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RESUMEN

En la últimas décadas han ido creciendo con-
siderablemente los conocimientos y la sensibili-
zación sobre la protección al medioambiente en
muy diversas áreas, entre las que se encuentra la
Agricultura.  El uso intensivo del laboreo oca-
siona graves daños medioambientales como la
erosión del suelo, la contaminación de las aguas
superficiales (escorrentía y colmatación de em-
balses), el descenso del contenido de la materia
orgánica y de la biodiversidad de los suelos la-
brados, y el aumento de la emisión de CO2 del
suelo a la atmósfera.  Actualmente, la Unión Eu-
ropea sólo subvenciona a los agricultores que
cumplen lo que se conoce como “Medidas Agro-

ambientales o de Condicionalidad” cuyo diseño
ha estado dentro de las competencias de las Po-
líticas Agrarias Autonómicas, Nacionales y Eu-
ropeas.  Estas medidas consisten en alterar el
perfil y la estructura del suelo lo menos posible,
dejando éste sin labrar y permanentemente pro-
tegido por cubiertas vegetales (rastrojo) en el
caso de cultivos herbáceos (ej. trigo, maíz, gira-
sol), o por cubiertas vegetales vivas o inertes
(restos de poda) en el caso de cultivos leñosos
(principalmente cítricos y olivar).  El segui-
miento del cumplimiento de estas medidas se re-

ABSTRACT

Soil management in crops is mainly based on
intensive tillage operations, which have a great
relevancy in terms of increase of atmospheric
CO2, desertification, erosion and land degrada-
tion.  Due to these negative environmental im-
pacts, the European Union only subsidizes
cropping systems which require the implemen-
tation of certain no-tillage systems and agro-en-
vironmental measures, such as keeping the
winter cereal residues and non-burning of stubble
to reduce erosion, and to increase the organic
matter, the fertility of soils and the crop produc-
tion.  Nowadays, the follow-up of these agrarian
policy actions is achieved by ground visits to
sample targeted farms; however, this procedure is
time-consuming and very expensive.  To improve
this control procedure, a study of the accuracy
performance of several classification methods
has been examined to verify if remote sensing
can offer the ability to efficiently identify crops
and their agro-environmental measures in a typi-
cal agricultural Mediterranean area of dry condi-
tions.  Five supervised classification methods
based on different decision rule routines, Para-
llelepiped (P), Minimum Distance (MD), Maha-
lanobis Classifier Distance (MC), Spectral Angle
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aliza a través de visitas presenciales a un 1% de
los campos susceptibles de recibir ayudas.  Este
método es ineficiente y provoca muchos errores
con la consiguiente presentación de un ingente
número de reclamaciones.  Para subsanar esta
problemática, en este artículo presentamos los re-
sultados obtenidos en la clasificación de los cul-
tivos y las medidas agroambientales asociadas a
éstos en una imagen multiespectral QuickBird to-
mada a principios de Julio de una zona típica de
cultivos en régimen de secano de Andalucía.  Se
aplicaron 5 métodos de clasificación (Paralelepí-
pedos, P; Mínima Distancia, MD; Distancia de
Mahalanobis, MC; Mapeo del Ángulo Espectral,
SAM; y Máxima Probabilidad, ML) para la dis-
criminación de rastrojo de trigo quemado y sin
quemar, arbolado, carreteras, olivar, cultivos her-
báceos de siembra primaveral y suelo desnudo.
Además, la imagen es segmentada en objetos
para comparar la fiabilidad obtenida aplicando
los métodos anteriores partiendo tanto de píxe-
les como de objetos como Unidades Mínimas de
Información (MIU).  El análisis de los resultados
permite concluir que las clasificaciones de todos
los usos de suelo basadas en objetos claramente
mejoraron las basadas en píxeles, obteniéndose
precisiones (overall accuracy) mayores al 85%.
La elección de un método de clasificación u otro
influye en gran medida en la precisión de los
mapas obtenidos. 

Debido a que la precisión del mapa temático
que necesitamos obtener ha de ser muy elevada
para tomar decisiones sobre Conceder / No con-
ceder las ayudas, sería interesante estudiar si el
incremento de la resolución espacial que se ob-
tenga gracias a la fusión de imágenes multies-
pectral y pancromática de QuickBird para
obtener una imagen fusionada con resolución es-
pacial de la pancromática (0.7 m) y espectral de
la multiespectral (4 bandas) mejora la precisión
de cualquiera de los métodos de clasificación es-
tudiados. 

PALABRAS CLAVE: Inventario de cultivos;
Rastrojo quemado y sin quemar; Segmentación
de imágenes

Mapper (SAM), and Maximum Likelihood
(ML), were examined to determine the most sui-
table classification algorithm for the identifica-
tion of agro-environmental measures such as
winter cereal stubble and burnt stubble areas and
other land uses such as river side trees, vineyard,
olive orchards, spring sown crops, roads and bare
soil. An object segmentation of the satellite in-
formation was also added to compare the accu-
racy of the classification results of pixel and
object as Minimum Information Unit (MIU).  A
multispectral QuickBird image taken in early
summer was used to test these MIU and classifi-
cation methods.  The resulting classified images
indicated that object-based analyses clearly out-
performed pixel ones, yielding overall accuracies
higher than 85% in most of the classifications.
The choice of a classification method can mar-
kedly influence the accuracy of classification
maps.

KEYWORDS: Burnt and non-burnt crop stub-
ble; Crop inventory; Image segmentation.

INTRODUCTION

Soil management in the Mediterranean basin is
mostly based on intensive tillage agricultural practi-

ces, which have serious agro-environmental impli-
cations and consequences in terms of increase of at-
mospheric CO2, desertification, land erosion and
degradation, and sediment transport (Schlesinger,
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2000; Hill et al., 1995).  Due to these negative envi-
ronmental impacts, the European Union (E.U.) only
subsidizes cropping systems which require the im-
plementation of certain agro-environmental measu-
res such as crop cover in olive orchards and
non-burning of crop stubble to keep the crop resi-
dues after harvesting (Anonymous, 2007).  Nowa-
days, around 45% (4.3 M ha) of the whole
Andalusian (Andalusia, southern Spain) surface is
devoted to intensive agricultural production and to
control these agrarian policy actions, a precise fo-
llow-up of crop inventories and cropping systems by
the E.U. and local administrations is required.  Cu-
rrent methods to follow-up of cropping systems and
to map agricultural practices by the Andalusian ad-
ministration consist of both, ground visits at least to
1% of the whole surface and drive-by to sample
fields on a country-by-country basis.  This drive-by
method consists of designing transects, from which
the results are used to estimate or extrapolate the
agriculture system used in the entire country.  Ob-
viously, these procedures are time-consuming, very
expensive and deliver inconsistent results due to it
covers relatively small areas or only very few target
fields. 

Remote sensing has demonstrated to efficiently
identify and map crops, cropping methods, and ve-
getation inventories over large areas (South et al.,
2004; Yu et al., 2006).  These techniques can signify
lower costs, faster work and better reliability than
ground visits. But, particularly for this purpose, the
accuracy of the thematic map is extremely impor-
tant because this map could be used as a tool to help
the administrative follow-up to make the decision
on Concede/Not to concede the subsidy.  Medium
spatial resolution satellite imagery such as Landsat
TM and SPOT has often proven to have an insuffi-
cient or inadequate accuracy for detailed vegetation
studies (Harvey and Hill, 2001).  However, higher
spatial resolution satellite imagery such as IKONOS
and QuickBird has already been considered to be a
useful data source for accurately classifying agro-
nomic and forest variables such as forest inventory
(Chubey et al., 2006) and sorghum yield (Yang et

al., 2006). 
South et al. (2004) summarize most supervised

classification algorithms into three main categories:
distance-based, probability-based and angular-based
decision rules.  Distance-based classifiers rely pri-
marily on mean spectral values of distinct classes,
ignoring variance within classes.  Probability classi-
fication routines incorporate both the mean and va-

riance of the data set into the classification decision
rule.  Finally, angular-based classifiers use a classi-
fication decision rule based on spectral angles for-
med between a referenced spectrum and an
unclassified pixel.  There is no one ideal classifica-
tion routine.  The best one depends on all the needs
and requirements of each study.
Most remote sensing land use classification studies

are based on pixel information.  However, the in-
crease in spatial resolution causes an increase in in-
traclass spectral variability and a reduction in
classification performance and accuracy when pixel-
based analyses are used.  To overcome this problem,
it could be useful to group the adjacent pixels into
spectral and spatially homogeneous objects.  These
objects are created from a segmentation process.
Object merging/growing algorithms take some pi-
xels as seeds and grow the regions around them
based on certain homogeneity criteria (Yu et al.,
2006).  Thereafter, the classification is not based on
the pixel but on objects such as Minimum Informa-
tion Unit (MIU).  This idea involves an image seg-
mentation to delineate homogeneous objects in the
same way that human vision tends to generalize ima-
ges into homogeneous areas (Laliberte et al., 2004).
While the information of the pixel-based image
analysis is only the spectral response information of
all pixels in each band, the object-based analysis ob-
tains additional information derived from an image
object by the calculation of descriptive statistics of
spectral information such as mean and standard de-
viation from all the pixels aggregated in each object.
Therefore, objects are not characterized by a uni-
form reflectance value but by a distribution of a cer-
tain spatial autocorrelation (Lobo, 1997). 

This spatial information is based on object size,
shape and context and can be calculated as informa-
tion pertaining to an object’s sub- or super-object if
a multilevel image object hierarchy has been created
(Chubey et al., 2006).  Thus, these discrete objects
are homogeneous as regards spectral or spatial cha-
racteristics and according to Benz et al., (2004) can
contribute to powerful automatic and semi-automa-
tic analysis for most remote sensing applications.
However, there is no information about object-based
classifications in typical agricultural dryland Medi-
terranean areas to mapping cropping systems and
key agro-environmental measures with high spatial
resolution image satellite.

Therefore, the main objective of this paper was to
examine five supervised classification routines ap-
plied to pixel and object data as MIU to analyze the
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potentiality of each method for the identification and
mapping of cropping systems and their agro-envi-
ronmental associated measures using a multispectral
QuickBird image. 

MATERIALS

Land covers and data acquisition

The study area is about 87.21 km2 (15.3 x 5.7 km)
located around Montilla, province of Córdoba (An-
dalusia, southern Spain, Fig. 1).  This agricultural
area is representative of Andalusian dryland crops
and has a typical continental Mediterranean climate,
characterized by long dry summers and mild win-
ters, and a relatively flat relief with an average
height of 380 m above sea level.

In this scene, ten land uses were considered: 1)
spring-sown sunflower (Helianthus annuus L.), 2)
olive (Olea europaea L.) orchards, 3) vineyards
(Vitis vinifera L.), 4) burnt crop stubble (of winter
cereal: wheat, Triticum durum L., generally), 5) win-
ter cereal stubble, 6) urban soil, 7) roads, 8) river
side tree areas made up of mulberry-trees (Morus

alba L.), eucalyptus (Eucalyptus globules Labill)
and poplar (Populus nigra L.), 9) dark agricultural
bare soil, and 10) light agricultural bare soil.  The
latter two land uses provided radiometric signals
contrasting enough to separate the agricultural bare
soil into two categories: light and dark bare soil.
Ground-truth land use was randomly defined to
substantiate and validate the classification procedu-
res.  The study area was visited to determine actual
land uses.  Over 127 ha were georeferenced using
the sub-meter differential GPS TRIMBLE PRO-
XRS provided with TDC-1.  Each land cover class
was shared out proportionally.  Thirty hectares of
this surface were used to collect the spectral signa-
ture in the training process.  The remaining 97 ha
were used to assess the accuracy of the classifica-
tions. 

Satellite data and preprocessing

Digital image data were acquired over the study
area by QuickBird satellite on 10th July 2004.
QuickBird data set consisted of 4-bands multispec-
tral image (blue: 450-520 nm; green: 521-600 nm;
red: 630-690 nm; and near-infrared: 760-900 nm)
with a spatial resolution of 2.8 m and a radiometric
resolution of 8 bit.  Radiometric and geometric co-
rrections were previously carried out by the distri-

butor.  The radiometric corrections included: rela-
tive radiometric response between detectors, non-
responsive detector fill and a conversion for absolute
radiometry. Geometric corrections removed space-
craft orbit position and attitude uncertainty, Earth ro-
tation and curvature, and panoramic distortion.
Additionally, a coarse DEM was used to normalize
for topographic relief with respect to the referenced
ellipsoid (information available in: http://www.euri-
mage.com/products/quickbird.html#standard).  The
image showed a spatial displacement and it was ge-
oreferenced for superimposing of cadastral infor-
mation. Cadastre ancillary data were superimposed
to provide useful information in order to improve the
segmentation process. Pixels and objects as MIUs
were used in the classifications (Fig. 2a and 2b, res-
pectively).

Segmentation

Segmentation subdivides images into separate re-
gions.  Each segmentation image can show a large
number of possible solutions but the best one is that
which shows meaningful image-objects that corres-
pond to real entities.  The segmentation algorithm
used in this study, the Fractal Net Evolution Appro-
ach, has been carried out by the software Definiens
Developer 7. It is used to produce image object pri-
mitives as a first step for a further classification and
other processing procedures (Baatz and Shäpe,
2000). The image has been processed by a multire-
solution bottom up region-merging approach, in
which the smallest image object contains one pixel.
Objects have been generated based upon several ad-
justable criteria: scale (control size parameter), co-
lour (spectral information) and shape (smoothness
and compactness information). Multiresolution seg-
mentation is an optimization procedure that minimi-
zes, for a given number of image objects, the
average heterogeneity (Definiens, 2007a) and pro-
duces highly homogeneous image objects in an ar-
bitrary resolution on different types of data (Baatz
and Shäpe, 2000).  This segmentation approach
allows, for different scale segmentation, to represent
the image information in different spatial resolutions
simultaneously by a hierarchical network. Informa-
tion about adjacent objects on the same level (hori-
zontal neighbours) and objects on different
hierarchical levels (vertical neighbours) are allowed
by this network.  Although it generates a large
amount of information, this study has used only two
types of information: the mean spectral value of each

Quickbird image segmentation for mapping crops and their agro-environmental associated measures
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Figure 1. Location of study area in Córdoba Province (Andalusia, Spain). 

Figure 2. a) QuickBird image, b) QuickBird image with superimposed limits of objetcs. 
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object in each layer and some textural parameters of
each layer that detect the local differences between
objects in lower levels or subobjects: contrast, en-
tropy and homogeneity (Table 1).  These textural pa-
rameters have been calculated based on the
co-occurrence matrix of Haralick.  This is a tabula-
tion of how often different combinations of pixel
gray levels occur in an image (Definiens, 2007b).
Homogeneity and contrast measure the concentra-
tion levels of elements along the diagonal of the gray
level co-occurrence matrix (GLCM), meaning, the
amount of local variation.  The entropy studies the li-
keness of the elements in the matrix.

Classification and accuracy

Five supervised classification methods were selec-
ted to examine their suitability for classification: Pa-
rallelepiped (P), Minimum Distance (MD),
Mahalanobis Classifier Distance (MC), Maximum
Likelihood (ML) and Spectral Angle Mapper
(SAM).  The first three methods, P, MD and MC are
distance-based classifiers, while ML and SAM are
probability and angular-based ones, respectively.
The QuickBird image was independently classified
by each of these methods, applying the decision
rules to pixels and objects as MIU. 

Table 1. Object-based features

#Pv: total number of pixels contained in an image object v, i: row number, j: column number
ci,j,k: intensity value of an image layer k in the cell i,j, N: numbers of  rows and columns, Pi,j:
normalized value in the cell i,j.

Categories Description

Spectral features Mean

Texture features GLCM_Homogeneity

GLCM_Contrast

GLCM_Entropy

A key concern in remote sensing is to quantify the
coincidence between the estimated map and the
ground-truth map.  To avoid any subjective estima-
tion, a numerical confusion matrix analysis was used
to indicate its correct assessment and the errors bet-
ween the classes studied (Congalton, 1991).  The
confusion matrix provides the Overall Accuracy
(OA) of the classification, which indicates the per-
centage of correctly classified pixels; the producer’s
accuracy (PA) and omission error, which indicates
the probability that a classified pixel actually repre-
sents that category in reality; and the user’s accuracy
(UA) and commission error which indicate how well
training set pixels were classified (Rogan et al.,
2002).  Overall classification accuracy indicates the
overall success of classification and has been stan-
dardized at 85% for the minimum accepted value.
Data not reaching this level will require a re-classi-
fication or class aggregation (Foody, 2002).  On the
other hand, the Kappa test determines whether the
results presented in the error matrix are significantly
better than random or chance classification indica-
ting a more conservative estimation than simple per-
cent agreement value (Congalton, 1991; Rogan et

al., 2002).  Landis and Kock (1977) suggested than
Kappa coefficient (Kc) of over 0.8 strongly indica-
tes that a given classification is unlikely to have been

Quickbird image segmentation for mapping crops and their agro-environmental associated measures
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obtained by chance alone. OA, PA, UA and Kc were
calculated for every final thematic map to validate
and assess the accuracy of the classification proce-
dures and imagery considered.
Because high resolution satellite data classification

generates noise, especially salt and pepper noise, the
classification errors can be important.  To improve
classification methods and obtain better results, a
majority filter of 5x5 (MF 5x5) was also applied to
all classifications to decrease land use heterogeneity.
ENVI 4.3 (Research Systems Inc. 2006) was the
software used for image processing.

RESULTS

OA and Kc results with and without the majority
filter applied for every classification method accor-
ding to the different MIU studied and considering
the ten land uses are shown in Table 2.  When the
majority filter was applied, best results in OA and
Kc were obtained for pixel as MIU, whereas hardly
perceptible differences were reached for the object-
based analysis.  Taking into account the classifica-
tion methods, consistent differences (over 55%) in
OA and Kc for the worst (P) and best (ML) classifi-
cation methods were obtained.  Thus, the OA and Kc
were 46.9% and 0.39, and 90.6% and 0.89, respec-

tively, for P pixel and ML object-based classifica-
tion.  With objects as MIU in the classification, four
of the five classification algorithms achieved OA of
over 85%.  Thus, OA was 86.7%, 89.0%, 89.9% and
90.6% for MD, SAM, MC and ML, respectively,
with Kc values of over 0.85. Figure 3 shows a piece
of image for the less (a, b) and most accurate (a’, b’)
land use classifications for pixels and objects as
MIU. 

Table 3 summarizes the PA for every individual
land use for the different MIU and classification me-
thods considered. PA varied considerably according
to the land use classified.  A general examination of
the individual land cover classifications shows that
mixed covers (e.g. olive orchard, spring sown crops
and urban soil) presented high intraclass spectral va-
riability and lower PA for pixel-based analyses as
MIU than for object-based analyses.  For example,
the greatest differences in PA can be observed in the
olive orchard category, which showed PA values gre-
ater than 92% in all the object-based classifications.
By contrast, river side trees and roads, which usually
exhibit a lower intraclass spectral variability, sho-
wed higher PA for all the pixel-based classifications
than for the object-based ones, except for ML for
river side trees, where a higher PA was found for ob-
ject-based classifications.

P(1) MD MC SAM ML

MIU(2) OA(3) Kc OA Kc OA Kc OA Kc OA Kc

Pixel 46.9 0.39 59.2 0.54 72.3 0.69 61.8 0.56 89.6 0.88

(44.3) (0.36) (55.5) (0.5) (65.0) (0.6) (57.5) (0.5) (79.2) (0.76)

Object 69.9 0.66 86.7 0.85 89.9 0.88 89.0 0.87 90.6 0.89

(69.8) (0.66) (85.1) (0.8) (89.9) (0.88) (88.9) (0.87) (90.5) (0.89)

(1) Method of classification: P: Parallelepiped, MD: Minimum Distance, MC: Mahalanobis Classifier Distance, SAM: Spectral Angle
Mapper, ML: Maximum Likelihood.
(2) MIU: Minimum Information Unit; (3) Accuracy values:  OA: overall accuracy, Kc: Kappa coefficient. 

Table 2. Accuracy results of the classifications carried out. Results with the majority filter in regular font. Results without
the majority filter between brackets and in italic font

F. López-Granados et al.
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Figure 3. Result of the Parallelepiped (a, b) and the Maximum Likelihood (a´, b´) classifiers using pixels (a, a’) and objects
(b, b’), as Minimum Information Unit in a QuickBird image. 

Discrimination of burnt crop stubble land use was
very successful applying the MC and ML methods
for any MIU considered in the image with PA higher
than 92.69%.  Similarly, winter cereal stubble dis-
crimination was very accurate with PA of over
96.98% or even of 100% for any MIU considered
and applying SAM, ML or MC classifications.  In
dark bare soil, light bare soil and spring sown crops
categories, the PA was higher than 89% for both
MIU in ML classifications.  By contrast, for roads
category the PA was higher in pixel-based analysis
than in the object one, showing values higher than

86.1% in any of the pixel classifications. 
Table 4 shows the UA for every individual land use

for both MIU and classification methods considered.
As stated before for PA, two of the most successful
classified land uses were burnt crop stubble and win-
ter cereal stubble areas.  For instance, for burnt crop
stubble, UA was usually higher than 97% in most of
the classifications, and even 100% success in many
of them.  Winter cereal stubble also presented high
accuracy showing UA values from 97% to 100% in
all the object-based classifications.

Quickbird image segmentation for mapping crops and their agro-environmental associated measures
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(1) MIU: Minimum Information Unit: P: Pixel; O: Object 
(2)Classifier Abbreviations: P: Parallelepiped, MD: Minimum Distance, MC: Mahalanobis Classifier Distance, SAM: Spectral Angle
Mapper, ML: Maximum Likelihood.

Table 3. Producer’s accuracy (%) of the five classifications (Results with the majority filter applied)

MIU(1)

River
side
trees

Roads                         
Winter
cereal

stubble
Vineyard

Olive 
orchards

Urban
soil

Spring-sown
crops

Burnt
crops
stubbe

Dark bare
soil

Light
bare soil

P(2) P 81.44 92.28 95.56 71.59 25.68 49.54 28.92 78.43 0.00 0.00

O 73.22 82.31 86.26 2.70 94.45 30.35 97.91 85.91 14.79 87.55

MD P 86.03 86.11 73.46 49.64 28.20 45.20 70.21 90.66 58.41 93.38

O 72.28 71.13 95.53 87.44 92.76 88.77 84.37 97.10 79.84 69.28

SAM P 89.42 89.70 99.87 66.14 44.46 25.45 22.93 68.35 71.06 57.79

O 68.81 76.01 96.98 91.89 92.49 75.65 84.29 98.23 89.15 83.78

MC P 83.49 90.07 100.00 80.33 35.68 59.28 82.63 92.69 63.97 94.97

O 73.42 74.68 100.00 93.30 93.44 92.30 90.35 98.38 93.22 67.83

ML P 87.58 93.32 99.29 80.02 84.38 84.12 89.70 96.77 93.70 93.09

O 97.00 45.31 99.84 83.87 99.64 61.57 95.38 99.36 90.29 89.92

MIU(1)

River
side
trees

Roads                         
Winter
cereal

stubble
Vineyard

Olive
orchards

Urban
soil

Spring-sown
crops

Burnt
crops
stubbe

Dark bare
soil

Light
bare soil

P(2) P 85.99 50.72 46.03 52.31 38.20 19.55 90.66 100 0.00 0.00

O 75.28 31.68 100.00 100.00 94.34 66.39 39.59 100 100 73.89

MD P 67.56 68.41 61.23 67.72 55.31 43.85 60.05 100 39.99 62.16

O 86.06 99.42 97.97 81.42 94.12 90.10 65.73 100 66.38 88.79

SAM P 52.90 31.59 80.09 67.26 78.56 28.31 47.40 97.83 45.33 58.46

O 93.43 55.70 98.24 77.26 94.05 93.64 87.17 97.87 78.74 91.32

MC P 85.87 77.69 76.67 91.30 80.18 42.30 80.89 100 51.55 67.69

O 99.53 65.52 98.04 89.93 97.33 95.48 83.70 99.11 66.61 81.59

ML P 99.05 86.01 94.57 82.85 94.25 77.07 76.71 100 91.82 87.07

O 80.58 100 99.78 97.49 92.35 96.90 86.88 100 77.81 80.08

(1) MIU: Minimum Information Unit: P: Pixel; O: Object 
(2) Classifier Abbreviations: P: Parallelepiped, MD: Minimum Distance, MC: Mahalanobis Classifier Distance, SAM: Spectral
Angle Mapper, ML: Maximum Likelihood. 

Table 4. User’s accuracy (%) of the five classifications. (Results with the majority filter applied).

F. López-Granados et al.
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DISCUSSION 

The first result to note is that the poorest and best
classifiers were P and ML considering all the land
uses.  More specifically, P and pixel-, and ML and
object-based analyses were the worst and best choi-
ces, respectively. MD, MC and SAM in the object-
based study also performed well and all of them
fulfilled the commonly accepted requirements of at
least 85% overall classification accuracy (Foody,
2002), and a range of 0.75 (Montserud and Leamans,
1992) to 0.80 (Landis and Koch, 1977) for Kappa
coefficient.  When considering individual land uses,
accuracy was higher since very low omission errors
or a maximum PA (even 100%) occurred for winter
cereal stubble and burnt crop stubble for MC and
ML for any MIU.  A great number of land use clas-
sifications were efficient whatever the classifier,
some of them exhibiting a PA of over 70%. These
results support the findings of Thomlinson et al.

(1999) who reported that the criterion for a success-
ful land cover categorization was not only 85% mi-
nimum overall, but also with no class with less than
70% accuracy.  Recently, according to Yu et al.
(2006), an overall classification accuracy surpassing
60% could be considered satisfactory when mapping
complex vegetation classification with more than 13
alliances constructed by 52 vegetation land uses.
Thus, although there is no standard estimation of ac-
curacy, there is a reasonable consensus that a grea-
ter accuracy is necessary if the number of land use
categories is low.  A greater accuracy is also essen-
tial if thematic map results can help environmental
policy and decision-making to address sustainable
agricultural practices. Similarly, an important achie-
vement in this research was the good results of PA in
many of the classes studied.  This was especially no-
ticeable for winter cereal stubble and burnt crop
stubble, which are two of the main agro-environ-
mental measures for reducing erosion in E.U.  They
were the most accurately classified land uses.  This,
together with the discrimination of cover crops in
olive orchards reported by Peña-Barragán et al.
(2004), permits the undertaking of the three funda-
mental agro-environmental measures approved for
winter cereals and olive groves, two of the main
crops in Mediterranean dryland conditions. 
For olive orchards, which was one of the land uses

with the highest intraclass variability, consistent in-
creases in PA and UA were obtained when compa-
ring pixel- and object-based analyses.  This is in
agreement with the basic reason for using image seg-

mentation due to the object-based analysis overco-
ming the problems of reduction in statistical separa-
bility between classes caused by the increase in
intraclass spectral variability in traditional pixel-
based classification approaches (Yu et al., 2006).
Conversely, for burnt crop stubble and winter cereal
stubble, the increases in the PA for object- compa-
ring to pixel-based analyses were not so outstanding
probably because these land uses can be considered
as being more homogeneous covers with a lesser in-
traclass spectral variability.

With regard to recommending the use of pixel or
object-based analysis two considerations should be
made: the improvement in accuracy obtained and the
expertise requirements involved in the process.
Considering the whole land use classification, ob-
ject-based analysis and ML as the best classifier
(Table 2), the Kc achieved a 1% improvement in
performance relative to ML and pixel classification
(Kc from 0.88 to 0.89 with the majority filter ap-
plied).  However, the improvements were higher
than 20% for object-based analysis and of the other
classification methods.  By other hand, when indi-
vidual land uses were considered, for example, for
burnt crop stubble, the omission errors of classifica-
tions based on objects were lower than those based
on pixel ones.  This indicates that, whereas impro-
vements in accuracy of 1% for the general land use
classification and ML method cannot really be con-
sidered as remarkable, for classifying crucial indivi-
dual land uses involved in reception of the subsidy,
the improvements in decreasing omission errors
were in fact considerable.  Therefore, to use one or
other MIU in the classification will depend on the
emphasis on achieving the maximum accuracy and
the ratio cost/efficiency that we wish to obtain in our
objectives.  If we desire to produce a high accuracy
map of a given land use that is ready to use for de-
cision-making procedures by the EU or local admi-
nistrations, e.g. classification of burnt crop stubble,
then ML and object analysis would be highly re-
commended, although this approach requires more
expertise.  If we aim to create a crop inventory for all
the land uses, then ML for pixel method would offer
enough detailed vegetation classification and would
be the best choice.  Thus, a hybrid decision could be
adopted: ML with pixel-based classification could
be suggested for crop inventories and ML with ob-
ject-based as MIU for decision-making and for fo-
llow-up of agrarian policy actions. 

Our results indicate that early July, the timing for
taking imagery for agro-environmental measure
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classification, was optimum since in an image re-
corded before, for example, in May or June, winter
cereal stubble and burnt crop stubble would not have
been able to be classified.  Peña-Barragán et al.
(2004) studied different dates and also concluded
that early July was the best moment for discrimina-
ting cover crops in olive orchards, the other most im-
portant agro-environmental measure. The QuickBird
8 bit image offered enough radiometric detail for the
successfully identification and mapping of crops and
their agro-environmental associated measures.  Ho-
wever, 11 bit image could probably increase the ove-
rall accuracy of some of the classification methods
due to its higher radiometric resolution.

CONCLUSIONS AND FUTURE

WORK

The accuracies obtained noticeably reveal that the
choice of different classifiers and MIU cause high
variations of the performance for crops and their
agro-environmental measures classification.  Thus, a
hybrid decision could be adopted: ML with pixel-
based classification could be suggested for crop in-
ventories and the ML with object-based parameters
for decision-making for a follow-up of agrarian po-
licy actions.

Future work could address the evaluation of pan-
sharpened QuickBird imagery (from panchromatic
and multispectral images) to test the improvements
in accuracy of overall and individual land use clas-
sification.  This could be particularly useful when
the accuracy of the thematic map is extremely im-
portant because this map could be used as a tool to
help the administrative follow-up to make the deci-
sion on Concede / Not to concede the subsidy.
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