
MC64: A web platform to test bioinformatics
algorithms in a many-core architecture

Francisco José Esteban 1, David Díaz 2, Pilar Hernández 3, Juan Antonio
Caballero 4, Gabriel Dorado 5, Sergio Gálvez 2

1 Servicio de Informática, Universidad de Córdoba, 14071 Córdoba (Spain)

2 Dep. Lenguajes y CC. de la Computación, Universidad de Málaga, 29071 Málaga (Spain)

3 Instituto de Agricultura Sostenible (IAS-CSIC), Al. del Obispo, 14080 Córdoba (Spain)

4 Dep. Estadística, Universidad de Córdoba, 14071 Córdoba (Spain)

5 Dep. Bioquímica y Biología Molecular, Universidad de Córdoba, 14071 Córdoba (Spain)

<fjesteban, ma1camoj, bb1dopeg>@uco.es, <david.diaz, galvez>@lcc.uma.es,
phernandez@ias.csic.es

Abstract. New analytical methodologies, like the so-called “next-generation
sequencing” (NGS), allow the sequencing of full genomes with high speed and
reduced price. Yet, such technologies generate huge amounts of data that demand
large raw computational power. Many-core technologies can be exploited to
overcome the involved bioinformatics bottleneck. Indeed, such hardware is
currently in active development. We have developed parallel bioinformatics
algorithms for many-core microprocessors containing 64 cores each. Thus, the
MC64 web platform allows executing high-performance alignments (Needleman-
Wunsch, Smith-Waterman and ClustalW) of long sequences. The MC64 platform
can be accessed via web browsers, allowing easy resource integration into third-
party tools. Furthermore, the results obtained from the MC64 include time-
performance statistics that can be compared with other platforms.

1 Introduction

The MC64 is a web platform allowing researches to test the performance of a
64-core technology with bioinformatics algorithms. Although the term “many-
core” is usually applied to General-Purpose Graphics Processing Units (GPGPU),
where each core has very limited resources, we will use this name to designate a
processor with tens of Central Processing Unit (CPU) cores, each of them being
able to independently execute a different operating system. Amongst them are the

2

Intel Single-chip Cluster Computer (SCC) with 48 cores (x86) [1] and the Tilera
Tile64 with 64 Reduced Instruction Set Computing (RISC) cores [3] without
floating point support. Other manufacturers focus on hybrid solutions using about
tens of cores besides multi-threading, like the Intel Knights Ferry with 32 cores
(x86) and four threads per core [2], the NetLogic XLP832 with eight MIPS64
cores and four threads per core [4] and the Sun UltraSPARC T2 with eight cores
and a total of 64 threads [5]. The Tile64 processor is the only commercially
available many-core System on Chip (SoC). It has been deployed in a Peripheral
Component Interconnect Express (PCIe) card that can be boarded inside a
conventional Personal Computer (PC) running a Linux operating system. This
paper focuses on a TilExpress-20G PCIe card with 8 GB of DDR2 RAM memory
and a Tile64 running at 866 MHz, hosted by a Dell T5400 workstation.

We have tested the performance of the Tile64 when running pairwise alignment
algorithms like Needleman-Wunsch (NW) [6] and Smith-Waterman (SW) [7] to
align DNA, RNA and peptide/protein sequences. Results show that the speedup
can be up to 20x when compared with similar algorithms running in a Xeon Quad-
core workstation with 8 GB of RAM [8]. This ultra-performance is achieved when
the length of the sequences to align is very long; e.g., from 300 kilobases (kb) to
1,000 kb. On the other hand, the pairwise alignment is the basis of ClustalW [9],
which is a multiple alignment algorithm divided in three stages. When aligning n
sequences, the first of these stages requires the execution of n(n–1)/2 pairwise
alignments (quadratic complexity) so, a decrease in the pairwise alignment time
execution significantly decreases as well the total ClustalW execution time.

We have developed and parallelized the NW, SW and ClustalW algorithms
(among others) to evaluate the bioinformatics potential of the Tile64 processor.
They are available via web at <http://www.sicuma.uma.es/manycore>.

2 Architecture

The MC64 web platform has been developed in JavaServer Pages (JSP) and
deployed in Tomcat 5.5 on a low-power PC running Windows XP SP3 and
MySQL 5.0.67. The MC64 uses a Front Controller pattern design, allowing the
user to select the required algorithm and launch a customized execution, by
introducing the chosen parameters.

The Figure 1 shows the workflow of an MC64 request. A Front Controller
retrieves the parameters (1.a) and calls to a Launch Manager web service which
validates them (2.a). This web service can be invoked directly as well by any third
party program that fulfills its Web Services Description Language (WSDL) (1.b,
2.b). If the sequences to work with are specified by their accession numbers, then
the Launcher Manager retrieves them from the National Center for Biotechnology
Information (NCBI) nucleotide database (3). The Launcher Manager estimates the
amount of memory required for operations and stores the job into an intermediate

3

Job Queue database (4) in order to be executed by the MC64 Algorithm Server. If
an out-of-memory is foreseen or parameters are invalid, the job is rejected and the
web service returns an error message to the user; otherwise, a control number is
assigned to the job and the user receives an OK message via the Front Controller.
At the same time, a Job Daemon pools the Job Queue (5) in the MC64 Algorithm
Server, and invokes an associated script to each job type (6). These scripts
communicate with a TilExpress-20G card to upload the required files, run the
many-core algorithm (7) and download the resulting files (8). When a job is
finished (9), the daemon calls a Finished Job Manager web service (10), which
generates a results web page (11) in the Web Server (12.a,b). If an email address
was specified, this manager sends a message to the user with the general
performance information and the results as attachment files (12.a).

3 Supported algorithms and performance

The MC64 allows to execute three main bioinformatics algorithms for
sequences alignments: Needleman-Wunsch global pairwise alignment (MC64-
NW), Smith-Waterman local pairwise alignment (MC64-NW/SW) and ClustalW
multiple alignment (MC64-ClustalW). All of them are based on a parallel
FastLSA [10] implementation running on TilExpress-20G card (64 cores at 866
GHz) with 8 GB of RAM. Four of out of the 64 are reserved for host-PCIe
communication purposes, and the rest are dedicated to run the FastLSA algorithm.
Unfortunately, the lack of floating point support in the Tile64 tangles the
implementation of other algorithms, including the widely used heuristic BLAST.

Figure 1. Architecture of the MC64 web platform. The data is processed in three main stages

4

3.1 Pairwise alignments

Both the local and the global pairwise alignments are based on a parallel
implementation of the FastLSA algorithm which has been developed from scratch.
To allow very long sequence alignments, improving the time and memory usage,
the FastLSA does not store the entire Dynamic Programming Matrix (DPM) in
memory, but only the rows/columns at positions 0, k, 2k, 3k, etc., where the k-
value can be adjusted to use all the available memory. This strategy takes
advantage of the main memory resources to achieve better performance than other
linear-space alignment algorithms, like Hirschberg [11].

The Figure 2 shows the execution times and memory requirements for pairwise
local alignments ranging from 0.5 kb to 1,000 kb. To give the user an idea of the
power of the many-core technologies, the MC64 web server provides an applet
which simulates in real-time the alignment of two sequences of 400 kb (only the
forward stage is simulated). Each dark pixel of the right 267x267 square (Figure
3) represents the calculus of 2,250,000 cells of the DPM.

The alignment algorithms require the sequences to align, which may be
specified typing online text in the Fast Alignment Sequence Tools (FAST)-All
(FASTA) format, by means of two NCBI GenInfo Identifier (GI) numbers, or
uploading local FASTA files. Besides, the user can customize the open/extend gap
cost values, select the scoring matrix to use (among many standard DNA and
peptide matrices) and the cost of the match/replace operation. In fact, the MC64-
NW/SW constitutes an extension of the MC64-NW, allowing both the local and
the global alignments, as well as to obtain the alignment in FASTA format or only
the similarity/homology score. However, the MC64-NW is, indeed, the very first
Tile64 bioinformatics algorithm ever developed.

Figure 2. Smith-Waterman alignment performance. The plot shows the execution time
and the required memory versus the sequence length with optimal k value in each case.

5

3.2 Multiple alignments: ClustalW

The multiple sequences alignment is one of the most bioinformatics algorithms
used by life-science researchers. It allows comparing two or more sequences at
once, in order to determine identities and differences. The result of multiple
alignment algorithms can be used to generate a phylogenetic tree of the aligned
sequences (dendrogram). That may be particularly useful to sort the sequences
(and hence the individuals, varieties, cultivars, strains, breeds, species, etc) taking
into account the evolutionary (or domestication) point of view.

The ClustalW is a multiple alignment algorithm divided in three main stages.
At the time ClustalW is invoked with n sequences, its first stage calculates a
pairwise alignment between any unordered pair of sequences si and sj with 1 ≤ i ≠
j ≤ n. Though the former implementations of ClustalW relied on heuristics to do
this calculus, the latest ones use optimal alignments. Thus, if the input sequences
are large (>200 kb), the time consumed by this stage may be prohibitive, even
with a small number of sequences. For instance, the multiple alignment of 10 large
sequences requires 45 pairwise alignments, which is costly in time.

Figure 3. Parallel alignment simulation. Web page with an applet simulating in real
time the pairwise alignment between two sequences of 400 kb length. The core’s grid
shows four reserved cores (dark grey) and 60 dedicated to align: one is the controller
(white) and 59 are workers (grey).

6

To overcome this problem, we have developed a preliminary version of the
ClustalW algorithm, where this stage has been parallelized by using the MC64-
NW/SW in the first stage: MC64-ClustalW. Although our ultimate goal is a full
parallelization of the ClustalW (including second and third stages, guide tree
calculus and progressive alignment, respectively), the performance obtained with
the simple substitution of this first stage is considerable. Thus, the Table 1 shows
the time consumed by the ClustalW-MPI [12] when is executed in a multi-core
system (Xeon Quad-core at 2.0 GHz) with 10 sequences of different lengths, as
compared with the MC64-ClustalW. The performance gain achieved by MC64-
ClustalW increases as the sequences are longer.

Table 1. Time performance comparison between many- and multi-core implementations.

Implementation Sequence length (kb)

200 150 100 50

MC64-ClustalW 2,860 s. 1,651 s. 898 s. 311 s.

ClustalW-MPI 9,715 s. 3,572 s. 1,503 s. 427 s.

Gain (%) 339% 216% 167% 137%

4 Third party tools integration: Omega-Brigid

The Omega-Brigid [13] is a framework designed to unify and integrate
different bioinformatics resources from both local resources and the Internet.
From a user point of view, the Omega-Brigid tool allows managing workflows;
i.e., diagrams with a chain of cells connected by arrows, which represent the data
flow. The user can create such diagrams and execute the corresponding
workflows, so that the data is retrieved from the input cells, redirected to the
processing cells and the output is displayed or stored by viewer or storage cells,
respectively. Most importantly, the Omega-Brigid can be used for any life-science
researcher, without any computing code programming required. Each cell
corresponds to a local or remote resource operation. For instance, reading a local
FASTA file, extracting sequences from their NCBI accession numbers, executing
a local or remote Basic Local Alignment Search Tool (BLAST) [14], generating
the reverse complement of a sequence, executing ClustalW, displaying alignments
in viewers like Jalview [15], etc. The Omega-Brigid is used to illustrate how a
third-party tool can benefit of the open architecture of the MC64 web platform.

The Omega-Brigid architecture allows including new functionalities
straightforwardly by means of Java plugins. Therefore, to use the MC64 platform
resources, we have developed a plugin to request the execution of any available
MC64 algorithm to the Launcher Manager web service. Each algorithm is
represented by a different processing cell. However, the output of such cells is not
the final result of the algorithm execution, but a Job number (or an error message)

7

that must be used by a next “receiving” cell to retrieve the actual result, when
available. This second cell polls the user email account for the resulting message
or polls the MC64 Web Server for the results page whose number corresponds to
the Job code. When the second cell retrieves the result, this is redirected to the
next cell, e.g. an appropriate viewer, so the workflow continues. The Figure 4
shows a very simple workflow to execute the MC64-NW.

5 Conclusions and further work

The many-core technologies are evolving in two main different directions: i)
hundreds and even thousands of cores with minimal resources (GPGPU); and ii)
tens of cores, each of them being capable of executing a whole operating system
(SoC). The first ones are readily available because they are widely used in the
video game market. In this paper we have focused on the latter ones, which
constitute an emerging technology with great potential for bioinformatics. The
MC64 web platform allows any life-science researcher to execute basic
bioinformatics algorithms in the Tile64 architecture and to test the relative
performance when the same algorithms are executed in a usual x86 multi-core
architecture.

Thus, we have demonstrated the potential of the many-core technology for the
next-generation bioinformatics. With this platform, we want to make this
technology available to researchers. Our current developments with the Tile64
includes: i) optimal pairwise alignments of sequences with tens of megabases
(Mb), ii) ClustalW improvements and iii) high performance pairwise alignments
between a query sequence and a target database. These services will be publicly
available by user request, in order to schedule long executions and optimize
resources. Furthermore, the MC64 Web platform is constantly updated (user
registration and job management is currently under development).

Figure 4. Omega-Brigid workflow. This workflow example takes two sequences in FASTA
text format, calls the MC64-NW and, finally, displays the alignment in the Jalview viewer.

8

Acknowledgments. We are grateful to Tilera for providing hardware and software tools
<http://www.tilera.com>. This work was supported by “Ministerio de Ciencia e Innovación”
[BIO2009-07443-E and AGL2010-17316]; “Consejería de Agricultura y Pesca” of “Junta de
Andalucía” [041/C/2007 & 75/C/2009]; “Grupo PAI” [AGR-248]; and “Universidad de
Córdoba” [“Ayuda a Grupos”], Spain.

References

1. Howard J, Dighe S, Hoskote Y, Vangal S, Finan D, Ruhl G, Jenkins D, Wilson H, Borkar N,

Schrom G et al: A 48-Core IA-32 Message-Passing Processor with DVFS in 45nm CMOS.
In: International Solid-State Circuits Conference, 2010 ISSCC 2010 Digest of Technical
Papers IEEE International. 2010: 19-21.

2. Skaugen K: Petascale to Exascale. In: International Supercomputing Conference. Hamburg,
Germany; 2010.

3. Bell S, Edwards B, Amann J, Conlin R, Joyce K, Leung V, MacKay J, Reif M, Bao L, Brown
J et al: TILE64 - Processor: A 64-Core SoC with Mesh Interconnect. In: Solid-State Circuits
Conference, 2008 ISSCC 2008 Digest of Technical Papers IEEE International. 2008: 88-598.

4. Mike Tate RJ, Behrooz Abdi: NetLogic Microsystems, Inc. Q3 2010 Earnings Conference
Call Transcript. In: Thomson StreetEvents. 2010.

5. Shah M, Barreh J, Brooks J, Golla R, Grohoski G, Gura N, Hetherington R, Jordan P, Luttrell
M, Olson C et al: UltraSPARC T2: A highly-treaded, power-efficient, SPARC SOC Asian
Solid-State Circuits Conference (ASSCC'07) 2007:22-25.

6. Needleman SB, Wunsch CD: A general method applicable to the search for similarities in the
amino acid sequence of two proteins. J Mol Biol 1970, 48(3):443-453.

7. Smith TF, Waterman MS: Identification of common molecular subsequences. J Mol Biol
1981, 147(1):195-197.

8. Gálvez S, Díaz D, Hernández P, Esteban FJ, Caballero JA, Dorado G: Next-Generation
Bioinformatics: Using Many-Core Processor Architecture to Develop a Web Service for
Sequence Alignment. Bioinformatics 2010, 26(5):683-686.

9. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res 1994, 22(22):4673-4680.

10. Driga A, Lu P, Schaeffer J, Szafron D, Charter K, Parsons I: FastLSA: A Fast, Linear-Space,
Parallel and Sequential Algorithm for Sequence Alignment. Algorithmica 2006, 45(3):337-
375.

11. Hirschberg DS: A linear space algorithm for computing maximal common subsequences.
Commun ACM 1975, 18(6):341-343.

12. Li K-B: ClustalW-MPI: ClustalW analysis using distributed and parallel computing.
Bioinformatics 2003, 19(12):1585-1586.

13. Díaz D, Gálvez S, Falgueras J, Caballero JA, Hernández P, Claros G, Dorado G: Intuitive
Bioinformatics for Genomics Applications: Omega-Brigid Workflow Framework. In:
Proceedings of the 10th International Work-Conference on Artificial Neural Networks: Part
II: Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and
Ambient Assisted Living. Salamanca, Spain: Springer-Verlag; 2009: 1084-1091.

14. Altschul S, Gish W, Miller W, Myers E-M, Lipman D: Basic local alignment search tool. J
Mol Biol 1990, 215:403-410.

15. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ: Jalview Version 2--a
multiple sequence alignment editor and analysis workbench. Bioinformatics 2009,
25(9):1189-1191.

