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A B S T R A C T

In this study, an in-house validation of Visible and Near Infrared Spectroscopy was performed to distinguish
between extra virgin olive oil (EVOO) and virgin olive oil (VOO). A total of 161 samples of olive oil of three
different categories (EVOO, VOO and lampante (LOO)) were analysed by transflectance using a monochromator
instrument. One-class models were initially developed using Partial Least Squares (PLS) Density Modelling to
characterize EVOO and VOO category. Once the LOO samples were discriminated, linear and non-linear
discriminant models were built to classify EVOO and VOO. Different data pre-treatments and variable selec-
tion algorithms were evaluated to establish the best models in terms of Correct Classification Rate (CCR). The
best model, obtained after variable selection using PLS Discriminant Analysis, yielded CCR values of 82.35 % for
EVOO and 66.67 % for VOO in external validation. These results confirmed that VIS + NIRS technology may be
used to provide rapid, non-destructive preliminary screening of olive oil samples for categorization; suspect
samples may then be analysed by official analytical methods.

1. Introduction

The soaring price of extra virgin olive oil on the market has rendered
it susceptible to fraud, necessitating the availability of analytical
methodologies that ensure the product’s integrity for consumers. In
recent years, the technological advances in the analysis of fats and oils
have gone hand in hand with a growing awareness of the need for even
more effective control of the quality, purity and authenticity of the olive
oil that is sold, especially in countries which have only recently become
olive oil consumers (IOC, 2022). Delegated Regulation (EU) 2022/2104
(OJEU, 2022) establishes standards which can be applied to all olive oil
which is destined for international trade. These standards include,
among others, that the competent authorities should carry out confor-
mity checks, based on a risk analysis, to maximize consumer protection.
Conformity tests should include assessment of physicochemical param-
eters, complemented by the evaluation of organoleptic characteristics by
panels of selected and trained tasters (Panel Test). These panels play a
critical role in providing sensory evaluations that inform the classifica-
tion and labelling guidelines for olive oil finally decide the classification
and labelling of the olive oils (IOC, 2021).

Since 2013, the International Olive Council (IOC), the European
Union (EU) and the Spanish Ministry of Agriculture, as well as stan-
dardization bodies from other traditional and non-traditional producer
countries, have taken different steps aimed at updating the existing
knowledge about novel analytical methods which could complement the
Panel Test (PT). This is due to the limitations of the PT: it is slow, costly
to implement, subjective, variable between and within panels, and also
has other weakness such as the difficulty to classify borderline types of
oil (e.g., extra virgin versus virgin olive oil), and the limitation in terms
of the low number of samples (12) which can be analysed by one expert
panel per day (Conte et al., 2020; Barbieri et al., 2020a). Moreover,
virgin olive oil (VOO) companies are also seeking to support research
into new instrumental methods to improve and complement the PT,
since this method is not accessible to many producers and retailers.
Moreover, the considerable expense and time needed to gather such data
result in only a small fraction of OOs being inspected annually relative to
total production.

During the past ten years, a number of papers have focused on the
weak points of the current regulations and on analytical methods which
can be used to fight against the increasing cases of fraud in the olive oil
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(OO) sector and the current state of the official methods used to prevent
it (Circi et al., 2017; Barbieri et al., 2020a; Conte et al., 2020;
Quintanilla-Casas et al., 2020; Valli et al., 2020; Casadei et al., 2021).
More recently, the IOC, probably as a consequence of the results of the
study carried out by the European Commission (EC) in 2020 on the flaws
in the conformity checks used in the olive oil sector across the European
Union (EC, 2020), invited experts from its member countries to collab-
orate in the search for new, more accurate and reliable methods,
particularly to detect fraud, based on the latest technical advances.
García-González et al. (2017) reviewed the differences between EU and
non-EU trade standards, providing detailed information about the dif-
ferences. They recommended improving the current IOC methods,
wherever possible, but also opened the door to exploring non-targeted
methods (NTMs), although some researchers (Riedl, Esslinger & Fauhl-
Hassek, 2015; McGrath et al., 2018; Nichani et al., 2023) have pointed
to the absence of internationally-accepted validation protocols for the
use of NTMs in food authentication issues.

Over the last few years, Near Infrared Spectroscopy (NIRS) has
started to be taken seriously as the go-to NTM in the fight against many
types of food fraud (Karunathilaka, Kia, Srigley, Chung, & Mossoba,
2016; García-González et al., 2017; McGrath et al., 2018; Pérez-Marín
et al., 2019; Baeten & Dardenne, 2021; Rodionova, Pierna, Baeten &
Pomerantsev, 2021; Moghaddam, Tamiji, Lakeh, Khoshayand, & Mah-
moodi, 2022; Pérez-Marín& Garrido-Varo, 2023). Most of the published
papers concerning the NIRS qualitative analysis (now termed ‘non-tar-
geted analysis’) of commercialized olive oil focus on differentiating
between types of olive oil mixed with other vegetable oils, as well as
those which come from different varieties or geographical origins, and
which have quality grades (Garrido-Varo, García-Olmo & Pérez-Marin,
2004; Armenta, Moros, Garrigues & Guardia, 2010; Casale & Simonetti,
2014; Gómez-Caravaca, Maggio & Cerretani, 2016). Other authors
(Ortiz-Romero et al., 2023) have attempted to use NIRS to authenticate
VOOs, but not to distinguish between EVOO and VOO, which, as well as
being the two main categories, are those which PT has the most diffi-
culty categorizing, due to their overlapping attributes. As regards the
prediction of PT scores in OO, Garrido-Varo et al. (2000) showed, for the
first time, the capabilities of visible and near infrared spectroscopy (VIS
+ NIRS) using a quantitative approach. Willenberg, Matthäus, & Gertz
(2019) emphasized the challenges involved in the adoption of NIRS
technology as a NTM, but based their study on NIRS prediction of seven
individual compounds, such as acidity or the p-anisidine value, using the
latter in different classification algorithms. However, according to their
definition, this cannot be considered as a NTM or “fingerprint method”,
(Riedl et al., 2015; Nichani et al., 2023). Furthermore, many of these
cited works should be considered as viability studies, because they use a
low number of samples, or the samples did not originate from producers,
but were acquired from local retailers, or were mixed or adulterated in
the researchers’ own laboratories using spiked samples, without a
satisfactory statistical mixture design.

Several publications (Oliveri & Downey, 2013; Oliveri, 2017;
Jiménez-Carvelo, González-Casado, Bagur-González, & Cuadros-Rodrí-
guez, 2019; Biancolillo, Marini, Ruckebusch,& Vitale, 2020; Zeng et al.,
2021) have summarized the main pattern recognition (PR) methods for
use in cases of food adulteration and authentication, and distinguished
two main types, discrimination and class-modelling, stressing that the
differences between them have enormous practical implications. In
addition, PR methods can range from traditional algorithms, such as
Partial Least Squares-Discriminant analysis (PLS-DA), Soft Independent
Modelling by Class Analogy (SIMCA), Fisher Discriminant Analysis to
other newer, more sophisticated methods such as Bayesian Discriminant
Analysis, Logistic Regression, Artificial Neural Network (ANN), Classi-
fication and Regression Tree (CART), or Partial Least Squares Density
Modeling (PLS-DM), etc. However, although one of the recommenda-
tions in Oliveri and Downey (2013) was that the choice of the method
should be guided by the criterion of simplicity, some of the recent
published works that apply new discrimination or class-modelling

approaches have reported highly efficient models, with a good degree of
balance between sensitivity and specificity values, as well as high sta-
bility over time when compared with classical class-modeling methods
(Devos, Downey & Duponchel, 2014; Oliveri et al., 2014). These results
are of great interest to encourage further research into the use of this
algorithm in commercialized VOOs to discriminate them according to
the commercial category and, therefore, the quality grade.

In view of the above and taking into account to the state of the art
concerning the needs for a standardization of validated NTM, the main
goal of this study was to contribute further to our knowledge and
generate new methodology for the future validation of VIS + NIRS
technology as an NTM. Following the recommendations by Nichani
et al., (2023), we performed an in-house validation (single-lab) to
distinguish between EVOO and VOO, to support the conformity checks
requested in the international trade of virgin olive oil. The three specific
objectives were: a) to set up a methodology for instrument performance
control and sample analysis optimization; b) to evaluate a two-step
authentication strategy combining one-class classification and the
discriminant approach to authenticate EVOO and VOO; c) to study the
effect of different mathematical pre-treatments on the classification
performance of the two-step modelling approach and on two well-
established methods, one lineal (PLS-DA) and another non-lineal (Sup-
port Vector Machine-Discriminant Analysis, SVM-DA).

2. Materials and methods

2.1. Sampling

In this study, a total of 161 OO samples from different cultivars
(‘Picual’, ‘Hojiblanca’, ‘Arbequina’, ‘Manzanilla’, ‘Picudo’) in the
municipal areas of Cordoba, Granada and Jaen (Andalusia, Spain), made
up of three different categories, EVOO (N= 66), VOO (N= 62) and LOO
(N = 33), as classified according to Regulation (UE) N◦ 2019/1604 was
used (OJEU, 2019). They were collected during the 2020/21 production
season and were received in sealed, correctly-labelled plastic bottles of
about 250 mL. Each bottle was then divided into small airtight bottles of
about 50 mL, one of which was used for acquiring NIRS spectra, while
the rest were stored protected from the light at − 20 ◦C.

2.2. Reference data.
The organoleptic assessment of the olive oil samples was performed

by a single Sensory Panel of Fundacion Citoliva (Jaen, Spain). The
official procedure described in Commission Regulation (EEC) No 2568/
91 (OJEC, 1991), with later modifications (OJEU, 2019; OJEU, 2022)
was followed. The panel consisted of 12 members. The sensory data
were expressed as the mean of medians provided by each member and,
based on these data, the PT assigned a category to each sample. All
procedures for sensory evaluation were authorized by the Spanish
Ministry of Agriculture, Fisheries and Food and accredited by the
Spanish National Accreditation Body (ENAC) according to the criteria of
the standard UNE-EN ISO/IEC 17025. Informed consent was obtained
from all individual participants included in the study.

2.2. NIRS analysis, instrument performance and spectral repeatability

2.2.1. Spectra collection
The spectra were collected for all the samples in transflectance mode

(log (1/R)) using an NIRSTM DS2500 monochromator (FOSS Analytical,
Hillerød, Denmark), equipped with a folding transmission cup with a
0.1 mm gold reflector. This instrument provides absorbance readings
between 400 and 2500 nm, in 2 nm steps. Two spectra were collected
per sample and averaged to provide a mean spectrum. The data acqui-
sition was performed using ISIscan Nova software (FOSS Analytical,
Hillerød, Denmark).

2.2.2. Selection of the optimal region of the instrument
Before the spectral data were processed, one important step was to

M.-d.-M. Garrido-Cuevas et al.



Food Research International 192 (2024) 114799

3

select the most suitable spectral range of the instrument for the analysis
of olive oil. To achieve this, a first-order derivative, with a single-unit
derivation segment and without smoothing, (1,1,1,1) was applied,
which allows to highlight the areas of the spectrum where the signal to
noise ratio is degraded (Hruschka, 1987; McClure, 1992). To achieve
this, the WinISI II software package, version 1.50 (Infrasoft Interna-
tional, Port Matilda, PA, USA) (ISI, 2000) was used.

2.2.3. Spectral repeatability
Spectrum quality was evaluated using the root mean square (RMS)

(Shenk & Westerhaus, 1995; Shenk and Westerhaus, 1996) included in
WinISI II software (ISI, 2000). This statistic shows the similarity between
different spectra of a single sample; in this case, between the two spectra
collected per sample. The RMS for an individual subsample (j) of sample
(k), and the MEAN and STD values for a given k sample were calculated
according to the formulae provided by Martínez, Garrido-Varo, De
Pedro & Sánchez (1998):

RMSj,k =
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where yij is log (1/R) at wavelength i for subsample j, yi is log (1/R) at
wavelength i for the average spectrum of N subsamples of a sample k and
n is the number of data points collected by the instrument (here, 1050
data points for the instrument under study). The RMS value obtained in
each case was multiplied by 106 to simplify the calculations.

The usefulness of the STD RMS statistic is that, when known, it can be
used to calculate an STD limit for subsamples of the same sample using
the following formula:

STDlimit = 1.036
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where STD is the standard deviation per sample and m is the number of
samples.

After calculating the standard deviation (STD) limit from the RMS
statistic, an admissible limit for spectrum quality and repeatability was
set, ensuring the highest quality of the OO NIR spectra.

2.3. Data analysis

All the data pre-processing and chemometric treatments were per-
formed using PLS_Toolbox software (Eigenvector Research, Inc.,

Manson, WA, USA) and in-house Matlab routines (The MathWorks, Inc.,
Natick, MA, USA).

2.3.1. Definition of the training and validation sets
Before developing the classification models, the data were randomly

divided into training (75 % of samples) and test sets (25 % of samples),
ensuring that each category was divided proportionally in each set.
Finally, the training set (N = 121) used for the construction and opti-
misation of the model was composed of 49 EVOO, 47 VOO and 25
Lampante olive oil (LOO) samples. The test set (N = 40) was made up of
17 EVOO, 15 VOO and 8 LOO samples, and was used to assess the
performance of the final model.

2.3.2. Development and validation of non-targeted modelling methods
A two-step authentication, combining the one-class classification and

the discriminant approach, was used to classify olive oils into EVOO,
VOO and LOO categories. The procedure followed is shown in Fig. 1.

2.3.2.1. One-class classification. To develop the one-classification
models, the combination of N = 49 EVOO and N = 47 VOO samples
was used as the target class. The one-class modelling method proposed
by Oliveri et al. (2014), called Partial Least Squares Density Modelling
(PLS-DM) was used. Several parameters were settled in order to define
the optimal model – namely, the pre-processing, k (nearest neighbours),
L (latent variables) and a (smoothing coefficient). In more detail, four
possibilities were considered for variable pre-processing: without pre-
processing, mean centering, scaling and autoscaling. For the k param-
eter, integer values from 1 to 6 were considered. The number L of latent
variables varied from 1 to 10. Finally, the smoothing coefficient a ranged
from 0.3 to 0.8, with 0.1 increments. These parameters vary within the
specified ranges, so that the algorithm calculates models with all of the
different parameter combinations using a cross-validation procedure
with five deletion groups (Venetian-blind scheme). In the end, the out-
comes of all of the combinations are evaluated in terms of sensitivity and
specificity, by means of a Pareto diagram, which is useful to choose the
optimal conditions, looking for the best compromise between the two
parameters. The sensitivity indicates the percentage of samples correctly
assigned to the target class, and the specificity indicates the percentage
of samples correctly discarded from that class. Finally, the optimal class
model was externally validated to obtain final sensitivity and specificity
estimations. The test set was composed of 32 samples of the target class
(EVOO + VOO) and 8 samples of the non-target class (LOO).

2.3.2.2. Discriminant analysis. Next, the EVOO and VOO samples were
divided into the above categories. The discriminant models were built
using the traditional linear Partial Least Squares Discriminant Analysis
(PLS-DA) and the non-linear Support Vector Machine Discriminant
Analysis (SVM-DA). To obtain models with a reduced complexity,
different variable selection methods were tested. Using these methods

Fig. 1. Flow chart of the two-step authentication approach to classify virgin olive oil into EVOO, VOO and LOO categories.
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allows to discard variables with low information content and select the
variables that maximize the predictive ability of the models. The
methods used were the Genetic Algorithm (GA) (Niazi & Leardi, 2012),
Interval PLS (iPLS) (Nørgaard et al., 2000), with different interval
widths (10, 50 and 100 wavelengths) and an automatic variable selec-
tion tool included in Matlab’s PLS Toolbox, known as ‘Selectvars’. All
the models were built with five cross-validation groups, using the
Venetian-blind technique.

In order to compare the results obtained by the different discriminant
models developed, McNemar’s test (McNemar, 1947; Roggo, Dupon-
chel, Ruckebusch & Huvenne, 2003), a paired version of the χ2 test, was
used. The McNemar test value is calculated as follows:

McNemarʹsvalue =
(|n01 − n10| − 1 )2

n01 + n10

where n01 is the number of samples misclassified only by the first model
and n10 is the number of samples misclassified only by the secondmodel.
This statistic is distributed (approximately) as χ2 within one degree of
freedom (if the number of samples is higher than 20), and the critical
value for 5 % significance level is 3.841. If the McNemar test value is
greater than this critical value, the two models are considered signifi-
cantly different.

Finally, the performance of the discriminant models was evaluated
based on the results obtained in the test set, in terms of the correct
classification rate (CCR), that is, the percentage of correctly classified
samples (Oliveri & Downey, 2013).

2.3.2.3. Spectra pre-processing. In both steps, twelve different combi-
nations of data pre-treatments were applied in order to select the most
suitable pre-processing strategy to obtain the best classification model. 7
data transformations (two column and five row pre-processing algo-
rithms) were applied, using the following combinations: Standard
Normal Variate (SNV) transform + column mean centering (MC); First
derivative with the Savitzky-Golay filter (SG1) +MC; Second derivative
with the Savitzky-Golay filter (SG2) + MC; SNV + Detrend (DT) + SG2
+ MC; Orthogonal Signal Correction (OSC) + MC; OSC + SG2 + MC;
SNV + column autoscaling; SG1 + column autoscaling; SG2 + column
autoscaling; SNV + DT + SG2 + column autoscaling; OSC + column
autoscaling; OSC + SG2 + column autoscaling. SNV and DT for scatter
correction (Barnes, Dhanoa & Lister 1989). OSC was used to remove
spectral information not related to the reference data (Wold, Antti,
Lindgren& Öhman, 1998), and SG derivatives were employed to remove

both additive and multiplicative effects in the spectra (Rinnan, Van Den
Berg & Engelsen, 2009). Finally, column pre-processing (MC and
autoscaling) was used to eliminate systematic location and dispersion
differences among variables (Oliveri & Downey, 2013).

3. Results and discussion

3.1. Instrument performance and optimization of sample presentation

One key aspect in the fine-tuning of a given NIRS application is the
graphical observation of the spectra and the detection of high-noise
regions. Fig. 2 shows the raw spectra (log 1/R) of the entire sample
collection used.

In the visible region, absorbance peaks occurred between 420–460
nm and also at 668 nm, due to the presence of pigments such as carot-
enoids, anthocyanins and chlorophyll, which are the source of the colour
in virgin olive oil (McClure, 1992). In the NIR region, the highest ab-
sorption peaks observed (1208, 1390, 1414, 1724, 1760, 2308 and 2348
nm) have been associated by different authors to the absorption of fats
and oils (Shenk&Westerhaus, 1995; Garrido-Varo et al., 2004; Garrido-
Varo, Sánchez, De la Haba, Torres & Pérez-Marín, 2017). Within the
collection of samples analysed, one of them presented a very broad
absorption band around 1940 nm. This particular sample was a dark
LOO with many suspended particles. A few other samples also presented
very sharp peaks at 422 nm, 452 nm and 668 nm, which were attributed
to carotenoids and chlorophylls. Garrido-Varo et al. (2004) pointed out
that the absorptions found in those regions should be taken into account
not only for colour determination, but also for studies of oxidation in
VOOs.

Another critical aspect in the evaluation of a specific NIRS instru-
ment or analysis mode is to ascertain whether the total range available
in the spectrometer is appropriate or whether there are regions that
exhibit inappropriate levels of noise and, consequently, low signal
quality levels (Garrido-Varo, Sánchez-Bonilla, Maroto-Molina, Riccioli
& Pérez-Marín, 2018). As can be seen in Fig. 3, no areas with a high
noise level could be detected, so it was decided to use the whole spectral
region (400–2500 nm) for the present work.

The spectral repeatability was evaluated using the RMS statistic.
Table 1 shows the MEAN and STD RMS values for the whole sample
collection. The MEAN statistic range showed values as high as 7,954
µlog (1/R) and as low as 284 µlog (1/R). This led to believe that this wide
variability could be caused by some unknown aspect of the methodology
and/or physicochemical, sensory and/or process attributes, such as its

Fig. 2. Raw spectra of the collection of olive oil samples. DS2500 instrument.
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colour, impurities, and the category of olive oil, etc. As it is known, NIRS
analysis of liquid and semi-liquid samples is influenced by minor vari-
ations in the effective optical path (Garrido-Varo et al., 2004), so the
greater or lesser degree of impurities (or particles in suspension) at the
time of analysis could be responsible for these marked differences in
RMS among the samples. Additionally, it was decided to calculate the
RMS statistics for each category (Table 1). The MEAN and STD values
obtained for LOO (1,534 and 2,170 µlog (1/R), respectively) showed a
lower spectral repeatability than that obtained for EVOO (1,366 and
1,931 µlog (1/R), respectively) and VOO (1,339 and 1,894 µlog (1/R),
respectively). This difference could be attributed again to the presence
of suspended particles in the LOO samples.

The RMS cut-off limit is an important factor in this routine, as it
indicates the repeatability value above which the spectral analysis of a
given sample probably needs to be repeated. This value was calculated
for each category, following the procedure mentioned in the Materials
and Methods section, with values of 2,298, 2,424 and 3,021 µlog (1/R)
for EVOO, VOO and LOO respectively. Any sample in which the dupli-
cated screening scans yielded an RMS above its corresponding limit was
rejected and the process was repeated until values fell below these
limits, thus ensuring a high degree of spectrum repeatability. Finally, the
mean spectrum of the two replicates of each sample was used for further
analysis.

3.2. Development of non-targeted approaches

3.2.1. Characterization of the sample set
In this study, a total of 161 OO samples were used. The Panel test

assigned a category to each sample based on the average scores of the
different sensory attributes. This resulted in 66 EVOO samples, 62 VOO
samples, and 33 LOO samples. Table 2 shows the mean values of the

positive (fruitiness, bitterness, and pungency) and negative attributes of
the samples. The data in table 2 indicate a clear differentiation in the
sensory attributes among the three categories of olive oil. EVOO samples
exhibited the highest mean values for positive attributes, and had no
detectable defects. VOO samples showed moderate mean values for the
positive attributes, and some level of sensory defects. LOO samples, on
the other hand, had the lowest mean values for positive attributes, and
the highest mean defect value, reflecting significant sensory defects.
These data provide an overview of the predominant sensory character-
istics in each category of olive oil studied, allowing for a clear and
objective comparison among them.

3.2.2. One-class models
Firstly, one-class models were developed to characterize EVOO and

VOO categories (target class) using Partial Least Squares Density
Modelling (PLS-DM). In this case, the training set was composed of 96
samples of the target class (EVOO and VOO) and 25 samples of the non-
target class (LOO). The test set was made up of 32 samples from the
target class and 8 samples from the non-target class.

The first step was to select the optimal number of latent variables
(LVs) for each condition, by considering the maximum efficiency of the
resulting class model, evaluated by cross-validation. Then, models at
fixed LVs were evaluated by the Pareto diagram (Fig. 4), whose axes
correspond to sensitivity and specificity of class models. Pareto optimal
solutions, which define the Pareto front, are represented by points
connected by the red line. The final model was selected among the so-
lutions lying on the Pareto front, and we aimed for a balance between
sensitivity and specificity.

The most suitable solution had 83.33 % sensitivity and 74.40 %
specificity in cross-validation, and the following conditions: k = 3, col-
umn pre-processing = autoscaling, L = 10 and a = 0.8. Also, to correct
undesirable effects in the spectra, this solution included data pre-
processing with a first order derivative according to the Savitzky-

Fig. 3. Pre-processed spectra with a 1st-order derivative.

Table 1
MEAN and STD RMS (μlog (1/R)) values in olive oil.

MEAN (RMS) STD (RMS)

Minimum Maximum Mean Minimum Maximum Mean

TOTAL 284 7,954 1,390 402 11,248 1,966
EVOO 352 4,090 1,366 498 5,784 1,932
VOO 284 5,828 1,340 402 8,242 1,894
LOO 340 7,954 1,534 481 11,248 2,170

EVOO: Extra Virgin Olive Oil; VOO: Virgin Olive Oil; LOO: Lampante Olive Oil;
RMS: Root Mean Square statistic; STD: standard deviation of the RMS statistic.

Table 2
Mean values of the sensory attributes of the olive oil samples.

EVOO (N ¼ 66) VOO (N ¼ 62) LOO (N ¼ 33)

Fruity median 4.13 2.52 0.00
Bitter median 4.00 3.79 1.59
Pungent median 5.33 4.93 2.22
Median of defect 0.00 2.34 4.83

EVOO: Extra Virgin Olive Oil; VOO: Virgin Olive Oil; LOO: Lampante Olive Oil;
N: number of samples.

M.-d.-M. Garrido-Cuevas et al.
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Golay method, with 15 smoothing points and third order polynomial
adjustment.

The best one-classification model selected, was applied to the test set
in order to evaluate its performance in predicting new samples,
obtaining, in this case, 90.63 % sensitivity and 62.50 % specificity. This
shows that almost all the EVOO and VOO samples had been correctly
assigned to the target class. Nevertheless, the ability of the model to
recognise samples that did not belong to the target class (LOO samples)
was lower, which can be attributed to the unbalance of samples between
the target and non-target classes. In classification problems, one
consequence of an unbalanced class distribution is that samples
belonging to the smaller classes are misclassified more often than those
belonging to the more prevalent classes (Sun, Wong & Kamel, 2009).

3.2.3. Discriminant models
Once the LOO samples had been identified, the EVOO and VOO

samples were then divided into the corresponding categories. Discrim-
inant models were built using PLS-DA and SVM-DA. To do this, a
training set of 96 samples (49 EVOO and 46 VOO) and a test set of 32
samples (17 EVOO and 15 VOO) were used. The cross-validated results
obtained by discriminant models, using the different pre-treatments
mentioned in the Materials and Methods section, are shown in Table 3.

The best PLS-DA model was built with the pre-processing combina-
tion of SNV + DT + SG2 + MC, because it led to the highest average
percentage of correct classifications in cross-validation. The model
correctly classified 83.33 % (80/96) of the samples, 83.67 % (41/49) as
EVOO and 82.98 % (39/47) as VOO. In contrast, the best SVM-DAmodel
was obtained with the pre-processing combination of SG2+ autoscaling.
This model correctly classified 86.46 % (83/96) of the samples, 87.76 %
(43/49) as EVOO and 85.11 % (40/47) as VOO. These discriminant
models were not significantly different (p < 0.05) (McNemar’s value =
0.364). From the data reported in Table 3, it can be concluded that it is
key to consider that the improvement in model accuracy does not
depend solely on the use of the non-linear algorithm, as reported by

Devos et al. (2014). Therefore, the combination of both data pre-
treatment and PR method should be taken into consideration when
developing predictive non-targeted NIRS models.

Different variable selection techniques (GA, iPLS and ‘Selectvars’)
were applied to discard variables with little information in order to
improve the predictive ability of the model. Table 4 shows the best
models obtained by each variable selection method tested. In general,
the application of variable selection methods improved the results of the
discriminant models, especially for the VOO category. This means that
the application of these methods is useful to identify wavelengths that
best define the class of the sample and allow to build models which are
more stable, robust, and easy to interpret, and which are less susceptible

Fig. 4. Pareto diagram – PLS-DM. Each point represents a model obtained
varying PLS-DM parameters; optimal solutions are connected by the red line
(Pareto front). Each point represents a model obtained under different settings
of relevant parameters. Colours are used to code the different data pre-
treatments: Raw; Orthogonal Signal Correction (OSC); OSC + Second deriva-
tive with the Savitzky-Golay filter (SG2); First derivative with the Savitzky-
Golay filter (SG1); SG2; Standard Normal Variate (SNV) transform; SNV +

Detrend (DT) + SG2.

Table 3
Cross-validation results obtained by discriminant models (PLS-DA and SVM-DA)
with different pre-processing methods.

Pre-treatments PLS-DA SVM-DA

CCR (%)
EVOO

CCR (%)
VOO

CCR (%)
EVOO

CCR (%)
VOO

SNV + MC 73.47 78.72 87.76 78.72
SG1 + MC 69.39 85.11 79.59 72.34
SG2 + MC 83.67 78.72 100.00 0.00
SNV + DT + SG2 + MC 83.67 82.98 67.35 89.36
OSC + MC 71.43 78.72 73.47 82.98
OSC + SG2 + MC 75.51 85.11 100.00 0.00
SNV + autoscaling 65.31 72.34 75.51 80.85
SG1 + autoscaling 81.63 72.34 87.76 76.60
SG2 + autoscaling 81.63 80.85 87.76 85.11
SNV + DT + SG2 +

autoscaling
77.55 78.72 83.67 85.11

OSC + autoscaling 65.31 72.34 79.59 78.72
OSC + SG2 +

autoscaling
77.55 80.85 83.67 85.11

PLS-DA: Partial Least Squares-Discriminant analysis; SVM-DA: Support Vector
Machine-Discriminant Analysis; CCR: Correct Classification Rate; EVOO: Extra
Virgin Olive Oil; VOO: Virgin Olive Oil; SNV: Standard Normal Variate; MC:
column mean centering; SG1: First derivative with the Savitzky-Golay filter;
SG2: Second derivative with the Savitzky-Golay filter; DT: Detrend; OSC:
Orthogonal Signal Correction.

Table 4
Best models obtained by different variable selection methods.

Discriminant
model

Variable
Selection Method

Pre-processing CCR
(%)
EVOO

CCR
(%)
VOO

PLS-DA − SNV + DT + SG2 +

MC
83.67 82.98

GA SG2 + autoscaling 87.76 87.23
iPLS 10 (width =

10)
OSC + MC 79.59 80.85

iPLS (width =

50)
OSC + autoscaling 83.67 87.23

iPLS (width =

100)
OSC + MC 79.59 87.23

Selectvars SG2 + autoscaling 81.63 85.11
SVM-DA − SG2 + autoscaling 87.76 85.11

GA SG2 + autoscaling 91.84 87.23
iPLS (width =

10)
SNV + autoscaling 83.67 82.98

iPLS (width =

50)
SG1 + autoscaling 85.71 82.98

iPLS (width =

100)
SNV + DT + SG2 +

autoscaling
85.71 89.36

Selectvars SNV + autoscaling 89.80 85.11

PLS-DA: Partial Least Squares-Discriminant analysis; SVM-DA: Support Vector
Machine-Discriminant Analysis; CCR: Correct Classification Rate; EVOO: Extra
Virgin Olive Oil; VOO: Virgin Olive Oil; SNV: Standard Normal Variate; MC:
column mean centering; SG1: First derivative with the Savitzky-Golay filter;
SG2: Second derivative with the Savitzky-Golay filter; DT: Detrend; OSC:
Orthogonal Signal Correction; GA: Genetic Algorithm; iPLS: Interval PLS.
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to external variation (Xiaobo, Jiewen, Povey, Holmes & Hanpin, 2010).
Due to the lack of significant differences (McNemar’s test) found be-
tween the best models obtained by the different discriminant methods
tested (PLS-DA and SVM-DA, with and without variable selection), all of
them were validated for the test set (Table 5).

The model with the highest average percentage of correct classifi-
cations in external validation was a PLS-DA model with the pre-
processing combination of SG2 + autoscaling and GA as variable se-
lection method. GA selected 254 variables for inclusion. The model
correctly classified 75 % (24/32) of the samples, 82.35 % (14/17) as
EVOO and 66.67% (10/15) as VOO. Examining the PLS-DA scores of the
model, it can be seen that the first and second latent variables (LVs) were
effective in distinguishing between EVOO and VOO (Fig. 5). However,
some overlap exists between the two groups, which indicates that while
the model generally distinguishes between EVOO and VOO, there are
some cases where the differentiation is less clear.

The results from the external validation were plotted in Fig. 6 for
further detailed analysis. The class-boundary was fixed at around 0.5.
Samples falling above this boundary were classified as EVOO, while
those below were classified as VOO. It can be seen that 3 EVOO and 5
VOO samples were misclassified. However, the misclassified EVOO
samples were all near the threshold between the two categories. One
crucial methodological factor in the validation of multivariate quanti-
tative or qualitative NIRS models is not only to detect the number of
samples that do not fit the model, but also to understand the reason for
this uniqueness. We therefore explored further the reason for the
uniqueness of the 8 misclassified samples: as the present research is part
of two large R&D Spanish projects, the physicochemical composition
(free acidity, peroxide index, spectrophotometric evaluation (K232, K270,
ΔK) and fatty acid ethyl esters (FAEE)) of the samples were known.
Therefore, the study of the misclassified samples was carried out taking
into account this information together with the PT characterization
(Table 6). It can be seen that the 3 EVOO samples classified as VOO by
NIRS presented values of the physicochemical parameters established in
the legislation (OJEU, 2022) that would allow them to be classified as
EVOO. Misclassifying an EVOO as VOO may entail economic conse-
quences for the industry. However, the reverse scenario is more critical.
Given that EVOO represents the highest quality in olive oil, mis-
classifying a VOO sample as EVOO could lead to significant quality and
authenticity issues. Table 6 also shows that 3 of the 5 misclassified VOO
samples presented values of the physicochemical parameters established
in the legislation that would allow them to be classified as EVOO. The
remaining two misclassified VOO samples presented values for all the
physicochemical parameters that would allow them to be classified as

EVOO, except the FAEE content (FAEE > 35 mg/kg).
A recent comparative study of 9 official IOC laboratories (Circi et al.,

2017), involving 16 samples from Italy and USA, reported that the
sensory Panel Test seems to work well for extremely high-quality olive
oils, whereas in the case of common commercial EVOOs may give
discordant results.

The lack of NIRS studies which test using NIRS as an NTM to
distinguish only between the two main categories of EVOO and VOO, as
is the case of the present paper, does not allow to compare the results
obtained in this study with other published findings. However, with the
aim of advancing our knowledge of VIS+NIRS technology as a potential
NTM, along with others that are currently under investigation, we have
compared the CCR values obtained by NIRS with those obtained by other
authors using different chromatographic methods (Barbieri et al.,
2020b; Quintanilla-Casas et al., 2020; Valli et al., 2020; Ortiz-Romero
et al., 2023). In a strictly quantitative and classical approach, we
should conclude that the CCR values obtained in the present work
(82.35 % for EVOO and 66.67% for VOO) are similar or even better than
those obtained by Barbieri et al. (2020b) (73 % for EVOO and 85 % for
VOO), Quintanilla-Casas et al. (2020) (82.3 % for EVOO and 74.6 % for
VOO), Valli et al. (2020) (70 % for EVOO and 67 % for VOO) and Ortiz-
Romero et al. (2023) (90 % for EVOO and 64.29 % for VOO). Further-
more, as recommended by Riedl et al. (2015); Quintanilla-Casas et al.
(2020) and Nichani et al. (2023), it is urgent need to establish stan-
dardized NTM validation protocols for any analytical method based on
fingerprints.

Finally, it is important to highlight the advantages of NIRS tech-
nology over the chromatographic methods mentioned above in terms of
speed of analysis, ease of use for non-experts and cost per sample.
Chromatographic methods often have some major disadvantages, such
as not being available to many laboratories due to the expensive
instrumentation used, the need for highly specialized staff, and the need
for sample pre-treatment prior to analysis. Additionally, some of them
involve the use chemical reagents and may produce chemical residues,
which can be harmful to the environment. Over the last few years, a
number of experts in OO analysis have warned about the drawbacks,
unsuitability and potential regulatory shortcomings of most IOC and EU
protocols for analysing OOs, particularly concerning the use of toxic
solvents (Conte et al., 2020; Milani et al., 2020).

4. Conclusions

The results obtained demonstrate, for the first time to the authors’

Table 5
External validation of the best models obtained by the different methods tested.

Discriminant
model

Variable
Selection Method

Pre-processing CCR
(%)
EVOO

CCR
(%)
VOO

PLS-DA − SNV + DT + SG2 +

MC
88.24 60.00

GA SG2 + autoscaling 82.35 66.67
iPLS (width =

50)
OSC + autoscaling 70.59 40.00

Selectvars SG2 + autoscaling 88.24 60.00
SVM-DA − SG2 + autoscaling 70.59 46.67

GA SG2 + autoscaling 88.24 60.00
iPLS (width =

100)
SNV + DT + SG2 +

autoscaling
76.47 60.00

Selectvars SNV + autoscaling 70.59 46.67

PLS-DA: Partial Least Squares-Discriminant analysis; SVM-DA: Support Vector
Machine-Discriminant Analysis; CCR: Correct Classification Rate; EVOO: Extra
Virgin Olive Oil; VOO: Virgin Olive Oil; SNV: Standard Normal Variate; MC:
column mean centering; SG2: Second derivative with the Savitzky-Golay filter;
DT: Detrend; OSC: Orthogonal Signal Correction; GA: Genetic Algorithm; iPLS:
Interval PLS.

Fig. 5. Score plot for the first and second latent variable of the olive
oil samples.
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knowledge, that VIS+NIRS used as an NTM can distinguish between the
two most expensive categories of OO (EVOO and VOO) with a high
classification rate. Therefore, NTM-NIRS should be considered as an
affordable, mass-screening sampling method which could be of great
help to support the final decision in conformity checks based on the
Panel Test, for the categorization of VOOs. Nevertheless, these results
must be considered as a preliminary study, the research path required to
make VIS + NIRS into a validated NTM method for VOO authentication
has a long way to go due to the absence of internationally-accepted
validation protocols for the use of NTMs in food authentication issues
but has definitely started. The results shown here are only a small piece
of a large R&D line undertaken by the authors’ Research Group and
funded by two national projects. Looking ahead, it is crucial to
emphasize the necessity for more balanced and numerous sample sets in
future investigations to substantiate the preliminary and promising
outcomes presented. Additionally, further work is in progress to achieve
the in situ validation of different novel at line and on-site portable NIRS
instruments.

In the light of the encouraging results obtained here using VIS +

NIRS, it would be a very welcome step for the NIRS scientific community
if the IOC extended its invitation to collaborate in the search for new,
more accurate and reliable methods, particularly to detect fraud, based
on NIRS, and in particular, to consider NIRS as the go-to candidate for
any project or inter-laboratory validation study.
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Fig. 6. Graphic representation of the best model in external validation.

Table 6
Physicochemical characterization of the misclassified samples by NIRS.

Sample Category given by Panel
Test

Category predicted by
NIRS

Acidity
(%)

Peroxide
value
(mEq O2/kg)

K232 K270 FAEE (mg/
kg)

Category given by physicochemical
characterization

001 VOO EVOO 0.14 8.90 2.00 0.12 <10 EVOO
002 VOO EVOO 0.14 7.40 2.16 0.12 24 EVOO
020 EVOO VOO 0.15 8.00 1.62 0.12 13 EVOO
027 VOO EVOO 0.51 6.80 1.63 0.13 60* no EVOO
037 VOO EVOO 0.18 8.90 1.78 0.15 <10 EVOO
119 EVOO VOO 0.19 5.80 1.68 0.14 12 EVOO
170 EVOO VOO 0.14 11.50 1.90 0.13 12 EVOO
187 VOO EVOO 0.25 10.60 1.65 0.13 71* no EVOO

* values which exceed the limits established by legislation for the EVOO category.
EVOO: Extra Virgin Olive Oil; VOO: Virgin Olive Oil; FAEE: Fatty acid ethyl esters.
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