view 70 

to identifying the optimal harvesting time depending on the final destination of the 71 



product. Advances in NIRS instrumentation include the development of handheld and 72 

portable equipment, some of which has already been applied successfully for on-tree 73 

quality measurements in mandarins (Sánchez, De la Haba, & Pérez-Marín, 2013a) and, 74 

separately, in oranges (Sánchez, De la Haba, Serrano, & Pérez-Marín, 2013b). However, 75 

the predictive capacity and robustness of the models thus developed could be improved 76 

by using larger and more varied sample sets. In this sense, universal models applicable to 77 

any citrus fruit species would be particularly useful, and would favor the uptake of this 78 

technology by the citrus sector. However, when using what might be termed “multi-79 

product sample sets”, the relationship to be modeled may not always be linear; as a result, 80 

classical regression methods are not always the most suitable (Pérez-Marín, Garrido-81 

Varo, & Guerrero, 2007). Barton II, Shenk, Westerhaus, & Funk (2000) suggested that 82 

one option in these cases could be to use local approaches based on the development of 83 

specific calibrations for each sample to be predicted, enabling existing nonlinearity to be 84 

addressed through the production of “local” linear models. 85 

The aim of this study was to evaluate the LOCAL algorithm using a citrus-fruit 86 

database for the development of models to predict physical quality parameters during on-87 

tree ripening—regardless of species, growing-season and crop practices—using a 88 

handheld MEMS-NIRS spectrophotometer. 89 

2.  Materials and methods 90 

2.1.  Fruit samples and reference data 91 

The initial sample set comprised 611 samples belonging to the genus Citrus: 378 92 

oranges (Citrus sinensis L. cv. ‘Powell Summer Navel’) and 233 mandarins (Citrus 93 

reticulata Blanco cv. ‘Clemevilla’), from two consecutive seasons, both grown on a 94 

commercial plantation near the village of La Campana (Seville, Spain). A total of 191 of 95 



the oranges were those used by Sánchez, De la Haba, Serrano, & Pérez-Marín (2013b), 96 

while all the mandarins were used by Sánchez, De la Haba, & Pérez-Marín (2013a). 97 

Harvested oranges and mandarins were kept in refrigerated storage at 5ºC and 98 

90% RH until the following day, when laboratory testing was performed. Prior to each 99 

test, samples were allowed to reach room temperature. All physical tests were performed 100 

at 20ºC. 101 

For mandarins, external (weight, equatorial and axial diameters, color (L*, a*, b*, 102 

C* and h*)) and internal (firmness, pericarp thickness and juice weight) physical-quality 103 

parameters were measured following Sánchez, De la Haba, & Pérez-Marín (2013a); the 104 

same external and internal physical-quality parameters for oranges were measured 105 

following Sánchez, De la Haba, Serrano, & Pérez-Marín, (2013b). 106 

2.2.  NIR analysis 107 

NIR spectra of mandarins and oranges were collected in reflectance mode (log 108 

1/R) using the Phazir 2400, an integrated handheld micro-electromechanical system 109 

(MEMS) spectrophotometer (Polychromix, Inc., Wilmington, MA, USA) that 110 

incorporates all the essential components to deliver on-tree applications. This instrument 111 

operates between 1600 and 2400 nm with an 8 nm non-constant sampling interval (pixel 112 

resolution 8 nm, optical resolution 12 nm). Four spectral measurements were made for 113 

each fruit on the tree, taking orientation (north, south, east and west) into account. The 114 

four spectra were averaged to provide a mean spectrum for each sample. 115 

2.3.  Definition of calibration and validation sets 116 

Prior to carrying out NIRS calibrations, the CENTER algorithm included in the 117 

WinISI II software package, version 1.50 (Infrasoft International, Port Matilda, PA, USA) 118 

was applied to ensure a structured population selection based solely on spectral 119 

information for the establishment of calibration and validation sets (Shenk & Westerhaus, 120 



1991, 1995). This algorithm performs an initial principal component analysis (PCA) to 121 

calculate the centre of the population and the distance of samples (spectra) from that 122 

centre in an n-dimensional space, using the Mahalanobis distance (GH); samples with a 123 

statistical value greater than 4 were considered outliers or anomalous spectra. 124 

The standard normal variate (SNV) and detrending (DT) methods were applied 125 

for scatter correction (Barnes, Dhanoa, & Lister, 1989), together with the mathematical 126 

derivation treatment 1,5,5,1; where the first digit is the number of the derivative, the 127 

second is the gap over which the derivative is calculated, the third is the number of data 128 

points in a running average or smoothing, and the fourth is the second smoothing (Shenk 129 

& Westerhaus, 1995; ISI, 2000). 130 

Once spectral outliers had been removed (i.e. 7 of the original 611 samples), a set 131 

consisting of 604 samples was used to develop calibration models. The set was divided 132 

into two: a training set containing about 75% of the samples (N = 457) and a test set 133 

containing the remaining 25% (N = 147). 134 

Data were subjected to chemometric treatment using the WinISI II software 135 

package, version 1.50. 136 

2.4.  Construction of prediction models for major physical quality parameters in intact 137 

citrus fruits on-tree using the LOCAL algorithm 138 

The LOCAL algorithm operates by searching and selecting samples in large 139 

databases that have spectra similar to the sample being analyzed. The selected samples 140 

are then used to compute a specific calibration equation, based on Partial Least Squares 141 

(PLS) regression, for predicting the constituents of an unknown sample (Shenk, 142 

Westerhaus, & Berzaghi, 1997). 143 

Different parameters have to be evaluated in order to optimize the LOCAL 144 

algorithm (Pérez-Marín, Garrido-Varo, & Guerrero, 2007). In the present study, an 145 



optimization design for the LOCAL algorithm was set up by varying the number of 146 

calibration samples (k) from 80 to 120 in steps of 20, and the number of factors (l) from 147 

14 to 16 in steps of 1. This gave a factorial design of 3 x 3 or 9 runs. Finally, the number 148 

of PLS factors discarded was set at the first four. 149 

For each analytical parameter, different mathematical treatments were evaluated 150 

for scatter correction, including SNV and DT methods (Barnes, Dhanoa, & Lister, 1989). 151 

Additionally, four derivative mathematical treatments were tested: 1,5,5,1; 2,5,5,1; 152 

1,10,5,1; 2,10,5,1 (Shenk & Westerhaus, 1995).  153 

Global calibration using the same math pre-treatments used in LOCAL was 154 

performed (WinISI, II software package, version 1.50 (Infrasoft International, Port 155 

Matilda, PA, USA) in order to compare results obtained using the non-linear regression 156 

algorithm with those yielded by the classical prediction strategy based on MPLS 157 

regression. The same validation file for the genus Citrus was then predicted using both 158 

regression algorithms. The results provided by the models constructed using non-linear 159 

regression for mandarin + orange were also compared with those obtained for mandarin 160 

alone (Sánchez, De la Haba, & Pérez-Marín, 2013a) and for orange alone (Sánchez, De 161 

la Haba, Serrano, & Pérez-Marín, 2013b), in both cases using MPLS regression. Standard 162 

errors of prediction (SEP) and coefficients of determination (r2) using the LOCAL 163 

procedure and MPLS regression were compared.  164 

3.  Results and discussion 165 

3.1.  Descriptive data for NIR calibration and validation  166 

After applying the CENTER algorithm to the overall set (N = 611), a total of 7 167 

samples (2 oranges and 5 mandarins) were identified as anomalous spectra. Analysis 168 

showed that six of these displayed extreme values for the parameter a*, three being very 169 

green (2 mandarins and 1 orange at the start of harvesting), and three (mandarins) 170 



displaying a marked reddish hue at the end of harvesting. The other anomalous orange 171 

sample displayed an abnormally high value for pericarp thickness. 172 

Values (range, mean, standard deviation and coefficient of variation, CV) 173 

obtained for each physical-quality parameter in the calibration and validations sets, after 174 

removing outliers, are shown in Table 1. Structured selection based on spectral 175 

information, using the CENTER algorithm proved suitable, in that the calibration and 176 

validation sets displayed similar values for range, mean and SD for all study parameters. 177 

Furthermore, the ranges of the validation set lay within those of the calibration set. 178 

All physical parameters tested, except three of the color-related parameters (L*, 179 

b* and C* for the calibration and validation sets), displayed marked variability, with CV 180 

values of over 12% for both sets, covering a wide range of values. Other parameters also 181 

recorded CV values of over 40% in both sets, including weight, a*, firmness and juice 182 

weight. 183 

Pérez-Marín, Garrido-Varo, & Guerrero (2005) have highlighted the importance 184 

of sample set and of sample distribution within the calibration set, noting that sample sets 185 

for calibration should ideally ensure uniform distribution of composition across the range 186 

of the study parameter in question.  187 

3.2.  Prediction of physical quality parameters in citrus fruits using the LOCAL 188 

algorithm 189 

 Results for the prediction of citrus-fruit physical quality parameters using LOCAL 190 

algorithm are shown in Table 2. 191 

 It should be noted that for predicting the external validation set, the LOCAL 192 

algorithm used only between 80 and 100 samples to predict most of the parameters tested 193 

and only 120 samples for weight and L* prediction, rather than using all 457 samples in 194 



the calibration set (as was the case for MPLS regression); only those samples whose 195 

spectra were considered representative of the calibration set were used.  196 

 The results obtained using the LOCAL algorithm were better than those achieved 197 

with MPLS regression (Table 2) for universal citrus models; robustness was increased by 198 

minimizing prediction error and increasing the coefficient of determination for prediction. 199 

The accuracy of the predictions obtained using the LOCAL algorithm was greater 200 

(i.e. SEP values were lower) than that of those obtained using the MPLS regression for 201 

all parameters tested in mandarin + orange. The greatest reduction in SEP using the 202 

LOCAL algorithm was recorded for the a* parameter (34.60%), followed by b* (23.91%). 203 

The smallest reductions in SEP using the LOCAL algorithm were recorded for equatorial 204 

diameter and juice weight (4.79% and 6.20%, respectively, with respect to MPLS 205 

regression).  206 

An overall increase in the coefficient of determination was recorded for models 207 

obtained using the LOCAL algorithm with respect to those using MPLS. The most 208 

significant increases in value for r2 were recorded for all color-related parameters (r2
MPLS 209 

= 0.30-0.44; r2
LOCAL = 0.50-0.63), firmness (r2

MPLS = 0.08; r2
LOCAL = 0.28), fruit weight 210 

(r2
MPLS = 0.65; r2

LOCAL = 0.73), and axial diameter (r2
MPLS = 0.74; r2

LOCAL = 0.82). 211 

 However, neither of the strategies yielded results for L*, a*, C*, h* and firmness 212 

that lay within the limits recommended by Windham, Mertens, & Barton (1989) for the 213 

coefficient of determination (r2 > 0.60). Even so, the LOCAL algorithm improved the 214 

coefficient of determination by 29.55% for L*, 52.94% for a*, 69.70% for C*, 66.67% 215 

for h* and by 250% for firmness, compared to the MPLS regression.  216 

3.2.1.  Morphological parameters 217 

For morphological parameters (weight, equatorial and axial diameters) the citrus 218 

universal calibrations using MPLS performed worse in terms of accuracy and precision 219 



of prediction (Table 2), whilst the use of LOCAL reduced the SEP value by 13.39% for 220 

weight, by 4.79% for equatorial diameter, and by 17.80% for axial diameter. Moreover, 221 

the predictive models obtained for weight and equatorial diameter using the global 222 

strategy and MPLS regression only enabled fruit to be classified as high, medium or low, 223 

whereas the predictive capacity using the LOCAL algorithm may be considered good 224 

according to the limits defined by Shenk & Westerhaus (1996). For axial diameter, the 225 

LOCAL strategy yielded an r2 value of 0.82 compared to 0.74 for MPLS, i.e. an increase 226 

of 10.81%. 227 

Comparison of the results obtained using the LOCAL algorithm for universal 228 

models (i.e. mandarin + orange) with those yielded by MPLS for mandarins alone 229 

(Sánchez, De la Haba, & Pérez-Marín, 2013a) and for oranges alone (Sánchez, De la 230 

Haba, Serrano, & Pérez-Marín, 2013b) showed that the r2 values recorded for individual 231 

species were below the minimum recommended by Windham, Mertens, & Barton II 232 

(1989) for routine use of predictive models in the citrus sector, whereas models 233 

constructed using LOCAL regressions strategies for the three morphological parameters 234 

studied displayed r2 values of over 0.70, and were therefore suitable for routine use. 235 

However, SEP values for the accuracy of predictive models developed using LOCAL 236 

strategies were slightly higher than those recorded using the linear regression models for 237 

the individual species tested, due to higher SD values in the universal equations. 238 

3.2.2.  Color-related parameters. 239 

As Table 2 shows, the precision of the models constructed for color parameters 240 

(L*, a*, b*, C*, h*) using the LOCAL algorithm may be considered acceptable for 241 

screening purposes (0.50 ≤ r2 ≤ 0.63), enabling values for citrus fruits to be classified as 242 

high, medium and low; by contrast, the precision of the universal models developed using 243 

MPLS (0.30 ≤ r2 ≤ 0.44) enabled only classification into high or low (Shenk & 244 



Westerhaus, 1996). The LOCAL-based model enabled routine prediction of parameter b* 245 

(blue–yellow), while values for the other parameters came close to threshold values for 246 

this purpose. The ability to measure, using a single NIRS instrument, the changes in color 247 

from green-yellowish tones (negative a* and positive b*) to orange-reddish tones 248 

(positive a* and b*) typically occurring in the course of on-tree ripening, together with 249 

the non-destructive estimation of selected morphological parameters is undoubtedly of 250 

considerable interest in order to determine the optimal harvesting time. 251 

 For all study parameters, application of the LOCAL algorithm improved the 252 

accuracy of predictive models; reduction of the SEP for parameter a* was particularly 253 

noteworthy (SEPLOCAL = 7.24; SEPMPLS = 11.07). 254 

 Comparison of LOCAL results for mandarin + orange with those obtained for 255 

individual species using MPLS showed that precision was greater with LOCAL for all 256 

parameters except a* and h* in mandarins. SEP values for the universal equations were 257 

also better, except for a* and C* which were better in MPLS models for mandarin. 258 

3.2.3.  Internal physical parameters 259 

Results obtained for the prediction of firmness using the LOCAL algorithm 260 

indicate that the predictive capacity of the model, though very low (r2 = 0.28, SECV = 261 

11.63 N), was higher than that obtained with MPLS; the standard error was reduced by 262 

12.89% and the coefficient of determination increased by 250%. Though increased by the 263 

application of non-linear regression algorithms, this low predictive capacity underlines 264 

the difficulty in correlating destructive measurements made to a puncturing depth of 10 265 

mm with non-destructive NIR measurements, particularly for thick-peel fruits such as this 266 

orange variety (Sánchez, De la Haba, Serrano, & Pérez-Marín, 2013b). As Peirs, 267 

Scheerlinck, Touchant, & Nicolaï (2002) have noted, NIR light will only penetrate 268 



usefully down to a depth of between 1 and 5 mm, depending on the wavelength, the 269 

instrument and the fruit ripeness stage. 270 

For pericarp thickness and juice weight, the robustness of universal models was 271 

enhanced by application of the LOCAL algorithm; SEP values were reduced by 8.91% 272 

for pericarp thickness and by 6.20% for juice weight, whilst r2 was increased by 11.29% 273 

and 7.46%, respectively. Non-destructive prediction of both parameters is of particular 274 

interest to the citrus sector, which prizes fruit with reduced peel thickness and high juice 275 

content. 276 

Comparison of the results obtained here with those reported by Sánchez, De la 277 

Haba, & Pérez-Marín (2013a) and by Sánchez, De la Haba, Serrano, & Pérez-Marín 278 

(2013b) confirms the view expressed by Williams (2001) and Pérez-Marín, Garrido-Varo, 279 

& Guerrero (2005), among others, regarding the importance of using a sufficiently-large 280 

and sufficiently-varied calibration set for developing global calibration equations. Here, 281 

increased sample size and greater uniformity in terms of the number of samples available 282 

across the whole range of the test parameter improved the predictive capacity of the 283 

models.  284 

The frequency histogram for juice weight is shown in Fig. 1. Juice weight is one 285 

of the parameters most affected by sample distribution over the entire range, especially 286 

when two different citrus species are tested together; here, the range for oranges (19.33-287 

282.96 g) was much wider than for mandarins (2.62-90.69 g). The effect of combining 288 

the two species in calibration sets, in terms of increased range and improved distribution 289 

for the juice-weight parameter was evident when comparing the results obtained by 290 

Sánchez, De la Haba, & Pérez-Marín (2013a) and by Sánchez, De la Haba, Serrano, & 291 

Pérez-Marín (2013b) for individual species (mandarin: r2 = 0.30; SECV = 14.15 g; RPD 292 

= 1.19; orange: r2 = 0.33; SECV = 22.62 g; RPD = 1.21) with those obtained here for 293 



combined orange-mandarin sets (r2 = 0.71; SECV = 27.39 g; RPD = 1.85). Shenk, 294 

Westerhaus, & Berzaghi (1997) suggest that the samples selected for calibration should 295 

include all possible sources of variation encountered during prediction, in order to 296 

increase the robustness of the calibration, although this usually decreases the accuracy of 297 

prediction. However, the use of the LOCAL algorithm obviates the need to choose 298 

between accuracy and robustness of a calibration. 299 

3.3.  Matching calibration samples for the external prediction of physical quality 300 

parameters in citrus fruits using the LOCAL algorithm 301 

It was considered useful to determine the percentage of each fruit species in the 302 

training set used by the LOCAL algorithm to develop prediction models for that species 303 

in a combined validation set. Juice weight was the parameter selected for this purpose. 304 

Results are shown in Fig. 2.  305 

The LOCAL algorithm applied to the validation set (N = 147 samples; 88 oranges 306 

and 59 mandarins) used 80 samples to predict juice weight, rather than the 457 samples 307 

used in MPLS regression. In most cases, moreover, samples belonged to the species to be 308 

predicted. As Fig. 2a shows, 72 (81.82%) of the 88 oranges in the validation set were 309 

predicted with between 80% and 100% of oranges in the training set. In two cases, 310 

oranges in the validation set were predicted with less than 40% of orange samples, and 311 

between 62% and 71% of mandarin samples from the training set. As Fig. 2b shows, 36 312 

of the 59 mandarins in the validation set (61.02%) were predicted using over 80% of 313 

mandarins in the training set.  314 

No previously-published research has addressed the use of non-linear regression 315 

methods such as LOCAL to develop predictive models in other fruit species, but Sánchez, 316 

De la Haba, Serrano, & Pérez-Marín (2013b) used this algorithm to predict the same 317 



quality parameters tested here, in oranges, also reporting that LOCAL improved the 318 

predictive capacity of models for all parameters with respect to MPLS. 319 

Sánchez, De la Haba, Guerrero, Garrido-Varo, & Pérez-Marín (2011) also found 320 

that the use of LOCAL rather than MPLS regression improved models for predicting 321 

quality parameters in nectarines using on-tree measurements. 322 

Conclusions 323 

These findings confirm that NIRS technology using the LOCAL algorithm is a 324 

promising tool for the development of universal quality-prediction models for different 325 

fruit species belonging to the same genus, thus obviating the need to develop specific 326 

models for each species. The results also confirm the viability of NIRS technology, using 327 

latest-generation portable instruments, for the development of models enabling 328 

monitoring of the physical changes taking place during on-tree ripening. The LOCAL 329 

non-linear regression algorithm proved to be considerably more effective for this purpose 330 

than MPLS regression. To our knowledge, this is the first attempt to develop universal 331 

quality models using on-tree NIR spectroscopy for the genus Citrus. Over the coming 332 

years, however, recalibration may be required, increasing the number of samples in the 333 

calibration set by adding other species of this genus such as lemons, pomegranates, etc. 334 
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Table 1 - Number of samples (N), range, mean, standard deviation (SD) and coefficient of 460 

variation (CV) in calibration and validation sets. 461 

Parameter Set N Range Mean SD CV (%) 

Weight (g) Calibration 457 44.20-598.30 243.93 108.35 44.42 

Validation  147 54.93-561.00 239.46 113.27 47.30 

Equatorial 
diameter (mm) 

Calibration 457 38.05-108.34 76.52 12.60 16.47 

Validation 147 41.37-107.18 76.10 12.93 16.99 

Axial diameter 
(mm) 

Calibration 457 42.10-113.92 73.71 16.24 22.03 

Validation 147 45.47-107.20 72.76 16.24 22.32 

L* Calibration 457 46.12-79.52 65.53 4.23 6.46 

Validation 147 48.61-70.81 65.23 3.81 5.84 

a* Calibration 457 -16.34-42.41 21.40 12.44 58.13 

Validation 147 -15.43-41.35 21.63 13.17 60.89 

b* Calibration 457 34.89-78.14 64.77 7.30 11.27 

Validation 147 36.94-76.49 64.42 6.84 10.62 

C* Calibration 457 37.61-81.98 69.24 8.11 11.71 

Validation 147 38.92-80.42 69.10 7.79 11.27 

h* Calibration 457 51.74-112.40 72.71 10.95 15.06 

Validation 147 52.77-108.36 72.43 11.42 15.77 

Firmness (N) Calibration 457 2.07-79.88 19.21 14.60 76.00 

Validation 147 2.65-62.18 16.92 12.63 74.65 

Pericarp thickness 
(mm) 

Calibration 457 1.59-10.27 5.02 1.64 32.67 

Validation 147 2.25-9.19 5.01 1.63 32.53 

Juice weight (g) Calibration 456 2.62-282.96 102.79 52.21 50.79 

Validation 147 17.79-260.67 101.72 52.38 51.49 
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Table 2 - Statistics for validation of citrus samples using LOCAL and MPLS regression strategies  

Parameter Best of LOCAL. Citrus genus MPLS regression 

SEP r2 Settingsa 
Citrus genus Mandarinb Orangec 

SEP r2 SEP r2 SEP r2 

Morphological parameters 

Weight (g) 58.86 0.73 120, 14 67.96 0.65 26.12 0.39 50.32 0.38 

Equatorial diameter 
(mm) 

6.96 0.71 80, 14 7.31 0.68 5.83 0.39 5.03 0.49 

Axial diameter (mm) 6.88 0.82 80, 15 8.37 0.74 4.36 0.31 5.18 0.51 

Color parameters 

L* 2.52 0.57 120, 14 2.96 0.44 2.26 0.47 1.00 0.43 

a* 7.24 0.52 80, 16 11.07 0.34 8.41 0.65 1.53 0.39 

b* 4.17 0.63 100, 16 5.48 0.39 3.03 0.42 1.86 0.15 

C* 5.19 0.56 100, 16 6.55 0.33 5.92 0.35 1.66 0.26 

h* 8.09 0.50 80, 16 9.81 0.30 6.55 0.64 1.38 0.21 

Physical internal parameters 

Firmness (N) 11.02 0.28 80, 14 12.65 0.08 3.03 0.15 15.05 0.30 

Pericarp thickness 
(mm) 

0.92 0.69 100, 16 1.01 0.62 0.54 0.51 1.76 0.43 

Juice weight (g) 28.13 0.72 80, 15 29.99 0.67 14.71 0.28 24.07 0.28 
aLOCAL settings: number of selected samples, number of PLS factors. 

bMandarins: results in Sánchez et al.. 2013a. 

cOranges: results in Sánchez et al.. 2013b. 



Fig. 1. - Distribution of juice weight (g) for mandarins, oranges and mandarins + 

oranges during on-tree ripening. 

 

 

 

 

 

 



Fig. 2. - Prediction of the validation set for juice weight using LOCAL algorithm.  
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