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Abstract

This thesis focus on human action recognition using volumetric reconstructions

obtained from multiple monocular cameras. The problem of action recognition has been

addressed using different approaches, both in the 2D and 3D domains, and using one or

multiple views. However, the development of robust recognition methods, independent

from the view employed, remains an open problem.

Multi-view approaches allow to exploit 3D information to improve the recognition

performance. Nevertheless, manipulating the large amount of information of 3D repre-

sentations poses a major problem. As a consequence, standard dimensionality reduction

techniques must be applied prior to the use of machine learning approaches. The first

contribution of this work is a new descriptor of volumetric information that can be fur-

ther reduced using standard Dimensionality Reduction techniques in both holistic and

sequential recognition approaches. However, the descriptor itself reduces the amount of

data up to an order of magnitude (compared to previous descriptors) without affecting

to the classification performance.

The descriptor represents the volumetric information obtained by SfS techniques.

However, this family of techniques are highly influenced by errors in the segmentation

process (e.g., undersegmentation causes false negatives in the reconstructed volumes)

so that the recognition performance is highly affected by this first step. The second

contribution of this work is a new SfS technique (named SfSDS) that employs the

Dempster-Shafer theory to fuse evidences provided by multiple cameras. The central

idea is to consider the relative position between cameras so as to deal with inconsistent

silhouettes and obtain robust volumetric reconstructions.

The basic SfS technique still have a main drawback, it requires the whole volume

to be analized in order to obtain the reconstruction. On the other hand, octree-based
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representations allows to save memory and time employing a dynamic tree structure

where only occupied nodes are stored. Nevertheless, applying the SfS method to octree-

based representations is not straightforward. The final contribution of this work is a

method for generating octrees using our proposed SfSDS technique so as to obtain

robust and compact volumetric representations.
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Resumen

Esta tesis se centra en el reconocimiento de acciones humanas usando reconstruc-

ciones volumétricas obtenidas a partir de múltiples cámaras monoculares. El problema

del reconocimiento de acciones ha sido tratado usando diferentes enfoques, en los do-

minios 2D y 3D, y usando una o varias vistas. No obstante, el desarrollo de métodos de

reconocimiento robustos, independientes de la vista empleada, sigue siendo un problema

abierto.

Los enfoques multi-vista permiten explotar la información 3D para mejorar el

rendimiento del reconocimiento. Sin embargo, manipular las grandes cantidades de

información de las representaciones 3D plantea un importante problema. Como con-

secuencia, deben ser aplicadas técnicas estándar de reducción de dimensionalidad con

anterioridad al uso de propuestas de aprendizaje. La primera contribución de este tra-

bajo es un nuevo descriptor de información volumétrica que puede ser posteriormente

reducido mediante técnicas estándar de reducción de dimensionalidad en los enfoques

de reconocimiento hoĺısticos y secuenciales. El descriptor, por si mismo, reduce la

cantidad de datos hasta en un orden de magnitud (en comparación con descriptores

previos) sin afectar al rendimiento de clasificación.

El descriptor representa la información volumétrica obtenida en técnicas SfS. Sin

embargo, esta familia de técnicas está altamente influenciada por los errores en el

proceso de segmentación (p.e., una sub-segmentación causa falsos negativos en los

volúmenes reconstruidos) de forma que el rendimiento del reconocimiento está significa-

tivamente afectado por este primer paso. La segunda contribución de este trabajo es una

nueva técnica SfS (denominada SfSDS) que emplea la teoŕıa de Dempster-Shafer para

fusionar evidencias proporcionadas por múltiples cámaras. La idea central consiste en
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considerar la posición relativa entre cámaras de forma que se traten las inconsistencias

en las siluetas y se obtenga reconstrucciones volumétricas robustas.

La técnica SfS básica sigue teniendo un inconveniente principal; requiere que el

volumen completo sea analizado para obtener la reconstrucción. Por otro lado, las

representaciones basadas en octrees permiten salvar memoria y tiempo empleando una

estructura de árbol dinámica donde sólo se almacenan los nodos ocupados. No ob-

stante, la aplicación del método SfS a representaciones basadas en octrees no es di-

recta. La contribución final de este trabajo es un método para la generación de octrees

usando nuestra técnica SfSDS propuesta de forma que se obtengan representaciones

volumétricas robustas y compactas.
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Glossary

Background subtraction Process in which

the background of the scene is seg-

mented in a specific image giving as

result usually two type of elements:

background pixels and shape or fore-

ground ones.

BBA Basic Belief Assignment : Assign-

ment of belief to facts defined in the

Dempter-Shafer probability frame-

work.

F-Measure Common measure in the informa-

tion retrieval field which represent

the weighted harmonic mean of pre-

cision and recall.

FN False Negative: a non-expected nega-

tive value in the information retrieval

field.

FP False Positive: a non-expected posi-

tive value in the information retrieval

field.

GT Ground Truth: previous measure-

ments of properties which act as

reference model against to produce

comparisons.

HMM Hidden Markov model : can be con-

sidered as the simplest dynamic

Bayesian network. Its internal states

are not directly visible, but output,

dependent on the state, is visible. It

is highly used in temporal pattern

recognition such as speech, handwrit-

ing, gesture recognition, etc.

LDA Linear Discriminant Analysis: Di-

mensional reduction technique used

in machine learning to find a linear

combination of features which char-

acterizes or separates two or more

classes of objects or events.

MHV Motion History Volume: 3D action

spatio-temporal descriptor for action

recognition that comprises a whole

action into a single voxelset.

OAR Occupation Area Rate: The percent-

age inside a area of an image which is

occupied by foreground silhouettes.

Octree Tree-based structures for represent-

ing 3D data that are recursively di-

vided into eight cubes of the same

size until a desired resolution is

reached.

PCA Principal Components Analysis: Di-

mensional reduction technique used

in machine learning that transform

data to a new coordinate system such

that greatest variances by any pro-

jection of input data lie on first new

coordinates.

Precision Common measure in the information

retrieval field that indicates the per-

centage of detected TP in relation

to the total number of positives de-

tected.

Projection test Process in SfS algorithms

which evaluates the final state of a

voxel.

Recall Common measure in the information

retrieval field that indicates the per-

centage of detected TP in relation to

the TP in the GT.

SfIS Shape from Inconsistent Silhouettes:

Technique for reconstructing 3D vol-

umes from 2D silhouette images con-

sidering inconsistencies.

vii



SfS Shape from Silhouettes: Technique

for reconstructing 3D volumes from

2D silhouette images.

SfSDS Shape from Silhouettes using

Dempster-Shafer theory : Technique

for reconstructing 3D volumes from

2D silhouette images taking into ac-

count inconsistencies and relative

positions between views. It was pro-

posed in one of the contributions

presented in this thesis.

SVM Support Vector Machine: Machine

learning technique used for classifica-

tion and regression analysis. It could

be generalized as a non-probabilistic

binary linear classifier.

TN True Negative: an expected nega-

tive value in the information retrieval

field.

TP True Positive: an expected true

value in the information retrieval

field.

VH Visual Hull : is the closest 3D solid

equivalent to the real object that ex-

plains the silhouettes extracted in

different views.

VI Volume Integral : A spatio-temporal

descriptor for action recognition that

comprises a specific frame or a whole

action into three planes that maxi-

mize the action’s discriminability. It

was proposed in one of the contribu-

tions presented in this thesis.

Voxel It can be considered the 3D version of

a pixel (or volumetric pixel) and rep-

resents a volume element in a space

usually divided as a regular grid in

the three dimensional space.

Voxel set Regular grid of voxels in the three

dimensional space that represents

the existing foreground objects in a

scene.
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1

Introduction

“Things which we see are not by themselves what we see . . . It remains completely

unknown to us what the objects may be by themselves and apart from the receptivity of

our senses. We know nothing by our manner of perceiving them.”

Immanuel Kant

Computer vision is gradually becoming a known term to the general public. The

reduction of costs, miniaturization and emergence of new visual devices bring this

technology as a day-to-day element in our lives. We can see how video consoles, smart

phones and operative systems start to incorporate vision-based devices and image pro-

cessing algorithms as their human-computer interfaces. Furthermore, the efficiency and

robustness of vision-based systems are increasing in the last years so that we can find

applications using this technology in several other fields such as: surveillance, medicine,

aerospace, agriculture, etc.

Along with the evolution of computer vision, the interest of understanding auto-

matically the activities of people has increased. This interest is motivated by a lot of

promising applications both offline and online, which can be roughly classified in three

categories: surveillance, control and analysis (40). Surveillance applications cover some

of the classical problems related with automatically monitoring and understanding the

behaviour of crowds in airports (53), subways (12), public spaces like malls or in front

of shop windows (57), etc. Also, special attention has been focus on smaller places like

houses or rooms for many diverse purposes such as care-dependent assistance (46). In
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1. INTRODUCTION

control applications the estimated motion or pose parameters can be used to develop

complex human-computer interfaces such as in EyeToy (50) or Kinect (39). They have

also been used in the film industry and video games for modelling the appearance and

movements of avatars. Finally, analysis applications includes automatic medical di-

agnostic, analysis and optimization of athletes performances and annotation of videos

(37) or content-based retrieval (9, 38, 52), among other.

As already seen, action recognition is a wide area of research covering many appli-

cations which imply the need of different degrees of complexity. Several taxonomies has

been proposed to structure the concept of action recognition, and the more recurrently

adopted is in (40): primitive action, action and activity. A primitive action is an atomic

movement that could be described at the level of a limb (“forehand”, “backhand”, “kick

with left leg”, etc.). An action consists of several primitive actions and it describes a

full-body movement, probably cyclic (“run”, “stand-up”). Finally, activities contain a

number of consecutive actions and give meaning to the movements being performed,

e.g., “110m hurdles” is an activity containing the actions “start”, “jump” and “run”.

This work focus mainly on the concept of action (Fig. 1.1).

Figure 1.1: Three frames of the primitive action “kick” and its final volumetric represen-

tation.

In order to make a machine able to understand an action using computer vision,

video sequences from one or several cameras must be provided to it. Then, a spatio-

temporal descriptor must be developed trying to minimize the intra-variance existing

between actions in the same class performed by different persons (42). Such descriptor

could use internal features, external or a mixture of both. External features focus on the

contours, shapes and movements while internal ones are focused on regional properties

such as color or textures. In any case, the selected features for the descriptors must be as

invariant as possible to scale, translation, rotation, and other possible transformations

(25).
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The accuracy level obtained in action recognition is highly influenced by the infor-

mation sources selected. There exist precise approaches based in markers but the need

of external elements for increasing the robustness of the algorithms is a deterrent for

many applications. Initial works in markerless action recognition used 2D approaches

with or without explicit shape models. When model are not employed, movements are

described in terms of low-level 2D features from regions of interest (8, 44). Model based

approaches, however, describe the human body as a kinematic tree, consisting of seg-

ments that are linked by joints. Every joint has a number of Degrees of Freedom (DOF)

indicating in its possible movements and the configuration of all the model’s joints rep-

resents a pose. Two dimentional models are suitable for motion parallel to the image

plane and are sometimes used for gait analysis. When explicit a priori knowledge is

available, human models are usually employed to segment, track and label the different

body parts (3, 4, 30, 31, 36, 43, 49, 51). Two-dimensional approaches have several

limitations, though, such as self-occlusions, noise in the segmentation process, etc.

Therefore, 3D methods try to solve these disadvantages. The first works were focused

on recovering the 3D articulated posed over time. These methods take advantage of the

large amount of a priori knowledge about kinematics and shape properties of the hu-

man body to make the problem tractable (1, 5, 10, 15, 17, 24, 47, 54, 56). However, to

develop a real-time system that employs this sort of models in classical action recogni-

tion problems is still an open problem due to the high computational requirements. As

a consequence, methods that do not require explicit models have received high interest

in last years. In these approaches, the aim is to work directly with 3D information and

perform the rest of the tasks in a four dimensional spatio-temporal framework.

Multi-view approaches for action recognition can be divided in two groups depend-

ing on how they treat 3D information: those that fuse cues from different views at

different stages (such as segmentation, learning and classification) and those that ob-

tain an explicit 3D representation first, and work with it in subsequent processes. We

focus in the latter since a preliminary 3D representation simplifies the subsequent pro-

cesses. In order to obtain such 3D representation from several monocular cameras,

one of the most used techniques is Shape-from-Silhouette (SfS). This is a well-known

approach to reconstruct the 3D structure of objects using a set of silhouettes obtained

from different views. Roberts (45) was the first to introduce the machine perception

of 3D models, while Baumgart (6), a decade after, introduced new concepts about the
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1. INTRODUCTION

3D geometric modelling. But it was not until 1991 that Laurentini (34) defined the

concept of the Visual Hull (VH) as the closest 3D convex solid equivalent to the real

object that explains the silhouettes extracted. The VH is the geometric intersection of

all visual cones explaining the projection of a silhouette in its corresponding camera

image. Consequently, as the number of views increases, so does the precision of the

reconstructed object (35), although it only happens when the image silhouettes are

totally consistent (i.e., there are no errors in the segmentation process).

The first contribution of this Thesis is a new descriptor for three-dimensional action

recognition (20). The proposed descriptor exhibits invariance to scale, translation,

rotation and reflection, by projecting the visual hull into a much smaller subspace that

maximize the discrimination of actions. The descriptor allows to reduce the amount

of information in an order of magnitude while improving the recognition rates when

compared to state of the art descriptors.

Nonetheless, a major problem of standard SfS methods is that they are strongly

linked to the principle of silhouette consistency, i.e., the set of silhouettes employed must

explain precisely the real object. A single inconsistency in one of the silhouettes could

distort the reconstructed VH regarding the expected one, i.e., a hole in a silhouette is

automatically propagated to the three-dimensional reconstruction. As a consequence,

the likelihood of obtaining false negatives in the reconstructed volumes increases with

the number of views. Nevertheless, total consistency hardly ever happens in real-life

scenarios due to several factors such as inaccuracies in camera calibration, foreground

extraction errors (21, 26, 28), and occlusions. Therefore, SfS methods have been usually

confined to problems under controlled conditions (22, 48).

In recent years, several works have addressed the inconsistency problem for SfS in

different ways (13, 22, 32, 33, 48). These approaches aim to exploit the information

redundancy wisely in order to overcome the inconsistency problem using probabilistic

approaches. Despite the improvements achieved, they have missed the use of an impor-

tant piece of information which can be exploited in order to improve reconstruction: the

positional relationship of the cameras. Information about the relative camera locations

can be used to detect inconsistencies. For instance, if a camera indicates that a voxel is

part of the object and another camera close to the former indicates the opposite, then

there is an inconsistency that might be solved by a third camera.

6



The second contribution of this Thesis is a novel technique (19) to improve the

SfS technique by employing information about the camera relationships using the

Dempster-Shafer (DS) theory of evidence (2, 7, 11, 16).

Most SfS algorithms are designed using a grid of voxels for representing and handle

3D information. These “voxels-sets” are arranged homogeneously in the working area

so that accessing them is trivial. Octrees, on the other hand, are tree-based structures

in which the first node, usually called “root”, is recursively divided into eight cubes of

the same size until a desired resolution is reached. They were first used as a method

for representing volumes in an efficient way. Then, several works were proposed to

optimise their creation, storage and manipulation (14, 23, 27, 29, 55). In Fig.1.2 are

depicted the divisions in both representations.

Figure 1.2: In voxel grids every voxel have the same size while in Octrees the sizes depend

on the octree level.

Octrees have some advantages over voxel set approaches. First, the inherent multi-

scale structure used in the representation of the volume. Second, only those nodes

that represent part of an existing object in the scene need to be refined. Therefore, a

better performance is obtained when compared with voxel set methods. However, the

octree-based approach has also drawbacks. First, it is a more complex and dynamic

structure. Second, the size of a voxel in the octree is function of the octree’s level.

SfS methods require a projection test to determine whether a voxel is occupied. In a

voxel set based approach, voxels always have the same volume, and there is a relatively

small ratio of projected surface area to total volume in the working space, making the

7



1. INTRODUCTION

design of the projection test simple. However it does not happen with the octree-based

approach.

The third contribution of this Thesis is a novel approach for reconstructing 3D

volumes with Octrees employing a similar SfS approach than the presented in the

second contribution (18). In this work we have developed a method for handling the

issue with voxels of different size.

1.1 Contributions

This Thesis offers three main contribution which have lead to three papers accepted

in international journals indexed in the JCR. Following, we provide an overview of the

main contributions along with their references.

Action recognition using volume integrals We propose the volume integral (VI)

as a new descriptor for three-dimensional action recognition. The descriptor

transforms the actor’s volumetric information into a two-dimensional representa-

tion by projecting the voxel data to a set of planes that maximize the discrimina-

tion of actions. Our descriptor reduces significantly the amount of data of the 3D

representations yet preserving the most relevant information. As a consequence,

the action recognition process is greatly speeded up while achieving very high

success rates. The method proposed is therefore especially appropriate for appli-

cations in which limitations of computing power and space are significant aspects

to consider, such as real-time applications or mobile devices.

Luis D́ıaz-Más, Rafael Muñoz Salinas, Francisco José Madrid-Cuevas,

and Rafael Medina-Carnicer. Three-dimensional action recognition using

volume integrals. Pattern Analysis and Applications, pages 1–10, September 2011

SfS using DS theory A major problem of standard SfS methods is that they are

strongly linked to the principle of silhouette consistency. A single inconsistency in

one of the silhouettes could distort the reconstructed VH regarding the expected

one. Therefore, SfS methods have been usually confined to problems under con-

trolled conditions. Some researchers have addressed the inconsistency problem

for SfS in different ways. They have exploited the information redundancy in

8



1.1 Contributions

order to overcome the inconsistency problem using probabilistic approaches. De-

spite the improvements achieved, they have missed the use of an important piece

of information which can be exploited in order to improve reconstruction: the

positional relationship of the cameras. Our contribution solves the SfS problem

by employing information about the camera relationships using the DS theory

of evidence. The method, named SfSDS, provides 3D reconstructions robust to

silhouette inconsistencies.

Luis D́ıaz-Más, Rafael Muñoz Salinas, F.J. Madrid-Cuevas, and Rafael

Medina-Carnicer. Shape from silhouette using Dempster–Shafer theory. Pat-

tern Recognition, 43(6):2119–2131, June 2010

SfS using DS theory with Octrees Octree-based SfS approaches have several ad-

vantages, such as computational efficiency and storage, compared with the voxel

set ones. However, the octree-based approach has a main drawback: the size of a

voxel in the octree is a variable that is a function of the octree’s level. All of the

methods for SfS apply a projection test to determine whether or not a voxel is

occupied. In a voxel set-based approach, the voxels always have the same volume,

and there is a relatively small ratio of projected surface area to total volume in

the working space, making the design of the projection test simple. However, it

does not hold with the octree-based approaches. Our proposal extends the SfSDS

method previously developed to octree-based representations.

Luis D́ıaz-Más, Francisco José Madrid-Cuevas, Rafael Muñoz Salinas,

Angel Carmona-Poyato, and Rafael Medina-Carnicer. An octree-based

method for shape from inconsistent silhouettes. Pattern Recognition, 45:3245–

3255, March 2012.
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Three-dimensional action recognition using volume integrals
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Abstract This work proposes the volume integral (VI) as

a new descriptor for three-dimensional action recognition.

The descriptor transforms the actor’s volumetric informa-

tion into a two-dimensional representation by projecting

the voxel data to a set of planes that maximize the dis-

crimination of actions. Our descriptor significantly reduces

the amount of data of the three-dimensional representations

yet preserves the most important information. As a conse-

quence, the action recognition process is greatly speeded up

while achieving very high success rates. The method pro-

posed is therefore especially appropriate for applications in

which limitations of computing power and space are sig-

nificant aspects to consider, such as real-time applications

or mobile devices. Additionally, the descriptor is sensitive

to reflected actions, i.e., same actions performed with dif-

ferent limbs can be differentiated. This paper tests the VI

using several Dimensionality Reduction techniques

(namely PCA, 2D-PCA, LDA) and different Machine

Learning approaches (namely Clustering, SVM and HMM)

so as to determine the best combination of these for the

action recognition task. Experiments conducted on the

public IXMAS dataset show that the VI compares favorably

with state-of-the-art descriptors both in terms of classifi-

cation rates and computing times.

Keywords Action recognition � View invariance �
Multi-camera � Motion descriptor

1 Introduction

Action recognition has become an important research topic

in several fields, such as video analysis, video surveillance,

and human–computer interaction, thus attracting a great

deal of attention in recent years [1, 2]. The problem has

been addressed using different approaches, both in the 2D

and 3D domains, with either single monocular cameras

[3–5], single stereo cameras [6–8], or multiple monocular

cameras [9–12]. However, developing robust methods of

recognition independent of the view employed remains an

unsolved problem [13].

Action recognition approaches can be roughly divided

into two main categories: holistic and sequential. Holistic

approaches consider the whole action as a shape varying in

time and space, which can be represented by a single-

feature vector. Then, inferences can be drawn by different

methods such as Clustering, Neural Networks, or SVM. In

contrast, sequential approaches consider the action as a

series of individual poses, so that a different feature vector

is extracted for each frame. Then, inferences can be drawn

by models such as HMM or Conditional Random Fields,

which capture the intrinsic temporal structure of the action

as a sequence of state transitions.

While most research efforts have been focused on rec-

ognition from arbitrary single view-points, when multiple

views are available during the recognition stage, three-

dimensional information can be exploited to improve the

success of recognition. The works of Weinland et al. [9]

and Peng et al. [14], constitute the two most notable

examples of three-dimensional viewpoint-invariant action

recognition in the holistic and sequential approaches,

respectively. In the first work, the authors propose the

MHV as a method for compressing the voxel’s occupancy

of a whole action into a single voxelset. Then, the spectrum

L. Dı́az-Más (&) � R. Muñoz-Salinas � F. J. Madrid-Cuevas �
R. Medina-Carnicer

Department of Computing and Numerical Analysis,

University of Córdoba, 14071 Córdoba, Spain

e-mail: i22dimal@uco.es
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of the Fourier transform is obtained, which is rotation

invariant, and the result is reduced using PCA. Finally,

recognition is performed using a Clustering method. In the

second work, the voxel data of each frame is reduced using

Multilinear Analysis and Hidden Markov Models (HMM)

for inference.

In both cases, manipulating the large amount of infor-

mation of three-dimensional voxel representations poses a

major problem. As a consequence, standard Dimensionality

Reduction techniques must be applied prior to the use of

Machine Learning approaches. However, a direct applica-

tion of Dimensionality Reduction techniques to voxel data

results in sub-optimal strategies, both in terms of compu-

tational efficiency and recognition performance. The rea-

son is that they require the use of large matrices that are

difficult to manipulate and determine accurately, given the

small number of training examples frequently available.

Therefore, a more compact representation of voxel data

would be preferable.

This work proposes the use of the volume integral (VI),

an intermediate representation of voxel data that can be

used before applying standard Dimensionality Reduction

techniques in both holistic and sequential approaches. The

VI reduces voxel data with a minimum loss of information

by projecting it onto a set of planes that maximize the

discrimination of the actions. Our descriptor allows a

reduction of data by one and three orders of magnitude,

respectively, compared with Weinland’s and Qian’s

approaches. Consequently, Dimensionality Reduction

techniques can be more efficiently applied without affect-

ing classification performance.

Another remarkable property of the VI is that, unlike

Weinland’s descriptor, it is sensitive to reflection. In other

words, it is able to differentiate gestures performed with

different limbs. We consider this as an important advantage

of our method since it doubles the number of possible

gestures that can be represented. For instance, waving the

right hand might trigger an action different from the one

triggered by waving the left hand.

Our descriptor has been evaluated in the public dataset

Inria Xmas Motion Acquisition Sequences (IXMAS) to

compare it with Weinland’s and Qian’s works, which

employ the same dataset. The VI has been applied using

several Dimensionality Reduction techniques and different

Machine Learning approaches (both sequential and holis-

tic) to determine the best strategy for the action recognition

task. The results show that the proposed descriptor

improves on the previous work in terms of both computing

times and classification rates.

The remainder of this paper is structured as follows: The

rest of this section is devoted to related work in the field of

action recognition. Section 2 defines the basis of three-

dimensional action representation approaches, including

the definition of our proposal. Section 3 presents the

experiments carried out, while Sect. 4 draws conclusions.

1.1 Related work and proposed contribution

View-invariant action recognition approaches can be

broadly divided into two main categories: model-based and

view-based. The former rely on a parametric model of the

person (normally comprised of a set of connected joints in

a tree structure), which is matched against the input

observations [15–17]. The latter, however, rely on a set of

observations from which a set of features are learned and

employed for recognition. Our work is related to the latter

category, which has two main sub-categories: holistic and

sequential.

Our approach can be seen as the 3D extension of the

classical silhouette projection histograms, a very popular

method for two-dimensional action recognition proposed

by Haritaoglu et al. [18]. They showed that silhouette

projection histograms are a very simple yet effective rep-

resentation mechanism [19–21]. Their main disadvantage

is that the results depend strongly on the view. Thus, a

great part of the effort on view-based invariant gesture

recognition has been focused on recognizing actions

observed from single arbitrary viewpoints, using models

acquired from either single or multiple views. One of the

earliest holistic approaches is the Motion-History Image

(MHI), proposed by Bobick and Davis [3]. In their work,

temporal templates are created by analyzing movement

information, and gestures are identified by measuring dis-

tances to templates previously stored from multiple views.

Later, Yilmaz and Shah propose the use of spatio-temporal

volumes (STVs), which are automatically generated for

actions observed from any viewing direction using a graph-

theoretic approach. STVs are later extended to multiple-

views by Pingkun et al. [12]. They propose the use of 4D

action feature model (4D-AFM) for recognizing actions

from arbitrary viewpoints. The 4D-AFM is created by

concatenating in time a sequence of reconstructed visual

hulls (VHs) and then computing the differential geometric

properties of the STVs. Also, Souvenir and Parrigan [22]

propose a manifold learning-based framework which is

tested on MHI and on the R Transform Surface Motion

Descriptor.

When a sequential approach is selected, HMM are most

frequently employed. Lv and Nevatia [23] propose an

example-based action recognition method by the use of

Action Nets. The action nets are automatically generated

graph models that contain the 2D representation of one

view of 3D key poses, in which links represent transitions

between key poses. Inspired by that work, Ji and Liu [24]

propose a simpler approach, in which actions are first

clustered in the 3D space and then projected onto virtual
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cameras. On the other hand, Weinland et al. [25] propose

the use of a wrapper approach to determine the key

exemplars; Chakraborty et al. [5] propose a different

approach, in which individual classifiers are trained for

specific body parts seen from specific viewpoints. Then,

actions are recognized by a component-wise HMM that

takes as input the classifier results.

In any case, recognition from a single monocular view

suffers from ambiguities produced by projecting on two-

dimensional images, e.g., it is difficult to determine if a

person is pointing towards the camera or away from it.

Thus, some authors have proposed the use of stereo vision.

Shin et al. [6] were the first to extend MHIs to 3D using

stereo input sequences for generating Motion History

Models (MHMs). Later, Muñoz-Salinas et al. [8] presented

stereo-based extensions to several monocular approaches,

showing that using stereo information leads to better results

in all cases. Recently, Roh et al. [7] proposed an extension

of MHI to three-dimensional space called volume motion

template (VMT). It is obtained by projecting stereo infor-

mation to a 2D orthogonal plane that maximizes the dis-

crimination of the action.

Despite the great attention that has been paid to the

recognition of actions from a single viewpoint, there are

applications in which multiple views are available during

the recognition phase. These approaches rely on voxel data,

a grid-based division of the 3D space into cubes of the

same size that can be either occupied or empty. The set of

voxels occupied by an actor forms the so-called visual hull

(VH), which is a rich description of the actor’s shape.

Although 3D approaches can yield more descriptive mod-

els and thus achieve higher success rates, few view-based

approaches have been proposed to exploit this fact.

The work of Weinland et al. [9] is one of them. The

authors propose the motion history volume (MHV), a

natural 3D extension of MHI, which is a representation of

the sequence of VHs that form an action. The MHV is

processed using the Fourier transform in order to obtain its

spectrum, which is invariant under rotation. Finally, the

spectrum is reduced using principal component analysis

(PCA), and inference is performed using Clustering.

Nonetheless, their approach has two main drawbacks. First,

the number of features that result from the Fourier spec-

trum extraction is very high. After taking advantage of

spectrum symmetry, the number of features to be reduced

with (PCA) is ðnh � nz � nrÞ=2; where nh; nz and nr are the

numbers of subdivisions on each axis. As a consequence,

the Dimensionality Reduction process is slow, and in some

cases, the number of observations is insufficient to obtain

reliable covariance matrices. Second, a side effect of using

the Fourier spectrum is that the resulting descriptor is

invariant under reflection. Thus, gestures performed with

different limbs produce similar descriptors, which might be

a problem in certain applications.

In contrast, the work of Peng et al. [14] presents a

sequential approach based on HMM. It consists of reducing

voxel data by pose tensor decomposition using the High

Order Singular Value Decomposition method, which is a

generalization of the singular value decomposition method

for matrices of arbitrary dimensions. Although their

method improves on the results obtained by Weinland’s, it

suffers from several weaknesses. First, it requires a dis-

cretization of all possible body orientations so as to create

tensors in each direction. Second, and partially as a con-

sequence of the former, the pose tensor requires a large

amount of memory. It requires nx � ny � nz � r � n fea-

tures, where nx; ny and nz denote the number of subdivi-

sions in each axis; the parameter r represents the number of

possible body orientations; and n is the number of key

poses (these are employed to calculate the core tensor).

These values are set to nx ¼ ny ¼ nz ¼ 32; r ¼ 16 and

n = 25 in their work. We consider that the large amount of

information required by this method makes it inappropriate

for many applications and that the use of lighter methods

would be preferable. Our comparison to this method will be

based on the results reported by the authors.

2 Action representation

This section explains the basis of the methods employed

for action representation. The first two sections explain the

techniques employed for representing 3D actions. First,

Sect. 2.1 explains the concept of VH and how it is created

using the Shape-from-Silhouette (SfS) algorithm. Whereas

sequential approaches use the VH generated at each frame

for recognition, holistic approaches use the MHVs, which

compresses a set of frames into a single voxelset

(Sect. 2.2).

Once a suitable 3D representation of the actions is

obtained, the information is transformed so as to reduce the

amount of data, and to achieve rotation invariance. Section

2.3 explains Weinland’s approach while Sect. 2.4 describes

our proposal, the VI.

2.1 Visual hull extraction

Let us assume that the monitored area can be divided into

cubes of the same volume (called voxels) denoted by

V ¼ fviji ¼ ðxi; yi; ziÞg; ð1Þ

where i ¼ ðxi; yi; ziÞ represents the voxel’s center in

Cartesian coordinates and vi 2 f1; 0g depending on whe-

ther the voxel is occupied or empty.
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The VH of an actor consists of all the occupied voxels

that belong to him, and it can be calculated using the well-

known SfS algorithm [26], although more recent approa-

ches can also be employed [27, 28]. For that purpose, we

require a set of cameras surrounding the actor and placed at

known locations determined by calibration. In addition, a

background subtraction method is required to obtain the

actor’s silhouettes.

The traditional SfS method examines the projections of

the voxels in the foreground images in order to determine

whether they belong to the shapes in question. This is

achieved by means of a projection test. Each voxel is

projected in all the foreground images, and if its projection

lies completely inside a silhouette in all the foreground

images, then it is considered occupied. However, if the

voxel projects to a background region in any of the images,

it is considered empty. Finally, if the voxel projects par-

tially onto a foreground region it is considered to belong to

a border, and a decision must be made. In the end, the

result is a Boolean decision {0,1} indicating whether the

region of the space represented by the voxel is empty or

occupied.

Figure 1a shows the VHs obtained for three instants of

time in one of the kick sequences of the IXMAS dataset.

2.2 Motion history volumes

The motion history volumes compress a set of VH into a

single probabilistic representation of the voxels’ occu-

pancy. Let us define vi
t as the value of voxel vi at time t.

Then the MHV function is defined by

Vsði; tÞ ¼
s if vi

t ¼ 1

maxð0;Vsði; t � 1Þ � 1Þ otherwise
;

�
ð2Þ

where s is the duration, in number of frames, of the action

represented. At instant t;Vsði; tÞ has values close to s if the

corresponding voxel has been recently observed as occu-

pied. Values of Vsði; tÞ near 0 indicate that the voxel has not

been occupied recently, and the value 0 indicates that it has

not been observed in occupation of any of the sequence

frames.

In order to perform a reliable comparison between the

MHVs, they must be normalized. Assuming that the start

and end time of the action is known, the MHV is nor-

malized as

VðiÞ ¼ Vsði; sÞ
s

: ð3Þ

Invariance to translation and scale are achieved by calcu-

lating the means lx; ly; lz and variances rx; ry; ry of the

non-empty voxels in the MHV and then shifting and

scaling it so that lx ¼ ly ¼ lz ¼ 0 and rx ¼ ry ¼ rz ¼ 1:

Figure 1c shows the MHV of the action shown in

Fig. 1a. Red colors represent values near 1 while blue

correspond to values close to 0. Then, more recently

occupied voxels correspond to redder areas.

The main advantage of the MHV is that it compresses a

whole sequence into a single voxelset. However, it has two

main drawbacks. First, it requires knowledge of the start

and end of the sequence. Second, the speed at which the

action is performed affects the MHV obtained. On the other

hand, sequential approaches are in theory less sensitive to

that problem because they are capable of modeling the

intrinsic dynamics of the action as state transitions.

2.3 Weinland’s descriptor

Although the VHs and MHV are invariant under scaling

and translation, they are not invariant under rotation. The

descriptor proposed by Weinland et al. [9] achieves rota-

tion invariance by using the Fourier transform (FT), taking

into account the Fourier shift theorem. This states that a

Fig. 1 a Set of visual hulls of the kick action. b Volume integrals of the actions’ visual hulls. c MHV of the action. d Volume integral of the

MHV
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function f0(x) and its translated counterpart ftðxÞ ¼ f0ðx� x0Þ
differ only by a phase modulation in the Fourier space:

FtðkÞ ¼ F0ðkÞe�j2pkx0 :

In this descriptor, voxels are expressed in a cylindrical

coordinate system (see Fig. 2) defined as follows:

Cðr; h; zÞ ¼ Vðr cosðhÞ; r sinðhÞ; zÞ
Thus, rotations around the vertical z-axis result in

cyclical translation shifts:

Vðx cosðh0Þ þ y sinðh0Þ;�x sinðh0Þ þ y cosðh0Þ; zÞ
! Cðr; hþ h0; zÞ:

Hence, rotation invariance along h for each pair of values

(r, z) is achieved using the Fourier spectrum values

jCðr; kh; zÞj of the 1D Fourier transform

Cðr; kh; zÞ ¼
Zp

�p

Cðr; h; zÞe�j2pkhhdh: ð4Þ

The descriptor is then defined as the vector

W ¼ fwz;rjz ¼ 1; . . .; nz; r ¼ 1; . . .; nrg; ð5Þ

where

wz;r ¼ fjCðr; k0
h; zÞj; . . .; jCðr; knh

h ; zÞjg; ð6Þ

The parameters nz, nr and nh represent the number of

divisions employed in r-, h- and z-axes, respectively.

Due to the trivial ambiguity of 1D-Fourier magnitudes

with respect to the reversal of the signal, motions that are

symmetric with respect to the z-axis (i.e., identical actions

performed with different limbs) result in the same motion

descriptors. Invariance under reflection can be considered

either as a loss of information or as a useful property,

depending on the final application. In any case, considering

the symmetry of the Fourier spectrum, the total number of

features of the descriptor is ðnh � nz � nrÞ=2; which is very

large.

Although in his original work Weinland applied the

descriptor only to reduce MHVs, note that the descriptor

can also be employed to reduce individual VHs. Actually,

this work demonstrates (in the experimental section) that

Weinland’s descriptor obtains better results when it is

employed in combination with a sequential approach

(HMM) than when the MHV is employed.

2.4 Volume integral

As can be observed, the amount of information obtained in

a voxel-based representation is very high. Hence, it is

desirable to reduce it before applying Machine Learning

techniques. To that end, we propose the VI, which is an

alternative representation of a voxelset that can be applied

both to VHs and MHVs. The idea is to project the three-

dimensional information to a set of planes that maximize

the action’s discriminability.

For the calculus of the VI, it is assumed that there is a

voxelset invariant under translation and scaling. This is

achieved using the transformation procedure explained

above for the MHV (i.e., calculating the means and vari-

ances of the voxelset and then shifting and rescaling it so

that lx ¼ ly ¼ lz ¼ 0 and rx ¼ ry ¼ rz ¼ 1). Afterwards,

rotation invariance is obtained by finding the angle that

aligns two identical voxelsets. The actor’s main direction is

then obtained and the voxelset rotated accordingly.

Assuming that people stand while performing actions, the

angle search can be restricted to the x–z plane. Thus,

the actor’s main direction is defined as the vector from the

center of the volume to the farthest occupied voxel.

The resulting voxelset is then integrated over the three

axes in pairs, so that the 3D information is represented by

three 2D images with a minimum loss of information. Let

us define the integrals of the voxelset as

Pzðx; yÞ ¼
1Pnz

i¼1 dðVðx; y; ziÞÞ
Xnz

i¼1

Vðx; y; ziÞ; ð7Þ

Pyðx; zÞ ¼
1Pny

i¼1 dðVðx; yi; zÞÞ
Xny

i¼1

Vðx; yi; zÞ; ð8Þ

and

Pxðy; zÞ ¼
1Pnx

i¼1 dðVðxi; y; zÞÞ
Xnx

i¼1

Vðxi; y; zÞ: ð9Þ

The function Vðx; y; zÞ is the value of the voxel with center

(x, y, z). When calculating the VI from a VH, Vðx; y; zÞFig. 2 Representation of Weinland’s descriptor. Fourier transforms

over h are computed for (r, z) pairs forming the feature vector
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represents the voxel’s state, i.e., Vðx; y; zÞ 2 f0; 1g; indi-

cating whether the voxel is empty or occupied. However,

when the VI represents a MHV, Vðx; y; zÞ 2 ½0; 1� is the

continuous value given by Eq. 3. The function d is 0 if

the voxel’s occupancy is 0 and 1 otherwise. Therefore, the

integrals are normalized by dividing by the number of non-

empty voxels. If all the voxels are empty for a specific

pixel of the plane then its final value is 0.

Note that the integral is normalized by dividing by the

number of non-empty voxels instead of by the total number

of subdivision (nx, ny or nz). We have experimentally found

that this approach yields better results, especially when

dealing with MHV. The reason is that for regions such as

limbs, the sum of the occupancy is very low, and dividing

by the non-empty voxels better preserves the information

for these parts.

Figure 1c, d shows the VI corresponding to the voxel-

sets of Fig. 1a and b. It can be observed that our normal-

ization approach produces binary silhouettes when applied

to VHs, but it preserves the most essential spatio-temporal

properties when applied to MHVs.

Finally, a unique descriptor is formed by concatenating

all the features in Pyðx; zÞ;Pzðx; yÞ and Pxðy; zÞ: Figure 3

outlines the main steps of the proposed method. Note that

the two first steps of the algorithm are explained in Sect.

2.2

When compared with Weinland’s descriptor, the VI

achieves a substantial reduction of the data because the

final feature vector contains only nx � ny þ nx � nx þ ny �
nz elements. For instance, for a voxel set of resolution

64 9 64 9 64 (as employed in our experiments), Wein-

land’s descriptor produces 131,072 features, while ours

produces 12,288, i.e., approximately ten times fewer

features. Compared with Qian’s descriptor, our descriptor

produces one hundred times fewer features. As we show in

the experimental section, these are sufficient to provide

better results than Weinland’s descriptor. In addition, the

VI produces different descriptors for reflected actions.

Hence, similar actions performed with different limbs can

be distinguished.

3 Experimental results

This section presents the experiments conducted to evalu-

ate the proposed descriptor. For testing purposes, the public

IXMAS dataset has been employed. It is a well-known 3D

dataset in the field of action recognition that contains 13

actions, each one performed three times by 12 different

actors. The actors freely change their orientations in each

acquisition so that rotation invariance can be analyzed.

The goal of our experiment is fourfold. First, we seek to

evaluate the performance of the VIs using different com-

binations of Dimensionality Reduction techniques and

Machine Learning approaches in order to find the most

appropriate one. Second, we compare the discriminability

power of our descriptor to the one proposed by Weinland

[9]. For that purpose, the descriptors are evaluated using

the original dataset and the results are presented in Sect.

3.1. Third, the tests evaluate the discriminatory power of

the descriptors when reflected actions are considered, i.e.,

identical actions performed with different limbs. For that

purpose, a total of four new actions are added to the ori-

ginal dataset by applying a reflection operator to some of

the original actions. The results obtained are shown in Sect.

3.2. Finally, in Sect. 3.3, we also aim to evaluate the

improvement in the computational time achieved by our

descriptor when compared with Weinland’s.

We have employed the same evaluation methodology

employed in Ref. [9] so as to obtain comparable results.

This means that: (a) we have used 10 of the 12 actors in the

dataset; (b) a leave-one-out cross-validation is applied, i.e.,

one actor is chosen for testing and the rest are used for

training; (c) actions 11 (point) and 13 (throw over head)

have not been included, because they are performed very

differently by the actors, and (d) the space is discretized

into 64 subdivisions for each axis. In addition, the VHs and

ground-truth provided with the dataset have been

employed.

3.1 Comparative evaluation in the IXMAS dataset

The first test compares our descriptor to Weinland’s in the

original IXMAS dataset using different combinations of

Dimensionality Reduction and Machine Learning approa-

ches. The results of the tests are shown in Table 1.Fig. 3 Algorithm that transform a 3D volume into a volume integral
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The first column indicates the Machine Learning

approach employed, and the second column indicates the

Dimensionality Reduction technique applied. In the first

column, the SVM-RBF stands for Support Vector Machines

(SVM) using radial basis function, while SVM-LIN indi-

cates that a linear kernel is being employed. The third and

fourth columns show the results obtained for the different

descriptors. For the SVM-RBF, SVM-LIN and HMM

methods, the results presented correspond to the best

results after testing with different values of the methods’

parameters. As previously explained, the Clustering, SVM-

RBF and SVM-LIN methods are applied using the MHVs.

However, the HMM tests employ the individual VHs

generated at each frame.

We note several remarks regarding the Dimensionality

Reduction techniques. First, the complete two-dimensional

principal component analysis (2D-PCA) technique has

been applied to our descriptor but not to Weinland’s

descriptor, since the technique requires the data to be a

two-dimensional matrix. Different compression ratios have

been tested, and the values in the Table correspond to those

that provided the best results. Second, to determine the

number of PCA components, we have employed the min-

imum-error formulation suggested by Bishop [29]. For the

VI, we retain, approximately, the first 123 principal com-

ponents out of the 12,288 features given by the descriptor.

For Weinland’s descriptor, we employed approximately

233 components out of the 131,072 features. Finally, for

the linear discriminant analysis (LDA) method, we retained

only the ten most relevant features, i.e., the number of

classes minus one.

The results obtained show that Weinland’s descriptor

obtains better results than ours when the Clustering and

SVM-LIN methods are applied. However, the VI obtains

better results when using the SVM-RBF and HMM meth-

ods. In general, the results show that the combination of

HMM? (PCA?LDA) obtains the best results for both

descriptors. In particular, our method obtains, in the best

case, a 98.45% success rate. This result is obtained using

HMM with 12 states and no skips between states.

In order to compare both methods more formally, we

have used a Paired-Samples test using the data in Table 1

(excluding the 2D-PCA results because they are not

available in both methods). For more information on sta-

tistical analysis see [30, 31]. The first three rows of Table 2

show the performance statistics of both methods, while the

last row shows the statistics calculated by the Paired-

Samples test. As indicated in the table, the significance of

the null hypothesis is 0.290 (following a two-tailed

T-Distribution with 7 degrees of freedom (DOF)). Using a

p value [ 0.05, the test indicates that there is not enough

evidence to reject the null hypothesis. In other words, there

is insufficient evidence to suggest that one method is better

than the other in terms of performance in the dataset

employed.

Finally, we must indicate that the work of Qian et al.

[14], reported a success rate of 94.59%. To allow replica-

tion of our experiments, we provide the complete set of VIs

corresponding to the VHs and MHVs of the IXMAS

actions, along with references to the libraries we have used.

Note to reviewers: The final location of this data has not

yet been determined since it might be located in the journal

servers. However, the dataset is temporarily available at

http://www.uco.es/users/i22dimal/files/data-vi.tar.bz2 for

reviewing purposes.

Table 1 Classification results in the original IXMAS dataset

Mach. Learn Dim. Red Weinland Volume integrals

Clust. PCA 93.33 90.90

Clust. 2D-PCA – 85.15

Clust. PCA?LDA 92.42 90.90

SVM-RBF PCA 80.90 90.00

SVM-RBF 2D-PCA - 77.27

SVM-RBF PCA?LDA 89.39 86.69

SVM-LIN PCA 89.09 88.87

SVM-LIN 2D-PCA – 86.66

SVM-LIN PCA?LDA 86.69 88.48

HMM PCA 71.21 76.06

HMM 2D-PCA - 87.57

HMM PCA?LDA 93.64 98.45

Table 2 Statistics of the distributions and results of the paired-samples test

Method Mean Std. deviation Std. error

Weinland 0.8708 0.0765 0.0270

VI 0.8879 0.0621 0.0219

Mean Std. deviation Std. mean error t DOF Sig. (2-tailed)

Weinland-VI -0.0171 0.0422 0.0149 -1.145 7 0.290

See text for discussion
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3.2 Comparative evaluation using reflected actions

The goal of this test is to evaluate the ability of our method

to deal with reflected actions. For that purpose, a new

dataset has been created by adding four new actions to the

original IXMAS dataset. The new actions are created by

applying a reflection operator to the actions check watch,

wave hand,kick, and punch. An example can be seen in

Fig. 4, which shows the original VH of one of the

sequences of the punch action, along with its reflected

counterpart. It can be observed that the action is identical

except for the fact that it seems to be performed with the

opposite arm.

The results using the two descriptors are shown in

Table 3. The parameters of the Machine Learning and

Dimensionality Reduction techniques have been obtained

as in the previous test.

As previously explained, the descriptor proposed by

Weinland is not capable of distinguishing between reflec-

ted action because of the symmetry of the Fourier spec-

trum. This explains the bad results obtained in this test.

In contrast, the proposed VI achieves better classifica-

tion results using all combinations of Machine Learning

and Dimensionality Reduction techniques. As in the pre-

vious case, the best results are obtained for a combination

of HMM and (PCA?LDA). The HMM had eight states and

no skips between states.

The confusion matrices of each descriptor for the best

case are shown in Figs. 5 and 6. The actions identified with

the suffix R correspond to those reflected. It can be clearly

observed that most of the errors of Weinland’s descriptor

correspond to confusion between an action and its reflected

counterpart.

As in the previous case, we have employed the Paired-

Samples test to compare the results. Table 4 shows the

Fig. 4 Reflection of action ‘‘punch’’

Table 3 Classification results in the IXMAS dataset using reflected

actions

Mach. Learn Dim. Red Weinland Volume integrals

Clust. PCA 70.00 84.88

Clust. 2D-PCA - 80.66

Clust. PCA?LDA 67.99 85.55

SVM-RBF PCA 68.44 83.55

SVM-RBF 2D-PCA - 70.66

SVM-RBF PCA?LDA 70.22 84.88

SVM-LIN PCA 64.22 78.44

SVM-LIN 2D-PCA - 70.80

SVM-LIN PCA?LDA 59.99 81.77

HMM PCA 52.2 72.50

HMM 2D-PCA - 79.20

HMM PCA?LDA 70.90 91.90

Fig. 5 Confusion matrix for the VI descriptor in the test with

reflected actions. The results correspond to the combination of

(PCA?LDA) and HMM

Fig. 6 Confusion matrix for Weinland’s descriptor in the test with

reflected actions. The results correspond to the combination of

(PCA?LDA) and HMM
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performance statistics of both methods, along with the

statistics calculated by the test. In this case, the null

hypothesis is rejected using a p value [ 0.05, so we can

affirm that the proposed method is significantly better than

Weinland’s in distinguishing actions performed with dif-

ferent limbs.

3.3 Evaluation of the computational cost

The experiments conducted so far show that the proposed

descriptor outperforms Weinland’s method in several sit-

uations while using far fewer features. The results also

suggest that a combination of PCA?LDA provides the best

performance. LDA computation is not a time-consuming

process, since the number of features obtained after PCA is

small. However, calculating the PCA eigenvectors and

eigenvalues, as well as projecting the patterns to its main

components, is computationally demanding processes.

This section aims to analyze the benefit of using the

proposed VI descriptor in terms of computing time. To that

end, we have measured the times needed to calculate the

most relevant phases of the action recognition process for

the two descriptors; the results are presented in Table 5.

The first column indicates the descriptor employed, and the

second column indicates the time required to calculate it

from a single voxelset. The third column indicates the

average time required to calculate the PCA eigenvectors

and eigenvalues for the MHVs of all the train patterns in

the IXMAS database (i.e., a total of 297 patterns). Finally,

the last column indicates the amount of time required to

reduce a single voxelset to its main components. The tests

have been performed on a Intel Quad Core 2.66 Ghz with

4 Gb of RAM, running Linux, and the routines employed

for computing PCA and the Fourier transform are those

provided by the OpenCv library [32].

Note that the calculation of the VI requires half the time

required by Weinland’s descriptor. In addition, the com-

puting times required for the PCA process are reduced by

one order of magnitude. We propose that the reduction in

the computational cost makes the proposed descriptor more

suitable for a wide variety of applications in which time is

a crucial aspect.

4 Conclusions

This paper proposes a new descriptor, the VI, for three-

dimensional action recognition. Our descriptor (which is

invariant under rotation, scaling and translation) is created

by integrating voxel data over a set of planes that maximize

the discriminability of actions. The main advantage of our

descriptor is that it significantly reduces the amount of data

of three-dimensional representations yet preserves the most

important information. As a consequence, the action rec-

ognition process is greatly sped up, but very high success

rates are maintained. In addition, the proposed descriptor

can distinguish between reflected actions, which was not

possible with some of the previous approaches.

The VI is tested in the IXMAS dataset and compared

with the descriptor proposed by Weinland et al. [9]. The

experiments evaluate the performance of the descriptors

using several Dimensionality Reduction and Machine

Learning techniques, so as to determine the most appro-

priate combination. The results show that: (a) the proposed

descriptor obtains similar performance to Weinland’s des-

cripor in the IXMAS data set, and better performance on

mirrored action; (b) the combination of PCA?LDA and

HMM obtains the best classification results; and (c) the

proposed descriptor reduces the amount of data to be

manipulated by one order of magnitude compared with

Weinland’s approach. As a consequence, the time

employed to reduce the dimensionality of our feature

vector is also reduced by an order of magnitude.
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Table 4 Statistics of the distributions and results of the paired-samples test using the database of reflected actions

Method Mean Std. deviation Std. error

Weinland 0.6549 0.0649 0.0229

VI 0.8293 0.0567 0.0200

Mean Std. deviation Std. mean error t DOF Sig. (2-tailed)

Weinland-VI -0.1743 0.0315 0.0111 -15.622 7 0.00

See text for discussion

Table 5 Times employed in computing and reducing data using PCA

Descriptor Desc. Comp. (s) PCA-Comp. (s) PCA-Reduct. (s)

VI 4.6- 3 3.7 1.04- 2

Weinland 1.1-2 37.5 1.14-1
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a b s t r a c t

This work proposes a novel shape from silhouette (SfS) algorithm using the Dempster–Shafer (DS)

theory for dealing with inconsistent silhouettes. Standard SfS methods makes assumptions about

consistency in the silhouettes employed. However, total consistency hardly ever happens in realistic

scenarios because of inaccuracies in the background subtraction or occlusions, thus leading to poor

reconstruction outside of controlled environments.

Our method classify voxels using the DS theory instead of the traditional intersection of all visual

cones. Sensors reliability is modelled taking into account the positional relationships between camera

pairs and voxels. This information is employed to determine the degree in which a voxel belongs to a

foreground object. Finally, evidences collected from all sensors are fused to choose the best hypothesis

that determines the voxel state.

Experiments performed with synthetic and real data show that our proposal outperforms the

traditional SfS method and other techniques specifically designed to deal with inconsistencies. In

addition, our method includes a parameter for adjusting the precision of the reconstructions so that it

could be adapted to the application requirements.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Shape from silhouettes (SfS) is a well known approach to
reconstruct the three-dimensional structure of objects using a set
of silhouettes obtained from different views. Baumgart [2] was
the first in introducing some concepts about the 3D geometric
modelling, but it was not until 1991 that Laurentini [26] defined
the concept of the Visual Hull (VH) as the largest 3D solid
equivalent to the real object that explains the silhouettes
extracted. The VH is obtained as the geometric intersection of
all visual cones explaining the projection of a silhouette in its
corresponding camera image. Consequently, as the number of
views increase, so does the precision of the reconstructed object
[27].

A major problem of standard SfS methods is that they are
strongly linked to the principle of silhouette consistency, i.e., the
set of silhouettes employed must explain precisely the real object.
A single inconsistency in one of the silhouettes makes the VH
reconstructed no longer equivalent to the real object. However,
total consistency hardly ever happens in real-life scenarios due to
several factors such as inaccuracies in camera calibration, fore-
ground extraction errors [15,20,22], occlusions, etc. Therefore, SfS
methods have been usually confined to problems under con-
trolled conditions [8,17,40,41,47].

In recent years, a number of works have addressed the
SfS problem in different ways [7,17,24,25,40]. These approaches
aim to exploit the information redundancy wisely in order
to overcome the inconsistency problem using probabilistic
approaches. Despite the improvements achieved they have
missed the use of an important piece of information which can
be exploited in order to improve reconstruction: the positional
relationship of the cameras. Information about the relative
camera locations can be used to detect inconsistencies as we
show in this work. For instance, if a camera indicates that a voxel
is part of the object and another camera close to the former
indicates the opposite, then there is an inconsistency that might
be solved by a third camera.

This paper proposes a novel approach to solve the SfS problem
by employing information about the camera relationships using
the Dempster–Shafer (DS) theory of evidence [1,3,5,11,18,36]. In
our approach, camera pairs are employed as sensors instead of
individual cameras. Each sensor employs a confidence model
which takes into account the relative position of their cameras in
relation to the voxels analyzed. Besides, sensors provide degrees
of evidence about the occupancy of voxels which are fused using
the Dempster’s rule of combination in order to provide a final
value representing the probability of a voxel to be occupied. The
experiments conducted (both in synthetic and real environments)
show that our method outperforms traditional and new SfS
approaches (namely Ref. [25]), specially in the presence of strong
noise.

The remainder of this paper is structured as follows. The rest of
this section provides an overview of the most relevant works
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related to ours along with its main contributions. In Section 2, the
basis of the DS theory of evidence are explained. The standard SfS
method along with its limitations are shown in Section 3 while
Section 4 details our proposal. Finally, Section 5 explains the results
obtained and some final conclusions are drawn in Section 6.

1.1. Related works

Many SfS algorithms have been proposed for creating
volumetric models since the initial definition of VH by Laurentini
[26]. While some methods employ a set of cameras distributed
around the area of work, others employ a single camera and place
the object on a turntable [8,41,47]. Either way, foreground
extraction plays an essential role in the extraction of the VH.
Traditionally, the two classical approaches are voxel sets and
octrees. In the first approach, the entire area of interest is
discretized in a three-dimensional grid of voxels of the same
volume. Then, voxels are projected in all the images to check
whether they belong to foreground objects. The second approach
is the octree structure which is based on a tree of voxels. Octree-
based methods [6,21], starts with a cube that cover all the
working area which is recursively subdivided into eight voxels
until they reach an homogeneous content (shape or background)
or a maximum resolution has been reached. In this work, we are
interested in voxel sets.

Standard SfS methods are strongly linked to the principle of
silhouettes consistency. However, full consistency hardly even
happens in realistic scenarios mainly because of segmentation
errors. As a result, the models reconstructed might contain holes
or added spots in the background area. Morphological operators
can be applied in a cleanup phase, but only to mitigate the
problem. Recently, some approaches have addressed the problem
of silhouette inconsistencies proposing different algorithms that
minimizes the propagation of 2D miss-detections to the 3D
models.

A first approach which minimizes the probability of voxel
miss-classification is shown in [7]. In their work, Cheung et al.
propose the sparse pixel occupancy test (SPOT) algorithm, which
determines the minimum number of foreground pixels lying
inside each voxel projection as a constraint to pass the projection
test. This projection test must be passed in all the views to classify
the voxel as part of the shape as in traditional SfS methods.
Although this approach constitutes improvements over the
original SfS algorithm, they do not employ the concept of
inconsistent silhouettes so that 2D miss-classifications are
propagated to the 3D reconstruction.

In [40], Snow et al. do not work with traditional 2D silhouettes.
Instead, they replace the silhouettes hard constraint with a soft
constraint that minimizes an energy function. They also suggest a
relaxation of the visual cones intersection constraint. Instead of
requiring the intersection of a number of visual cones equal to the
total number of cameras, they suggested the intersection of C�X

cones, where X is the number of acceptable false alarms among
the set of C cameras. Using this approach, a single miss does not
break the consistency constraint of silhouettes. The main
disadvantage of their approach is that the VHs reconstructed are
larger than the original ones, specially when several objects are
present in the scene.

Later, in [17] the SfS problem is restated proposing a new
framework for multi-view silhouette cue fusion. For that purpose,
they use a space occupancy grid as a probabilistic 3D representa-
tion of scene contents. The idea is to consider each camera pixel as
a statistical occupancy sensor and to use them jointly to infer
where, and how likely, matter is present in the scene. As in

previous approaches, inconsistencies in silhouettes are not taken
into account thus propagating 2D miss-classifications.

Finally, [25] introduces the concepts of inconsistent volume
(IV) and unbiased Hull (UH) to propose a novel reconstruction
scheme taking into account inconsistencies in realistic scenarios.
In an initial step, the VH is calculated with the standard SfS
method. Then, a decision on the voxels not forming part of the VH
is taken in a second step by minimizing the error probability on
each voxel independently and forming the IV. In the last step the
UH is calculated taking into account the number of occlusions and
inconsistencies. The main drawback of their algorithm is that it is
based in the minimization of the 3D miss-classification prob-
ability using both prior probabilities of voxels forming part of the
background or shape and 2D miss-classifications probabilities.
However, determining these prior probabilities in realistic scenes
is a rather difficult problem.

In spite of that, the work in Ref. [25], constitutes a leap towards
the use of SfS methods in tasks such as people tracking
[16,32,30,23]. As previously indicated, the need of silhouette
consistency imposes a hard constraint to the applicability of SfS
methods in uncontrolled environments where illumination
changes and clutter causes great errors in the silhouettes
extracted. Thus, it is required to improve the robustness of these
methods in order to successfully apply them in this real-life
scenarios.

This work proposes a new SfS method specially designed to
work in complex scenarios by means of exploiting both the
information redundancy and the relative camera positions. In Ref.
[35], Pribanić studied the influence of the camera setup in the
accuracy of the 3D reconstructions. He demonstrated that the
higher reconstruction accuracy takes place for cameras forming
an angle of 903 with the object. As the angle formed by the camera
variates from this, there is a reduction in the reconstruction
accuracy. Nevertheless, none of the previous SfS approaches have
explicitly considered positional information in their formulations.

1.2. Proposed contribution

The contribution of this paper is three-fold. Firstly, we propose
an algorithm that use information about the relative positions
between cameras and voxels in the reconstruction problem. Our
approach employs Pribanić’s principles in order to deal with
silhouettes inconsistencies. Secondly, the algorithm is based on
the DS theory to classify voxels instead of the classical intersec-
tion of visual cones. It allows us to define sensor uncertainty
models which help to reduce the propagation of 2D miss-
classifications to the 3D model. Finally, the proposed model has
a parameter that allows us to specify the degree of precision of the
reconstructed scene.

The problem is formulated in terms of the DS theory of
evidence, which is a generalisation of the Bayes theory
of subjective probability for the mathematical representation of
uncertainty. The algorithm models the voxel classification
problem using a sensor fusion in the DS sense. In contrast
to other approaches, our sensors are camera pairs instead of
individual cameras. So, we compute a degree of confidence for
each sensor, which depends on the angle between their cameras
and the voxel analyzed. Sensors provide degree of evidences
about the occupancy of voxels which are fused using the
Dempster’s rule of combination in order to provide a final value
representing their probability of occupancy. The fusion process
takes sensor confidence into account. Therefore, most of the 2D
miss-classifications produced in silhouettes are not propagated to
the 3D reconstruction when the evidence of correct detections is
greater than the evidence of 2D miss-classifications. In addition,
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our algorithm introduces a parameter that allow us to choose
between an accurate reconstruction, similar to the one of original
SfS algorithm, and a more permissive reconstruction in which the
bulk of objects is recovered at the expense of a lower precision.

The proposed method is specially appropriated for shape
reconstruction in uncontrolled environments where there is not
much control over lighting conditions [32]. The experiments
conducted (both in synthetic and real environments) show that
our method outperforms traditional and new SfS approaches
(namely Ref. [25]), specially in the presence of strong noise.

2. Dempster–Shafer theory of evidence

The DS theory, which is also known as the evidence theory, is a
generalisation of the Bayes theory of subjective probability. It
includes several models of reasoning under uncertainty such as
the Smets’ Transferable Belief Model (TBM) [37]. It has been
applied to several disciplines such as people tracking [32], fraud
detection [33], classification [14], risk analysis [10], clustering
[13,28], image processing [4,3,19,34], autonomous robot mapping
[46], human-computer interaction [44], land mine detection [29]
and diagnosis [45], amongst others.

The DS approach employs degrees of evidence that are a weaker
version of probabilities. The management of uncertainty in the DS
theory is especially attractive because of its simplicity and because
it does not require specifying priors or conditionals that might be
unfeasible to obtain in certain problems. In the DS domain, it is
possible to set a degree of ignorance to an event instead of being
forced to supply prior probabilities adding to unity.

Let us consider a variable o taking values in the frame of
discernment O and let us denote to the set of all its possible
subsets by 2O (also called power set). A basic belief assignment
(bba)

m : 2O-½0;1�;

is a function that assign masses of belief to the subsets A of the
power set, verifying:X
AAO

mðAÞ ¼ 1: ð1Þ

While the evidence assigned to an event in the Bayesian approach
must be a probability distribution function, the mass mðAÞ of a
power set element can be a subjective function expressing how
much evidence supports the fact A. Furthermore, complete
ignorance about the problem can be represented by mðOÞ ¼ 1.

The original Shafer’s model imposes the condition mð|Þ ¼ 0 in
addition to that expressed in Eq. (1), i.e., the empty subset should
not have mass of belief. However, Smets’ TBM model relaxes that
condition so that mð|Þ40 stands for the possibility of incomple-
teness and conflict (see Ref. [37]). In the first case, mð|Þ is
interpreted as the belief that something out of O happens, i.e.
accepting the open-world assumption. In the second case, the mass
of the empty set can be seen as a measure of conflict arising when
merging information from sources pointing towards different
directions.

Nonetheless, a renormalization can transform a Smets’ bba m

into a Demspter’s bba m� as

m�ð|Þ ¼ 0; m�ðAÞ ¼
mðAÞ

1�mð|Þ
if Aa|: ð2Þ

One of the most attractive features of DS theory is the set of
methods available to fuse information from several sources. Let us
consider two bbas m1 and m2 representing distinct pieces of
evidences, the standard way of combining them is using the

conjunctive sum operation [38] defined as

ðm1 m2ÞðAÞ ¼
X

B\C ¼ A

m1ðBÞm2ðCÞ 8ADO: ð3Þ

The Dempster’s rule of combination can be derived from
Eq. (3) by imposing normality (i.e., mð|Þ ¼ 0) as

ðm1 �m2ÞðAÞ ¼
1

1�K

X
B\C ¼ A

m1ðBÞm2ðCÞ 8ADO; Aa|; ð4Þ

with

K ¼ ðm1 m2Þð|Þ; ð5Þ

thus spreading the conflict among the elements of the power set.
This approach would certainly discard useful information about the
problem. For instance, large values of conflict might indicate an
inappropriate formulation of the sensors or even that the solution
to the problem lays out of the power set defined. So, disregarding
the conflict should not be done in problems with high conflict.

The above rules assume that the sources manage independent
pieces of information. However, if information is correlated, the
cautious rule should be employed [12].

In some applications it is necessary to make a decision and
choose the most reliable single hypothesis o. To do so, Smets [39]
proposed the use of the pignistic transformation that is defined
for a normal bba as

BetPðoÞ ¼
X

ADO;oAA

mðAÞ

jAj
; ð6Þ

where jAj denotes the cardinality of A.

3. Standard voxel-based SfS

Since our method is a new approach for reconstructing shapes
from silhouettes, it is important to explain first the basic concepts
of standard SfS methods and to expose the reasons why they are
unable to reconstruct scenes from inconsistent silhouettes.

We assume a three-dimensional work area that is divided into
cubes of the same volume called voxels. Let us denote by

V¼ fvi ¼ fx; y; zgji¼ 1; . . . ;ng;

the voxel set, where n represents the total number of voxels and
vi ¼ fx; y; zg the center of the i-th voxel.

Let us assume that there is a set of cameras placed at known
locations (extracted using calibration) and that we have a
background subtraction method that obtains the silhouettes of
the foreground objects. We denote these foreground images as

F¼ fF cjc¼ 1; . . . ;Cg;

where C is the number of cameras. A pixel pAF c is true if it is
classified as belonging to the foreground and false otherwise.

SfS methods examine voxel projections in the foreground
images in order to determine whether they belong to the shape
of objects or not. This is achieved by means of a projection test.
Each voxel is projected in all the foreground images and if its
projection lays completely into a silhouette in all the foreground
images, then it is considered occupied. However, if the voxel
projects in a background region in any of the images it is
considered : occupied. Finally, if the voxel projects partially in a
foreground region it is considered to belong to a border and a
decision must be made.

Projection tests play an essential role in SfS algorithms.
The most simple one consists in projecting only the center of
the voxel. More complex approaches consist in testing either all
the pixels or a subset of pixels within the polygon formed by the
voxel projection. Either way, the result is a boolean decision
indicating whether the voxel is occupied or not.
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An overview of the SfS algorithm is shown in Algorithm 1. At
the first, all voxels are assumed to be occupied. Then, voxels
projections are examined in all the images using the projection
test. If the projection test indicates that the voxel does not belong
to the silhouette of any foreground image, then it is considered as
not occupied independently of its projection on the rest of images.
The result of the algorithm is the set of VHs of the objects in the
scene. In case of consistent silhouettes (i.e., these resulting from
error-free background subtraction techniques), the reconstruction
of VHs is correctly performed. However, consistent silhouettes
rarely occur in realistic scenarios thus leading to several types of
miss-classifications.

Algorithm 1. Classical SfS algorithm

Require: Foreground images: F

Require: Projection Test Function: PTðvi;F cÞ

1: for all viAV do
2: vi’occupied

3: for all F c AF do
4: if PTðvi;F cÞ is false then
5: vi’:ocuppied

6: examine another voxel
7: end if
8: end for
9: end for

3.1. Type of miss-classifications

Two types of errors can be found in the process of background
subtraction which lead to inconsistent silhouettes, namely false
positives (FP) and false negatives (FN).

As previously indicated, a voxel must pass the projection test
in all views in order to be considered as belonging to an object.
Therefore, a single FN in any view causes a miss-classification in
the three-dimensional reconstruction. As a result, FN constitute
the main problem for SfS methods. As an example see Figs. 1a and
b. Fig. 1a shows a scene in which four cameras observe a pair of
objects. However, an error in the background subtraction method
causes a FN in the second camera which makes impossible to
reconstruct the second object.

In contrast, a FP in a single silhouette does not propagate the
error to the 3D space, unless the visual cone that is erroneously
created intersects simultaneously with C�1 visual cones (probably
produced by consistent detections). If the intersection happens,
then a region of the scene is wrongly reconstructed. In Fig. 1c we
have shown both cases. Cam4 produces a FP that intersects with
the remainder C�1 visual cones and therefore, the miss-classifica-
tion is propagated to the reconstruction of the scene (Fig. 1d). On
the other hand, cam2 produces a FP that intersects with less than
C�1 so that the error is not propagated. Note that in Fig. 1d we
differentiate between FPs due to inconsistencies (in yellow) and
those produced by the very definition of the VH (in red).

Projection in case of FN. Reconstruction in case of FN.

Projection in case of FP. Reconstruction in case of FP.

Fig. 1. Typical cases of miss-classification in SfS algorithms. Yellow areas represent miss-classifications: (a) scene where cam2 experiences a FN, (b) reconstruction of the

scene in (a), (c) scene where cam2 and cam4 produce FPs and (d) reconstruction of the scene in (c). See text for further details. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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There is a final observation on classical SfS methods. The
extended idea ‘‘as the number of cones increases, the object is
reconstructed with higher precision’’ [27] was established in the
context consistent silhouettes. However, this hardly ever holds
true in realistic scenarios where lightning can only be roughly
controlled. As a consequence, the higher the number of images
employed, (assuming a low but non null rate of randomly
distributed 2D miss-classifications), the lower is the probability
of reconstructing the real shape of the object.

In conclusion, standard SfS algorithms work fine when the
assumption about consistent silhouettes is satisfied, but do not
deal properly with habitual miss-classifications produced in the
foreground extraction process.

4. Shape from silhouette using DS theory

The goal of the shape from silhouette using Dempster–Shafer
theory (SfSDS) proposed in this work is to achieve the classifica-
tion of voxels as occupied or : occupied, like in any SfS problem,
but considering the presence of inconsistent silhouettes.

The main difference between the proposed method and other
SfS approaches is that ours does not classify voxels by intersecting
visual cones or using other strategies derived from this intersec-
tion (see Section 1.1). Instead, our approach classify voxels fusing
information from camera pairs using the DS theory which has
proven to be a powerful tool for managing uncertainty and lack of
knowledge. For each voxel, each sensor is asked two questions.
First, which is the degree of confidence of the sensor in the
calculus of a voxel occupancy? This is answered taking into
account the relative position of the sensor’s cameras and the
voxel. And second, to what extent is the voxel occupied according
to the camera pair? The answers given by sensors to each voxel
are employed to assign the evidences to the facts described as in
Section 4.1. In a final stage, once all the sensors have provided a
degree of evidence about the voxels, evidences are fused in order
to classify voxels as occupied or : occupied. Below, we provide a
detailed explanation of the algorithm details.

4.1. SfS problem formulation using DS theory

We shall denote the facts to be evaluated about each voxel as

X ¼ foccupied;:occupiedg;

so that the power set of our problem is

PðX Þ ¼ f|; foccupiedg; f:occupiedg;Og:

For each sensor, a bba must be defined for the elements of
PðX Þ. By

Mi
s ¼ fm

i
sðoccupiedÞ;mi

sð:occupiedÞ;mi
sðOÞg;

we shall denote the bba provided by the s-th sensor about the i-th
voxel with regards to the subsets in the power set. The mass
mi

sðoccupiedÞ represents the degree of evidence assigned by the s-
th sensor to the fact that the voxel vi belongs to the shape of any of
the objects in the scene. On the other hand, mi

sð:occupiedÞ

represents the evidence that this voxel belong to the background
of the scene. Finally, mi

sðOÞ represents the degree of evidence of
the sensor itself, in other words, its own unreliability.

On the basis of the power set just defined, the parameter

Mi
¼ fMi

sjs¼ 1 . . . Sg;

represents all the bbas provided by the S sensors to the voxel vi.
Please notice that since we are not assuming any particular
camera configuration, all voxels might not project in all cameras.
Therefore, if a voxel does not project on a camera, sensors

including this camera are considered completely unreliable, thus
setting all the mass in the O set.

Let Mi be the bba resulting from fusing the evidences in Mi.
We have employed in this work the Dempster’s combination rule
(Eq. (4)), thus assuming independence between the cameras
employed. This is in our opinion the best choice given the fact that
correlated cameras are assigned with a low confidence in our
model as we shall show later. However, this combination rule
discard conflict so it should be used only when the amount
conflict is low. We will show later (in the experimental section)
that this assumption holds true in our problem.

Finally, voxels are classified using the pignistic probability (Eq.
(6)) of the events inMi. To decide whether a voxel is occupied of
not, we use:

e� ¼ argmax
eAX

ðBetPðeÞÞ: ð7Þ

4.2. Degrees of evidence calculation

This section explains the basic belief assignment proposed for
the masses Mi

s of each sensor about each voxel.
The mass mi

sðOÞ represents the degree in which the s-th sensor
cannot provide a solution to the problem. This can be seen as the
uncertainty or the inability of the sensor to decide between
the possible states of the voxels to be evaluated (occupied and
: occupied).

We define the unreliability of a sensor in determining the
occupancy of a voxel by a generic function f ðai

sÞ:

mi
sðOÞ ¼ f ðai

sÞ; ð8Þ

where ai
s represents the angle between the segments formed by

the voxel vi and the cameras of the sensor s (see Fig. 2a). The
function f ðai

sÞ can be defined in different ways as far as they
satisfy the constraint given by Pribanić [35], i.e., perpendicular
cameras should be considered to be more reliable than parallel
ones. It means that mi

sðOÞ must tend to 0 as ai
s-7 p

2, and it must
tends to 1 otherwise. In this work, we have tested the four
different possibilities for Eq. (8) shown in Fig. 2 b. The main
difference in these functions is the smoothness of the transition
from low to high values. The results of the proposed method using
these functions are reported in the experimental section (Fig. 3).

The angle ai
s is calculated using trigonometry given that the

position of the cameras are known (let us denote them by Ps
c1 and

Ps
c2):

ai
s ¼ arccos

Ps
c1vi
�!

� Ps
c2vi
�!

jPs
c1vi
�!

j � jPs
c2vi
�!

j

0
@

1
A: ð9Þ

The masses mi
sðoccupiedÞ and mi

sð:occupiedÞ are calculated once
it has been obtained the uncertainty of the sensor so that the total
sum of the three masses is equal to one. Besides, the amount of
mass assigned to the occupied and :occupied elements is the
remaining of mi

sðOÞ to obtain one, i.e.,

mi
sðoccupiedÞþmi

sð:occupiedÞ ¼ 1�mi
sðOÞ:

The mass mi
sðoccupiedÞ is calculated first. The overall idea is

that if at least one of the cameras of the sensor obtains a very low
occupancy degree for the voxel’s projection, then there is faint
chance that the voxel is occupied. Nevertheless, if both cameras
observe a high occupancy degree in the projections, the voxel is
likely to be occupied. Therefore, the first thing we have to define is
the projection test employed. Let occi

c represents the degree of
occupancy of the voxel projection vi in the camera c. It is
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calculated as

occi
c ¼

1

jPðF c; viÞj

X
pAPðF c ;viÞ

dðpÞ; ð10Þ

where pAPðF c; viÞ represents the pixels of the F c image where
the voxel vi projects and d is defined as

dðpÞ ¼
1 if p¼ true

0 otherwise

�

The sum in Eq. (10) represents the total number of pixels in the
projection that belong to the foreground. So, occi

c obtains values
close to 1 when most of the pixels inside the voxel projection are
foreground pixels and values close to 0 in the opposite case.
Please notice that this projection test differs from the traditional
ones which returns a boolean decision (see Section 3). Instead of
taking a decision about the voxel occupancy at this stage, our
methods delays the decision until information from all the
cameras is fused.

Given the results of the projection tests for the cameras of a
sensor, we defined the occupancy degree of the sensor s about
voxel vi as generic function:

Occi
s ¼ gðocci

c1; occi
c2Þ; ð11Þ

where the parameters occi
c1 and occi

c2 represent the occupancy
degree of the two cameras of the sensor s as given by Eq. (10).

Different functions can be employed for Eq. (11) as long as
Occi

sA ½0;1�. The idea is that Occi
s must take values near 1 if both

cameras provide a high occupancy degree. However, the value
must tend to zero if the occupancy observed by the cameras is
low. In this work, we have tested two different approaches for this
function, namely:

gaðocci
c1; occi

c2Þ ¼
occi

c1þocci
c2

2

 !n

; ð12Þ

and

gbðocci
c1; occi

c2Þ ¼ ðocci
c1 � occi

c2Þ
n: ð13Þ

The first one can be seen as a general way of averaging the
occupancy values of the cameras with a free parameter nAð0;1Þ.
For n¼ 1, the function represents the arithmetic mean. When
n41 the function forces both cameras to provide high occupancy
values in order to obtain high value. However, as n tends to 0, the
measure becomes more ‘‘permissive’’, in the sense that incon-
sistent voxels can be assigned with a high value of Occi

s. Indeed,
very low values of the parameter n might result in incoherent
results since they become independent of the data itself.

The second approach (Eq. (13)) is a more restrictive fusion
method which also contains a free parameter nAð0;1Þ modulat-
ing the degree of consensus required for obtaining high values.

For n¼ 0:5, it represents the geometric mean. As in the previous
case, values of no1 makes Eq. (13) more permissive and n41
makes it more strict. The two approaches are evaluated later in
Section 5 and their results compared.

Finally, we shall define mi
sðoccupiedÞ:

mi
sðoccupiedÞ ¼ ð1�mi

sðOÞÞ � ðOcci
sÞ: ð14Þ

As can be noticed, mi
sðoccupiedÞ has high values when both the

reliability of the sensor and the occupancy degree indicated by the
cameras are high. As can be notices, our approach differs
substantially from classical SfS methods that classify voxels as
not occupied if they do not pass the projection test in any of the
cameras.

Finally, we define

mi
sð:occupiedÞ ¼ 1�ðmi

sðOÞþmi
sðoccupiedÞÞ; ð15Þ

so that the sum of masses is equal to one.

5. Experimental results

This section presents the experimentation carried out. First, we
show the behavior of our algorithm in the reconstruction of
different kinds of objects for the different mi

sðOÞ and Occi
s

functions previously proposed. Then, the results of our algorithm
are compared with these of the SfS and the SfIS [25] methods in
two different experiments. In the first one, we analyze the
reconstruction performance of the three algorithms from a set of
synthetic images. In the second experiment, images obtained in
our laboratory are employed to show the reconstruction results in
a realistic tracking scenario.

The performance of the algorithms is evaluated using three
verification measures commonly employed in the information
retrieval field. In the first place, the recall measure, also known as
detection rate, indicates the percentage of detected true positives
in the reconstructed scene in relation to the total number of true
positives in the ground truth (GT):

recall¼
TP

TPþFN
; ð16Þ

where TP is the number of true positives, FN is the number of false
negatives and the denominator refers to the number of occupied
voxels in the GT. Nonetheless, the recall measure is not enough to
compare different methods so that it is generally used in
conjunction with the precision measure, which indicates the
percentage of TP in relation to the total number of voxels detected
by the method:

precision¼
TP

TPþFP
: ð17Þ
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Fig. 2. (a) Angle between the segments formed from a voxel to each camera and (b) functions employed to calculate mi
sðOÞ.
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Fig. 3. Verification measures of SfSDS for several values of n. Columns show results obtained employing different functions for Occi
s , while in rows different functions for

mi
sðOÞ have been used: (a) mi

sðOÞ ¼ 1�jsinðai
sÞj. Occi

s ¼ ga , (b) mi
sðOÞ ¼ 1�jsinðai

sÞj. Occi
s ¼ gb , (c) mi

sðOÞ ¼ 1�jsinðai
sÞj

2. Occi
s ¼ ga , (d) mi

sðOÞ ¼ 1�jsinðai
sÞj

2. Occi
s ¼ gb , (e)

mi
sðOÞ ¼ jcosðai

sÞj. Occi
s ¼ ga , (f) mi

sðOÞ ¼ jcosðai
sÞj. Occi

s ¼ gb , (g) mi
sðOÞ ¼ jcosðai

sÞj
2. Occi

s ¼ ga and (h) mi
sðOÞ ¼ jcosðai

sÞj
2. Occi

s ¼ gb .
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Finally, we have considered the f-measure measure, which
represents the weighted harmonic mean of precision and recall:

f -measure¼
2� recall� precision

recallþprecision
: ð18Þ

5.1. Evaluation of the SfSDS algorithm

This section aims to analyze our algorithm’s performance for
the porposed functions of mi

sðOÞ and Occi
s (Eqs. (8) and (11)).

The scene employed for this experiment is shown in Fig. 4a. It
contains a virtual avatar seen from eight different points of view.
We have extracted the GT of the scene using the SfS method
(Algorithm 1) on the synthetic images without noise (i.e., no
inconsistencies). Under these circumstances, the SfS method
extract perfectly the convex hull of objects. Then, we have
added random spot noise (both background and foreground spots)
of different shapes (namely circles and rectangles) which have
been placed in the image using an uniform distribution. The size
of the spots, in pixels, is also randomly selected using a uniform
distribution in the range [5,50]. The number of spots of each type
varies between 1 and 15 in each image. The images have a size of
320� 240 pixels. An example of noisy images employed for these
tests are shown in Fig. 4b. We have created a total of one hundred
noisy images that have been used as input to our algorithm.

In order to test the influence of mi
sðOÞ in the algorithm’s

performance, we have employed the four functions shown in
Fig. 2b. For each function mi

sðOÞ, the avatar has been reconstructed
using the two Occi

s functions proposed (Eqs. (12) and (13)) with
different values of the parameter n. The average result of these
experiments are shown in Figs. 3(a–h) with 95% confidence
intervals.

The figures show a very similar tendency in all cases: while the
best values of precision are obtained for high values of n, high
values of recall are achieved for low values of n. In fact, this is the

expected result because when n tends to zero all voxels tends to
be considered as occupied. As n increases, so does the precision at
the expenses of reducing recall. With regards of the function
mi

sðOÞ, we can observe that the results obtained for
mi

sðOÞ ¼ 1�jsinðai
sÞj (Figs. 3(a and b)) are better than the others,

specially in the f-measure which averages the other two measures.
With regards the Occi

s function, we can observe in both figures
that Eqs. (12) and (13) provide comparable results. Initially,
the f-measure increases with n up to a certain point in which the
measure decreases. This is because recall decreases faster than
precision increases. Although this tendency is observed in both
cases, the deterioration of the f-measure is faster for Eq. (13) than
for Eq. (12). In fact, the latter allows to obtain a more precise
control over the results since the variations of the measures take
place slower. In other words, Eq. (12) obtains very similar results
to Eq. (13) but allowing a finer control over the precision–recall
trade-off. Therefore, we consider it is a better approach. Thus, we
are employing mi

sðOÞ ¼ 1�jsinðai
sÞj and Eq. (12) for the rest of the

experiments.
In order to better show the effect of n in the reconstruction

obtained, we have performed another pair of tests. We have
created a pair of synthetic scenes: one with a cube and another
one with a sphere (see Fig. 5a). We have chosen these shapes in
order to analyze the behavior of the SfSDS algorithm in both
planar and curved surfaces. For space reasons, Fig. 5a shows only
four of the eight images employed. In these tests, noise has not
been added to the images. The algorithm has been tested on these
scenes using n¼ f1;4;8g and compared to the results of the SfS
algorithm as GT. The results can be seen in Table 1.

The projections of the reconstructed shapes are shown in
Figs. 5b–d. The second row (Fig. 5b) shows the reconstructions
performed by our algorithm with n¼ 1. Note that several FPs are
introduced in both shapes, smoothing the planar surfaces of the
box. In the third row (Fig. 5c) it is shown that the reconstruction
with n¼ 4 fits better the real objects, specially the sphere.

Fig. 4. The first row show the silhouettes employed in one of the experiments carried out. The second row shows the resulting silhouettes after adding noise. The rest of

rows show the reconstruction result of the methods analyzed. See text for further discussion: (a) original silhouettes, (b) silhouettes after adding spot noise, (c)

reconstruction with the method SfS, (d) reconstruction with the method SfIS and (e) Reconstruction with the method SfSDS ðn¼ 4Þ.
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However, in the box shape there are still some FPs smoothing its
surface. In the bottom row (Fig. 5d) it is shown the reconstruction
for n¼ 8. For the sphere, the reconstruction is very precise, with
very few FPs. For the box, the reconstruction is more precise than
using n¼ 4, but there are still a few FPs that smooth some of the
box corners.

In conclusion, the experiments conducted have shown that the
proposed method is able to reconstruct the objects with a
parametrizable degree of precision which is controlled by the
parameter n. While high values of n increase the precision, low
values of it enlarge the shape borders thus increasing recall.

5.1.1. Conflict analysis

As previously indicated, the fusion approach employed in this
work (Eq. (4)) assumes that the level of conflict is low enough to
be discarded by sharing the conflict among the elements of the
power set (normalization). This can be seen as assuming a close-
world problem, i.e., the solution to the problem lays within the
power set defined so that other solutions out of the initial
propositions are not considered.

In order to examine whether this assumption holds true in our
problem, we have performed an analysis of the degree of conflict
in our model. Fig. 6 shows the probability distribution of the
conflict in our problem for the one hundred noisy images
previously employed for testing. The test has been performed
using values of n ranging from 1 to 9 so that the figure represents
the probability distribution for all the tests performed. The
horizontal axis represents the values of mð|Þ set when using
the conjunctive sum rule (Eq. (3)). The vertical axis represents the
probability using a logarithm scale so as to better visualize
the results.

The distribution shows that 90% of the voxels have no conflict
at all and that the voxels with higher conflict are the non-
occupied. However, 99% of the voxels in both cases have a conflict
smaller than 0.05. Thus, we can consider this level of conflict low
enough to safely ignore it.

5.2. Comparison with other approaches

This section aims to compare the results of our algorithm with
previously proposed approaches, namely the original SfS algo-
rithm (see Algorithm 1) and the SfIS [25] algorithm, in noisy
conditions. The first method has been chosen because it is the
original algorithm on which others are based on. On the other
hand, the SfIS is a recently proposed approach that has been
proven to overcome the problems of the original method by
taking into account inconsistencies in the silhouettes. In both SfS
and SfSDS the projection test used is the one explained in
(Eq. (10)). For the SfS method, a voxel is considered as :occupied if
occi

c o0:5 in any camera. Nevertheless, for the SfIS method we
have used the sampled pixels projection test as defined in [25].

The test have been performed using the noisy images
employed in the previous section so that the results can be

Fig. 5. SfSDS reconstructions with different values of n. As n increases, so does the precision of the reconstruction: (a) original silhouettes, (b) SfSDS reconstruction with

n¼ 1, (c) SfSDS reconstruction with n¼ 4 and (d) SfSDS reconstruction with n¼ 8.

Table 1
Results of SfSDS for the box and sphere experiments.

Box Sphere

n¼ 1 n¼ 4 n¼ 8 n¼ 1 n¼ 4 n¼ 8

Recall 1.000 0.983 0.948 1.000 0.996 0.977

Precision 0.547 0.758 0.850 0.701 0.922 0.964

f-measure 0.707 0.856 0.897 0.824 0.957 0.970
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Fig. 6. Probability distribution of the conflict with our method.
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compared. Please note that the GT is obtained using the original
SfS method of the scene without noise and that all methods
employed a voxel size of 6 cm. Table 2 presents the average
results obtained with a 95% confidence interval. The table also
includes some of the results previously shown in Fig. 3 in order to
ease the comparison task.

It can be observed that our method compares very favorably to
the SfIS method in all the measures. In relation to the SfS method,

ours performs better in recall and the f-measure. However, the
original SfS method gives the higher precision at the expense of a
low recall.

Fig. 4 shows the reconstruction results of one of the many test
images employed. The first row (Fig. 4a) depicts the silhouettes of
the original synthetic scene without spot noise. The second row
(Fig. 4b) shows the corresponding set of silhouettes after adding
noise. The remainder rows in Fig. 4 show the projection of the
models reconstructed by each method. The numerical results of
this particular test are presented in Table 3.

The third row (Fig. 4c), corresponds to the reconstruction of
the using the SfS method. Please note that most of the errors
of this algorithm correspond to FN. Therefore, the recall value is
very low but the precision very high. The fourth row (Fig. 4d)
corresponds to the reconstruction of the experiments using the
SfIS method. This method is able to recover the shape better than
SfS, but at the expense of introducing FPs thus obtaining a lower
precision. Moreover, it is appreciable that some parts of the body
are not totally recovered, e.g., the torso. Finally, the bottom row
(Fig. 4e) depicts the reconstruction of our approach for n¼ 4. With
SfSDS most of the shape have been reconstructed but introducing
some FPs. However, the results obtained show that not only does
our method outperforms the other two in terms of the f-measure,
but also that it obtains a high recall.

5.3. Experiments in a real scenario

The goal of this section is to perform a qualitative comparison
of the three algorithms in a complex reconstruction task. The
scenario chosen is our lab, a room of approximately 5� 6 m that is

Table 2
Average results with 95% confidence intervals.

Recall Precision f-measure

SfS 0:36670:060 0:93170:036 0:46070:062

SfIS 0:64170:045 0:48970:009 0:53970:021

SfSDS ðn¼ 1Þ 0:98370:007 0:26670:018 0:41070:021

SfSDS ðn¼ 4Þ 0:78170:043 0:68370:022 0:69370:022

SfSDS ðn¼ 8Þ 0:65770:049 0:80870:019 0:68070:035

Table 3
Results of methods in the experiment shown in Fig. 4.

SfS SfIS SfSDS

n¼ 1 n¼ 4 n¼ 8

Recall 0.308 0.676 1.000 0.918 0.792

Precision 1.000 0.500 0.342 0.750 0.913

f-measure 0.471 0.575 0.510 0.846 0.848

Fig. 7. The first row show the images captured in the lab. The second row show the results of extracting foreground. The rest of the rows represent the results of the

reconstruction performed by the methods evaluated. See text for further discussion: (a) original images from the video sequence in the six camera, (b) silhouette images

extracted from the original ones, (c) reconstruction with the SfS method, (d) reconstruction with the SfIS method and (e) reconstruction with the SfSDS method.
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equipped with a total of six synchronised firewire cameras placed
at a height of 2.3 m in slanting positions. Cameras record with a
resolution of 640� 480 pixels and we have employed the
background subtraction technique proposed by Horprasert [20]
to create the foreground images.

As previously indicated, our main goal is to create a robust
algorithm that can be employed for people tracking purposes. The
people tracking problem in a realistic scenario poses a major
challenge to reconstruction algorithms for several reasons. Firstly,
this type of scenario imposes a reduced control over the lighting
conditions so that the quality of the segmentation technique is
low. Moreover, it might be expected to find shadows generated by
the people being tracked. Secondly, cluttered environments are
fraught with occlusions which are often referred as ‘‘systematic
false negatives’’.

The voxel set employed covers and area of 4:2� 2:1� 4 m with
a total of 71� 35� 68 voxels using an edge size of 6 cm. We have
chosen this voxel size in order to achieve fast 3D reconstruction
since speed is an important aspect for tracking if the method is to
be applied to real-time problems. The time required for
reconstruction the scene is approximately 70 ms on a Quadcore
@ 2.4 GHz. An optimization to our implementation consists in the
use of the integral image [42] in order to analyze the occupancy of
voxel projections. To do so, voxels projections are approximated
by the bounding boxes of the projected corner points.

Fig. 7a shows one of the frames captured in our lab. It shows a
person moving around a table placed in the middle of the room. It
can be seen that the table occludes the person’s legs in some
views. Also, the person is not fully seen in all views. Fig. 7b shows
the foreground images extracted. It is well worth noting that the

foreground images contains many miss-classifications. Not only
can we find false negatives produced by either light conditions
and occlusions, but also false positives produced by shadows are
present in the scene. The reconstruction results of the SfS, SfIS and
SfSDS (using n¼ 4) methods are shown in Figs. 7c–e, respectively.
Please note that the reconstructions depicted in the figure
correspond to points of view farther from the scene than the
original cameras. As a result, the images showing the
reconstruction do not present the silhouettes in the same
position than in the foreground images.

The results obtained clearly demonstrate that the SfS method
gives a very precise reconstruction, but it is unable to properly
recover person’s body shape, e.g. the legs are missed. The results
of the SfIS have a higher recall but still miss the person’s legs. In
addition, it can be observed that the reconstruction of the arms
and body is complete but adding some FPs. Finally, although our
method also introduces some FPs, it is able to properly
reconstruct the whole person’s body including his legs.

In Fig. 8, we show another complex scene employed to
evaluate the algorithms. In this case, the environment shown is
the same but there are two people and the light conditions are
worse than in the previous scene. Because the foreground images
extracted have so many miss-classifications, the reconstruction
becomes very difficult. For this scenario, we have required to set
n¼ 1:5 in order to obtain appropriated reconstruction results.

While Fig. 8b shows the foreground images extracted,
Figs. 8c–e show the reconstruction results of the SfS, SfIS and
SfSDS methods respectively. The SfS method gives a very poor
reconstruction, since the silhouettes have a lot of miss-classifica-
tions. The results of the SfIS and SfSDS are much better than these

Fig. 8. Original images, silhouettes and reconstructions for a specific frame in a video sequence with two persons: (a) original images from the video sequence in the six

camera, (b) Silhouette images extracted from the original ones, (c) reconstruction with the SfS method, (d) reconstruction with the SfIS method and (e) reconstruction with

the SfSDS method.
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of the SfS method. However, in our method the amount of FP
introduced seems to be lower than in SfIS. In addition, it can be
observed that the reconstruction of the legs is complete in our
case.

We would like to stress that the capability of our method to
tune the trade-off between precision and recall makes it suitable
for different tasks. For instance, in tracking problems the main
goal is to determine the location of the person. To do so, a high
precision in the reconstruction is not necessary. On the contrary, it
is more appropriate having a reconstruction of the person robust
to occlusions (even if it is rough) than having a precise
reconstruction that misses the person in case of occlusion.
Nevertheless, other problems might take advantage of more
precise reconstructions such as gesture recognition [9,31,43]. In
any case, it is required a tunning process to determine the most
appropriated value of n for the particular problem employed. A
method for automatically determining the most appropriate value
of n would be a topic of future works.

A limitation of our approach is that it is slower than the other
SfS algorithms. The problem is that the number of sensors
increases combinatorially with the number of cameras. A possible
solution to that problem in applications in which time is crucial
would be to prune out the set of possible sensors by considering
only these with mðoÞ below a certain threshold. Therefore,
sensors formed by nearly parallel cameras (thus providing little
information) would not be computed.

6. Conclusions and future works

In this paper, we have proposed a novel SfS method that deals
with inconsistent silhouettes. The contribution of this paper is
three-fold. Firstly, we propose an algorithm that use information
about the relative positions between cameras and voxels.
Secondly, the algorithm is based on the Dempster–Shafer theory
to classify voxels instead of the classical intersection of visual
cones. Finally, the proposed model has an useful parameter that
allows to specify the trade-off between precision and recall in the
reconstruction. Our approach is particularly attractive due to its
simplicity and because it does not require specifying priors not
conditionals that might be difficult to obtain in complex scenarios.
The proposed method has been compared to the standard SfS and
the SfIS proposed in Ref. [25], and the results show that it obtains
better reconstructions, specially under noisy conditions.

Finally, we would like to point out two possible future works.
First, we consider the possibility of replacing the binary output of
the background subtraction method by a soft measure that
employs the distance of the pixels to the background model. This
would allow to manage uncertainty from the early stages of the
visual processing. Second, the creation of an automatic tuning
method for estimating the best n for a particular application.
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a b s t r a c t

Shape-from-Silhouette (SfS) is the widely known problem of obtaining the 3D structure of an object

from its silhouettes. Two main approaches can be employed: those based on voxel sets, which perform

an exhaustive search of the working space, and those based on octrees, which perform a top-down

analysis that speeds up the computation. The main problem of both approaches is the need for perfect

silhouettes to obtain accurate results. Perfect background subtraction hardly ever happens in realistic

scenarios, so these techniques are restricted to controlled environments where the consistency

hypothesis can be assumed. Recently, some approaches (all of them based on voxel sets) have been

proposed to solve the problem of inconsistency. Their main drawback is the high computational cost

required to perform an exhaustive analysis of the working space. This paper proposes a novel approach

to solve SfS with inconsistent silhouettes from an octree based perspective. The inconsistencies are

dealt by means of the Dempster–Shafer (DS) theory and we employ a Butterworth function for adapting

threshold values in each resolution level of the octree. The results obtained show that our proposal

provides higher reconstruction quality than the standard octree based methods in realistic environ-

ments. When compared to voxel set approaches that manage inconsistency, our method obtains similar

results with a reduction in the computing time of an order of magnitude.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Shape-from-Silhouette (SfS) is a well-known approach to
reconstruct the 3D structure of objects using a set of silhouettes
obtained from different views. Baumgart [1] was the first to
introduce concepts about the 3D geometric modelling, but it
was not until 1991 that Laurentini [2] defined the concept of the
Visual Hull (VH) as the closest 3D solid equivalent to the real
object that explains the silhouettes extracted. The VH is the
geometric intersection of all visual cones explaining the projec-
tion of a silhouette in its corresponding camera image. Conse-
quently, as the number of views increases, so does the precision of
the reconstructed object [3].

Two classical approaches are used to analyse and represent 3D
information: voxel sets and octrees. In the first approach, the
entire area of interest is a discrete 3D grid of voxels of the same
volume. Then the voxels are projected into all the images to check
whether they belong to foreground objects. The second approach
is the octree structure, which is based on a tree of voxels. Octree
based methods [4,5] start with a cube that covers all of the
working area; the working area is recursively subdivided into
eight voxels until a homogeneous content (shape or background)
is reached, or until a maximum resolution has been obtained.

A major problem of standard SfS methods is that they are
strongly linked to the principle of silhouette consistency, i.e., the
set of silhouettes employed must explain precisely the real object.
A single inconsistency in one of the silhouettes could distort the
reconstructed VH regarding the expected one. Nevertheless, total
consistency hardly ever happens in real-life scenarios due to
several factors such as inaccuracies in camera calibration, fore-
ground extraction errors [6–8], and occlusions. Therefore, SfS
methods have been usually confined to problems under con-
trolled conditions [9–13].

In recent years, a number of investigations have addressed the
inconsistency problem for SfS in different ways [10,11,14–17].
These approaches aim to exploit information redundancy wisely
to overcome the inconsistency problem. However, all of these
works use the voxel set-based approach.

From our point of view, the octree-based approach has several
advantages compared with the voxel set approach, among which
we can highlight the following two:

� The inherent multi-scale structure used in the representation
of the volume.
� A better performance is obtained when the working space is

analysed compared with voxel set-based methods.

However, the octree-based approach has a major inconvenience
regarding the voxel set: the size of a voxel in the octree is a
variable that is a function of the octree’s tree level. All of the
methods for SfS apply a projection test to determine whether or

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.patcog.2012.03.012

n Corresponding author. Tel.: þ34 957 211035; fax: þ34 957 218630.

E-mail addresses: i22dimal@uco.es, piponazo@gmail.com (L. Dı́az-Más).

Pattern Recognition 45 (2012) 3245–3255

www.elsevier.com/locate/pr
www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2012.03.012
mailto:i22dimal@uco.es
mailto:piponazo@gmail.com
dx.doi.org/10.1016/j.patcog.2012.03.012


not a voxel is occupied. In a voxel set-based approach, the voxels
always have the same volume, and there is a relatively small ratio
of projected surface area to total volume in the working space,
making the design of the projection test simple. However this
does not happen the same way with the octree-based approach,
where the variable size of the voxel causes two main problems
that must be resolved:

� First, in the high levels of the octree, the projected area of a
voxel will be large in comparison to the size of the silhouette.
This can cause only a small portion of the projected area to be
occupied, which implies that the projection test should be
permissive in these levels to prevent losing portions of the
volume from the first levels of the octree.
� Second, as the size of the voxel varies, a static criterion cannot be

fixed to determine the occupation of a voxel, but rather should
be a dynamic criterion as a function of the level of the octree.

To design a projection test in spite of these inconvenient issues is
not a trivial problem, as will be seen later in this paper.

In our previous work [17], we advanced the solution of the
problem of inconsistency in the silhouettes by introducing data
provided by the relative position of the cameras with respect to
the object in the re-construction process, and by using the
theoretical working frame of the theory of the evidence of
Dempster–Shafer (DS) [18] to fuse the data provided by the
different sensors. This approach has been proven using the voxel
set-based alternative and the experimental results obtained were
superior to those obtained from alternative approaches.

In this work, we propose a novel approach to solve the
problem of SfS by combining the advantages of using an octree
to analyse the working space with the robustness of the theory of
the evidence of DS to address the inconsistency of silhouettes. The
final objective is to apply our proposal to problems of volumetric
reconstruction in real scenarios to carry out detection, tracking
and analysis of people’s activity.

The remainder of this paper is structured as follows. The rest of
Section 1 provides an overview of the most relevant work related
to ours, along with its main contributions. Section 2 details our
proposal. Section 3 explains the results we obtained, and some
final conclusions are drawn in Section 4.

1.1. Related works

1.1.1. Standard octree-based SfS

Many SfS algorithms have been proposed for creating volu-
metric models using octrees since its initial definition in [19]. The
octrees were first used as a method of representation of a volume

in an efficient way and several works were proposed to optimise
their creation, storage and manipulation [20,21].

Later on, the problem of the shape-from-X using an octree was
approached [22]. Several techniques were proposed, and SfS was
among them. Initially, to carry out SfS, ‘‘restricted orthographic
projections’’ were used [23,24]. Then several authors argued that
three views were not enough to obtain a good reconstruction
[25,26]. It was proposed to increase the number of views,
classifying them into two groups: edge views (view direction
parallel to the plane of two axes) and corner views (isometric
view where the view direction is along the line joining a corner
and the centre of a voxel).

Finally, several authors proposed methods to carry out SfS
using multiple arbitrary views with a perspective projection. Two
of the first works following this line of reasoning [27,28] present
almost identical proposals, where an octree is generated for each
silhouette and then the octrees are combined with a logical ‘‘and’’
operation to generate the final octree. Szeliski [29] argues that to
generate an octree for each view to merge those later is not very
efficient because it becomes necessary to analyse more voxels. He
proposes a method similar in essence to the one proposed by
Potmesil [28], but only one octree is generated, merging the views
at the voxel level. In this paper, we call the proposal of Szeliski the
‘‘standard octree based SfS’’.

The standard algorithm constructs the octree in a hierarchical
coarse-to-fine fashion. At a given octree resolution, the inner loop of
the algorithm incrementally constructs the 3D volume by applying a
projection test to the octree voxels against a sequence of silhouettes.
Those voxels whose occupancy is uncertain are subdivided and a
new iteration starts at the next resolution level. This process is
repeated until a final resolution is reached. Fig. 1 shows an example
of an octree, and Fig. 2 shows the described standard algorithm.

To implement the projection test on a set of silhouettes,
Szeliski uses a coarse projection test, where the projection of
the voxel is converted into the bounding square and an one-sided
version of the chess-board distance transform is used to distin-
guish the state of occupation of the voxel among the possibilities:
occupied (black), :occupied (white) and unknown (gray). Given a
voxel, the projection test is applied in sequence to all of the
silhouettes, and the results are merged using Table 1.

1.1.2. Addressing the inconsistency problem

None of the analysed octree-based works approaches the
problem of the inconsistency in the silhouettes. All use controlled
systems where the extraction of the background is a trivial
process and for that reason they can assume that the extracted
silhouettes are consistent.

However, full consistency hardly even happens in realistic
scenarios mainly because of segmentation errors. As a result, the

Fig. 1. An example of an octree.
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models reconstructed might contain holes or added spots in the
background area. Morphological operators can be applied in a
cleanup phase, but only to partially mitigate the problem.
Recently, some approaches (all based on the voxel set approach
to SfS) have addressed the problem of silhouette inconsistencies,
proposing different algorithms that minimise the propagation of
2D mis-detections to the 3D models.

In a previous work, Diaz et al. [17], a complete discussion is
given on how the problem of the inconsistency of the silhouettes
is approached by methods based on voxel sets.

In this work, Diaz et al. propose a solution to the problem of
the inconsistency in the silhouettes by exploiting both the
information redundancy and the relative camera positions. In
Ref. [30], Pribanić studied the influence of the camera setup on
the accuracy of the 3D reconstructions. He demonstrated that a
higher reconstruction accuracy takes place for cameras forming
an angle of 901 with the object. As the angle formed by the camera
deviates from 901, there is a reduction in the reconstruction
accuracy. Nevertheless, none of the previous SfS approaches have
explicitly considered positional information in their formulations.

However the application of the voxel set-based proposal of
Dı́az et al. cannot be made in a direct way in an octree-based
approach, as an important adaptation of the projection test has to
be carried out to solve the problems discussed in Section 1.

Summarising:

� All of the octree-based SfS methods work with the hypothesis
of consistent silhouettes. As a result, these proposals are not
adequate for practical applications with actual scenarios that
have uncontrolled illumination and a complex background.
Under these natural environmental conditions one cannot
assume the restriction of consistency in the extracted
silhouettes.
� It is important to remark that in conditions of low noise and

small number of cameras, classical approaches obtain in many
cases better results. However, we think that these demanding
conditions only could be achieved in environments very
controlled and our algorithm has been developed for working
in more flexible conditions.
� The inconsistency problem has been approached only by

methods based on voxel sets. Although very good results have
been obtained by Dı́az et al., the use of voxel sets in large work
spaces does not result in good performance in computation
time due to the exhaustive analysis that is carried out. The
application of the octree-based approach would allow one to
obtain a better performance because it carries out a more
intelligent analysis of the working space; however, the octree-
based approach is not a trivial adaptation of the method
proposed by Dı́az et al. to solve the problem of inconsistency.

2. Proposed method

We have used for our proposal the octree-based SfS algorithm
shown in Fig. 2. The main difference with the standard method of

Szeliski [29] is in the projection test that we have designed to
provide robustness regarding inconsistent silhouettes.

In the standard method the hypothesis of consistency of the
silhouettes is assumed and a projection test is used to make an
intersection (logical ‘‘and’’ operation) of the visual cones
restricted to projections of the analysed voxel on each of the
silhouettes.

However, our projection test does not classify a voxel by
intersecting visual cones or by using other strategies derived
from this intersection (see Section. 1.1). Instead, our approach
classifies voxels by fusing information from camera pairs (we
define a logical sensor for each possible pair of cameras), using
the DS theory which has proven to be a powerful tool for
managing uncertainty and lack of knowledge.

Fig. 2. Standard octree-based SfS algorithm.

Table 1
Method used by the standard octree-based SfS algorithm to combine the result of

the projection test of a voxel with its current occupation state.

Test result Current state

Black Gray White

occupied Black Gray White

unknown Gray Gray White

:occupied White White White
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With more detail, given a voxel, each logical sensor is asked
two questions. First, to what extent is the voxel occupied accord-
ing to the camera pair? The answers given by logical sensors are
employed to assign evidence to the facts occupied and :occupied,
as is described in Section 2.1. Second, what is the degree of
confidence of the logical sensor in the calculus of voxel occu-
pancy? This question is answered by taking into account the
relative positions of the cameras that form the logical sensors
regarding the voxel. In a final stage, once all the logical sensors
have provided a degree of evidence about the voxel, these
evidence levels are fused to classify the voxel’s state as occupied

or :occupied. Also it could be possible that none of these states
can be determined for the voxel. This event represents the
unknown state. Below, we provide a detailed explanation of the
algorithm.

2.1. Projection test formulation using DS theory

Next we provide notation and constructs to represent the facts
to be evaluated about a given voxel c. (For details on the
Dempster–Shafer theory and notation, see [17].)

X c ¼ foccupied,:occupiedg,

so that the power set of our problem is

PðX cÞ ¼ f|,foccupiedg,f:occupiedg,Og:

For each logical sensor s, a basic belief assignment (bba) must be
defined for the elements of PðX cÞ. By

Mc
s ¼ fm

c
s ðoccupiedÞ,mc

s ð:occupiedÞ,mc
s ðOÞg ð1Þ

we shall denote the bba provided by the s-th logical sensor about
the voxel c with regard to the subsets in the power set. The mass
mc

s ðoccupiedÞ represents the degree of evidence assigned by the
s-th logical sensor to the fact that the voxel c belongs to the shape
of any of the objects in the scene. On the other hand,
mc

s ð:occupiedÞ represents the evidence allocated to the fact that
this voxel belongs to the background of the scene. Finally, mc

sðOÞ
represents the degree of evidence of the logical sensor’s ignorance
about the real voxel’s status. How the masses are allocated to the
events occupied, :occupied and unknown is explained in Sections
2.2 and 2.3.

On the basis of the power set just defined, the set

Mc
¼ fMc

s9s¼ 1 . . . 9S9g,

where S is the set of logical sensors and 9S9 is its cardinality,
represents all the bba provided by the 9S9 logical sensors for the
voxel c. Note that because we are not assuming any particular
camera configuration, the voxel might not project into all of the
cameras. Therefore, if a voxel does not project into a camera, then
the logical sensors that include this camera are considered to be
completely ignorant, resulting in setting all of the mass in the
O set.

Let Mc be the bba resulting from fusing the evidences in Mc.
We have employed in this work Dempster’s combination rule
[31], thus assuming independence between the cameras
employed. This is in our opinion a good election from a practical
point of view given the fact that correlated cameras are assigned
with a low confidence in our model, as we shall show later.

As the projection test for a voxel, we propose to use the
pignistic probability transformation (BetP [32]) of the events in

Mc to classify its state in the following way :

PTðc,FÞ ¼

unknown if BetPðfoccupiedgÞ4BetPðf:occupiedgÞ

and ðdðcÞo ðR�1ÞÞ,

occupied if BetPðfoccupiedgÞ4BetPðf:occupiedgÞ

and ðdðcÞ ¼ ðR�1ÞÞ,

:occupied otherwise,

8>>>>>><
>>>>>>:

ð2Þ

where d(c) is the depth of the voxel c.

2.2. Degrees of evidence calculation

This section explains the basic belief assignment proposed for
the masses Mc

s of each logical sensor about each voxel.
As mentioned above, each logical sensor sijAS is formed by

the two cameras i and j. It is assumed that the intrinsic and
extrinsic calibration parameters of each camera are known, so
that we can project an image point into the coordinates of the 3D
reference space in each of the silhouettes obtained by the
silhouette extraction algorithm in each camera.

Given a voxel c, a camera i and its associate silhouette image
F iAF, we define its Occupation Area Rate (OAR) as

occc
i ¼

1

9PðF i,cÞ9

X
pAPðF i ,cÞ

diðpÞ, ð3Þ

where PðF i,cÞ represents the set of pixels of the image F i to which
the voxel c projects, 9PðF i,cÞ9 is the area of this projection in
pixels, and di is defined as

diðpÞ ¼
1 if p is inside of the silhouette F i,

0 otherwise:

(

A fundamental difference regarding the previous voxel set-based
approach [17] is the necessity of a mechanism to adapt the OAR
obtained by each camera based on the level of the octree. In the
octree approach, voxels have different sizes and therefore it will
have very different OARs because of the huge differences in the
area projected in silhouette images.

We propose to use a Butterworth function to compensate
input OARs (occc

i ) to new compensated OARs (occc
i ) before they

can be used in the DS formulation. This function allows a high
level of control for the interpretation of the input OARs and it will
lead us to define an automatic and dynamic threshold to distin-
guish between occupied and :occupied. The expression proposed
to calculate the compensated OAR is as follows:

occc
i ¼

occc
i if f c ¼ 1,

1

1þ
1�occc

i j

1�f c

� �oc
in other case:

8>>><
>>>:

ð4Þ

The cutoff frequency fc and the order oc of the Butterworth
function for each voxel c are calculated automatically depending
on the resolution level l(c) and on the average OAR of all the views
as follows:

f c ¼
1

2lðcÞ
avgðfoccc

i 9iAf1,: :,9F9g,occc
i 40gÞ,

where avg() represents the average operation and

oc ¼ 2lðcÞþ1:

Note here the difference between the level and depth of voxels
(lðcÞ ¼ R�1�dðcÞ).

Both control variables of Butterworth function are mainly
controlled by the voxel level l(c). At high levels, close to the
octree’s root, the size of voxels is huge compared to deepest
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voxels so their uncompensated OAR will be likely very small. In
these first levels, we want that fc will be small (near to 0) and the
function’s slope very accentuated to be more permissive. In this
way, voxels with low uncompensated OAR will not be rejected in
first levels of refinement. On the other hand, as we reach deeper
levels we are not interested in continuing the refinement of
voxels with low uncompensated OAR. So at deepest voxels
the function’s slope will be smaller and fc will be nearer to the
average uncompensated OAR in all the views. It will make
the occupancy voxel decision not as dependent of l(c) as in the
former case.

Fig. 3 shows the Butterworth function for different resolution
values considering two possible values of average OAR.

Given occc
i and occc

j for the voxel c in the cameras i,j, we
allocate evidence mass to the occupied event for the sensor sij built
with these cameras in the voxel c as follows:

mc
sij
ðfoccupiedgÞ ¼

occc
i þoccc

j

2

 !n

: ð5Þ

Eq. (5) can be seen as a general way of averaging the occupancy
values of the cameras with a free parameter nA ð0,1Þ. For n¼1,
the function represents the arithmetic mean. When n-1 the
function forces both cameras to provide high occupancy values to
obtain a high value. However, as n-0, the measurement becomes
more ‘‘permissive’’, in the sense that inconsistent voxels can be
assigned with a high value of mc

sij
ðfoccupiedgÞ. Indeed, very low

values of the parameter n might result in incoherent results since
they become independent of the data itself.

Once calculated the evidence mass associated with the event
occupied, the evidence mass associated with the event :occupied

for the voxel c in the logical sensor sij is calculated in the following
way:

mc
sij
ðf:occupiedgÞ ¼ 1�mc

sij
ðfoccupiedgÞ ð6Þ

2.3. Calculating the reliability of a logical sensor

In Ref. [30], Pribanić studied the influence of the camera setup
on the accuracy of the 3D reconstructions. He demonstrated that
higher reconstruction accuracy takes place for cameras forming
an angle of 901 with the object. As the angle formed by the camera
deviates from 901, there is a reduction in the reconstruction
accuracy. Nevertheless, none of the previous octree based SfS
approaches have explicitly considered positional information in
their formulations.

As we have already mentioned in Section 2.2, we form a logical
sensor sijAS by combining two cameras i,j. We define the
unreliability of the sensor sij in determining the occupancy of a
voxel c as

ac
sij
¼ 9 cos ðbc

sij
Þ9, ð7Þ

where bc
sij

represents the angle between the cameras with respect
to the analysed voxel. We have studied two forms for calculating
this angle:

� The first alternative is more precise but has a greater compu-
tational cost and measures the angle formed by the segments
that bind the centres of projection of the cameras that form
the logical sensors and the centre of the studied voxel (See
Fig. 4a.)
� The second alternative has a low computational cost but is less

precise and measures the angle formed by the two view
directions associated with the two cameras that form the
logical sensor, independent of the studied voxel (Fig. 4b).

Both alternatives to compute ac
sij

satisfy the constraint given by
Pribanić [30], i.e., perpendicular cameras should be considered to
be more reliable than parallel ones.

Once having calculated the grade of unreliability ac
sij

associated
with the sensor, we propose to obtain the masses mc

sij
foccupiedg

and mc
sij
f:occupiedg using Eqs. (4) and (6), respectively, to apply a

‘‘discounting rate’’ [18,31] to the bba in the following general
way:

maðAÞ ¼ ð1�aÞmðAÞ 8A�O,

maðOÞ ¼ ð1�aÞmðOÞþa:

(
ð8Þ
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projection of each camera that forms a logical sensor. (b) Angle formed by the

camera view directions.
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Particularising in our problem, the reader should note that
mðOÞ ¼ 0 before the discount has been realised. Also note that
when the cameras are parallel, the a value is near to 1 and
practically the entire evidence mass is allocated to the unknown

event (represented by the O set), indicating the ignorance of the
logical sensor to establish the state of occupation of the voxel.
Eq. (8) is used to obtain the final bba Mc

sij
(Eq. (1)) associated with

a logical sensor sij.

3. Experimental results

In this section, we present the results of three experiments
that we have performed to contrast our proposal with existing
methods. In the first experiment, we evaluate the quality of the
obtained reconstruction in an objective way. In the second
experiment, we study the dependence of the quality of the
reconstruction with regard to the number of used views. In the
third experiment, we evaluate our proposal in a real environment
of the application.

In the three experiments, we compare two versions of our
proposal: the first that calculates the grade of reliability of a
logical sensor as a function of the angle formed by the segments
that bind the centre of projection of each camera with the centre
of the studied voxel (Oct-DS-Vox) and the second that calculates
this grade independently of the voxel using the angle formed by
the lines of vision of the two cameras (Oct-DS-Gen). We also
compare these approaches with two versions of the voxel set-
based approach [17], also with the two forms of calculating the
grade of reliability of a logical sensor, which we call ‘‘VS-DS-Vox’’
and ‘‘VS-DS-Gen’’. A further comparison is made with the octree-
based classic method of intersection of visual cones due to
Szeliski [29], which we call ‘‘Oct-AND’’.

3.1. Experiment 1

We have used the database of images ‘‘Dancer’’ [33]. This
database mixes an actual scenario with an avatar carrying out
different evolutions. Each scene is taken from eight different
points of view and the given silhouettes fulfil the restriction of
consistency. With the consistent silhouettes we use the octree-
based classic method of Szeliski to obtain the reconstructions that
will be used as Ground Truth (GT) in the comparisons.

We have selected 10 scenes from the database. To each
selected scene, synthetic noise has been added to simulate errors
in the extraction of the silhouettes. The process of generating
synthetic noise is the following: to each silhouette we added
randomly between 1 and 14 ‘‘spots’’. A ‘‘spot’’ is a circle with a
random radius in the interval [8, 30] pixels. The proportion of false

negative (FN)/false positive (FP) errors generated was 30%/70%,
respectively. The spatial disposition of the noise has been random,
with priority in areas that have more silhouette density. As an
example, Fig. 5 shows four views of one of the selected scenes
together with the versions contaminated with synthetic noise.

The quality of the volumetric reconstruction obtained by the
algorithms is evaluated using three verification measures com-
monly employed in the information retrieval field. In the first
place, the recall measure, also known as the detection rate,
indicates the percentage of detected true positives in the recon-
structed scene in relation to the total number of true positives in
the GT:

recall¼
TP

TPþFN
, ð9Þ

where TP is the number of true positives, FN is the number of
false negatives and the denominator refers to the number of
occupied voxels in the GT. Nonetheless, the recall measure is not
enough to compare different methods, so it is generally used in
conjunction with the precision measure, which indicates the
percentage of true positive (TP) in relation to the total number
of voxels detected by the method:

precision¼
TP

TPþFP
: ð10Þ

We have also considered the f-measure, which represents the
weighted harmonic mean of precision and recall:

f-measure¼
2� recall� precision

recallþprecision
: ð11Þ

With the intention of obtaining a better estimate of the values of
the measures, the experiment was repeated 100 times (with
different noise spots) to obtain averages.

Three levels of maximum resolution were used for the gen-
eration of the octree/voxel set: five, six, and seven levels. Figs. 6,
7 and 8 and Table 2 show the values of the f-measures for each
resolution level obtained by the different proven methods and for
different values of n (see Eq. (5)).

The results obtained show that our proposal is a significant
improvement on the classic octree-based technique when we
have inconsistent silhouettes. We also observe that the classic
proposal is penalised with regard to the number of resolution
levels used, while our proposal achieves best f-measure values in
a ‘‘stable’’ range of values for the parameter n with the three
resolutions levels tested. (See Table 2.)

With regard to the approach based on voxel set, our proposal
has maintained the good results obtained by the proposal based
on voxel set, and even, a lightly superior quality has been
obtained with the biggest proven resolution level. This result
should be seen in connection with the computation times that are

Cam. 0 Cam. 1 Cam. 2 Cam 3

Fig. 5. Example of the first four views (top) and their respective versions contaminated with noise (below) corresponding to scene number 614 of the database ‘‘Dancer’’.
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shown in Table 3, where it is observed as our proposal it has been
run 20 times faster with seven resolution levels maintaining the
quality of the obtained reconstruction.

With regard to the two forms tested to obtain the unreliability
parameter of a logical sensor in our proposal, the values of
f-measures obtained do not indicate which of the two alternatives
is best. Using the angle formed by the lines of view has a
significantly smaller computational cost because this angle is
independent of the analysed voxel and it can easily be pre-
calculated; this alternative, called Oct-DS-Gen, will be the alter-
native used in the rest of experiments.

Finally, the results shown in Figs. 6–8 and Table 2 also indicate
that the free parameter n of our proposal has its best values when
considering the f-measure in the interval [1, 2]. The adjustment of
this parameter allows us to vary the balance between the
detection rate and the precision in the reconstruction obtained
as a function of the required application. This is shown better in
Fig. 9, where the measures recall and precision vary separately. In
this figure, it can be observed that when n-0, the recall increases
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Table 2
Values of f-measures obtained by the alternative methods, using three resolution

levels. The confidence intervals are also shown with a¼ 0:95. For Dempster–

Shafer based methods we show the best result values of the parameter n.

Method Resolution levels

5 6 7

Oct-AND 0:6270:02 0:4170:03 0:3070:03

Oct-DS-

Gen

0:7670:01, n¼ 1:15 0:7770:01, n¼ 1:45 0:7570:01, n¼ 1:9

Oct-DS-

Vox

0:7570:01, n¼ 1:15 0:7570:01, n¼ 1:45 0:7270:01, n¼ 1:9

VS-DS-Gen 0:7870:01, n¼ 1:0 0:7670:01, n¼ 1:45 0:7370:01, n¼ 2:05

VS-DS-Vox 0:7770:01, n¼ 1:0 0:7470:01, n¼ 1:45 0:7170:01, n¼ 2:05

Table 3
Computation times in mile-seconds on a Quadcore 2.4 GHz.

Res/method Oct-AND Oct-DS-Gen Oct-DS-Vox VS-DS-Gen VS-DS-Vox

5 1.65 9.95 12.50 104.25 130.19

6 4.20 50.20 64.65 794.90 995.37

7 17.75 313.65 406.50 6323.10 7872.26
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Fig. 9. Evolution of the measures precision and recall obtained by our approach

when the free parameter n varies. Seven resolution levels were used.
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at the expenses of worsening the precision. However when nb1
the precision increases but the recall decreases.

3.2. Experiment 2

In a second experiment, we evaluated the influence of the
number of views of the scene on the quality of the reconstruction
obtained. It is commonly accepted that the quality of the
reconstruction is directly proportional to the number of views
of the scene [3], but this belief pertains to when the extracted
silhouettes are consistent.

We selected a scene from the database ‘‘Dancer’’. To this scene,
segmentation noise was added in a similar fashion as in the
previous section.

We have eight cameras that provide us eight different views of
the same scene. We now are interested in studying how the
algorithm behaves when the number of available views varies
from 3 to 8: V Af3;4,5;6,7;8g. To carry out the experiment with
V¼3 views we could work with 8

3

� �
¼ 56 possible subsets of

cameras. To simplify, for each number of views, we have only
used the subset of cameras that minimises the sum of the
corresponding reliability coefficients (Eq. (7)) of the logical
sensors obtained by combination of all the possible pairs of
cameras belonging to this subset. This process is repeated for
subsets of 4, 5, 6 and 7 views. For the experiment with 8 views,
there is an only possible subset of cameras.

As can be observed in Fig. 10, our proposal shows better
behaviour as the number of views increases, while the opposite
happens with the classic method. It is also observed that our
proposal is less sensitive regarding the resolution used to gen-
erate the octree. Because the results obtained by voxel set-based
proposals are very similar to those obtained from our proposal,
they are not shown, to make the figure more clear.

Fig. 11 explains the poor results obtained by the classic
method when the number of views increases. Due to the incon-
sistency in the extracted silhouettes, there is a higher probability
that an FN affects some portion of the volume in some of the
views and, due to the projection test used being the intersection
of visual cones, the result would be that a portion of the volume is
not reconstructed correctly. This causes the recall to decrease
significantly when the number of views used increases.

Fig. 12 shows the detection and precision curves obtained
separately using different numbers of views and for three differ-
ent resolutions. Consistent with that shown by Fig. 9 is observed

again that the free parameter n allows to change the balance
between detection and precision. Fig. 12 also shows that for a
given resolution, increase the number of views for better results.

3.3. Experiment 3

The goal of the third experiment is to carry out a qualitative
comparison of the algorithms in a complex reconstruction task.
The scenario chosen is our lab, a room of approximately 5�6 m
that is equipped with a total of six synchronised firewire cameras
placed at a height of 2.3 m in slanting positions. Cameras record
with a resolution of 640�480 pixels and we have employed the
background subtraction technique proposed by Horprasert [7] to
extract the silhouettes.

As previously indicated, our main goal is to create a robust
algorithm that can be employed for the purpose of tracking
people. The people tracking problem in a realistic scenario
possesses a major challenge to reconstruction algorithms for
several reasons. First, this type of scenario imposes reduced
control over the lighting conditions so that the quality of the
segmentation technique is low. Moreover, it might be expected to
find shadows generated by the people being tracked. Second,
cluttered environments are fraught with occlusions which are
often referred as ‘‘systematic false negatives’’.

The space analysed covers a volume of 4.2�2.1�4 m. The
time required for reconstructing the scene is approximately
50 ms on a Quadcore 2.4 GHz. The voxel projection is approxi-
mated by bounding box of the projected voxel’s corner points.

Fig. 13 shows one of the frames captured in our lab. This figure
shows a person moving around a chair with a box placed in the
middle of the room. It can be seen that the chair occludes the
person’s legs in some views. Also, the person is not seen fully in
all views. The silhouette images extracted are also shown. It is
well worth noting that the silhouette images contain many
misclassifications. Not only can we find FN produced by either
lighting conditions or occlusions, but we also can find FP
produced by shadows that are present in the scene. The
back-projection of the reconstruction results of the standard
method Oct-AND and our proposal Oct-DS-Gen, using several
values for the parameter n, is shown. The results for the voxel set-
based approach are not shown because they are very similar to
the results obtained by our proposal and are in concordance with
the results obtained in Experiment 1.
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The results obtained clearly demonstrate that the standard
Oct-AND method gives a precise reconstruction, but is unable to
properly recover a person’s body shape, e.g., the legs are missing.
Although our method introduces some FP, it is able to properly
reconstruct the whole person’s body, including his legs. As can be
seen in Fig. 13, the precision can be adjusted by tuning the value
of the parameter n.

4. Conclusions

In this paper, we have presented a novel technique to solve the
problem SfS with an approach based on octree. In contrast to the
classic octree method based on the intersection of visual cones,
our proposal does not require consistency of the extracted silhouettes.
To process the ambiguity resulting from the inconsistencies generated
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Fig. 12. Recall and precision obtained using different number of views with resolution 5 (a and b), resolution 6 (c and d), and resolution 7 (e and f).
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in the extraction of the silhouettes, we propose a projection test based
on data fusion of a group of logical sensors formed from pairs of
cameras.

Recently, the problem of the inconsistency of the silhouettes
has also been approached by other methods, namely SfS based on
voxel sets. The main inconvenience of these methods is the high
computational cost from the exhaustive analysis of the working
space that these methods perform.

The proposed method was compared to the standard octree
based SfS proposed by Szeliski [29], and the results show that it
obtains better reconstructions under noisy conditions when the
extracted silhouettes are inconsistent.

We have also compared our proposal with the method based
on voxel sets proposed by Dı́az et al. [17], which solves
the problem of the inconsistency. The results obtained are
similar considering the quality of the 3D reconstruction, but our
proposal obtains a reduction in computation time of an order of
magnitude.

Our approach is particularly attractive due to its simplicity and
its high performance and because it does not require specifying
priors or conditionals that might be difficult to obtain in complex

scenarios, especially in detection tasks and in tasks that involve
tracking people.
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5

Conclusions

Three-dimensional action recognition is becoming an active topic of research. In last

years, new devices have appeared enabling new ways of interacting with computers.

Actions performed by people in an unrestricted scene can be performed in any di-

rection, different speeds in the movements, and equivalent gestures could vary much

between them depending on the actors. This thesis has proposed three main contribu-

tions to help incorporating action recognition in daily-life scenarios by increasing their

robustness. Our work has achieved the following objectives:

• It has been demonstrated that the new descriptor proposed for representing 3D

actions (the “Volume Integral”) minimizes the amount of information necessary

for recognizing actions without losing discriminative power (20).

• In (19), we have demonstrated that the robustness of SfS algorithms can be

increased using the Dempster-Shafer theory of evidence by considering the relative

position between cameras.

• Finally, it has been proven that it is possible to formulate a multi-scale projection

test in SfS algorithms and therefore integrate the usage of Octree structures in

them (18). Thanks to this integration SfS algorithms obtain the benefits of Octree

structures.

As an additional conclusion, we want to remark that the achievements of this thesis

can be used to help in the solutions of other specific problems like people tracking.

For example, in (41) we have proposed a system that uses the Shape from Silhouette
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using Dempster-Shafer theory (SfSDS) approach for tracking people in uncontrolled

environments.
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