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Abstract. New analytical methodologies, like the so-called “next-generation 
sequencing” (NGS), allow the sequencing of full genomes with high speed and 
reduced price. Yet, such technologies generate huge amounts of data that demand 
large raw computational power. Many-core technologies can be exploited to 
overcome the involved bioinformatics bottleneck. Indeed, such hardware is 
currently in active development. We have developed parallel bioinformatics 
algorithms for many-core microprocessors containing 64 cores each. Thus, the 
MC64 web platform allows executing high-performance alignments (Needleman-
Wunsch, Smith-Waterman and ClustalW) of long sequences. The MC64 platform 
can be accessed via web browsers, allowing easy resource integration into third-
party tools. Furthermore, the results obtained from the MC64 include time-
performance statistics that can be compared with other platforms. 

1  Introduction 

The MC64 is a web platform allowing researches to test the performance of a 
64-core technology with bioinformatics algorithms. Although the term “many-
core” is usually applied to General-Purpose Graphics Processing Units (GPGPU), 
where each core has very limited resources, we will use this name to designate a 
processor with tens of Central Processing Unit (CPU) cores, each of them being 
able to independently execute a different operating system. Amongst them are the 
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Intel Single-chip Cluster Computer (SCC) with 48 cores (x86) [1] and the Tilera 
Tile64 with 64 Reduced Instruction Set Computing (RISC) cores [3] without 
floating point support. Other manufacturers focus on hybrid solutions using about 
tens of cores besides multi-threading, like the Intel Knights Ferry with 32 cores 
(x86) and four threads per core [2], the NetLogic XLP832 with eight MIPS64 
cores and four threads per core [4] and the Sun UltraSPARC T2 with eight cores 
and a total of 64 threads [5]. The Tile64 processor is the only commercially 
available many-core System on Chip (SoC). It has been deployed in a Peripheral 
Component Interconnect Express (PCIe) card that can be boarded inside a 
conventional Personal Computer (PC) running a Linux operating system. This 
paper focuses on a TilExpress-20G PCIe card with 8 GB of DDR2 RAM memory 
and a Tile64 running at 866 MHz, hosted by a Dell T5400 workstation. 

We have tested the performance of the Tile64 when running pairwise alignment 
algorithms like Needleman-Wunsch (NW) [6] and Smith-Waterman (SW) [7] to 
align DNA, RNA and peptide/protein sequences. Results show that the speedup 
can be up to 20x when compared with similar algorithms running in a Xeon Quad-
core workstation with 8 GB of RAM [8]. This ultra-performance is achieved when 
the length of the sequences to align is very long; e.g., from 300 kilobases (kb) to 
1,000 kb. On the other hand, the pairwise alignment is the basis of ClustalW [9], 
which is a multiple alignment algorithm divided in three stages. When aligning n 
sequences, the first of these stages requires the execution of n(n–1)/2 pairwise 
alignments (quadratic complexity) so, a decrease in the pairwise alignment time 
execution significantly decreases as well the total ClustalW execution time. 

We have developed and parallelized the NW, SW and ClustalW algorithms 
(among others) to evaluate the bioinformatics potential of the Tile64 processor. 
They are available via web at <http://www.sicuma.uma.es/manycore>. 

2  Architecture 

The MC64 web platform has been developed in JavaServer Pages (JSP) and 
deployed in Tomcat 5.5 on a low-power PC running Windows XP SP3 and 
MySQL 5.0.67. The MC64 uses a Front Controller pattern design, allowing the 
user to select the required algorithm and launch a customized execution, by 
introducing the chosen parameters. 

The Figure 1 shows the workflow of an MC64 request. A Front Controller 
retrieves the parameters (1.a) and calls to a Launch Manager web service which 
validates them (2.a). This web service can be invoked directly as well by any third 
party program that fulfills its Web Services Description Language (WSDL) (1.b, 
2.b). If the sequences to work with are specified by their accession numbers, then 
the Launcher Manager retrieves them from the National Center for Biotechnology 
Information (NCBI) nucleotide database (3). The Launcher Manager estimates the 
amount of memory required for operations and stores the job into an intermediate 
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Job Queue database (4) in order to be executed by the MC64 Algorithm Server. If 
an out-of-memory is foreseen or parameters are invalid, the job is rejected and the 
web service returns an error message to the user; otherwise, a control number is 
assigned to the job and the user receives an OK message via the Front Controller. 
At the same time, a Job Daemon pools the Job Queue (5) in the MC64 Algorithm 
Server, and invokes an associated script to each job type (6). These scripts 
communicate with a TilExpress-20G card to upload the required files, run the 
many-core algorithm (7) and download the resulting files (8). When a job is 
finished (9), the daemon calls a Finished Job Manager web service (10), which 
generates a results web page (11) in the Web Server (12.a,b). If an email address 
was specified, this manager sends a message to the user with the general 
performance information and the results as attachment files (12.a).  

3  Supported algorithms and performance 

The MC64 allows to execute three main bioinformatics algorithms for 
sequences alignments: Needleman-Wunsch global pairwise alignment (MC64-
NW), Smith-Waterman local pairwise alignment (MC64-NW/SW) and ClustalW 
multiple alignment (MC64-ClustalW). All of them are based on a parallel 
FastLSA [10] implementation running on TilExpress-20G card (64 cores at 866 
GHz) with 8 GB of RAM. Four of out of the 64 are reserved for host-PCIe 
communication purposes, and the rest are dedicated to run the FastLSA algorithm. 
Unfortunately, the lack of floating point support in the Tile64 tangles the 
implementation of other algorithms, including the widely used heuristic BLAST. 

 

Figure 1. Architecture of the MC64 web platform. The data is processed in three main stages  
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3.1 Pairwise alignments 

Both the local and the global pairwise alignments are based on a parallel 
implementation of the FastLSA algorithm which has been developed from scratch. 
To allow very long sequence alignments, improving the time and memory usage, 
the FastLSA does not store the entire Dynamic Programming Matrix (DPM) in 
memory, but only the rows/columns at positions 0, k, 2k, 3k, etc., where the k-
value can be adjusted to use all the available memory. This strategy takes 
advantage of the main memory resources to achieve better performance than other 
linear-space alignment algorithms, like Hirschberg [11]. 

The Figure 2 shows the execution times and memory requirements for pairwise 
local alignments ranging from 0.5 kb to 1,000 kb. To give the user an idea of the 
power of the many-core technologies, the MC64 web server provides an applet 
which simulates in real-time the alignment of two sequences of 400 kb (only the 
forward stage is simulated). Each dark pixel of the right 267x267 square (Figure 
3) represents the calculus of 2,250,000 cells of the DPM.  

The alignment algorithms require the sequences to align, which may be 
specified typing online text in the Fast Alignment Sequence Tools (FAST)-All 
(FASTA) format, by means of two NCBI GenInfo Identifier (GI) numbers, or 
uploading local FASTA files. Besides, the user can customize the open/extend gap 
cost values, select the scoring matrix to use (among many standard DNA and 
peptide matrices) and the cost of the match/replace operation. In fact, the MC64-
NW/SW constitutes an extension of the MC64-NW, allowing both the local and 
the global alignments, as well as to obtain the alignment in FASTA format or only 
the similarity/homology score. However, the MC64-NW is, indeed, the very first 
Tile64 bioinformatics algorithm ever developed. 

Figure 2. Smith-Waterman alignment performance. The plot shows the execution time 
and the required memory versus the sequence length with optimal k value in each case. 
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3.2 Multiple alignments: ClustalW 

The multiple sequences alignment is one of the most bioinformatics algorithms 
used by life-science researchers. It allows comparing two or more sequences at 
once, in order to determine identities and differences. The result of multiple 
alignment algorithms can be used to generate a phylogenetic tree of the aligned 
sequences (dendrogram). That may be particularly useful to sort the sequences 
(and hence the individuals, varieties, cultivars, strains, breeds, species, etc) taking 
into account the evolutionary (or domestication) point of view. 

The ClustalW is a multiple alignment algorithm divided in three main stages. 
At the time ClustalW is invoked with n sequences, its first stage calculates a 
pairwise alignment between any unordered pair of sequences si and sj with 1 ≤ i ≠ 
j ≤ n. Though the former implementations of ClustalW relied on heuristics to do 
this calculus, the latest ones use optimal alignments. Thus, if the input sequences 
are large (>200 kb), the time consumed by this stage may be prohibitive, even 
with a small number of sequences. For instance, the multiple alignment of 10 large 
sequences requires 45 pairwise alignments, which is costly in time. 

 

Figure 3. Parallel alignment simulation. Web page with an applet simulating in real 
time the pairwise alignment between two sequences of 400 kb length. The core’s grid 
shows four reserved cores (dark grey) and 60 dedicated to align: one is the controller 
(white) and 59 are workers (grey). 
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To overcome this problem, we have developed a preliminary version of the 
ClustalW algorithm, where this stage has been parallelized by using the MC64-
NW/SW in the first stage: MC64-ClustalW. Although our ultimate goal is a full 
parallelization of the ClustalW (including second and third stages, guide tree 
calculus and progressive alignment, respectively), the performance obtained with 
the simple substitution of this first stage is considerable. Thus, the Table 1 shows 
the time consumed by the ClustalW-MPI [12] when is executed in a multi-core 
system (Xeon Quad-core at 2.0 GHz) with 10 sequences of different lengths, as 
compared with the MC64-ClustalW. The performance gain achieved by MC64-
ClustalW increases as the sequences are longer. 

Table 1. Time performance comparison between many- and multi-core implementations. 

Implementation Sequence length (kb) 

200 150 100 50 

MC64-ClustalW  2,860 s.  1,651 s.  898 s.  311 s. 

ClustalW-MPI  9,715 s.  3,572 s.  1,503 s.  427 s. 

Gain (%) 339% 216% 167% 137% 

4  Third party tools integration: Omega-Brigid 

The Omega-Brigid [13] is a framework designed to unify and integrate 
different bioinformatics resources from both local resources and the Internet. 
From a user point of view, the Omega-Brigid tool allows managing workflows; 
i.e., diagrams with a chain of cells connected by arrows, which represent the data 
flow. The user can create such diagrams and execute the corresponding 
workflows, so that the data is retrieved from the input cells, redirected to the 
processing cells and the output is displayed or stored by viewer or storage cells, 
respectively. Most importantly, the Omega-Brigid can be used for any life-science 
researcher, without any computing code programming required. Each cell 
corresponds to a local or remote resource operation. For instance, reading a local 
FASTA file, extracting sequences from their NCBI accession numbers, executing 
a local or remote Basic Local Alignment Search Tool (BLAST) [14], generating 
the reverse complement of a sequence, executing ClustalW, displaying alignments 
in viewers like Jalview [15], etc. The Omega-Brigid is used to illustrate how a 
third-party tool can benefit of the open architecture of the MC64 web platform. 

The Omega-Brigid architecture allows including new functionalities 
straightforwardly by means of Java plugins. Therefore, to use the MC64 platform 
resources, we have developed a plugin to request the execution of any available 
MC64 algorithm to the Launcher Manager web service. Each algorithm is 
represented by a different processing cell. However, the output of such cells is not 
the final result of the algorithm execution, but a Job number (or an error message) 
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that must be used by a next “receiving” cell to retrieve the actual result, when 
available. This second cell polls the user email account for the resulting message 
or polls the MC64 Web Server for the results page whose number corresponds to 
the Job code. When the second cell retrieves the result, this is redirected to the 
next cell, e.g. an appropriate viewer, so the workflow continues. The Figure 4 
shows a very simple workflow to execute the MC64-NW. 

5  Conclusions and further work 

The many-core technologies are evolving in two main different directions: i) 
hundreds and even thousands of cores with minimal resources (GPGPU); and ii) 
tens of cores, each of them being capable of executing a whole operating system 
(SoC). The first ones are readily available because they are widely used in the 
video game market. In this paper we have focused on the latter ones, which 
constitute an emerging technology with great potential for bioinformatics. The 
MC64 web platform allows any life-science researcher to execute basic 
bioinformatics algorithms in the Tile64 architecture and to test the relative 
performance when the same algorithms are executed in a usual x86 multi-core 
architecture. 

Thus, we have demonstrated the potential of the many-core technology for the 
next-generation bioinformatics. With this platform, we want to make this 
technology available to researchers. Our current developments with the Tile64 
includes: i) optimal pairwise alignments of sequences with tens of megabases 
(Mb), ii) ClustalW improvements and iii) high performance pairwise alignments 
between a query sequence and a target database. These services will be publicly 
available by user request, in order to schedule long executions and optimize 
resources. Furthermore, the MC64 Web platform is constantly updated (user 
registration and job management is currently under development). 

 

Figure 4. Omega-Brigid workflow. This workflow example takes two sequences in FASTA 
text format, calls the MC64-NW and, finally, displays the alignment in the Jalview viewer. 
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