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Abstract 20 

NIRS technology was used for the non-destructive measurement of melon-pulp colour 21 

(a*, b*, C* and h*), one of the main indicators of ripeness and quality. A total of 432 22 

Cantaloupe and Galia melons were used in the construction of calibration models, 23 

testing various spectral signal pretreatments and both linear and non-linear regression 24 

algorithms. The coefficient of determination (r2) and the standard error of cross-25 

validation (SECV) obtained for parameters a* (0.96, 2.16), b* (0.85, 3.25), C* (0.82, 26 

3.76) and h* (0.96, 3.64) in intact fruit confirmed the a priori viability of NIRS 27 

technology with MPLS regression for measuring melon ripeness and quality. Moreover, 28 

the application of a LOCAL algorithm improved the ability of models to predict all the 29 

internal-colour quality parameters studied. These results suggest that NIRS technology 30 

is a promising tool for monitoring ripening in melons and thus for establishing the 31 

optimal harvesting time.  32 

 33 

Keywords: near-infrared spectroscopy, melon, internal colour, MPLS regression, 34 

LOCAL algorithm. 35 

 36 
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1.  Introduction 38 

Harvesting melons at the ideal stage is especially critical to their storage life and eating 39 

quality. Although sweetness is the key attribute affecting eating-quality, other properties 40 

such as aroma, flesh colour and texture—depending on the fruit concerned—are also 41 

indispensable indicators of overall quality (Vallone et al., 2013). 42 

The quality of muskmelons (Cucumis melo) at harvest is traditionally estimated 43 

on the basis of a number of subjective external features, chief among which are 44 

background colour, net development, and stem abscission (Simandjuntak, Barrett, & 45 

Wrolstad, 1996; Portela & Cantwell, 1998; Cantwell & Kasmire, 2002).  46 

 Cantaloupes may be harvested when the fruit begins to separate from the stem, 47 

when the external colour beneath the netting begins to change from green to yellow-48 

green (bearing in mind that skin colour typically transitions from grey to dull green 49 

when immature, deep uniform green at maturity, and light yellow at full ripeness), and 50 

when the net is well developed with a waxy covering (Cantwell, 1996). To ensure 51 

excellent eating quality in melons, it is critical to harvest them at a sufficiently advanced 52 

stage when the sugars have already accumulated in the fruit, since postharvest changes 53 

in sugar concentrations are small (Pratt, Goeschl, & Martin, 1977; Lester & Shellie, 54 

1992). Similarly, although skin colour may change after harvest, pulp colour changes 55 

very little, so that harvesting at the appropriate stage of maturity is crucial to good 56 

internal visual quality (Cantwell, 1996).  57 

 Honeydew melons are harvested by maturity, which is very difficult to judge 58 

since the abscission zone, a valuable harvest criterion for Cantaloupes, does not form 59 

until the fruit is overripe (Pratt, Goeschl, & Martin, 1977). Maturity classes are grouped 60 

predominantly by changes in ‘ground colour' from greenish to cream with yellow 61 
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accents. Cantwell (1996) notes that Honeydew melons may be considered mature but 62 

unripe when the external colour is white with a greenish aspect, the peel is slightly 63 

fuzzy, there is no aroma, when the melon splits when cut, and when the pulp is crisp. 64 

They may be classed as mature and ripening when the external colour is white with 65 

traces of green, the peel is not fuzzy but slightly waxy, the aroma changes from slight to 66 

noticeable, the melon splits when cut and the flesh is crisp. The characteristics of ripe 67 

Honeydews are as follows: ground colour is creamy white with yellow accents, peel is 68 

clearly waxy, the characteristic aroma is noticeable and the blossom-end yields slightly 69 

to pressure. Pratt, Goeschl, & Martin, (1977) report that ripening in Honeydew melons 70 

is associated with increased respiration and ethylene production rates, aroma 71 

development and softening. 72 

 The Galia melon is a hybrid originating from a Cantaloupe-Honeydew cross, 73 

larger than a Cantaloupe, and with deep green flesh. Ripeness is measured not by 74 

softness at the stem but rather by colour and fragrance (Escribano & Lazaro, 2012).  75 

 Growers and consumers generally estimate melon quality in terms of aroma, 76 

softness to the touch and surface colour (Lester, 2006). However, while these are 77 

important for establishing product quality and optimal harvesting time, there are other 78 

key criteria which cannot be assessed externally, and require non-destructive methods in 79 

order to avoid damage to the fruit. Pulp colour is one such criterion: as Cantwell (1996) 80 

has noted, fall and winter Cantaloupe melons may be ripe on the inside but have a green 81 

peel colour. Cantwell and Portela (1998) highlight the link between pulp colour and 82 

surface defects such as sunburned areas and large ground spots (poorly netted areas 83 

where melons touch the ground), reporting that average pulp chroma (orange colour) 84 

values are highest in good-quality pieces, intermediate in ground-spot pieces, and 85 

lowest in pieces from sunburned areas.  86 
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 Growers and the industry would clearly benefit from fast, precise and, above all, 87 

non-destructive techniques. NIRS technology not only meets these requirements, but 88 

also offers a number of other advantages which make it ideal for meeting current 89 

demands in terms of control and traceability: low cost per sample analysed; little or no 90 

need for sample preparation; ability to analyse a wide range of products and parameters; 91 

a high degree of reproducibility and repeatability; and reduced interference from colour 92 

of fruit samples. NIRS can be built into in-line processes, and – since no reagents are 93 

required – produces no waste. 94 

NIR spectroscopy has been used successfully to predict colour in animal 95 

products such as fresh breast muscle (Abeni & Bergoglio, 2001), deboned chicken 96 

breast (Liu, Lyon, Windham, Lyon, & Savage, 2004), and beef (Andrés et al., 2008; 97 

Prieto, Andrés, Giráldez, Mantecón, & Lavín, 2008; Prieto et al., 2009; Cecchinato, De 98 

Marchi, Penasa, Albera, & Bittante, 2011), as well as external colour in mandarins and 99 

oranges (Sánchez, De la Haba, Serrano, & Pérez-Marín, 2012; Sánchez, De la Haba, & 100 

Pérez-Marín, 2013).  101 

Even though the prediction of internal colour is a key factor in establishing 102 

optimal harvesting time, no published research appears yet to have addressed this 103 

criterion.  104 

The overall aim of this study was to evaluate the ability of NIR technology to 105 

predict internal colour in melons, a quality parameter strongly influencing consumer 106 

acceptance or rejection of the product. 107 

2.  Material and methods 108 

2.1.  Fruit samples 109 

A total of 432 melons – N = 220 Cantaloupe (Cucumis melo L. var. reticulates Naud., 110 

Vulcano cultivar) and N = 212 Galia (Cucumis melo L. var. reticulates Naud., Siglo, 111 
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Deneb, Esmeralda and Solarking cultivars) – were harvested in glasshouses belonging 112 

to the Provincial Fruit and Vegetable Harvesters’ and Exporters’ Association in 113 

Almeria, Spain. 114 

On arrival at the laboratory, fruit was promptly placed in cold storage, at 5ºC and 115 

95% relative humidity. Prior to each measurement, fruit samples were left in order to 116 

allow the near-surface temperature to stabilize at the laboratory temperature of 20ºC. 117 

2.2.  Reference data 118 

Internal colour was analysed on the pulp surface using a Minolta Chroma Meter CR-400 119 

(Minolta Co. Ltd., Osaka, Japan). Two consecutive readings were taken in the 120 

equatorial region of the fruit; readings were averaged for each sample. Colour was 121 

expressed as CIELAB (a*, b*, C*, h*) colour space, where a* and b* define red-122 

greenness and blue-yellowness, respectively (CIE, 2004). Chroma (C*) and hue angle 123 

(h*) were calculated as (a*^2 + b*^2)^(1/2) and tan-1(b*/a*), respectively. Illuminant C 124 

and 2º standard observer measurements were made in all cases. 125 

2.3.  NIR analysis 126 

NIRS analysis was performed using a Perten DA-7000, Flexi-Mode diode array 127 

spectrometer (Perten Instruments North America, Inc., Springfield IL, USA), operating 128 

between 400-1700 nm with a 5 nm scanning interval.  129 

Fruits were scanned using the instrument in the standard upright position. 130 

Samples were irradiated from below by the light source. The distance of measurement 131 

between the sample and the instrument was 120 mm, with a large, circular surface 132 

viewing area (diameter 127 mm). The horizontal distance between the light source and 133 

the detectors was 80 mm. 134 

Each fruit was placed centrally upon the fruit holder, with the stem-stylar axis 135 

horizontal. Three separate spectral measurements were made, after rotating the sample 136 
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through 120º each time. The three spectra were averaged to provide a mean spectrum 137 

for each intact fruit. 138 

2.4.  Spectral repeatability 139 

All chemometric calculations were performed using WinISI software package version 140 

1.50 (Infrasoft International, Port Matilda, PA, USA). Spectrum quality was evaluated 141 

using the Root Mean Squared (RMS) statistic (Shenk & Westerhaus, 1995a, 1996). This 142 

statistic indicates the similarity between different spectra of a single sample, in this case 143 

between the three spectra collected per sample. An admissible limit for spectrum quality 144 

and repeatability was determined following the procedure described by Martínez, 145 

Garrido, De Pedro, & Sánchez (1998) to calculate the standard deviation (STD) limit 146 

from the RMS statistic and obtain an RMS cut-off value. 147 

2.5.  Population structuring and detection of spectral outliers prior to calibration  148 

Principal Component Analysis (PCA) was performed on a set of N = 432 samples in 149 

order to decompose and compress the data matrix. After PCA, the centre of the spectral 150 

population was determined in order to detect outlier samples. The Mahalanobis distance 151 

(GH) was calculated between each sample and the centre; samples with a GH value 152 

greater than 3 were considered outliers (Shenk & Westerhaus, 1995a). As spectral pre-153 

treatments, the Standard Normal Variate (SNV) plus Detrending (DT) (Barnes, Dhanoa, 154 

& Lister, 1989) procedure was used to remove the multiplicative interferences of 155 

scatter, and one derivative mathematical treatment was performed: window-wise 156 

filtering (1,5,5,1) where the first digit is the order of the derivative, the second is the gap 157 

over which the derivative is calculated, the third is the number of data points in a 158 

running average or smoothing and the fourth is the second smoothing (Shenk & 159 

Westerhaus, 1995b; ISI, 2000). 160 

2.6.  Construction and validation of prediction models by MPLS regression 161 
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Once spectral outliers (9 of the original 432 samples) had been removed, a set 162 

consisting of 423 samples of the two different melons (Cantaloupe and Galia) was used 163 

to construct calibration models. The set was divided into two: a calibration set 164 

containing about 75% of the samples (N = 320 samples) and a test set containing the 165 

remaining 25% (N = 103 samples) (Table 1). These samples were selected following the 166 

method proposed by Shenk and Westerhaus (1991) using the Center algorithm included 167 

in the WinISI software to calculate the Global Mahalanobis distance (GH). Samples 168 

were ordered based on the Mahalanobis distance to the centre of the population, and 169 

three of every four were selected to form part of the calibration set. 170 

Modified Partial Least Squares (MPLS) regression (Shenk & Westerhaus, 171 

1995a) was tested for the prediction of colour (a*, b*, C*, h*) in melons in the 535-172 

1650 nm range. Signal noise at the beginning (400-535 nm) and end (1650-1700 nm) of 173 

the spectral range was eliminated. To prevent over-fitting, six cross-validation groups 174 

were used.  175 

For each analytical parameter, various mathematical treatments were evaluated 176 

for scatter correction, including the Standard Normal Variate (SNV) and Detrending 177 

(DT) methods (Barnes, Dhanoa, & Lister, 1989). Furthermore, four derivate 178 

mathematical treatments were tested in the development of NIRS calibrations: 1,5,5,1; 179 

2,5,5,1; 1,10,5,1 and 2,10,5,1 (Shenk & Westerhaus, 1995b). 180 

The statistics used to select the best equations were: standard error of calibration 181 

(SEC), coefficient of determination of calibration (R2), standard error of cross-182 

validation (SECV), coefficient of determination for cross-validation (r2), RPD or ratio 183 

of the standard deviation of the original data (SD) to SECV, and the coefficient of 184 

variation (CV) or ratio of the SECV to the mean value of the reference data for the 185 
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calibration set. These latter two statistics enable SECV to be standardized, facilitating 186 

the comparison of the results obtained with sets of different means (Williams, 2001). 187 

The best models obtained for the calibration set, as selected by statistical criteria, 188 

were subjected to evaluation using samples not involved in the calibration procedure. A 189 

test set composed of 103 samples, not used previously in the model, was evaluated. 190 

Models were evaluated following the protocol outlined by Windham, Mertens, & 191 

Barton (1989). 192 

2.7.  Construction of prediction models using the LOCAL algorithm 193 

For each parameter, an optimization design for the LOCAL algorithm was set up by 194 

varying the number of calibration samples (k) from 40 to 100 in steps of 20 and the 195 

number of terms (l) from 10 to 14 in steps of 2. This yielded a factorial design of 4 x 3 = 196 

12 runs. Finally, the number of PLS factors discarded was set to the first four. 197 

As in MPLS calibrations, other factors needed to be optimized, including signal 198 

pretreatments (light scatter correction and derivatives) and the spectral region used. 199 

During LOCAL equation development, the spectral region and signal pretreatments 200 

indicated in Section 2.6 were used. 201 

The effect of the different settings on the performance of LOCAL was evaluated 202 

by comparing the standard error of prediction (SEP), the coefficient of regression for 203 

external validation (r2), the bias, and the bias-corrected standard error of prediction 204 

SEP(c). Furthermore, the accuracy of prediction of LOCAL was compared to the SEP, 205 

r2 and bias of MPLS prediction. 206 

3.  Results and discussion 207 

3.1.  Spectral repeatability 208 

Optimization of spectrum quality and repeatability is crucial in order to develop robust 209 

and accurate models. Statistical methods such as a defined RMS cut-off limit can be 210 
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useful for this purpose. The RMS cut-off was calculated as indicated in section 2.4. The 211 

mean STD for the samples analysed was 62,497 μlog(1/R), representing an RMS cut-off 212 

of 71,441 μlog(1/R). Any sample whose triplicated screening scans yielded an RMS 213 

above this value was eliminated and repeated until values fell below that limit, thus 214 

ensuring a high degree of spectrum repeatability. 215 

 No reference to the calculated RMS cut-off value for intact melons has been 216 

found in the literature. 217 

The mean spectrum of the three replicates of each sample was used for further 218 

analysis. 219 

3.2.  Spectral features 220 

Typical log (1/R) spectra for intact Cantaloupe and Galia melons, obtained on the 221 

Perten DA-7000 instrument, are shown in Fig. 1. The main absorption peaks coincided 222 

for both melon varieties at 680 nm, 970 nm, 1190-1210 nm and 1440 nm.  223 

In the visible region of the spectrum, absorbance spectra measured on 224 

Cantaloupe and Galia melons were similar in shape, with peaks occurring at positions 225 

corresponding to known chlorophyll absorption bands: strong absorption by chlorophyll 226 

a was evident at 680 nm, with a shoulder at 630 nm due to absorption by chlorophyll b 227 

(McGlone, Jordan, & Martinsen, 2002; McGlone, Martinsen, Clark, & Jordan, 2005). 228 

Stchur, Cleveland, Zhou, & Michel (2002) report a strong inverse correlation between 229 

the presence of this band and fruit sugar content. In addition, red pigments (carotenoids 230 

and anthocyanins) have a typical absorption band in the 490 to 550 nm region of the 231 

visible spectrum (Strayer, 1995). 232 

In the near infrared region, aqueous hydroxyl functional groups were detected at 233 

760, 840, 970 and 1440 nm, as is usually the case for fruit, and particularly for melons, 234 
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which are 90% water (Williams, 2001; McGlone, Martinsen, Clark, & Jordan, 2005). 235 

Williams (2001) reports a sugar-related absorption band at around 1200 nm. 236 

3.3.  Calibration development 237 

Cross-validation statistics for the best models obtained for the prediction of internal 238 

colour (a*, b*, C* and h*) in intact Cantaloupe and Galia melons using the MPLS 239 

algorithm are shown in Table 2.  240 

 For colour parameter a*, the MPLS method yielded the best calibrations using 241 

D1 log (1/R). Vis-NIR spectroscopy models displayed remarkable predictive ability for 242 

this parameter (r2 = 0.96, SECV = 2.16, RPD = 5.30); Shenk & Westerhaus (1996) 243 

suggest than an r2 value greater than 0.9 indicates excellent quantitative information. 244 

The RPD (5.30) value demonstrated the robustness and power of the calibration models 245 

obtained for a*. 246 

 Non-destructive prediction of a* in melon pulp is highly valuable, since this 247 

parameter is linked to pulp carotene—and particularly β-carotene—content (Reid, Lee, 248 

Pratt, & Chichester, 1970). During ripening, the pulp attains the maximum orange 249 

colour typical of the Cantaloupe melon; a* is thus a good indicator of maturity in 250 

melons (Simandjuntak, Barrett, & Wrolstad, 1996). Conversely, declining a* values are 251 

associated with loss of the typical orange colour hue during storage (Beaulieu, 2005). 252 

 No references have been found in the literature to the measurement of a* in the 253 

pulp of intact melons using NIRS technology. However, Sánchez, De la Haba, Serrano, 254 

& Pérez-Marín (2012) used a diode-array instrument (Corona 45 VIS/NIR, spectral 255 

range: 380-1700 nm) and a hand-held MEMS device (Phazir 2400, spectral range: 256 

1600-2400 nm) to measure external colour in intact oranges, reporting results poorer 257 

than those obtained here (RPD = 1.92 CV = 3.78% for the Corona 45 VIS/NIR; RPD 258 

=1.49, CV = 4.76% for the Phazir 2400). 259 
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 Performance statistics inferior to those recorded here were also obtained by 260 

Sánchez, De la Haba, & Pérez-Marín (2013) when using the MEMS spectrophotometer 261 

for the on-tree measurement of external colour in mandarins (RPD = 2.04, CV = 262 

33.30%). 263 

 The calibration model displaying the greatest predictive capacity for the b* 264 

colour parameter (r2 = 0.85; SECV = 3.25; RPD = 2.61) was obtained using D1 log 265 

(1/R); quantification was good, according to the Shenk & Westerhaus (1996) 266 

classification. 267 

 There are no published reports on the measurement of b* in intact melon using 268 

NIRS technology, only Sánchez, De la Haba, & Pérez-Marín (2013) reported RPD 269 

value of 1.43 and CV value of 4.22% for the prediction of this parameter in intact 270 

mandarins using a MEMS instrument in the spectral range 1600-2400 nm. However, 271 

this parameter is linked to the behaviour of photosynthetic pigments such as chlorophyll 272 

and carotenoids during melon ripening, and may thus act as an indicator of ripeness and 273 

thus of optimal harvesting time (Martínez-Madrid, Martínez, Pretel, Serrano, & 274 

Romojaro, 1999); non-destructive measurement of b* is therefore of considerable value. 275 

 As Table 2 shows, good predictive ability (r2 = 0.82; SECV = 3.76; RPD = 2.33) 276 

was recorded for the measurement of C* (Shenk & Westerhaus, 1996). 277 

 Values for C*, like those of a* and b*, increase significantly during ripening, 278 

due to higher carotenoid levels, and thus also provide a useful indicator of fruit ripeness 279 

(Sánchez, De la Haba, & Pérez-Marín, 2013). 280 

 The predictive capacity of the best model for the h* colour parameter may be 281 

considered excellent (r2 = 0.96, SECV = 3.64, RPD = 5.22) in terms of the 282 

recommendations made by Shenk & Westerhaus (1996).  283 
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 Hue angle increases with maturity in melons, indicating a change from light to 284 

darker orange in Cantaloupe and a decline in greenness in Galia (Simandjuntak, Barrett, 285 

& Wrolstad, 1996). 286 

Although NIRS technology appears not to have been used hitherto for measuring 287 

C* and h* in melons, Sánchez, De la Haba, & Pérez-Marín (2013) used NIRS to 288 

measure these colour parameters in on-tree mandarins during ripening, obtaining 289 

models whose predictive capacity was inferior to that recorded here both for C* (RPD = 290 

1.68, CV = 7.38%) and for h* (RPD = 1.31, CV = 9.03%). 291 

3.4.  Comparison of internal colour prediction in melons using the LOCAL 292 

algorithm versus MPLS regression 293 

The LOCAL algorithm was also used to predict internal quality-related parameters, and 294 

results for prediction of the 103-sample external validation set were compared with 295 

those obtained using MPLS regression. 296 

 SEP, SEP (c), bias and r2 values obtained with the best mathematical treatment 297 

for each parameter in the 12 runs (3 values for l and 4 for k) are shown in Table 3. The 298 

table also shows the combination of k and l yielding the lowest SEP for each parameter 299 

(k = 60 and l = 10 for a*; k = 40 and l = 14 for b*; k = 40 and l = 12 for C*, k = 40 and l 300 

= 10 for h*).  301 

 For predicting the external validation set, the LOCAL algorithm used only 40 302 

samples to predict b*, C* and h*, and 60 samples for a*; rather than using all 320 303 

samples in the calibration set (as was the case for MPLS regression), only those samples 304 

whose spectra were considered representative of the calibration set were used. 305 

 The results obtained using the LOCAL algorithm were better than those 306 

achieved with MPLS regression (Table 3), although both strategies yielded values for 307 
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the coefficient of determination which were comfortably over the minimum of r2 ≥ 0.60 308 

recommended by Windham, Mertens, & Barton (1989).  309 

 For a* prediction, the LOCAL algorithm improved the coefficient of 310 

determination by 2% and reduced the prediction error by 25%. The coefficient of 311 

determination for b* parameter was also improved by about 2% and the prediction error 312 

reduced by over 5%. 313 

 For C* and h*, the accuracy and precision of the predictions obtained using the 314 

LOCAL algorithm were greater than those obtained using MPLS regression (Table 3). 315 

Values for r2 were improved by 2% and 3%, while prediction error was reduced by 4% 316 

and 38%, for C* and h*, respectively. 317 

 Use of the LOCAL algorithm thus yielded a slight improvement in r2 values for 318 

all parameters, as well as minimizing the prediction error for NIRS models constructed 319 

to predict internal-colour parameters in melons. 320 

3.5.  Effective wavelengths for predicting colour-related parameters 321 

The loading plots corresponding to the best models obtained for predicting maximum 322 

levels of colour parameters are shown in Fig. 2. These plots show the areas across the 323 

spectral range where variance has influenced computing of the model to a greater or 324 

lesser extent, and the direction  of that influence (positive or negative).  325 

 For predicting a*, representation of the four latent variables (LV) used in 326 

constructing the calibration equation using MPLS regression shows that the areas of the 327 

spectrum exerting greatest weight on model fitting were 610 nm, 630 nm, 655 nm, 685 328 

nm and 725 nm in the visible region, and the 950 nm and 1410 nm areas relating to the 329 

absorption of sugars and water (Fig. 2). The same areas exerted greatest weight for 330 

parameter b* (Fig. 2). 331 
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 For chroma (C*), peaks and valleys were observed in similar areas: 610 nm, 630 332 

nm, 655 nm, 685 nm, and 725 nm, in addition to 950 nm and 1410-1480 nm (Fig. 2). 333 

 For h*, the most significant wavelengths were 615 nm, 625 nm, 655 nm, 685 nm 334 

and 725 nm in the visible region, together with 950 nm, 1225 nm, 1415 nm and 1480 335 

nm, areas related to sugar and water absorption; their influence was either positive or 336 

negative, depending on the latent variable in question (Fig. 2). 337 

 Thus, wavelengths 630, 680, 725, 950, and 1410 nm are likely to be the most 338 

sensitive for colour-related parameters in intact melons.  339 

4 Conclusions 340 

NIRS technology, using a diode array spectrometer, proved to be suitable for assessing 341 

internal colour-related parameters in the pulp of intact melons, allowing ripeness to be 342 

evaluated not only in terms of external visual appearance but also in terms of internal 343 

colour. This could lead to major changes in harvesting techniques for melons, by 344 

providing farmers with a precise and accurate indication of the fruit’s internal quality, 345 

thus enabling selective harvesting. It must be highlighted that the results obtained here 346 

should be considered the first step in the fine-tuning of NIRS for monitoring the 347 

ripening process in melons. Over the coming years, recalibrations may be required in 348 

order to enhance the robustness of the models obtained. 349 
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Table 1 - Range, mean, standard deviation (SD) and coefficient of variation (CV) for the 464 

parameters studied in calibration (NCalibration = 320) and validation (NValidation = 103) sets. 465 

 466 

Parameter Set Range Mean SD CV (%) 

a* Calibration  -19.56-18.91 1.99 11.55 580.40 

Validation  -14.56-17.17 2.32 11.62 500.86 

b* Calibration  12.98-50.67 33.36 8.52 25.54 

Validation  13.53-47.19 33.77 8.89 26.33 

C* Calibration  13.51-53.44 35.27 8.87 25.15 

Validation  13.99-49.78 35.68 9.24 25.90 

h* Calibration  66.11-125.11 90.81 19.06 20.99 

Validation  69.07-114.87 90.37 19.08 21.11 

467 
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Table 2 - Calibration statistics for the best equations obtained for the prediction of 468 

internal pulp colour (a*, b*, C* and h*) in Cantaloupe and Galia melons.  469 

Parameter Mathematical 
treatment 

Mean SD Range SEC R2 SECV r2 RPD CV 

a* 1,5,5,1 2.19 11.44 -14.26-18.66 1.96 0.97 2.16 0.96 5.30 98.63 

b* 1,5,5,1 33.49 8.48 12.98-47.40 2.96 0.88 3.25 0.85 2.61  9.70 

C* 1,5,5,1 35.35 8.76 13.51-50.77 3.40 0.85 3.76 0.82 2.33 10.63 

h* 1,5,5,1 90.63 18.99 67.16-115.62 3.29 0.97 3.64 0.96 5.22 4.01 

 470 

471 
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Table 3 - Validation statistics for the best models for predicting internal colour in 472 

Cantaloupe and Galia melons using MPLS and LOCAL algorithms. 473 

Parameter Regression method Mathematic 
treatment 

Factors SEP Bias SEP (c) r2 Slope 

a* MPLS 

LOCAL (k = 60) 

1,5,5,1 

1,5,5,1 

15 

10 (-4) 

2.45 

1.84 

-0.25 

-0.01 

2.45 

1.85 

0.96 

0.98 

1.00 

1.02 

b* MPLS 

LOCAL (k = 40) 

1,5,5,1 

1,5,5,1 

14 

14 (-4) 

3.33 

3.12 

0.46 

-0.15 

3.31 

3.13 

0.86 

0.88 

0.96 

1.03 

C* MPLS 

LOCAL (k = 40) 

1,5,5,1 

1,5,5,1 

14 

12 (-4) 

3.64 

3.45 

0.30 

-0.14 

3.65 

3.47 

0.84 

0.86 

0.96 

1.03 

h* MPLS 

LOCAL (k = 40) 

1,5,5,1 

1,5,5,1 

14 

10 (-4) 

3.74 

2.31 

0.30 

0.30 

3.74 

2.30 

0.96 

0.99 

0.97 

1.01 

 474 

475 
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Fig. 1 - Typical log (1/R) spectra for Cantaloupe and Galia melons. 476 
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Fig. 2 - Loadings for internal colour related parameters of Cantaloupe and Galia 483 

melons. 484 
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