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Abstract

Objectives: Species Distribution Models (SDMs) are used to produce predictions of potential Leguminosae diversity in West
Central Africa. Those predictions are evaluated subsequently using expert opinion. The established methodology of
combining all SDMs is refined to assess species diversity within five defined vegetation types. Potential species diversity is
thus predicted for each vegetation type respectively. The primary aim of the new methodology is to define, in more detail,
areas of species richness for conservation planning.

Methodology: Using Maxent, SDMs based on a suite of 14 environmental predictors were generated for 185 West Central
African Leguminosae species, each categorised according to one of five vegetation types: Afromontane, coastal, non-
flooded forest, open formations, or riverine forest. The relative contribution of each environmental variable was compared
between different vegetation types using a nonparametric Kruskal-Wallis analysis followed by a post-hoc Kruskal-Wallis
Paired Comparison contrast. Legume species diversity patterns were explored initially using the typical method of stacking
all SDMs. Subsequently, five different ensemble models were generated by partitioning SDMs according to vegetation
category. Ecological modelers worked with legume specialists to improve data integrity and integrate expert opinion in the
interpretation of individual species models and potential species richness predictions for different vegetation types.

Results/Conclusions: Of the 14 environmental predictors used, five showed no difference in their relative contribution to
the different vegetation models. Of the nine discriminating variables, the majority were related to temperature variation.
The set of variables that played a major role in the Afromontane species diversity model differed significantly from the sets
of variables of greatest relative important in other vegetation categories. The traditional approach of stacking all SDMs
indicated overall centers of diversity in the region but the maps indicating potential species richness by vegetation type
offered more detailed information on which conservation efforts can be focused.
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Introduction

The spatial distribution of an organism forms a fundamental

basis for studies of biogeography, evolution, patterns of biodiver-

sity, effects of climate change, and invasive species as well as

conservation planning, the designation of protected areas,

ecological modeling, and statistical or correlative modeling [1–

4]. Nevertheless, species distributions are often poorly known,

especially in tropical areas [5–6]. Numerous factors may influence

species distribution. In this study, we used statistical and/or

correlative species distribution models (SDMs) based on a suite of

environmental independent variables to predict the suitability of a

given species to an area or areas for which distributional data are

either scarce or do not exist [7].

SDMs can be generated using a number of different techniques,

each of which is designed to establish a relationship between

different environmental variables and available distribution data

for a given organism. Commonly, this distribution information is

limited to that provided by natural history collections, such as

herbarium data. Although these collections record locations where

a species has been observed, they rarely provide information on

confirmed absences. Other drawbacks associated with herbarium

data are sampling bias [8–10] and the unknown reliability of

georeferences and species identification [11–12]. However, the use

of well-studied, carefully selected ‘‘indicator’’ taxonomic groups,

can allow the identification of conservation targets [13], facilitate

data integrity and minimize the impact of SDMs drawbacks [14–

15]. Unfortunately, there is no consensus as to which indicator

groups should be used [16–18], and some studies using different

indicators offer conflicting biodiversity patterns. For example

Howard et al [14] found little spatial congruence in the species

richness of woody plants, large moths, butterflies, birds and small
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mammals across 50 Ugandan forests, but other studies, such that

by Urbina-Cardona and Flores-Villela [15] found overlap among

the main selected areas in the conservation-area network

prioritized to preserve amphibian and reptile species in Mexico.

In this study, we selected Leguminosae (the legumes) as an

indicator of angiosperm diversity, [13,19] (see Materials and

Methods). As the third most species-rich angiosperm family, the

legumes have been demonstrated as one of the families whose

species diversity is best correlated with overall patterns of

angiosperm species diversity [19]. First we established an

interdisciplinary working group comprised of ecological modelers

and specialists in the taxonomy and biology of Leguminosae

(M.d.l.E., B.M. and J.J.W. are taxonomists who focus on legumes;

R.G.M. and J.M. are SDM experts). Cooperation between

taxonomists and ecologists is now considered by many researchers

to be an essential element of ecological modeling [20–21]. Expert

botanical and zoological knowledge can be applied to obtain

reliable data, verify the accuracy of identifications, and confirm

collection localities, and such knowledge is critical for the

biological interpretation and validation of final results [18,22–

23]. Moreover, this combined approach has been used to

counteract the tendency of many SDMs towards over prediction

[3,24]. However, we acknowledge that some authors [25–26]

interpret such over prediction as indicating the ‘‘fundamental

niche’’ of the species. Indeed, in some cases, apparent over

predictions have lead to the detection of new populations of rare

taxa or even the discovery of new species or populations of rare

species [27–29].

Nevertheless, expert knowledge can moderate the limitations of

SDMs which arise from their being derived exclusively from

climatic or environmental data. These data do not take into

account factors such as biotic relationships with other species,

limitations of dispersal capacity, historical factors, or the use of

complex environmental variables. Although such factors are

biologically sound and robustly informative of the organism being

modeled [7,30–33], they are difficult to generate. When examin-

ing an SDM, taxonomists can consider all these factors and

hopefully, in doing so, can ensure that the results more closely

reflect the realized niche of the species [34].

When analyzing diversity patterns it is necessary to generate

models at community level. Ferrier and Guisan [35] described

three strategies: 1) ‘‘assemble first, predict later’’, in which

collections data are classified first, and arranged or aggregated

later, e.g.: [36]; 2) ‘‘predict first, assemble later’’, in which species

are modeled singly and the species maps are ordinated or

aggregated after, e.g.: [37]; and 3) ‘‘assemble and predict

together’’, in which species are modeled and aggregated at the

same time, e.g.: [38]. Many published assessments of the global

threat to biodiversity have been based on a species-ensemble

approach [39–41]. Fewer studies have evaluated the utility of the

second strategy [21,42–45].

We also explored another potentially informative approach

when developing and interpreting SDMs. We considered the

information provided within specimen labels and taxonomic

treatments on the vegetation types or formations in which those

species has been found (see Material and Methods). Additionally,

we sought to elucidate whether species from different vegetation

types required different combinations of input variables to be

correctly modeled. If that were so, it would be more appropriate to

stack the models according to different vegetation type than add all

of the available species to the same community-level model.

Therefore, we grouped the different species according to their

vegetation types before developing the models of potential species

richness. To our knowledge, this is the first reported use of this

strategy to group species and obtain comparative models of

potential species richness according to vegetation type.

The objective of our study was to answer the following three

questions: According to the SDMs, what are the diversity patterns

of legumes in West Central Africa? Are those diversity patterns in

agreement with the current expert opinion? Are the relative

contributions of variables to SDMs dependant on the biology

(characterized here as their vegetation type preferences) of the

species modeled? To answer these questions, the study was

conducted in several stages: 1) the creation of the most

authoritative and comprehensive legume database for West

Central Africa; 2) the use of this database to develop SDMs for

individual species and the subsequent stacking of individual

models to generate models of potential species richness; 3) the

investigation of the relative influence of the independent variables

in the generation of accurate models of species of different

vegetation types; 4) a comparison of the reliability of diversity

patterns obtained for each vegetation type; and 5) the assessment

of the generated SDMs by taxonomic experts from both biological

and conservation perspectives.

Materials and Methods

Study area: choice of geographical delimitation and
taxonomic focus

West Central Africa represents the area of greatest biodiversity

within tropical Africa [46–47]. Within the region, the botany of

Cameroon, Gabon, and Equatorial Guinea is relatively well-

explored. Their floras have been and continue to be a research

focus for several legume taxonomic specialists, e.g.: [48–57]. In

addition to the mainland territories, we also included Bioko Island,

the largest island of the Gulf of Guinea (2,017 km2). Although

Bioko is administratively part of Equatorial Guinea, it lies only

32 km west of the Cameroon coast. This island is under significant

continental influence as evidenced by the flora, which is quite

similar to that of the mainland [58]. The other three islands within

the Gulf of Guinea belong to the same volcanic arc as Mount

Cameroon and Bioko, but are much smaller in size. They consist

of Prı́ncipe (114 km2), São Tomé (857 km2), and Annobón

(17 km2) and are not included in the present study (Figure 1).

Study group
Leguminosae is the third largest family of flowering plants

comprising approximately 19,300 species recognized in three

subfamilies, Caesalpinioideae, Mimosoideae, and Papilionoideae.

The legumes occur in a great variety of vegetation formations from

rainforests and mangrove swamps to deserts and temperate or

alpine zones [59]. In economic terms they are arguably the most

important family of plants [59–62]. Furthermore, many species

have the capacity to colonize otherwise barren lands through

symbiotic fixation of atmospheric nitrogen in their root nodules

[63]. In terms of species richness, Leguminosae is the most

important angiosperm family of tropical African forests [64]. Of

the three subfamilies, Caesalpinioideae is the smallest group

[59,65] comprised of c. 2,250 species. Caesalpinioid legumes have

a primarily tropical distribution and typically bear large, showy

flowers. Many of the tree species in Africa belong to this subfamily,

where they are the most dominant taxonomic group of flowering

plants in lowland evergreen rainforest [57]. The Mimosoideae

subfamily has a slightly larger number of species (c. 3,270 species),

which are also most commonly found in the tropics. Mimosoid

legumes are not well represented in the rainforest and generally

prefer drier vegetation formations. Typically, they have small

flowers aggregated into heads or spikes. The mimosoid legume

Legume Diversity in West Central Africa
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genera include widely recognized species-rich genera such as

Mimosa and Acacia. The cosmopolitan Papilionoideae is by far the

largest legume subfamily with c. 13,800 species. Papilionoideae is a

generalist taxon with respect to vegetation formations, and

papilionoid legumes often bear characteristic ‘‘pea’’ flowers [59].

Herbarium specimen data
We assembled a database containing 16,780 legume records

from Cameroon, Equatorial Guinea, and Gabon by merging the

databases of specimens kept in three herbaria: WAG (Wageningen

University, Wageningen), K (Royal Botanic Gardens, Kew), and

MA (Real Jardı́n Botánico, Madrid). After these data were

merged, legume specialists verified the accuracy of the taxonomic

identifications and geographical localities of the specimens. Any

records that were in doubt were excluded. Furthermore, to avoid

the influence of species misidentification, we excluded from the

dataset genera that are currently under taxonomic study [66–69].

These are taxa where species and/or generic limits are not yet

resolved, e.g., the genera Hymenostegia and Gilbertiodendron are

presently under revision by Mackinder & Wieringa and Estrella &

Devesa, respectively. We also excluded species that were

introduced and likely naturalized in our study area. Included

collections were placed on a 0.0083u (c.1 km) geographic grid.

When multiple collections of the same species occurred within the

same pixel, a single presence was recorded. SDMs with few

occurrences are generally less accurate [70–72]; thus, only species

with at least 15 unique presences were modeled to avoid

generating low-performance models. Total specimens and differ-

ent localities for each species analyzed are indicated within Table

S1. We chose a cutoff of 15 presences based on recommendations

from other studies [73–74]. The final edited database included

7,445 records of 185 species: 87 species from 41 genera of the

Caesalpinioideae, 24 species from 15 genera of the Mimosoideae,

and 74 species from 39 genera of the Papilionoideae (Table S1,

Figure 1).

Each of the 185 species was assigned to a vegetation type using

data that were extracted primarily from taxonomic studies

(references under study area; Table S1). Those data were

supplemented by field observations recorded on herbarium

specimen labels after they had been reviewed by taxonomic

experts for anomalies. Each species was assigned to one of five

categories; Afromontane (AF), coastal (CO), non-flooded forest

(NF), open formations (OF) or riverine (RF) vegetation type.

Species that had been documented as present in more than one

vegetation type were assigned to the most frequently reported

category (Table S1).

Environmental predictors
To obtain the bioclimatic variables, we employed the widely

used World Clim 1.4 dataset [75] (http://www.worldclim.org) at a

161 km spatial resolution. Because one of the purposes of this

study was to explore the relative contribution of the bioclimatic

variables, we performed a Pearson’s pairwise correlation analysis

in SPSS (www.spss.com) and removed one of the variables in each

pair that had a pairwise correlation value higher than 0.8; the

removed variable of each pair was thus considered to be the less

biologically important of the two, considering the legumes as a

whole. However, we acknowledge that in some cases both were

similarly important, and our decision to drop one was arbitrary in

biological terms, but needed to avoid multicollinearity. The final

Figure 1. Study area and occurrences of the 185 species used to generate the species distribution models.
doi:10.1371/journal.pone.0041526.g001
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variable set included bio_02, bio_03, bio_06, bio_08, bio_09,

bio_16, bio_17, bio_18 and bio_19 (Table 1).

In addition to bioclimatic variables, we generated a variable

indicating the distance to the sea and characterized the

topography, slope and aspect via two compound variables derived

from a 250 m resolution DEM (http://srtm.csi.cgiar.org/):

‘‘northness’’ = cosine (aspect in radians) = cosine (aspect *

3.14159/180)

‘‘eastness’’ = sine (aspect in radians) = sine (aspect * 3.14159/

180)

Flat terrain was reclassified as 0.

We also derived a Compound Topographic Index from the

250 m DEM using an ArcInfo Workstation (cti.aml script,

available at http://arcscripts.esri.com). The Compound Topo-

graphic Index is a function of both the slope and the upstream

catchment area and can be considered a measure of the potential

water accumulation, which is useful for modeling species related to

watercourses.

Finally, we used the Map of Geologic Provinces of Africa 2.0

(U.S. Geological Survey) to obtain the geologic data.

Ecological modeling
Species distribution models were generated in Maxent 3.3.3e

with the default settings (‘‘Auto features’’, convergence thresh-

old = 1025, maximum number of iterations = 500, maximum

number of background points = 10,000, regularization multipli-

er = 1). Due to the low sample size of most of the species, as is

commonly the case in tropical species studies [5,24], data

resampling is not the best strategy for those data [37]. We

conducted a verification of the models using 100% of the data as

the training data set [34]; AUC values calculated from a limited

number of presences can lead to a prediction of model accuracy

that is artificially high, compared to a prediction calculated from a

more complete knowledge of the potential distribution [76].

The ‘‘maximum training sensitivity plus specificity’’ rule was

used to convert the resulting continuous models to binary models.

Individual binary SDMs were combined to generate six models

of potential species richness, one for all of the species and five for

the considered vegetation types: (1) Total species, (2) non-flooded

forest, (3) open formations, (4) riverine, (5) coastal, and (6)

Afromontane. Those individual species models, as well as the

stacked vegetation type models were analyzed for consistency with

published patterns of legume richness in West Central Africa, e.g.:

[47,77–82].

Relative contributions of the environmental variables
Maxent provides an estimate of the relative contribution of each

environmental variable to the generated SDM model [83] (Table

S1). We used those relative contributions as variables to determine

how, if at all, contributions of the environmental variables differed

across vegetation types. Because the assumptions of normality and

homoscedasticity were not met, we performed a nonparametric

Kruskal-Wallis test using the vegetation type as a grouping

Table 1. Independent variable codes and explanations. Codes prefixed by ‘‘bio_’’ were derived from WORLDCLIM 1.4; sources of
other variables are described in the text.

Variable Code Description of variable

1 bio_02 Mean Diurnal Range [Mean of monthly (max temp – min temp)]

2 bio_03 Isothermality (P2/P7) (* 100)

3 bio_06 Min Temperature of Coldest Month

4 bio_08 Mean Temperature of Wettest Quarter

5 bio_09 Mean Temperature of Driest Quarter

6 bio_16 Precipitation of Wettest Quarter

7 bio_17 Precipitation of Driest Quarter

8 bio_18 Precipitation of Warmest Quarter

9 bio_19 Precipitation of Coldest Quarter

10 Distance Distance to the sea shore

11 Eastness Orientation E-W

12 Geology (soils) Categorical variable with the soil information

13 Northness Orientation N-S

14 Compound Topographic Index potential water accumulation

doi:10.1371/journal.pone.0041526.t001

Table 2. The results of the Kruskal-Wallis test (***, p,0.001).

Variable n tied Ranks Chi-Square df p (2-tailed)

bio_02 61 25.76633 4 0,0004***

bio_03 38 31.84419 4 0.0000***

bio_06 41 6.22594 4 0.1829

bio_08 54 29.1088 4 0,0001***

bio_09 53 35.98039 4 0.0000***

bio_16 81 15.56136 4 0.0037***

bio_17 2 50.05549 4 0.0000***

bio_18 12 42.79366 4 0.0000***

bio_19 6 23.10991 4 0.0001***

Distance 2 84.01005 4 0.0000***

eastness 5 13.86386 4 0.0077***

geology 0 61.58766 4 0.0000***

northness 3 17.67899 4 0.0014***

Compound Topographic
Index (CTI)

6 30.85877 4 0.0000***

doi:10.1371/journal.pone.0041526.t002
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Table 3. Highly significant comparisons (p,0.001) of the Kruskal-Wallis Paired Comparisons [84].

Variable I J
5% Critical
Difference (I-J) Differences Variable I J

5% Critical
Difference (I-J) Differences

bio_02 AF RF 3.251.608 27.062.805 bio_19 AF CO 3.465.914 7.248.148

OF RF 2.513.928 25.231.805 RF 3.278.788 5.685.772

RF AF 3.251.608 7.062.805 CO AF 3.465.914 27.248.148

OF 2.513.928 5.231.805 NF 2.223.428 23.926.065

bio_03 AF NF 3.007.433 26.337.917 NF CO 2.223.428 3.926.065

CO NF 2.162.234 24.930.972 RF AF 3.278.788 25.685.772

OF NF 222.596 2407.075 distance AF CO 2.732.319 214.875.463

NF AF 3.007.433 6.337.917 NF 2.437.978 27.274.792

CO 2.162.234 4.930.972 RF 25.848 28.793.801

OF 222.596 407.075 CO AF 2.732.319 14.875.463

bio_08 AF CO 3.400.686 943.287 OF 2.185.855 10.336.296

NF 3.034.345 7.159.583 NF 1.752.817 7.600.671

RF 3.217.082 7.399.492 RF 1.951.876 6.081.662

CO AF 3.400.686 2943.287 OF CO 2.185.855 210.336.296

NF AF 3.034.345 27.159.583 RF 1.998.396 24.254.634

RF AF 3.217.082 27.399.492 NF AF 2.437.978 7.274.792

bio_09 AF CO 3.324.396 8.138.889 CO 1.752.817 27.600.671

NF 2.966.274 7.499.167 RF AF 25.848 8.793.801

CO AF 3.324.396 28.138.889 CO 1.951.876 26.081.662

OF 2.659.517 25.102.222 OF 1.998.396 4.254.634

OF CO 2.659.517 5.102.222 eastness AF OF 3.607.712 26.220.333

NF 2.195.496 44.625 OF AF 3.607.712 6.220.333

NF AF 2.966.274 27.499.167 geology AF CO 3.023.192 11.892.593

OF 2.195.496 244.625 NF 2.697.517 91.9

bio_17 AF OF 3.201.076 26.073.667 RF 2.859.969 7.656.098

NF 2.821.721 25.699.167 CO AF 3.023.192 211.892.593

CO OF 2.529.913 27.750.519 OF 2.418.554 28.240.593

NF 2.028.714 27.376.019 RF 2.159.666 24.236.495

RF 2.259.105 26.645.348 OF CO 2.418.554 8.240.593

OF AF 3.201.076 6.073.667 NF 1.996.575 55.38

CO 2.529.913 7.750.519 RF 2.211.139 4.004.098

NF AF 2.821.721 5.699.167 NF AF 2.697.517 291.9

CO 2.028.714 7.376.019 OF 1.996.575 255.38

RF CO 2.259.105 6.645.348 RF AF 2.859.969 27.656.098

bio_18 AF NF 2.897.202 28.482.292 CO 2.159.666 4.236.495

CO NF 2.082.982 24.669.792 OF 2.211.139 24.004.098

OF NF 2.144.372 23.821.125 northness AF OF 3.567.033 26.170.667

NF AF 2.897.202 8.482.292 CO OF 281.914 24.807.704

CO 2.082.982 4.669.792 OF AF 3.567.033 6.170.667

OF 2.144.372 3.821.125 CO 281.914 4.807.704

RF 179.753 4.309.223 CTI AF OF 3.422.785 269.68

RF NF 179.753 24.309.223 RF 3.198.857 26.632.927

NF 2.169.224 23.716.597 CO OF 2.705.137 25.790.222

RF 2.415.572 25.455.149 NF 2.169.224 23.716.597

OF AF 3.422.785 69.68 RF 2.415.572 25.455.149

CO 2.705.137 5.790.222 OF AF 3.422.785 69.68

NF CO 2.169.224 3.716.597 CO 2.705.137 5.790.222

RF AF 3.198.857 6.632.927 NF CO 2.169.224 3.716.597

CO 2.415.572 5.455.149 RF AF 3.198.857 6.632.927
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variable (AF, CO, OF, NF, and RF) followed by a post-hoc

Kruskal-Wallis Paired Comparisons analysis [84] (http://www.

brightstat.com). Finally, we performed a non-metric multidimen-

sional scaling (NMDS) analysis of the contributions of the

environmental variables to explore whether taxa that appears at

the same vegetation type would group according to the variable

contribution, for this analysis R and the Vegan package were used

(http://cran.r-project.org/web/packages/vegan/index.html;

http://cc.oulu.fi/̃jarioksa/opetus/metodi/vegantutor.pdf).

Results

Maxent models
The 185 species models generated with Maxent had accuracy

values, measured as the Area Under the ROC Curve (AUC), from

0.84 to 0.99 for the training data set. Values in this range are

considered indicative of good accuracy [85].

Vegetation types analyses
According to the Kruskal-Wallis test, the following environ-

mental variables exhibited different contributions to the models

across vegetation types (P,0.01): the mean diurnal range (bio_02),

isothermality (bio_03), mean temperature of wettest quarter

(bio_08), mean temperature of driest quarter (bio_09), precipita-

tion of wettest quarter (bio_16), precipitation of driest quarter

(bio_17), precipitation of warmest quarter (bio_18), precipitation

of coldest quarter (bio_19), distance, eastness, geology, northness

and Compound Topographic Index (CTI) (Table 2).

According to the post-hoc Kruskal-Wallis Paired Comparisons

test (Table 3, Table S2); the set of variables that contributed most

strongly to the Afromontane species models was significantly

different from that of the other vegetation types. Contributions

from precipitation of driest quarter (bio_17), eastness, northness

and Compound Topographic Index (CTI) were considerably more

important to Afromontane species models than to those of open

formation taxa. A more complex set of variables separated

Afromontane species from CO, NF and RF taxa, including the

mean temperature of the wettest quarter (bio_08), distance and

geology (Table 3). In the case of coastal species, distinguishing

variables included bio_17, distance and CTI. Species classified as

OF were separated from NF and RF species based on geologic

factors. Finally, NF species differed from RF taxa based on the

precipitation of the warmest quarter (bio_18) (Table 3).

According to the jackknife test of variable importance (Figure 2;

Table S1), the most important variables in the AF species model

were bio_08, bio_09, and geology. For the CO taxa, distance to

seashore, geology, bio_02, and bio_16 were most important. For

the NF taxa, distance to seashore, bio_19, bio_18, bio_02, and

bio_16 made the greatest contributions. For the RF taxa, distance

to seashore, bio_02, bio_19, and bio_18 played the greatest roles.

Finally, for the OF species, distance to seashore, bio_19, geology,

and, bio_16 were most important.

The results of the NMDS analysis show that geology and bio_08

were the most important variables contributing to the SDMs of AF

taxa, distance to seashore was the most important variable for the

coastal taxa and bio_18, bio_06 and bio_16 were the most

important variables for NF species (Figure 3).

Legume diversity patterns
Individual models within each reported vegetation types were

stacked to generate vegetation richness models. One hundred and

eighty-five species were included in the general model, and the

Afromontane, coastal, non-flooded forest, open formations, and

riverine models each contained 12, 27, 80, 25 and 41 species,

respectively (Table S1; Figures 4 and 5A–E).

Discussion

Vegetation type analysis
The vegetation type analysis allowed us to discern which of the

environmental factors used in this study were the most appropriate

variables for modeling suitability of vegetation types for Legumi-

nosae in West Central Africa. Although the variables used here are

only a portion of all parameters that could be used, they are

among the most commonly employed variables in ecological

modeling [86]. Many of them represent limiting factors for legume

distribution ranges in tropical Africa. The generation of other

variables can be difficult or even impossible for tropical areas.

Satellite-derived parameters, although widely used, may not

represent biologically important characteristics. Moreover, they

can be difficult to correlate with biological characteristics or have

unsuitable spatial resolution (e.g., LAI and QSCAT backscatter

data).

The majority of important bioclimatic variables for discrimi-

nating among vegetation types were related to temperature

variations (Table 2). In tropical Africa, water availability has been

suggested as the most important factor explaining the distribution

of individual plant species [87–88], the water deficit is a function of

rainfall and evaporation (which depends on temperature, humidity

and wind). Precipitation variables are relatively important, but

mainly because of seasonality which is also related to the water

deficit (Table 2).

Afromontane species were readily separated (Table 3, Figure 3)

from species of all other vegetation types based on the mean

temperature of the wettest quarter (bio_08) and the geology.

Afromontane taxa grow at altitudes exceeding 2500 m on volcanic

mountains with temperatures and precipitation similar to temper-

ate regions; thus, it is reasonable that those variables were the most

important parameters in the generated models (Figure 2). For

example, species of mostly temperate genera, e.g., Trifolium and

Adenocarpus, are found in Afromontane vegetation which has a

widely disjunct distribution pattern on the high mountains of

tropical Africa.

For coastal taxa, distance to sea shore was the most important

variable (Table 3, Figures 2 and 3). It is logical that the SDMs of

Table 3. Cont.

Variable I J
5% Critical
Difference (I-J) Differences Variable I J

5% Critical
Difference (I-J) Differences

CO 2.415.572 5.455.149

AF, Afromontane species; CO, Coastal species; OF, open formations; NF, non-flooded forest; RF, riverine or water-associated species. I and J, comparison of formation
pairs (for all comparisons see Table S2).
doi:10.1371/journal.pone.0041526.t003
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such species, which are adapted to high humidity and a coastal

influence, were highly responsive to this variable.

‘‘Non-flooded forest’’ species were separated (Table 3) from AF

and RF taxa by variables defining periods of water shortages, i.e.,

precipitation of the driest quarter (bio_17), precipitation of the

warmest quarter (bio_18), as well as distance to seashore. The

separation of ‘‘non-flooded forest’’ taxa from OF taxa was also

distinct (Figure 3) and was mainly based on the mean temperature

of the driest quarter (bio_09), precipitation of the warmest quarter

(bio_18), and the geology. Figure 3 illustrates that there was not a

clear-cut limit between open formations, non-flooded forests, and

riverine vegetation types but that rather a gradient of change was

observed. The non-flooded forests vegetation type includes several

different vegetation sub-types, such as primary lowland dry forest,

periodically inundated forest, or primary forest on white sands.

Although these vegetation types are not clearly defined or fully

independent from one another, the inclusion of these groups may

explain the difficulty in identifying distinct groups in Figure 3. This

effect is likely the consequence of the near impossibility of

classifying many of the species typical of the NF vegetation into

fully discrete categories.

Within the open formations (OF) category, we included species

from savannah and lowland grasslands, which appear in the

mountains at lower altitudes than the Afromontane species and

also occur on volcanic soils. The inclusion of these vegetation types

explains the clear separation of OF from NF and RF taxa based on

geology (Figure 3, Table 3). Variables related to the seasonality of

the precipitation, i.e. precipitation of the driest quarter (bio_17)

and precipitation of the warmest quarter (bio_18), were also

important in OF species models (Figures 2 and 3).

The models for species of riverine forests (RF) indicated that the

distance to seashore and the Compound Topographic Index

(CTI), a surrogate for water accumulation, played an important

role (Figure 2 and 3). The CTI was less important for modeling RF

taxa than the precipitation of the coldest quarter (bio_19) and the

geology, variables also related to rivers and water sources

(Figure 2). However, the CTI remains a crucial variable when

generating RF taxa models; for instance the SDM of Aphanocalyx

djumaensis, a gregarious species of riverine forest, showed that CTI

was the most important variable in the result of the jackknife test

(Table S1). Global bioclimatic variables were able to determine the

general distribution pattern of a species, although the quality of

predictions was improved when other variables representing

edaphic factors were included.

Legume diversity patterns in West Central Africa
As a first approach, we stacked all of the SDMs (Figure 4) as has

been performed in other studies investigating centers of diversity

or conservation priorities, e.g.: [43,89–90]. The previous vegeta-

tion types analysis revealed that there are differences in model

predictions and that the influence of independent variables is

dependent on the vegetation type. This information led us to

generate ensemble models by stacking together only those species

living in the same vegetation rather than all species.We generated

five stacked maps, one for each vegetation category: Afromontane

(Figure 5A), coastal (Figure 5B), non-flooded forest (Figure 5C),

open formations (Figure 5D) and riverine (Figure 5E).

Figure 2. Maxent jackknife test of variable importance. Each
curve represents the regularized training gain of each variable used in
isolation for each species. AF, Afromontane species; CO, coastal species;
NF, non-flooded forest species; OF, open formations species; RF, riverine
species.
doi:10.1371/journal.pone.0041526.g002
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The potential species richness map for Afromontane species

(Figure 5A) clearly illustrates that this vegetation type is restricted

to the highest mountains of Bioko Island, Mount Cameroon and

the Adamawa Mountains, all of which belong to the same volcanic

arc. This was the expected distribution for this vegetation type

despite the small number of studied species. Afromontane species

share a well-defined set of environmental conditions. As a

consequence, this vegetation type can be accurately captured with

fewer presence points than for generalist taxa [73,91–93]. We also

observed that Afromontane species present a common jackknife

curve pattern for all of the species that contrasted with the more

variable jackknife curve patterns obtained from species of the other

vegetation types.

Figures 5B and 5E display the stacked maps for coastal and

riverine species, respectively. Coastal vegetation (Figure 5B) is

endangered throughout the world, and our results indicate that the

southern coast of Bioko Island and the entire coast of Gabon

should be considered in future conservation planning efforts.

Non-flooded forests (Figure 5C) are potentially more suitable for

conservation in the low territories of the Rio Campo region in

Cameroon, the Muni estuary in Equatorial Guinea, and the

Ogooué basin in Gabon. This prediction corresponds to the area

which currently has the largest expanse of pristine forests in the

continent [46–47,57], and would indicate this area as a priority for

conservation programs in tropical Africa. These forests are

dominated by members of the subfamily Caesalpinioideae,

particularly in the vicinity of the Muni estuary, the Ogooué river

basin in Gabon, and around Kribi in Cameroon, an area with a

dense Caesalpinioideae forest in good condition. The lowlands of

Figure 3. Non-metric multidimensional scaling (NMDS) of the variable contributions for each species distribution model (SDM).
Each species is represented within the relevant vegetation type classification; arrows indicate the direction of the maximum variable contribution for
the SDMs.
doi:10.1371/journal.pone.0041526.g003

Figure 4. Potential species richness map for the stacked model
of all studied species.
doi:10.1371/journal.pone.0041526.g004
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Bioko Island, the most populated and disturbed part of the island

and thus the area that has been transformed into secondary

vegetation, also appears to have suitable primary vegetation. For

example, the Gran Caldera de Luba, located in the southern area

of the island and surrounded by an expanse of secondary forests,

holds large patches of pristine forest. Secondary vegetation types

are also dense in Cameroon north of Mount Cameroon and near

the villages of Bafousam and Bamenda, both densely populated

areas, and in Gabon near the capital city of Libreville, likely one of

the most altered areas of the country. These areas should be

targets for future conservation planning strategies, although we

acknowledge that anthropic pressure can lead to social conflicts

resulting in the failure of such efforts.

A similar pattern to that of the Afromontane taxa was found for

the open formation species (Figure 4B), which are more abundant

at lower altitudes than Afromontane species. The Open Formation

species have an important presence at the coast from Cameroon to

Gabon and on Bioko Island where coastal grasslands on sand are a

highly endangered vegetation type. The savannah species are

important in northern Cameroon near Ngaoundere and in

southern Gabon in the Moukalaba-Doudou reserve.

We hypothesize that the biology of the species is a critical

consideration when deciding whether models of different taxa

should or should not be stacked. Such a decision should also take

into account the objectives of a study. If our goal was to preserve

the highest areas of legume diversity, we would use the total stack

option (Figure 4). This would indicate that the most important

areas are those surrounding Mount Cameroon, the Kribi area of

Cameroon, the Muni estuary in Equatorial Guinea, and the

Ogooué basin in Gabon. Most modeling exercises stack the species

distribution models of all available species irrespective of the

biological implications; unfortunately, this approach may result in

Figure 5. Potential species richness maps according the different vegetation types. (a) Afromontane species, (b) coastal species, (c) non-
flooded forest species, (d) open formations species, and (e) riverine species.
doi:10.1371/journal.pone.0041526.g005
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the loss of important information. We advocate the strategy of

stacking species of similar vegetation type because it can lead to

better-defined areas of species richness on which conservation

priorities may be based. Specifically, the most species-rich areas of

primary and riverine forest were correctly identified (Figure 5C–

E). These forest types are globally threatened by increasing

population and should be primary targets for conservation

planning in the region. The Afromontane eco-region of Pico

Basilé, Mount Cameroon and the Adamawa mountains was also

appropriately delimited by models, as were the grasslands located

at lower altitudes in the mountains and savannahs (Figure 5D) of

northern Cameroon and southern Gabon. Coastal areas

(Figure 5B) with extensive mangroves, another globally threatened

vegetation type [94], were also well captured.

Conclusions
The capacity of SDMs to reproduce patterns of species richness

has been demonstrated before [37], but should be used with

caution. In particular, when modeling species richness, an

indiscriminate use of all species in the database, e.g., the use of

secondary vegetation type or introduced species for the assessment

of conservation priorities, will likely lead to errors. Care should be

taken in selecting species and independent variables appropriate to

the purposes of the study. Additionally, the biology of the species

should be considered. To increase the accuracy of the obtained

SDMs, future works should strive to incorporate species dispersal

capacity, interactions between species, or geographical barriers

into model development. We obtained better-defined potential

species-rich areas when we stacked species of similar vegetation

type than those obtained by stacking all species in the study group

irrespective of vegetation type. Future studies comparing species

with similar jackknife curves would be of value. The accurate

modeling of Afromontane species in this study supports the

findings of previous works that suggest that SDMs better reflect the

distribution patterns of species with restricted distributions [73–

74]. The common jackknife pattern found in AF species (Figure 2)

could be indicative that a selected group of species are

characterized by a well-defined set of environmental parameters.

Jacknife patterns were more variable in the other vegetation types.

We conclude that it is essential to select an appropriate group of

independent variables to correctly model species distributions;

thus, any knowledge of the biology of the modeled species is highly

desirable when developing SDMs and can improve the accuracy

and reliability of the final outcome. We have demonstrated that

the role of a bioclimatic variable in a SDM differs between

vegetation types. Our experience indicates that knowing the

biology of a species can assist in selecting variables with good

predictive power.

Floristic knowledge in Africa is far from complete, and extensive

gaps in the available distribution data represent a serious

impediment to completing our knowledge of broad-scale patterns

of plant diversity [95]. This hurdle could be overcome in part by

combining different datasets to develop SDMs. We recommend

that the resultant models be carefully verified by experts who can

evaluate the results based on their understanding of the biology of

the species being modeled.

Finally, studies similar to the work presented here could be used

to guide taxonomists to plan more cost-effective field expeditions,

which require considerable effort in terms of both time and

money, recent expeditions has been planned using collection

density maps [47] and phenology data from databases. SDMs are

without doubt a useful tool for maximizing research outcomes

within the constraints of all too frequently scarce resources.
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39. Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–

climate impact models under climate change. Global Change Biology 11: 1504–

1513.
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