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COVNET: A Cooperative Coevolutionary Model for
Evolving Artificial Neural Networks
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Abstract—This paper presents COVNET, a new cooperative Visions in identifiable parts, each one with its own purpose and

coevolutionary model for evolving artificial neural networks. This  function [4]. The objective of this work is the design of such
model is based on the idea of coevolving subnetworks that must co- modular neural networks.

operate to form a solution for a specific problem, instead of evolving : i . o
complete networks. The combination of this subnetworks is partof ~ Evolutionary computation [5], [6] is & set of global optimiza-
a coevolutionary process. The best combinations of subnetworks tion techniques that have been widely used in late years for

must be evolved together with the coevolution of the subnetworks. training and automatically designing neural networks (see Sec-

Several subpopulations of subnetworks coevolve cooperatively and tion I1). Some efforts have been made in designing modular [7]
genetically isolated. The individual of every subpopulation are '

combined to form whole networks. This is a different approach Neural networks with these techniques (e.g., [8]), but in aimost
from most current models of evolutionary neural networks which ~ all of them the design of the networks is helped by methods out-

try to develop whole networks. COVNET places as few restrictions side evolutionary computation, or the application area for those
as possible over the network structure, allowing the model to reach \,0dels is limited to very specific architectures.

a wide variety of architectures during the evolution and to be easily C . lution (91 diaminth f
extensible to other kind of neural networks. The performance of the ooperative coevolution [9] is arecent paradigm in the area o

model in solving three real problems of classification is compared €volutionary computation focused on the evolution of coadapted
with a modular network, the adaptive mixture of experts and with  subcomponents without external interaction. In cooperative co-
Lhe results pfﬁseﬁted in dthe %b"ographyil COVNETkhaSh Sho"k‘]’“ evolution a number of species are evolved together. The coop-

etter generalization and produced smaller networks than the —g .5 among the individuals is encouraged by rewarding the

adaptive mixture of experts and has also achieved results, at least, = ="
comparable with the results in the bibliography. individuals based on how well they cooperate to solve a target

Index Terms—Cooperative coevolution, evolutionary compu- problem. Th? work on this paradigm has ;hown that coopera-
tation, evolutionary programming, genetic algorithms, neural- tive coevolutionary models present many interesting features,
networks automatic design. such as specialization through genetic isolation, generalization
and efficiency [10]. Cooperative coevolution approaches the de-
sign of modular systems in a natural way, as the modularity is
part of the model. Other models need sceryriori knowledge
I N THE AREA of neural-networks design [1], one of theg decompose the probleby hand In many cases, either this

main problems is finding suitable architectures for solvingnowledge is not available or it is not clear how to decompose
specific problems. The election of such architecture is very infhe problem.
portant, as a network smaller than needed would be unable terhjs paper describes a new cooperative coevolutionary model
learn and a network larger than needed would end in ovegyjled COVNET (some preliminary results on COVNET have
training. been published in [11]). This model develops subnetworks in-

The problem of finding a suitable architecture and the COTgread of whole networks. These modules are combined forming
sponding weights of the network is a very complex task (for goups that make up a network. As Potter and de Jong [10] have
very interesting review of the matter the reader can consult [2841ed+to apply evolutionary algorithms effectively to increas-
Modular systems are often used in machine learning as an fpyiy complex problems explicit notions of modularity must be
proach for solving these complex problems. Moreover, in Spifgroduced to provide reasonable opportunities for solutions to
of the fact that small networks are preferred because they I&agbive in the form of interacting coadapted subcomponents.”
to better performance, the error surfaces of such networks argne most distinctive feature of COVNET is the coevolution
more rugged and have few good solutions [3]. In addition, thege modules without the intervention of any agent external to the
is much neuropsychological evidence showing that the brain&folutionary process and without a gating network or another
humans and other animals consists of modules, which are subgiernative mechanism for combining subnetworks. Also, the

use of an evolutionary algorithm for the evolution of both the
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cooperative coevolution. Every module must learn how to corfer both parametric and structural learning [8], [17], [25]-[32].
bine with the other modules of the evolved network to be usefllhese works fall in two broad categories of evolutionary com-
Introducing the combination of nodules into the evolutionargutation: genetic algorithms and evolutionary programming.
process enforces the cooperation among the modules, as ind&enetic algorithms are based on a representation independent
pendently evolved modules are unlikely to combine well aftexf the problem, usually the representation is a string of binary,
the evolutionary process have finished. integer, or real numbers. This representation (the genotype) cod-
Second, it develops a method for measuring the fitnessifiés a network (the phenotype). This is a dual representation
cooperative subcomponents in a coevolutionary model. Thisheme. The ability to create better solutions in a genetic al-
method, based on three different criteria, could be applied gorithm relies mainly on the operation ofossover This op-
other cooperative coevolutionary models not related to tleator forms offspring by recombining representational compo-
evolution of neural networks. The current methods are baseénts from two members of the population.
almost exclusively, on measuring the fitness of the networksThe benefits of crossover come from the ability of forming
where the module appears. connected substrings of the representation that correspond to
Third, it introduces a new hybrid evolutionary programming@bove-average solutions [5]. This substrings are céilélding
algorithm that puts very few restrictions in the subnetworksiocks Crossover is not effective in environments where the fit-
evolved. This algorithm produces very compact subnetworkess of an individual of the population is not correlated with the
and even the evolved subnetworks alone achieved very gapected ability of its representational components [33]. Such
performance in the test problems, as it will be shown in the egnvironments are calledeceptivg34]. Deception is a very im-
perimental section. portant feature in most representations of neural networks, so
This paper is organized as follows: Section |l makes a sharossover should be avoided in evolutionary neural networks
overview of the methods for designing neural networks. Sefd7].
tion Il explains the proposed model. Section IV makes a com-One of the most important forms of deception arises from
parison between our model and a modular neural network in tihe many-to-one mapping from genotypes in the representa-
task of solving three classification problems. Section V maké&®n space to phenotypes in the evaluation space. The existence
an experimental analysis of some features of the populatiastsnetworks functionally equivalent and with different encod-
evolved. Section VI presents the conclusions of our work aielys makes the evolution inefficient and it is unclear whether
states some future work that would be interesting to do in ord&iossover would produce more fitted individuals from two mem-
to improve the model. bers of the population. This problem is usually termed as the
permutation probleni35], [36], or thecompeting conventions
II. AuTOMATIC DESIGN OFARTIFICIAL NEURAL NETWORKS  problem[37].

The automatic design of artificial neural networks has two ()Es\ioslllj;[':(e)gargr;(;iogrrrwag;rg\l/g?ut[iii]arls,ct)or; T?z;?/osl%?(;s(;l\ne
basic sides: parametric learning and structural learning. | P 9 y P 9

structural learning, both architecture and parametric im‘ormﬁttIfICIaI neural networks [17]. Evolutionary programming uses

tion must be learned through the process of training. Basica representation natural for the problem. Once the representa-
jon scheme has been chosen, mutation operators specific to the

we can consider three models of structural learning: Conh- ati h defined. Evoluti s
structive algorithms, destructive algorithms, and evolutionafyPresentation scneme are defined. Evolutionary programming
ers a major advantage over genetic programming when

computation. s o )
Constructive algorithms [14][16] start with a small networlevolving artificial neural networks, the representation scheme

(usually a single neuron). This network is trained until it is urlOWs manipulating networks directly, avoiding the problems
able to continue learning, then new components are added to3gociated with a dual representation that we have discussed.
network. This process is repeated until a satisfactory solution is' N use of evolutionary learning for designing neural net-
found. These methods are usually trapped in local minima [1%Prks dates from no more than two decades (see [2] or [37]
and tend to produce big networks. Destructive methods, al§¥ reviews). However, a lot of work has been made in these
known as pruning algorithms [18], start with a big network, thdwvo decades, leaving many different approaches and working
is able to learn but usually ends in over-fitting and try to remov@0dels, for instance, [8], [25], or [30]. Evolutionary compu-
the connections and nodes that are not useful. A major problé¥fon has been used for learning connection weights and for
with pruning methods is the assignment of credit to structur@@rning both architecture and connection weights. The main
components of the network in order to decide whether a coadvantage of evolutionary computation is that it performs a
nection or node must be removed. global exploration of the search space avoiding to become
Both methods, constructive and destructive, limit the numbt@pped in local minima as usually happens with local search
of available architectures, thus introducing constraints in tigocedures.
search space of possible structures that may not be suitable thliller et al.[39] proposed that evolutionary computation is a
the problem. Although these methods have been proved usefely good candidate to be used to search the space of topologies
in simulated data [19], [20], their application to real problemkecause the fitness function associated with that space is com-
has been rather unsuccessful [21]-[23]. plex, noisy, nondifferentiable, multimodal, and deceptive.
Evolutionary computation has been widely used in the late Almost all the current models try to develop a global archi-
years to evolve neural-network architectures and weights. Thégeture, which is a very complex problem. Although, some at-
have been many applications for parametric learning [24] atempts have been made in developing modular networks [40],
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[41], in most cases the modules are combined only after the evoll. COVNET: COOPERATIVE COEVOLUTIONARY MODEL
lutionary process has finished and not following a cooperatlveCOVNET is a cooperative coevolutionary model, that is, sev-

coevolutionary model. eral species are coevolved together. Each species is a subnet-

Few authors have devoted their attention to the cooperatwgrk that constitutes a partial solution of a problem; the com-

ﬁpevol:cjtion of sulbnetwolrks_. Somﬁ authk(])rs. hj\_v_ed terlmed Wi ation of several individuals from different species makes up
ind o coopera’qve evolution (where the Individuals _musthe network that must be applied to the specific problem. The
cooperate to achieve a good performargenbiotic evolution . ,jation of subnetworks, that are calleadules is made up

[42]. More f‘?fma”y' we shpgld speak arh'utuallsm thaj[ IS, by several subpopulatiohthat evolve independently. Each one
the cooperation of two individuals from different species thaf; these subpopulations constitutes a species. The combination

benefits both organisms. , of individuals from these different subpopulations that coevolve
Smalz and Conrad [26] developed a cooperative model t'?@bether is the key factor of our model.
had some similarities with COVNET. In this model there are tWo Thq evolution of coadapted subcomponents must address four
populations: a population of nodes, divided into clusters andgyiqor jssues: problem decomposition, interdependence among
population of networks that are combinations of neurons, 08Gncomponents, credit assignment and maintenance of diver-
from each cluster. Both populations are evolved separately. gjt, Cooperative coevolution gives a framework where these
Whitehead and Choate [29] developed a cooperative-Cofses could be faced in a natural way. The problem decom-
petitive genetic model for radial-basis function (RBF) neurgyosition is intrinsic in the model. Each population will evolve
networks. In this work there is a population of genetically enyifferent species that must cooperate in order to be rewarded
coded neurons that evolves both the centers and the widths,af, high fitness values. There is no need to arriori knowl-
the RBFs. There is just one network that is formed by the whoé%ge to decompose the probléyhand The interdependence
population of RBFs. The major problem, as in our approachmong the subcomponents comes from the fact that the fitness
is to assign the fitness to each node of the population, as #&ach individual depends on how well the individual works to-
only performance measure available is for the whole networkather with the members of other species. Credit assignment is
This is well known as the “credit apportionment problerf8],  made using a model developed in this work (see Section I1I-C).
[26]. The credit assignment used by Whitehead and Choaterige diversity is maintained along the evolution due to the fact
restricted to RBF-like networks and very difficult to adapt t@hat each species is evolved without exchanging genetic material
other kind of networks. among them. This is an important aspect of our cooperative co-
Opitz and Shavlik [44] developed a model closer t@yolutionary model. Exchanging genetic material between two
COVNET, called Accurate anD Diverse Ensemble Makefifferent species (that it, subpopulations) will usually produce
giving United Predictions (ADDEMUP). They evolved anonviable offspring. Moreover, the mixing of genetic material
population of networks by means of a genetic algorithm aﬂﬁight reduce the diversity of the populations.
combined the networks in an ensemble with a linear combina-a nodule is made up of a variable number of nodes with
tion. The competition among the networks is encouraged Wifee interconnection among them (see Fig. 1), that is, each node
a diversity term added to the fitness of each network. could have connections from input nodes, from other nodes of
Moriarty and Miikkulainen [32], [42] developed an actual cothe nodule and to output nodes. More formally, a nodule could
operative model, called SANE, that had some common poimg defined as follows.
with Smalz and Conrad [26]. In that paper, they propose two Definition 1: (Nodulg A nodule is a subnetwork formed by:
populations: one of nodes and another of networks that are caimset of nodes with free interconnection among them, the con-
binations of the individuals from the population of nodes. Zhagection of these nodes from the input and the connections of the
et al. [45] proposed a framework for cooperative coevolutionodes to the output. It cannot have connections with any node
and applied that framework to the evolution of RBF networkgelonging to another nodule.
Nevertheless, their work, more than a finished model, is an opernThe input and output layers of the nodules are common, they
proposal that aims at the definition of the problems to be solvage the input and output layers of the network. It is important to
in a cooperative environment. note that the genotype of the nodule has a one-to-one mapping
Cho and Shimohara [4] developed a modular neural netwatkthe phenotype, as the many-to-one mapping between them
evolved by means of genetic programming. Each network idsaone of the main sources of deception and the permutation
complex structure formed by different modules which are cogroblem [17].
ified by a tree structure. In the same way, we define a network as a combination of
Yao and Liu [31] use the final population of networks develnodules. The definition more formally is as follows.
oped using the EPNet [8] model to form ensembles of neuralDefinition 2: (NetworR A network is the combination of a
networks. The combination of these networks produced betfigrite number of nodules. The output of the network is the sum
results than any isolated network. Nevertheless, the coopeshthe outputs of all the nodules that constitute the network.
tion among the networks takes place only after the evolutionaryln practice, all the networks of a population must have the
process has finished. So, the model is neither cooperative same number of nodules and this numbérjs fixed along the
coevolutive. evolution.

1This problem can be traced back to the earliest attempts to apply machinéEach subpopulation evolves independently, so we can talk of subpopulations
learning to playing the game of checkers by Samuel [43] in 1959. or species indistinctly, as each subpopulation will constitute a different species.
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Fig. 1. Model of a nodule. As a node has only connections to some nodes of the nodule, the connections that are missing are represented withTashed lines.
nodule is composed by the hidden nodes and the connections of these nodes from the input and to the output.

Some parameters of the nodule are given by the problem andAs there is no restriction in the connectivity of the nodule

for that reason, they are common to all the nodules: the transmission of the impulse along the connections must be
n number of inputs; defined in a way that avoids recurrence as the aim of these work
m number of outputs; is the cooperative coevolution of feed-forward neural networks.
x = (1,x1,...,x,) input vector; The transmission has been defined in three steps.
feuteut transfer function of the output layer. Step 1) Each node generates its output as a function of only

the inputs of the nodule (that is, the inputs of the

These parameters are fixed for all nodules. The rest of the pa-
whole network)

rameters depend on each nodule:

h number of (hidden) nodes of the nodule; n
f’ transfer function of nodé pi = f° Z W, T (2)
p' partial output of node (see explanation below); j=0

i output of the node; . . .
J b this value is callegbartial output

w; weight vector of node. Step 2) Th tial outout ted al th
As the node has a variable number of connections we have> cP ) ese partial outputs are propagated along the con-
nections. Then, each node generates its output as a

considered, for simplicity, that the connections that are not funcii £ all its input
presentin the node have weight 0, so we can use a weight vector unction ot all fts Inputs
of fixed length for all nodes. A node could have connections n h
from input nodes, from other nodes and to output nodes. The yi = f* Zw%jxi + Zwi’n_’_]-pj . ©)
weight vector is ordered as follows: =0 j=1

Step 3) Finally, the output layer of the nodule generates its
bias input hidden Output

A A

output
A

NN ~ - ~
Ww; = (wi,O; Wi 1y Win,Win41y---,Win+th
. __ goutput
oj=Ff <

h
Zwi,n+h+jyi> : 4)

Wi n+-h41;--- 7wi,n+h+n?)- (1) i=1
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Fig. 2. Equivalent model with two hidden layers. Every connection from an input node represents two connections, as the input value is used [séeo steps
(2) and (3)]. Every connection from another node of the nodule represents a connection between the first and second hidden layer [see (3)].

These three steps are repeated over all the nodules. The actuld the next two sections, we will explain in depth the two
output vector of the network is the sum of the output vectopopulations and their evolutionary process.
generated by each nodule.

Defined in this way a nodule is equivalent to a subnetwor'K
of two hidden layers with the same number of nodes in both
layers. This equivalent model is shown on Fig. 2. So, the noduleThe nodule population is formed b p subpopulations.
of Fig. 1 could be seen as the genotype of a nodule whose pBach subpopulation consists of a fixed number of nodules cod-
notype is the subnetwork shown on Fig. 2. This difference is infied directly as subnetworks, that is, we evolve the genotype of
portant, as the model of Fig. 1 considered as a phenotype woplg. 1 that is a one-to-one mapping to the phenotype of Fig. 2.
be arecurrent network. In this representation, the mapping frafie population is subject to the operations of replication and
genotype to phenotype is one-to-one, so the deception problgiijtation. Crossover is not used due to its disadvantages in
above mentioned does not appear. _ evolving artificial neural networks [17]. With these features the
~ As the nodules must coevolve to develop different behayiqorithm falls in the class of evolutionary programming [38].
iors we haveNp independent subpopulations of nodalésat 1,616 js g limitation in the structure of the nodule or in the

evolve separately. The network will always haVe nodules, cc&nnections among the nodes. There is only one restriction to

each one from one different subpopulation of nodules. Our tf"‘ Void unnecessary complexity in the resulting nodules, there can

is not only developing cooperative nodules but also obtainin no connections to an input node o from an output node.

h mbinations. For that r n we have al - . )
o e o o o e st oo e gt o h genertio of e nocule ubpopuia
is similar to other models proposed in the bibliography, such

binations of nodules and evolves as the population of nodufi . )
evolves. The whole evolutionary process is shown on Fig. 3. 85 GNARL [17], EPNet [8], or the genetic algorithm developed

Niche creation is implicit, as the subpopulations must coBy Bebiset al.[30]. The steps for generating the subpopulations

volve complementary behaviors in order to get useful networ® the following.

as the combination of several nodules with the same behaviore The nodules of the initial subpopulation are created ran-
when they receive the same inputs would not produce networks domly. The number of nodes of the nodule js obtained
with a good fitness value. So, there is no need of calculating a from a uniform distribution0 < h < hmax. Each node
fithess sharingneasure that can bias the evolutionary process. is created with a number of connections,.taken from

o ) a uniform distribution0 < ¢ < cpax. The initial value
3In order to maintain a coherent nomenclature we talk of one population of f th ights i if \v distributed in the int |
networks and another population of nodules. The population of nodules is di- ~ OT th€ WEIGNLS IS unitormly distributed in the interva
vided intoN» genetically isolated subpopulations that coevolve together. [wmin, wmax].

Nodule Population
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Parametric mutation consists of a local search algorithm in
the space of weights, a simulated annealing algorithm [46]. This
algorithm performs random steps in the space of weights. Each
[Obtaln the fitness of the populatlonsJ random step affects all the weights of the nodule. For every

of networks and nodules weightw;; of the nodule the following operation is carried out:

Create network and nodule
populations

>{Generata new network populatlon]— wij = wij + Awij Vwij € v (6)
where

@elect two individuals by roulette]

Aw;; € N(0,BF,.(v)) @)

select one of the offsprings randomly . . .
¥ whereg is a positive value that must be set by the user in order

to avoid large steps in the space of weights. The valyeufed

in all our experiments has begh= 0.75, anyway COVNET is

—[G,n,m, new nodule subpopm,ﬂon,}v quite robust regarding this parameter.

Then, the fitness of the nodule is recalculated and the usual

[Make crossover of the individuals andJ

[Replaoe worst individual of the population]

[FOfeverv nodule subPOPU'ation] simulated annealing criterion is applied. Being" the differ-
v ence in the fitness function before and after the random step.
{Copy the best P% onto new subpopulationj « If AF > 0 the step is accepted.
v » If AF < 0then the step is accepted with a probability
»[Repeat until filling the rest (1-P)% of the subpopulation ]
7 P(AF) = e~ (AF/T)

Select an individual of the best P% by roi Iette] . ..
[ oDy rod whereT’ is the current temperaturé.starts at an initial valug;,

and it is updated at every step(¢t + 1) = vT'(¢),0 < v < 1.
The number of steps of the algorithm that are carried out on

{Mutate the individidual and add it to the J

new subpopulation . . ) ]
each parametric mutation is very low. Performing many steps
\—* is computationally very expensive and the probability of being
Parametric Structural trapped on I_ocal minima would increase.
mutation mutation Parametric mutation is always carried out after structural mu-

: tation, as it does not modify the structure of the network.
Structural mutation is more complex because it implies a

modification of the structure of the nodule. The behavioral link

between parents and their offspring must be enforced to avoid

Calculate fitness
of networks

generational gaps that produce inconsistency in the evolution.
Calculate Th : ; .
fitness of ere are four different structural mutations:
nodule subpopulations Addition of a nodeThe node is added with no connections

to enforce the behavioral link with its parent. As many authors

' have stated, [8], [17], maintaining the behavioral link between
No ( End of parents and their offsprings is of the utmost importance to get a
| evolutionary process? useful algorithm.

Deletion of a nodeA node is selected randomly and deleted
Fig. 3. Evolutionary process of both populations. The generation of a ”%gether with its connections
population for both populations, networks and nodules, is represented in detail* . . ) L . .
The fitness of the individuals of the nodule subpopulations are evaluated inAddition of a connectiom connection is added, with weight

parallel, allowing the model to be run in a distributed system more efficientlyQ, to a randomly selected node. There are three types of connec-
tion: from an input node, from another hidden node and to an
* The new subpopulation is generated replicating the besitput node. The selection of the type is made according to the
P% of the former population. The remainiig — P)% relative number of each type of nodes: input, output, and hidden.
is removed and replaced by mutated copies of the be&3therwise, when there is a significant difference among these
P%. Anindividual of the besP% is selected by roulette three types the connections may end highly biased.
selection and mutated. This mutated copy substitutes oneDeletion of a connectiorA connection is selected, following
of the worst(1 — P)% individuals. the same criterion of the addition of connections and it is re-
» There are two types of mutation: parametric and structurahoved.
The severity of the mutation is determined by the relative Al the above mutations are made in the mutation operation
fitness, F;., of the nodule. Given a nodule its relative on the nodule. For each mutation there is a minimum valyg,
fitness is defined as and a maximum value\ ;. The number of elements (nodes or
F, = e—aF(v) (5) connections) involved in the mutation is calculated as follows:

whereF'(v) is the fithess value of nodule A=A+ FW)(Apm —Ap). (8)
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TABLE | The algorithm allows adding mutation to the model, always
PARAMETERS OFNODULE STRUCTURAL MUTATIONS COMMON TO ALL THE at very low rates. Usually mutation rate ranges from 1% to 5%.
EXPERIMENTS CARRIED OUT o . .

In our model we have modified this standard algorithm al-
lowing the replacement of theworst individuals instead of re-
placing just the worst one. In our experiments- 2.

Add node 0 1 Crossover is made at nodule level, using a standard two-point
crossover. So the parents exchange their nodules to generate

Mutation An Apm

Delete node o2 their offspring. Mutation is also carried out at nodule level.
Add connection 1 4 When a network is mutated one of its nodules is selected and

is substituted by another nodule of the same subpopulation
Delete connection 0 3 selected by means of a roulette algorithm.

During the generation of the new nodule population some

) ) . nodules of every population are removed and substituted. The
So, before making a mutation the number of elemedtss  emoved nodules are also substituted in the networks. This sub-
calculated, ifA = 0 the mutation is not actually carried out.git tion has two advantages: first, poor performing nodules are
The values of nodule mutation parameters used in all our €Xpglmoyed from the networks and substituted by potentially better

iments are shown on Table I. _ ones and second, the new nodules have the opportunity to par-
There is no migration among the subpopulations. So, eaglinate in the networks immediately after their creation.
subpopulation must develop different behaviors of their nod-

ules, that is, different species of nodules, in order to compete Fitness Assignment
with the other subpopulations for conquering its own niche and

A The assignment of fitness to networks is straightforward.
to cooperate to form networks with high fithess values.

Each network is assigned a fithess in function of its perfor-
. mance in solving a given problem. If the model is applied to
B. Network Population classification, th?a fit?"ness gf each network is the nErrr)lber of
The network population is formed by a fixed number of nepatterns of the training set that are correctly classified; if it is
works. Each network is the combination of one nodule of eaelpplied to regression, the fitness is the sum of squared errors
subpopulation of nodules. So the networks are strings of integerd so on. In the test problems below the classification is made
numbers of fixed length. The value of the numbers is not si¢pllowing the criterion of the maximumthe pattern is assigned
nificant as they are just labels of the nodules. The relationshipthe class whose corresponding output is the highest one. Ties
between the two populations can be seen in Fig. 4. It is impetre resolved arbitrarily assigning the pattern tteéault class
tant to note that, as the chromosome that represents the networkssigning fitness to the nodules is a much more complex
is ordered, the permutation problem we have discussed canmablem. In fact, the assignment of fitness to the individuals that
appear. form a solution in cooperative evolution is one of its key topics.
The network population is evolved using titeady-statge- The performance of the model highly depends on that assign-
netic algorithm [47], [48]. This term may lead to confusion as thent. A discussion of the matter can be found in the Introduc-
has been proved that shows higher variance [49] and is a mgies of [9].
aggressive and selective selection strategy [50] than the star©ur credit assignment must fulfill the following requirements
dard genetic algorithm. This algorithm is selected because webe useful.
need a population of networks that evolves more slowly than . |t must enforce competition among the subpopulations to
the population of nodules, as the changes in the population of = ay0id two subpopulations developing similar responses to
networks have a major impact in the fitness of the nodules. The  the same features of the data.
steady-state genetic algorithm avoids the negative effect that this. |1 must enforce cooperation. The different subpopulations
drastic modification of the population of networks could have  myst develop complementary features that together could
over the subpopulations of nodules. It has been also shown by  sove the problem.

some works in the area [51], [52] that the steady-state genetic. |t must measure the contribution of a nodule to the fitness
algorithm produces better solutions and is faster than the stan- f the network and not only the performance of the net-

dard genetic algorithm. . works where the nodule is present. A nodule in a good
This algorithm has three features that are different from the  etwork must not get a high fitness if its contribution to
standard genetic algorithm. the performance of the network is not significant. Like-

» The crossover generates just one individual. Two parents wise, a nodule in a poor performing network must not be
are chosen by means of a roulette selection algorithm. One  penalized if its contribution to the fitness of the network

of the two offsprings is selected randomly. is positive. Otherwise, a good nodule that is temporarily
* The selected offspring replaces the worst individual of the  assigned to poor rated networks could be lost in the evo-
population instead of replacing one of its parents. lution of the subpopulations of nodules.

 Fitness is assigned to the members of the population in

; . . A | . N e
function of their rank and not as their absolute fltnestﬁo-r(t]lgsgesslm”ar to the Bayesian criterion in the problems of classification in

value. In our model, th_IS feature has been ignored and theves oniy happen during the first steps of evolution, as the networks evolve
absolute value of the fitness has been used. ties hardly or never occur.
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Fig. 4. Populations on networks and nodules. Each element of the network is a reference to, or a label of, an individual of the correspondingosubpopulat
nodules. So the network is a vector where the first component refers to a nodule of subpopulation 1, the second component to a nodule of subpapstation 2 a
on.

Some methods for calculating the fitness of the nodules hgwerformance of these networks. This criterion enforces compe-
been tried. The best one consists of the weighted sum of thtg®n among subpopulations of nodules preventing more than
different criteria. These criteria, for obtaining the fitness of ane subpopulation from developing the same behavior. If two
noduler in a subpopulatiornr, are as follows. subpopulations evolve in the same way, the value of this cri-

Substitution ¢). & networks are selected using an elitisterion in the fitness of their nodules will be near zero and the
method, that is, the best networks of the population. In subpopulations will be penalized.
these networks the nodule of subpopulatioris substituted  Bestk (3;). The fitness is the mean of the fitness values of
by the nodulev. The fitness of the network with the nodulethe best: networks where the noduleis present. Only the best
of the populationr substituted by is measured. The fitnessy; are selected because the importance of the worst networks of
assigned to the nodule is the averaged difference in the fithn@sé population must not be significant. This criterion rewards
of the networks with the original nodule and with the nodulghe nodules in the best networks and does not penalize a good
substituted byv. This criterion enforces competition amonchodule if it is in some poor performing networks.
nodules of the same subpopulation, as it tests if a nodule couldconsidered independently none of these criteria is able to ful-
achieve better performance than the rest of the nodules offjfSthe three desired features above mentioned. Nevertheless,
subpopulation. when the weighted sum of all of them is used they have proved

The interdependencies among nodules could be a majgrgive a good performance in the problems used as tests, as
drawback in thesubstitutioncriterion, but it does not mean i pe shown on Section IV. Typical values of the weights
Fhat this criterion is useless. In any case, the criterion has typine components of the fitness used in our experiment are
important features. (A\s ~ 2)\, =~ 60)z,). The values of these coefficients must

— Itencourages the nodules to compete within the suRot only weight the importance of each criteria but also correct

populations, rewarding the nodules masimpatible the differences in range of them.

with the nodules of the rest of the subpopulation. This |n order to encourage small nodules we have included a regu-
is true even for a distributed representation, becauggization term in the fitness of the nodule. Beimgthe number

it has been shown that such representation is algpnodes of the nodule and. the number of connections, the

modular. Moreover, as the nodules have no connectigfective fitness f/, of the nodule is calculated as follows:
among them, they are more independent than in a

standard network. ,
— As many of the nodules are competing with their par- fi = fi = pnnn = pene. ©)
ents, this criterion allows to measure if an offspring is
able to improve the performance of its parent. The values of the coefficients must be in the intervak
In addition, the neuropsychological evidence showing that, o < 1in order to avoid the regularization term introducing
certain parts of the brain consist of modules, that we discussefigh bias in the learning process.
above, would support this objective.
Difference ¢). The nodule is removed from all the networks 81t is calledefective fitnesbecause it is the actual value used as the fitness of
where it is present. The fithess is measured as the differenceni#nodule in the generation of a new subpopulation.
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So, the equation of the effective fithess of the nodulef TABLE I
subpopulationr is the foIIowing' COVNET’s PARAMETERS COMMON TO ALL THE EXPERIMENTS

f’f = A0+ A6 + )\ﬂ,‘.ﬁk — PnMp — Pelle (10) Parameter Value
if the expression above is negative for any of the nodules of ~ umber of networks 100
a subpopulation, then thg fitness values of all t'he nodules of  Number of nodules on each subpopulation 40
that subpopulation are shifted, as we have mentioned above, as
follows: Networks to replace on each generation 2.0%
: . N Mutation rate on network population 5.0%
™ = {7 — min{ fF}Y¥, (11) pop °
. . Initial value of weights (-0.5, 0.5)
whereN is the number of nodules of the nodule subpopulation.
Nodule elitism 70%
D. Stop Criterion
Input scaling interval [-2.5,2.5]

The stop criterion can have a dramatic impact on the perfor-
mance of the model, as the over-training effect depends highly =~ Number of nodule subpopulations 5
on it. Most models use cross-validation to avoid this effect. In

COVNET we have evolved the population with and without a Initial maximum number of nodes 3

validation set. In both cases the evolution of the system depends  1nitial maximum number of connections 15

only on the fitness of the network population. The system is

evolved untitthe averageifness of the network population stops Nodule fitness components A = 3.50

growing The fithess is measured over the training set, unless a As = 1.45

validation set is used, in this case the fithess is measured over

this validation set. Ags = 0.05
When we stop the evolution of the population due to the stag- Regularization term o = 0.25

nation of the average fitness of the networks, an individual with
a higher fitness than the current best one could be reached if the pe =0.025
evolution process is continued. But the generalization ability of
such individual is likely to be worse in most cases. The same
effect s likely to occur in the generalization ability of the whole o = 0.95
population of networks during this additional stage of evolution.

Simulated annealing T, =5.0

n =25
E. Election of the Best Individual

The election of the best individual of the population is
straightforward. The best network in terms of training error

is chosen (or in terms of validation error if a validation set is The design of the modular network was made with different
used). In case of a tie the smallest network is preferred, if Sog& hitectures and learning algorithms. COVNET has been pro-
of them are of equal size, one of them is chosen at random. grammed in C under the Linux Operating System. All the tools
and programs used for its development are licensed under the
IV. PERFORMANCEEVALUATION GNU General Public License. COVNET's cddis also under

The performance of the developed model is tested in thrd§ GNU General Public License.
classification problems with different features. In order to get Al the parameters of COVNET are common to all the data

a clear idea of the performance of the model we have cor_?ﬁ}j uﬁeg m_the hexpenments. SfUCh pa;ame;elrs are SV:PW{I‘ n
pared our model with a modular network, thdaptive mix- '20'€ Il. Setting the parameters for each problem specifically

ture of local expert§53]. Eachexpertis a multilayer percep- improves the performance of COVNET but using the same pa-

tron (MLP) trained with standard backpropagation [54] and rgmete_rs for all the problems shows the robustness of the model
momentum terni. We have also compared COVNET with theregardmg the _pargmeter S s_ettl_ng. .
The regularization term is either used with the parameters

results in the bibliography. : : :
. 7 shown in Table Il or is removed, setting the parameters to zero.
For the design and training of the modular networks we haye : . - .
is second option is used when no over-training effect is ob-

used theNeuralWorks Professional 1l/PIU%6] simulator. We :
) : . : . .served and the resulting networks are small enough for the pur-
also tried some pruning algorithms that are implemented in theé d
poses of a specific task.

Stuttgart Neural Network Simulat¢ENNS¥ (OBD [57], OBS . : . :
20 d Skeletonization 1581, but al ith It As in any other evolutionary algorithm this set of parameters
[22], an eletonization [58]), but always with worse resu Stust be tuned in order to get a useful model. A study of the

We tested also the performance of local experts using the EDBD rule [55¢nsibility of COVNET to this set of parameters is beyond the

but the generalization results were worse. scope of this paper. Nevertheless, we will give in this section
8This package could be obtained by anonymous ftp from ftp:/ftp.infor-
matik.uni-stuttgart.de/pub/SNNS. 9Available by anonymous ftp from ftp://ftp.ayrna.org/pub/COVNET .

Minimum improvement (stop criterion) 10%
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some guidance that could help the parameter’s setting for any TABLE I
problem. COMPARISON BETWEEN COVNET AND MLP NETWORKS IN TERMS OF

. AVERAGED NETWORK SIZES FOR THETHREE PROBLEMS
The parameters of the population, number of networks,
number of nodule subpopulations and number of nodules per

. . . . Data set Model | #nodes | #connections
subpopulation, can have a variety of values. However, increasing
the values shown in this paper will not improve the performance Pima Modular 17 180
and will increase the computational cost of the evolution.
Elitism in the nodule population must be high. Values near COvNET | 4.57 24.60
50% produce very good and very bad individuals, making the Heart disease | Modular 25 160

evolution unstable.
The weight of the nodule fithess subcomponents must be CovNET | 4.77 33.07
fixed in a way that corrects the differences among their ranges.

The values given in our experiments follows this idea. In a Credit card | Modular | 14 750
specific problem coult_j be interesting considering any of the CovNET | 3.67 34.93
subcomponent more important than the others, but that can
only be tested by trial and error.

Regularization parameters must be set in function of the im- TABLE IV

portance of parsimony in our task. Increasing the values shown
in this paper will evolve smaller network, but also will decrease
the performance of the networks as the regularization restriction .,

P-VALUES OF STATISTICAL TESTS ONPIMA INDIAN ERRORS

o Null hypothesis COVNET Modular
becomes more critical.
K-S | Normal distribution 0.4364 0.744
A. Experimental Setup
F | Equality of variances 0.2408

The tests were conducted following the guidelines of Prechelt
[59]. Each set of available data was divided into three sets: 50% t | Equality of means 1.091e-05
of the patterns were used for learning, 25% of them for valida-
tion and the remaining 25% for testing the generalization of the
individuals. B. Classification of the Pima Indian Data Set

The populations of COVNET were evolved using together the
training set and the validation set, that is, no validation was us e data set contains data of 768 individuals, all of them fe-

At the end of the evolution the best network, in terms oftraininl% | tleast 21 Id of Pi Indian herit Th it
error, was selected as the result of the evolution. The test setwa"%esa eas years old ot Fima Indian heritage. 1he patterns

then used to obtain the generalization of this network are divided into two classes. The class of each pattern shows

For the training of the modular networks we used the methdf'€ther the patient shows signs of diabetes according to the
of cross-validation and early-stopping [60]. The networks wet¥Crld Health Organization criteria.
trained until the error over the validation set started to grow. 1 Nere are eight attributes for each pattern, all of them are real
Nevertheless, the results obtained with early-stopping Wé@lued. Former results can be foun_d in [61]. Following this pre-
worse that the ones obtained when the validation set was ad¥fits work and the recommendations of Prechelt ([59], [62])
to the training set. Only the results with the latter configuratioffé have divided the data set in 384 patterns for training, 192
are shown. patterns for validation and 192 patterns for generalization. The
For each data set three different random permutations of @#@ta set contains 500 instances of class 1 and 268 instances of
patterns were made. For each permutation the evolution&tss 2. Three permutations of the data set are used and ten ex-
process was repeated ten times. The fitness of the individuBgfiments are carried out on each one.
of the population of networks was measured as the number off he modular network was formed by four local expert of three
patterns correctly classified. hidden nodes, the gating network had five hidden nodes. The
In all the tables we show, for each permutation of the data segror was measured using #&1 045 criterionthatis, an output
the averaged error of classification over ten repetitions on edsH if it is the interval [0.55, 1.0] and it is O if it belongs to the
permutation of the data set, the standard deviation, the best amdrval [0.0, 0.45]. If the output is in the interval (0.45, 0.55) it
worst individuals and the averaged number of nodes and ciésiundefined.
nections of the best networks of each experiment. The measur&he parameters for applying COVNET to this problem are

This data set is from the UCI machine learning repository.

of the error is the following: shown in Table Il. As we can see on Table V COVNET outper-
1L formed the modular network of adaptive mixture of experts.
E= P Z € (12) The size of the networks evolved by COVNET was smaller
i=1 than the size of the modular networks designed by hand. The

where P is the number of patterns ang is zero if pattern; number of nodes and connections of the different models is
is correctly classified and 1 otherwise. Each permutation of tisBown on Table Ill. Networks developed by COVNET are very
data setis labeled I, Il, and Ill in the tables. The averaged resutsmpact and far smaller than the modular network needed to
over the three permutations are labeled All. obtain comparative performance.
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TABLE V
ERRORRATES FORPIMA INDIAN DATASET

Model Set Training Generalization

Mean StD Best  Worst Mean StD Best  Worst

Modular network I~ 0.2528 0.0135 0.2413 0.2847 0.2458  0.0211 0.2135 0.2865
II  0.2460 0.0109 0.2326 0.2604 0.2370  0.0268 0.2083 0.2813
IIT  0.2540 0.0124 0.2413 0.2795 0.2068 0.0181 0.1771 0.2448

All  0.2509 0.0124 0.2299 0. 0274

COVNET I 0.2226 0.0073 0.2135 0.2344 0.1995 0.0284 0.1615 0.2448

II  0.2269 0.0070 0.2170 0.2396 0.2063 0.0236 0.1771 0.2396

III  0.2243 0.0042 0.2188 0.2326 0.1911 0.0082 0.1771 0.2031

All  0.2246 0.0063 0.1990  0.0220

TABLE VI
COMPARISON OFCOVNET'’S RESULTSWITH OTHER MODELS IN TERMS OFAVERAGED TESTING ERROR IN THEPIMA INDIAN DATASET

Model Author Error rate Runs (#sets) Network size
COVNET - 0.1990 30(3) 4.8

BP L. Prechelt[59] 0.2437 60(3) 32
Logdisc D. Michie[67] 0.2230 12 (12) N/A
EPNet X. Yao et al.[8] 0.2237 30 (1) 3.4
EPNet ensemble  X. Yao et al.[31] 0.2220 30 (1) 86
acasper N. K. Treadgold et al.[68] 0.2314 50 (1) 3.02
acascor N. K. Treadgold et al.[68] 0.2453 50 (1) 9.78
MPyramid R. Parekh et al.[16] 0.232 10 (10) 6.5
MTiling R. Parekh et al.[16] 0.229 10 (10) 5.7

In order to verify the true difference in performance betweearount that Michieet al. used for testing the error rate a 12-fold
COVNET and the modular network we conducted three steross-validation and Pareldt al. a ten-fold cross-validation
tistical tests (a summary of the results is shown on Table IMyhich are more optimistic methods than the one we have used.
First, we corroborated that the distribution of the errors wa%o and Liu achieved a testing error of 0.2237 with a popula-
normal by means of a Kolmogorov—Smyrnov test [63]. Nextjon of networks evolved with their EPNet algorithm [8]. The
we tested the hypothesis that the errors from the experimeat®lved networks are slightly more compact than those evolved
with COVNET and modular networks had the same varianedth COVNET, but their testing error is significatively worse.
performing anF’ test [64]. Finally, we performediaest thatal- They achieved a better result, 0.2220 testing error, with an en-
lowed us to ascertain that the error obtained with COVNET wagemble of 20 networks evolved with EPNet [31], but the com-
significatively lower than the error obtained with the modulaplexity of the ensemble did not pay the improvement of the
network with a significance level of 5%. All tests were madégesting error. Prechelt [59] found a hand-designed neural net-
with the R statistical package [65]. work with an averaged testing error of 0.2437 which is worse

Although direct comparison with other papers is difficult bethan the worst network evolved by COVNET. More recent re-
cause the algorithms and methods of obtaining the generaligalts with the algorithms MPyramid and MTiling [16], devel-
tion of the models are different, it is interesting to compare thaped by Parekkt al, have not been able to improve the results
results we have obtained with the latest published in the bibéibove. Their best model achieved a testing error of 0.229 with
ography. The most important results for the diabetes problentomplexity of the networks comparable to COVNET. Tread-
are shown on Table VI. The results of COVNET are better thayold and Gedeon tried this data set with a modification of the
those obtained with the other methods, even taking into amascade-correlation network architecture [66]. They achieved a
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Fig. 5. Two nodules that constitute the best network evolved for Pima data set, it achieves a generalization error of 0.1719.
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TABLE VI
ERROR RATES FORHEART DISEASE DATASET

Model Set Training Generalization

Mean StD Best  Worst Mean StD Best  Worst

—

Modular network 0.0500 0.0135 0.0347 0.0743 0.1853 0.0210 0.1618 0.2206
I  0.0490 0.0147 0.0347 0.0792 0.1794 0.0331 0.1324 0.2353
IIT  0.0639 0.0118 0.0495 0.0842 0.2176  0.0248 0.1765 0.2500

All  0.0543 0.0143 0.1941 0.0310

COVNET I 0.1257 0.0063 0.1139 0.1337 0.1500 0.0135 0.1324 0.1765
II 0.1366 0.0142 0.1089 0.1584 0.1206 0.0217 0.0882 0.1471
I 0.1312 0.0075 0.1238 0.1436 0.1574 0.0318 0.1176 0.2059

All 0.1312 0.0106 0.1426 0.0279

testing error of 0.2314 with 50 runs over one permutation gbal is the prediction of the presence or absence of heart disease
the data. Although the testing error is worse than the resultsinfthose patients. The original data set had five classes, consid-
other models, including COVNET, the obtained networks am¥ing four degrees of heart disease. The database originally con-
the smallest in all the bibliography. tained 303 examples but six of them had missing values and 27

To show a typical network evolved by COVNET, Fig. 5 repef the remaining were retained in case of dispute, leaving afinal
resents the best network evolved in terms of testing error {@tal of 270 (the problem is described more deeply in [69]).
achieved a 0.1719 testing error). We can see that not only it hadt is a very interesting data set because it has real valued at-
a low number of nodes but the connections are also sparse. tributes (1, 4, 5, 8, 10, and 12), ordered (11), binary valued (2, 6,

For the Pima data set, we can conclude that COVNET shoasd 9) and nominal (7, 3, and 13), making its classification more
the best results in terms of generalization error rate with a coutifficult; and the number of available patterns is small. There are
plexity that is similar to the best results in the bibliography anivo outputs determining whether the patient has a heart disease.
significantly lower than that of modular neural networks. The results obtained with COVNET are shown on Table VII
together with the results of a modular network made up by four
local experts each one having five hidden nodes. The parameters
used in COVNET’s evolution are shown on Table Il.

This data set comes from the Cleveland Clinic Foundation As in the former problem we have checked the bibliography
and was supplied by Robert Detrano of the V.A. Medical Centén order to compare our results with other papers working with
Long Beach, CA. The database contains 13 attributes, whitttis dataset. The mostimportant results are shown on Table VIII.
have been extracted from a larger set of 75, that correspondRioy et al. used an RBF network of 24 Gaussians to achieve
the results of various medical tests carried out on a patient. Taa¢esting error of 0.1818. They used the original data set with

C. Classification of Heart Disease Problem
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CoMPARISON OFCOVNET’S RESULTS ONHEART D|SEASE|;£TEIS_|§T V\\/II#H OTHER MODELS IN TERMS OFAVERAGED TESTING ERROR

Model Author Error rate Runs (#sets) Network size

COVNET - 0.1426 30(3) 7.97

MSM1 K. P. Bennetet al.[70] 0.1653 N/A N/A

RBF (GM) A. Royat al.[72] 0.1818 30 (1) 30

EPNet X. Yao et al.[§] 0.1677 30 (1) 41

EPNet ensemble X. Yao et al.[31] 0.1510 30 (1) 94

acasper N. K. Treadgoldet al.[68]  0.1921 50 (1) 0.10

acascor N. K. Treadgoldet al[68]  0.1989 50 (1) 2.64

297 cases (198 for training and 99 for testing the generalization TABLE X

of the network). The paper reported the average over 30 runs ~ PVALUES OF STATISTICAL TESTS ONHEART DISEASEERRORS

of the algorithm with the best configuration. Bennet and Man-

gasarian [70] reported a testing error of 0.1653 with their MSM1 Test | Null hypothesis CovNeT Modular
method. Yao and Liu [8] achieved a testing error of 0.1677 with K-S | Normal distribution 0.06898  0.3502
their EPNet evolutionary model. The experimental setup of their

test is very similar to ours, except that they used just one per- F | Equality of variances 0.5762
mutation of the dataset. Later results [31] show an averaged ¢ | Equality of means 7 4936-00

testing error of 0.1510, obtained by an ensemble of 20 networks
evolved with the EPNet algorithm and combined with the RLS

algorithm [71]. Nevertheless, the whole evolutionary process Rf 8,9, and 11), and nominal (3, 4, 5, 6, and 12). The binary and
such networks is very complex and the resulting networks a{gnina| attributes have been codified using a 1-out-of-n code so
quite big. Treadgold and Gedeon [68] reported a testing ermorgt, gataset used for training the networks had 51 inputs and two
0.1921 and 0.1989 with their algorithrasasperand acascor outputs.

respectively. These algorithms are based on the cascade-corrgy, parameters of the evolution of COVNET are shown on
lation network of Fahlman and Lebiere [66] and they producegipje ||, The results obtained with COVNET and with a mod-
very small networks, despite the fact that their testing error Was, neyral network of three experts each one with three hidden

much higher than the method cited above and the results Qhyjes are shown on Table X. The comparison in terms of net-
tained by COVNET. The best hand-designed neural netwapk i size is shown on Table II1.

[59] achieved 0.1478 testing error, which is slightly better than tis gataset has been used in many other works (see

the averaged testing error of COVNET. ‘Table XI). The best results are obtained by Yao and Liu [31]
The same statistical tests performed over the results of Pigja, an ensemble of networks evolved by the EPNet algorithm,
data have been carried out in the results of this problem. Tgiaining a testing error of 0.093 over 30 runs of the algorithm.
results are shown on Table IX. The test shows, at a significangg resyit is a little below this mark, however, the complexity
levelar = 0.5, that the there are significant differences in meagk ha ensemble of networks is much bigger than the com-
between the two samples of errors. paratively very small networks obtained by COVNET. The
. ensemble is the combination of 20 networks with an average
D. Credit Card Problem size of 4.5 nodes and 82.8 connections. Slightly poorer results

This data set is also from the UCI Machine Learningtest set error of 0.095) are obtained with an ensemble of ten
Repository. The set contains data from applications to aetworks. In [67] several algorithms are used over this data
Australian bank to get a credit card. There are two classest, the testing error being measured by means of ten-fold
meaning whether the application was granted (44.5% of theoss-validation. The best algorithm produced a test set error of
patterns) or denied (55.5%). Each record has 14 attributes, @t31. This value is worse than the error obtained by COVNET,
confidentiality all attributes and values are not explained in tleven though ten-fold cross-validation is a more optimistic
original data set. method in estimating errors than the method we used.

This data set is very interesting because it has two impor-As in previous sets we have performed three statistical tests
tant features. First, it contains many missing values (there @oeassess that the results of COVNET are better than the ones
missing values in 5% of the records). Second, the attributes at#tained by a modular network. These tests are shown on
of very different kind: continuous (1, 2, 10, 13, and 14), binaryable XII.
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TABLE X
ERROR RATES FORCREDIT CARD DATASET

Model Set Training Generalization

Mean StD Best  Worst Mean StD Best  Worst

Modular network I~ 0.1120 0.0097 0.0907 0.1236 0.1401 0.0043 0.1337 0.1453
II  0.1371 0.0356 0.1178 0.2355 0.1395 0.0131 0.1279 0.1686
III  0.1237 0.0160 0.1042 0.1602 0.1326 0.0116 0.1163 0.1512

All  0.1243 0.0247 0.1374 0.0106

COVNET I 01375 0.0075 0.1255 0.1506 0.1198 0.0088 0.1105 0.1395
II  0.1431 0.0092 0.1236 0.1564 0.1105 0.0119 0.0930 0.1337

III  0.1411 0.0059 0.1313 0.1486 0.1169 0.0089 0.1047 0.1337

All  0.1405 0.0078 0.1157 0.0104
TABLE XI
COMPARISON OFCOVNET’S RESULTS ONCREDIT CARD DATASET WITH OTHER MODELS IN TERMS OFAVERAGED TESTING ERROR

Model Author Error rate Runs (#sets) Network size

COVNET - 0.1157 30(3) 2.47

Calb D. Michie et al.[67] 0.131 10 (10) N/A

EPNet X. Yao et al.[8] 0.115 30 (1) 4.83

EPNet ensemble  X. Yao et al.[31] 0.093 30 (1) 90

acasper N. K. Treadgold et al.[68]  0.1372 50 (1) 0.12

acascor N. K. Treadgold et al.[68]  0.1358 50 (1) 1.07

TABLE XiI of the networks. To compare the results with 1 and 5 nodules we
P-VALUES OF STATISTICAL TESTS ONCREDIT CARD ERRORS have carried out the statistical test whose results are shown on
Table XIV.

Test | Null hypothesis COVNET ~ Modular We can also observe that the evolution with the combination

of several nodules has considerably lower variance of the testing
error, being this feature very important, as it means a more ro-
F | Equality of variances 0.9019 bust evolutionary process.

An additional capability test was carried out over the experi-
ments performed on the datasets. For the best individual of the
final population, we chose every nodule in turn and measured
its performance over the learning and generalization sets. This
V. ANALYsIS OF COVNET gave an idea of the capability of the evolved nodules. The results
are shown on Table XV. This test has been carried out only in the
first partition of the three problems. The nodules that evolved to

The key idea of our model is the combination of subnetwork®id nodules are marked with a “—. ” The table shows that the
to form better solutions than the solution that could be achievegtor value of the best nodule of each network is clearly worse
by just the evolution of a whole network. In order to test this idehan the error of the network. That enforces the idea of the com-
we repeat our experiments over the data sets described alsivation of parts, as the nodules cannot achieve the performance
with networks formed by only one nodule. The results are showifithe networks (that are combination of them) whether they are
on Table XIII. evolved separately or combined.

The results obtained prove that the combination of severalThe necessity test is made in order to measure the individual
modules forming an ensemble clearly improves the performariogportance of each single nodule in the evolved networks. This

K-S | Normal distribution 0.5624 0.6407

t Equality of means 6.278e-11

A. Capability and Necessity Tests
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TABLE XIII
TESTING ERROR RATES FORNETWORKS WITH ONE NODULE FORALL THE THREE PROBLEMS
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Problem Set Training Generalization
Mean StD Best  Worst Mean StD Best  Worst

Pima I 02564 0.0349 0.2274 0.3247 0.2479 0.0312 0.2135 0.3177
II  0.2712 0.0286 0.2396 0.3194 0.2510 0.0581 0.1927 0.3281
IIT  0.2724 0.0377 0.2274 0.3403 0.2438 0.0369 0.1927 0.3073
All  0.2670 0.0336 2476  0.0422

Heart I 01772 0.0188 0.1386 0.1980 0.2000 0.0242 0.1618 0.2353
II  0.2109 0.0254 0.1733 0.2475 0.1765 0.0563 0.1029 0.2794
III 0.1817 0.0239 0.1485 0.2228 0.1941 0.0397 0.1324 0.2500
All  0.1899 0.0268 1902  0.0419

Card I 0.1680 0.0453 0.1351 0.2761 0.1477 0.0625 0.1105 0.3081
I 0.1544 0.0566 0.1448 0.1911 0.1180 0.0167 0.1047 0.1512
IIT 0.2164 0.0566 0.1274 0.2703 0.2186 0.0675 0.1221 0.2907
All  0.1706 0.0492 0.1614 0.0675

TABLE XIV in the Card problem. For this problem the evolutionary process

p-VALUES OF STATISTICAL TESTSCOMPARING THE RESULTS WITH ONE
NODULE AND 7 NODULES IN THE TEST SETS FORALL THE THREE PROBLEMS

#Nodules

Set Test | Null hypothesis 1 5
Pima K-S | Normal distribution 0.4595 0.4364

F Equality of variances 0.0007559

t Equality of means 1.351e-06
Heart K-S | Normal distribution 0.8423  0.06898

F Equality of variances 0.03191

t Equality of means 4.042e-06
Credit | K-S | Normal distribution | 0.03427  0.5624
card F Equality of variances -

Equality of means

obtains useless nodules more frequently.

B. Overtraining Effect

In our experiments we have not used validation sets, either for
early stopping of the evolutionary process or for choosing the
best individual of the population (both these uses are common
in [31]).

Not using a validation set for early stopping can produce
over-training and bad generalization. For testing the possibility
of appearance, we kept track of the generalization of the net-
works along the evolutionary process. Fig. 6 represents the be-
havior of the error of the population along the evolution on nine
experiments over the Pima Indian dataset (the first three exper-
iments carried out over each permutation of the dataset). The
figure represents the averaged training error of the population,
that is, the criterion for stopping the evolution; the generaliza-
tion error of the best individual of the population in terms of

test has been carried out only in the first partition of the thregaining error, that is, how well generalizes the individual that
problems. In order to test this aspect, we removed in turn eveégarns best; and the averaged generalization error of the whole
nodule from the bestindividual of the final population. Then, wpopulation.

measured the error of the network without this nodule. The re-From Fig. 6, we can see that the averaged testing error of the
sults are shown on Table XVI. The nodules that evolved to vofgbpulation hardly suffered from over-training, being this mea-
nodules are marked with a “—.” The table shows that removirgire the more interesting to measure overtraining, as the gen-
a nodule does not cause a dramatic effect on the performaeealization ability of the best individual is subject to impor-
of the network, so the model is quite robust to the eliminatictant changes along the evolution. The averaged testing error re-
of some parts of the network. This is very interesting if we comaained constant during the last generations but it did not in-
sider the hardware implementation of the networks. The tablegase. The best individual did suffer from over-training. The
also shows the cooperation among the nodules, as the majdiijure shows how the testing error of the first individual de-
of nodules that did not evolve to void nodules have their shateeased during, approximately, 40 generations and then started
in the performance of the network. This aspect is less eviddatgrow slowly until the end of the evolutionary process. This
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TABLE XV TABLE XVI
CAPABILITY TEST FORPIMA, HEART, AND CARD PROBLEMS. THE VALUES NECESSITYTEST FORPIMA, HEART, AND CARD PROBLEMS. THE VALUES
SHOW THE GENERALIZATION ERROR OFEACH NODULE OF THE BEST SHOW THE INCREMENT ON THE GENERALIZATION ERROR OF THENETWORK
INDIVIDUAL OF THE POPULATION WHEN IT IS CONSIDEREDITSELF AS WHEN THE CORRESPONDINGNODULE |S REMOVED. THE LAST COLUMN
A NETWORK. THE LAST COLUMN SHOWS THE GENERALIZATION SHOWS THE GENERALIZATION ERROR OF THEWHOLE NETWORK

ERROR OF THEWHOLE NETWORK
. Pima
Pima

Nodule number
Nodule number

Run Network
1 2 3 4 5

Run 1 9 3 4 5 Network

1 0.0573 - - - 0.1198 0.1719
1 0.2917 - - - 0.2292 | 0.1719

2 0.0208 - 0.0781 - - 0.1719
2 0.2500 - 0.1927 - - 0.1719

3 - 0.0156  0.0990 - 0.0260 0.1823
3 - 0.2969 0.2135 - 0.2708 0.1823

4 0.0052  0.0208 0.0052 - - 0.2031
4 0.2240 0.2448  0.2604 - - 0.2031

5 - 0.0104 0.0677 -0.0417 - 0.2240
5 - 0.2552 0.2708  0.2865 - 0.2240

6 0.0000  0.0521  0.0000 - - 0.2448
6 0.7031  0.2448 0.2969 - - 0.2448

7 0.0000  0.4792 - - - 0.2240
7 0.7031  0.2240 - - - 0.2240

8 ~ - - 0.1510  0.0365 0.1615
8 - - - 0.1979  0.3125 0.1615

9 - - - -0.0312  0.1562 0.1875
9 - - - 0.3438  0.1562 0.1875

10 0.0885  0.0104 - 0.0312 - 0.2240
10 0.2552  0.2969 - 0.3125 - 0.2240

Heart
Heart

Nodule number
Nodule number

Run Network
1 2 3 4 5
Run 1 9 3 4 5 Network
1 0.0000 - - 0.0294  0.0588 0.1471
1 0.4412 - - 0.2059  0.1765 0.1471
2 0.1176 - - 0.0000 - 0.1618
2 0.1618 - - 0.2794 - 0.1618
3 - 0.2059 - 0.0588  0.0000 0.1324
3 - 0.1912 - 0.3382  0.4412 0.1324
4 - -0.0147  0.0294 - 0.0000 0.1324
4 - 0.1765 0.1912 - 0.2500 0.1324
5 0.0147 - 0.0000 - - 0.1471
5 0.1765 - 0.1912 - - 0.1471
6 0.0147 -0.0147 - - -0.0147 0.1471
6 0.2059  0.2353 - - 0.1618 | 0.1471
7 0.1029 - - - -0.0294 0.1618
7 0.1765 - - - 0.3088 0.1618
8 - - - -0.0147  0.0294 0.1765
8 - - - 0.1912 0.1471 0.1765
9 - 0.0294 0.0147  0.0147 - 0.1471
9 - 0.1618 0.3088 0.1765 - 0.1471
10 0.0147 - 0.0588 - 0.0000 0.1471
10 0.2206 - 0.1765 - 0.4412 0.1471
Card
Card
Nodul b Nodule number
odule number Run Network
Run Network 1 2 3 4 5

1 2 3 4 5

1 0.0000  0.0000 0.1337 0.0000 -0.0116 0.1221
1 0.5174  0.5174 0.1105 0.5174 0.2674 0.1221

2 - 0.0000 - 0.0000 0.1163 0.1221
2 - 0.5174 - 0.2384  0.1221 0.1221
3 0.4012  0.0058  0.0000  0.0000 - 0.1163
3 0.1221 0.5174 0.5174 0.5174 - 0.1163
4 0.1105 -0.0058  0.0000  0.0000 0.0000 0.1163
4 0.1105 0.2151  0.5174 0.4826  0.5174 0.1163
5 0.0000  0.0000 0.3547 -0.0174  0.0058 0.1279
5 0.5174  0.5174  0.1105 0.4826  0.4477 0.1279

6 0.0000  0.0000 - 0.0000 0.6802 0.1105
6 0.7674  0.5174 - 0.4826  0.1105 0.1105

7 0.4012 - - - 0.0000 0.1163
7 0.1163 - - - 0.5174 0.1163

8 - 0.3488 - -0.0058  0.0000 0.1395
8 - 0.1337 - 0.4884 0.5174 0.1395

9 0.0000  0.0000 0.0000 0.0233 0.0174 0.1105
9 0.5174 0.4826 0.5174 0.1512 0.1337 0.1105

10 -0.0058  0.0000 0.0233  0.0000 - 0.1163

10 0.2733  0.1279  0.1105 0.5174 - 0.1163

effect could not be removed using a validation set. The resutli®wever, the effect of over-training is not dramatic, as the
with a validation set were far poorer than the results without itesting error does not increase more than 3%—4%.



GARCIA-PEDRAJASet al: COVNET: A COOPERATIVE COEVOLUTIONARY MODEL 591

R T — " oo — e e —
‘Averaged generakzation umump@um ------- AMWWIIIMWQINWM -------- ‘Averaged generalization ummm DWM ~~~~~~~~

"Averaged leaming error of the population —— "Averagedleaming efror of the. pustorl — v-r-gwl--w»numnl the population
beatn Serms of ang aror —— o thebast v j— Gonaratzaon ot el o of LRy e~

‘Averaged genarakzaon s(rr of the popuaton - ‘Averaged generaization otor of the popuaton - Zabon s1or f he popul

Jvcaged joamie) it of ha podnion ——
‘Averaged generakzaton sror o the papdation -

0ss
oo}
o

osf

Fig. 6. Training and testing error of the population of networks along the evolutionary process in the classification of Pima Indians datasepaFiti@athe
first three experiments are shown.

TABLE XVII
SENSIBILITY ANALYSIS FOR PIMA INDIAN DATASET

Training Generalization

Case Mean  StD Best  Worst Mean  StD Best  Worst t-test

- 0.2246 0.0063 0.2135 0.2396 0.1990 0.0220 0.1615 0.2448 -

0=0 0.2249 0.0057 0.2118 0.2396 0.2082 0.0146 0.1875 0.2500 0.0618
6=0 0.2146 0.0067 0.2049 0.2361 0.2036 0.0169 0.1771 0.2396 0.3599
B8=0 0.2083 0.0052 0.1979 0.2188 0.2127 0.0184 0.1771 0.2500 0.0112
0=p= 0.2086 0.0072 0.1910 0.2205 0.2052 0.0193 0.1771 0.2448 0.2476
c=4=0 0.2212 0.0046 0.2118 0.2326 0.2094 0.0163 0.1823 0.2552 0.0419
c0=6=0 0.2508 0.0112 0.2309 0.2708 0.2323 0.0298 0.1823 0.3073 0.0000

prn=p.=0 0.2128 0.0051 0.2014 0.2240 0.2069 0.0181 0.1719 0.2396 0.1308

C. Analyzing the Relevance of Criteria contribute to the performance of the model in a positive
One of the most important aspect of our model is theay. In order to test the relevance of each criterion we have

evaluation of the fitness of the subcomponents using a thigerformed the following experiment: for every criterion we

criteria method. It is interesting to test if the proposed criterlzave evaluated the performance of the model without using
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TABLE XVIII
SENSIBILITY ANALYSIS FOR HEART DATASET

Training Generalization

Case Mean  StD Best ~ Worst Mean StD Best ~ Worst t-test
- 0.1312 0.0106 0.1089 0.1584 0.1426 0.0279 0.0882 0.2059 -

oc=0 0.1381 0.0101 0.1188 0.1584 0.1529 0.0320 0.0882 0.2206 0.1896
6=0 0.1173 0.0093 0.0990 0.1436 0.1632 0.0287 0.1324 0.2500 0.0065
B=0 0.1168 0.0116 0.0941 0.1485 0.1588 0.0322 0.1029 0.2353 0.0418
6=p8=0 0.1219 0.0098 0.0990 0.1386 0.1574 0.0292 0.1029 0.2206 0.0508
o=8=0 0.1417 0.0099 0.1287 0.1782 0.1564 0.0249 0.1029 0.2059 0.0489
o0=6=0 0.2360 0.0203 0.1931 0.2871 0.2304 0.0441 0.1176 0.3235 0.0000
pn=pc=0 0.1249 0.0109 0.1089 0.1485 0.1608 0.0296 0.1029 0.2353 0.0177

TABLE XIX
SENSIBILITY ANALYSIS FOR CARD DATASET
Training Generalization

Case Mean  StD Best ~ Worst Mean StD Best  Worst t-test
- 0.1405 0.0078 0.1236 0.1564 0.1157 0.0104 0.0930 0.1395 -

oc=0 0.1432 0.0130 0.1255 0.1988 0.1254 0.0250 0.1047 0.2442 0.0573
=0 0.1305 0.0102 0.1042 0.1486 0.1207 0.0179 0.0988 0.1802 0.1885
=0 0.1215 0.0099 0.1004 0.1429 0.1260 0.0148 0.0988 0.1512 0.0029
d=p= 0.1283 0.0095 0.1062 0.1448 0.1200 0.0145 0.0930 0.1453 0.1973
c=p=0 0.1358 0.0077 0.1236 0.1564 0.1281 0.0126 0.0988 0.1453 0.0165
c=6=0 0.1661 0.0286 0.1429 0.1429 0.1376 0.0448 0.0930 0.2907 0.0137
pn=pc=0 0.1273 0.0102 0.1100 0.1506 0.1196 0.0115 0.0930 0.1337 0.1773

TABLE XX removing any of the criteria performed worse. However, the dif-

NETWORK SIZES FOR THETHREE PROBLEMS WITHOUT USING THE
REGULARIZATION TERM

Data set #nodes | #connections
Pima 6.77 41.47
Heart disease 5.57 33.07
Credit card 4.73 44.63

ference in performance is not always statistically significant.

Second, for each criterion we can conclude the following re-
marks:

Substitution.Removing this criterion has the effect of de-
creasing the performance of the model in two out of the three
problems with a confidence level of 10%. Considered isolated,
its performance is quite bad for two out of the three problems.
The main reason is that this criterion only encourages competi-
tion among the nodules in the same subpopulation and when it
is considered isolated the cooperation is assured only by the net-

the criterion and with the criterion alone. The objective is twork population, so the performance of the model is seriously
test if the criterion is useful to the system and test its capabiliffected.

if it is considered as the only one. The results for Pima, Heart, Difference.lt is the criterion that performs best in isolation.
and Card problems are summarized in Tables XVII, XVIIIThe reason is that this criterion enforces both competition

and XIX, respectively.

among the members of the same subpopulation and coopera-

From these results we can obtain very interesting informatition among the members of different subpopulations.
about the three criteria. First, we can see that all the problems ar8est n.-There is a very interesting result for this criterion. The
solved better using the three criteria, while all the experimemerformance of the criterion when considered alone is very low,
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TABLE XXI
p-VALUES OF ANOVA ANALYSIS FOR PIMA DATASET. THE RESULTS OF THETEST THAT MEASURES THEEFFECT OF THECOEFFICIENT ON THE
GENERALIZATION ERROR AND THE RESULTS OF THEMULTIPLE COMPARISON OF THETHREE LEVELS OF EACH COEFFICIENT. THE NULL
HYPOTHESISIS THAT THERE IS NO EFFECT ON THEGENERALIZATION ERROR

Coefficient Substitution Difference Best n
Effect on error 0.901 0789 0.883
3.15 3.50 3.85 1.30 145 1.60 0.04 0.05 0.06
315 —— 1.000 1.000 1.30 —— 1.000 1.000 0.04 —- 1.000 1.000
3.50 1.000 -—- 1.000 145 1.000 —--— 1.000 0.05 1.000 -- 1.000
Multiple comparison 3.85 1.000 1.000 -—- 1.60 1.000 1.000 -—-— 0.06 1.000 1.000 --
TABLE XXl

p-VALUES OF ANOVA ANALYSIS FOR HEART DATASET. THE THE RESULTS OF THETEST THAT MEASURES THEEFFECT OF THECOEFFICIENT ON THE
GENERALIZATION ERROR AND THE RESULTS OF THEMULTIPLE COMPARISON OF THETHREE LEVELS OF EACH COEFFICIENT

Coefficient Substitution Difference Best n
Effect on error 0.335 0.083 0.952
3.15 3.50 3.85 1.30 145 1.60 0.04 0.05 0.06
3.15 —— 0.417 1.000 130 —— 1.000 0.109 0.04 —- 1.000 1.000
3.50 0417 —- 1.000 145 1.000 —— 0.262 0.05 1.000 —--— 1.000
Multiple comparison 3.85 1.000 1.000 —-— 1.60 0.109 0.262 —-— 0.06 1.000 1.000 -—-

with a generalization error far worse than the obtained by tialue used in the experiments. We have taken the bounds and
other two criteria. This is specially important, as it is the onlgenter of the interval, considering for each criterion the fol-
criterion commonly used for evaluating the subcomponents iaving valuesc = {3.15, 3.50,3.85}, 6 = {1.30, 1.45,1.60},
cooperative environment. B = {0.04,0.05,0.06}. We have evaluated the performance of

It is also relevant the dramatic impact of removing this critehe model for the three problems with the 27 combinations of
rion on the performance of the model. The reason is not onlytinese three values of the coefficients. With the results of these
the contribution of the criterion to the fithess of the nodule, betxperiments we have performed an ANOVA 3 analysis in order
also in a very usefudide-effecdf this criterion. The nodules of to measure the sensibility of the model to the coefficient varia-
the networks with the highest fithess have a high value in thHisns and an ANOVA 1 analysis to test the influence of the vari-
criterion and its fitness value is also very high, so its probabiligtions of each coefficient separately. All the tests were made
of surviving along the evolutionary process is increased. In thising the SPSS statistical package [73].
way, the probability of removing a nodule of a high-performing The results of the ANOVA analysis for the problems Pima,
network decreases, allowing the best networks to survive aHdart, and Card are shown on Table XXI, Table XXII, and
mate. Table XXIIl, respectively. These tables show a summary of

Finally, we have made a test of the relevance of the regulaiie results of the analysis. First, they show fhealues of
ization term over the size of the network and its generalizatiehe test that measures the influence of the variations of the
ability. We can see on the last experiment of the previous teeefficients over the generalization error. The null hypothesis is
bles that the generalization error increases and the training ettigit the generalization error does not depend on the value of the
decreases. This is a typical effect of the absence of a regularigaefficient within the selected bounds. Second, they show the
tion term. The evolved networks are also bigger as it is showrvalues of the test that measures whether there are significant
on Table XX (the size of networks with the regularization terrdifferences in the generalization error when each one of the

were shown on Table Il1). three possible values are selected for each coefficient. The null
i . o . hypothesis is that the error mean is the same.
D. Analysis of Sensibility to Criteria Coefficients For the three problems we can see that the influence of the

Finally, we conclude the study of the different aspects efilues of the coefficients within this interval of 20% over the
the model testing the sensibility of the evolution to a modgeneralization error is almost negligible. That shows the robust-
fication of the coefficients of the criteria. For each criteriomess of the model to moderate variations of the coefficients of
we have defined an interval of variation of 20% around thie criteria.
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TABLE XXIII
p-VALUES OF ANOVA ANALYSIS FOR CARD DATASET. THE THE RESULTS OF THETEST THAT MEASURES THEEFFECT OF THECOEFFICIENT ON THE
GENERALIZATION ERROR AND THE RESULTS OF THEMULTIPLE COMPARISON OF THETHREE LEVELS OF EACH COEFFICIENT

Coefficient Substitution Difference Best n
Effect on error 0.486 0.683 0.206

315 350 3.85 1.30 145 1.60 0.04 005 0.06

315 —— 0705 0.600 1.30 —— 0.766 0.971 0.04 —— 0331 0350

3.50 0.705 —— 0.998 145 0.766 —— 0.948 0.05 0331 -—— 1.000

Multiple comparison 3.85 0.600 0.998 —— 1.60 0.971 0948 —— 0.06 0.350 1.000 -—-

VI. CONCLUSION AND FUTURE WORK cases, each nodule tries to solve the problem by itself. The result
We have developed a cooperative coevolutionary model 1j&a poor combination of nodules and networks with low perfor-

the design of artificial neural networks. This model is based &igﬁh.s roblem we have also worked in a different noint of
the coevolution of several species of subnetworks (called nod- ISP W v W ! ! pol

ules in our model) that must cooperate to form networks fylew that is considering the assignment of fitness to the nodules

solving a given problem. Instead of trying to evolve whole nef: multiobjective problem [74], [75]. The optimization of each

works. a task that is not feasible in many problems or ends ﬁriterion would be approached by a multiobjective evolutionary
’ yp _ﬁ’;orithm [76]. Each one of the three criteria discussed above

with poorly performing neural networks, we evolve these su? ether with a regularization term could be seen as different
networks that must cooperate in solving the given task. The nag geth >gurart
ectives for optimization.

ules_ coevolve m_several mdep_endent subpopulathns that evoly s for the second major problem to address, the number of
to different species. A population of networks that is evolved bsyui

) : populations (species), in our model this number is fixed and
means of a steady-state genetic algorithm keeps track of the brﬁa t be discovered through experimentation by the researcher
combinations of nodules for solving the problem. '

We have also develoned a new method for assianin CreIé1iwould be interesting that this number were adaptive along
P gning E coevolution. Preliminary experiments have been carried out

to the individuals of the different species that cooperate to forlrginitializing the subpopulations that are not able to develop
a network. This method is based on the combination of thr €eful nodules. but with poor results

criteria. The criteria enforce competition within species and CO- |+ would be also very interesting to carry out a fine tuning

operation among species. The same idea underlying this metiaQ e parameters of the model using an evolutionary strategy.

coulo! be applied to other models of cooperative COGEVOIUt'on'Currently, it is not feasible because of the enormous time that
This model has proved to perform better than standard algﬁich experiment would take

rithms in two real problems of classification. Moreover, it has inally, as in this paper we have experimentally proved the va-
shown Ilzettt)er results tr;an tr:f me:jhods of tralnln%mgdull(ar NeUi8ity of our model in classification problems, the obvious next
networks by means of gradient descent, e.g., the backpropagay \yij| pe the application of COVNET to regression. As the
tion learning rule and it has achieved better results for two R,y ves of regression are very different from classification, the

the three tested problems than the results reported in the big| plication of COVNET to such problems could be considered
ography and comparable results in the other problem and Wi - most independent task.

less complexity than most models.

Networks evolved by COVNET are very compact and have
few sparsely distributed connections. These networks are appro- )
priate for hardware implementation. Moreover, the robustness tol "€ authors would like to acknowledge Dr. F. Herrera-
the damage of some parts of the network (i.e., the removal of gguero, R. Moya-Sanchez, and E. Sanz-Tapia for helping
whole nodule as we have shown on Section V-A) is also a vefth the final version of this paper.
interesting feature for hardware implemented neural networks.
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