Mostrar el registro sencillo del ítem

dc.contributor.advisorRomero, Antonio A.
dc.contributor.advisorBalu, Alina M.
dc.contributor.authorMárquez Medina, M. Doloreses_ES
dc.date.accessioned2019-06-19T11:33:43Z
dc.date.available2019-06-19T11:33:43Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/10396/18750
dc.description.abstractLos artículos que componen la presente Memoria de Tesis Doctoral forman parte de las principales líneas de investigación actualmente en desarrollo en el Grupo de Investigación FQM-383, Nanoquímica y Valorización de Biomasa y Residuos (NANOVAL), asumiendo como objetivos fundamentales el uso de materiales eficientes y procesos más selectivos para la implementación procesos sostenibles en la industria química, farmacéutica, etc. En esta Memoria de Tesis Doctoral, se expone el potencial que presentan los materiales mesoporosos en el ámbito de catálisis heterogénea, permitiendo ser funcionalizados por síntesis directa o mediante procesos post-sintéticos. La funcionalización de los materiales mesoporosos ha permitido el uso de éstos como catalizadores en diferentes reacciones químicas de interés industrial. En el primer trabajo descrito en la memoria (Capítulo III.1), titulado “Continuous flow synthesis of supported magnetic iron oxide nanoparticles for efficient isoeugenol conversion to vanillin”, se ha procedido a la síntesis de nuevos catalizadores magnéticos, incorporando nanopartículas de hierro sobre un soporte mesoporoso (Al-SBA-15) utilizando un sistema de flujo continuo, en un único paso “one pot”. El proceso en flujo continuo nos ha permitido obtener nanocatalizadores magnéticos gracias al paso de una disolución etanólica de la sal de hierro precursora que se hace fluir a través de un reactor en el cual se encuentra empaquetado el material mesoporoso empleado como soporte a una temperatura controlada. Dicho procedimiento es por tanto simple, innovador y eficiente, permitiéndonos investigar la influencia de la velocidad de flujo de la disolución que contiene el precursor metálico y la temperatura de síntesis de los materiales. Los valores de susceptibilidad magnética mostrados por los nanocatalizadores están en el intervalo de 70 a 210 10-6 m3 K g-1, hecho consistente con el contenido de maghemita en el soporte, ya que las nanopartículas de maghemita pura generalmente muestran susceptibilidades magnéticas de aproximadamente 500 10-6 m3 K g-1. Dichos valores de susceptibilidad son suficientemente elevados para que estos materiales sean separables magnéticamente de la mezcla de reacción utilizando un simple imán. La utilización de estos materiales magnéticos en procesos catalíticos ha sido prometedora, en particular, para la reacción de conversión del isoeugenol a vainillina, mostrando una alta actividad catalítica, selectividad y estabilidad química, así como la ventaja de una fácil separación, eliminando la necesidad de procedimientos poco prácticos para el reciclado de los catalizadores. En el trabajo “Mechanochemically synthesized supported magnetic Fe-nanoparticles as catalysts for efficient vanillin production” (Capítulo III.2), se ha estudiado la preparación de materiales magnéticos mediante molienda mecanoquímica empleando como soporte el material mesoporoso Al-SBA-15, un material orgánico de desecho como activador de la fase magnética y una sal precursora de hierro para generar la funcionalidad en el material (fase activa-magnetismo). Además, en el trabajo se optimiza el proceso de síntesis de los nanomateriales, empleando distintas sales precursoras de nanopartículas de hierro (citrato amónico de hierro, nitrato de hierro, perclorato de hierro y cloruro de hierro), diferentes temperaturas de calcinación (300, 400 y 500 ºC) e incorporando en el soporte diferentes contenidos en peso de hierro. De todos los materiales obtenidos a lo largo de dichas investigaciones, solo aquellos preparados con citrato amónico de hierro y nitrato de hierro han mostrado propiedades magnéticas, siendo los materiales con mayor magnetismo los calcinados a una temperatura de 400 ºC. Los materiales han sido caracterizados mediante distintas técnicas como son la adsorción/desorción de N2, difracción de rayos-X (XRD), espectroscopía fotoelectrónica de rayos-X (XPS), microscopía electrónica de barrido acoplada a análisis elemental (SEM-EDX), microscopía electrónica de transmisión (TEM) y susceptibilidad magnética. Los nanocatalizadores magnéticos han demostrado una elevada actividad catalítica y estabilidad química, destacando su capacidad de separación/reusabilidad en las reacciones de oxidación selectivas del isoeugenol (ruptura oxidativa) y del alcohol vainillínico (oxidación) a vainillina. El origen de sus propiedades catalíticas se ha relacionado con la concentración superficial de nanopartículas de hierro y con la interacción Al-Fe. Por último, el estudio de la reutilización de estos nanocatalizadores ha demostrado la estabilidad de estos sistemas bajo las condiciones de reacción de investigadas, exhibiendo actividades catalíticas similares tras cinco usos. Finalmente, en el trabajo “Post-synthetic mechanochemical incorporation of Al species into the framework of porous materials: towards more sustainable redox chemistries” (Capítulo III.3) se han sintetizado diferentes nanomateriales incorporando, mediante molienda mecanoquímica e impregnación, especies de aluminio en proporciones muy bajas (0,2-0,4% en peso) en materiales de sílice mesoporos (SBA-15 y MCM-41). Concretamente, la incorporación del aluminio se ha llevado a cabo utilizando como precursores isopropóxido de aluminio y, por primera vez, materiales MOFs conteniendo Al. Las propiedades físico-químicas de los materiales sintetizados se han caracterizado mediante técnicas como la difracción de rayos-X (XRD), adsorción-desorción de N2, microscopía electrónica de barrido acoplada a análisis elemental (SEM-EDX), espectrometría de masas acoplada a plasma de acoplamiento inducido (ICP/MS), cromatografía de pulsos utilizando piridina y dimetilpiridina como bases valorantes, resonancia magnética nuclear (NMR) y susceptibilidad magnética. Los resultados obtenidos mediante RMN-MAS del Al27 nos indican que la técnica mecanoquímica ha sido capaz de introducir especies de aluminio estructural (Al tetraédrico) en los silicatos SBA-15 y MCM-41 con contenidos de Al muy bajos, siendo la primera vez que se publica dicha incorporación de tipo post-sintético mediante el procedimiento mecanoquímico. A pesar de los contenidos extremadamente bajos en Al (0,2-0,4% en peso) las especies aisladas de óxido de aluminio muestran actividades catalíticas prometedoras en reacciones de oxidación selectiva, utilizando condiciones de reacción suaves (irradiación asistida mediante microondas y molienda mecanoquímica), que incluyen las reacciones de oxidación de alcohol bencílico a benzaldehído, isoeugenol a vainillina y sulfuro de difenilo a sulfóxido de difenilo.es_ES
dc.description.abstractThe scientific contributions in the present Doctoral Thesis have principal research objectives related to the platform technologies from our research Group FQM-383, Nanochemistry and biomass valorisation and waste (NANOVAL), assuming as fundamental objectives the benign-bydesign preparation of advanced materials for more selective processes to be potentially implemented into more sustainable processes in the chemical, pharmaceutical and related industries. Research studies from the Doctoral Thesis illustrate the potential of mesoporous materials in the field of heterogeneous catalysis, with promising possibilities for their functionalization by direct synthesis or post-synthetic processes. The functionalization of mesoporous materials allowed their use as catalysts in a wide range of reactions such as those catalysed by acid and redox sites and/or biomass conversion processes. In the first work described in the manuscript (chapter III.1) entitled "Continuous flow synthesis of supported magnetic iron oxide nanoparticles for efficient isoeugenol conversion to vanillin", the synthesis of new magnetic catalysts was successfully accomplished, incorporating iron oxide nanoparticles on a mesoporous aluminosilicate support (Al-SBA-15) using a continuous flow system in a single step "one pot" reaction. The continuous flow process allowed us to obtain magnetic nanocatalysts in a simple system by pumping an ethanolic solution containing the dissolved iron salt precursor through a reactor in which the mesoporous material used as support at a controlled temperature is placed in a fixed bed reactor. The synthetic procedure is therefore simple, innovative and efficient, allowing us to investigate the influence of the flow rate of the solution containing the metallic precursor and the synthesis temperature. The values of magnetic susceptibility shown by the nanocatalysts oscillate in the range from 70 to 210 10-6 m3 K g-1, consistent with the maghemite content in the support, due to the fact that pure maghemite has susceptibility values of ca. 500 10-6 m3 K g-1. These susceptibility values endow nanocatalysts with iron oxide nanoparticles with magnetic separation features for a simple nanomaterials recovery from the reaction mixture. The use of magnetic materials in the catalytic process has been promising, especially, in the conversion reaction of isoeugenol to vanillin, where high catalytic activity and stability were observed together with the advantage of simple separation, eliminating the need for impractical procedures for catalysts recycling. The manuscript “Mechanochemically synthesized supported magnetic Fe-nanoparticles as catalysts for efficient vanillin production” (Chapter III.2) proposes a simple and innovative mechanochemical methodology for the preparation of magnetic materials using Al-SBA-15 as mesoporous material support, a waste-derived organic material as an activator of the magnetic phase and iron precursors as the active phase (iron oxide nanoparticles) in the material. Practically, the nanomaterials synthesis was optimised using different iron precursor salts (ammonium iron (III) citrate, Iron (III) nitrate, Iron (III) perchlorate hydrate and iron (III) chloride), different calcination temperatures (300, 400 y 500 ºC) and incorporating different iron content The materials were characterised using different techniques including N2 adsorption/desorption, X-ray diffraction (XRD), X-ray photoelectronic spectroscopy (XPS), Scanning Electron Microscopy coupled with energy dispersive X-ray analysis for elemental analysis (SEM-EDX), Transmission Electron Microscopy (TEM) and magnetic susceptibility. The magnetic nanocatalysts have demonstrated a high catalytic activity and chemical stability, highlighting their separation/reusability capacity in the selective oxidation reactions of isoeugenol (oxidative rupture) and vanillin alcohol (oxidation) to vanillin. The origin of its catalytic properties has been related to the surface concentration of iron nanoparticles and the Al-Fe interaction in the materials. Finally, a reuse study of the nanocatalysts has been carried out, demonstrating the stability of these systems under the investigated reaction conditions exhibiting similar catalytic activities after five uses. Lastly, the paper “Post-synthetic mechanochemical incorporation of Al species into the framework of porous materials: towards more sustainable redox chemistries” (Chapter III.3), different nanomaterials have been synthesized incorporating low aluminium contents (typically 0.2-0.4 wt.%) via mechanochemical milling and impregnation on mesoporous materials. Specifically, the incorporation of aluminium species was carried out using different sources such as aluminium isopropoxide and aluminium-containing MOFs materials. The physico-chemical properties of all materials were studied using characterization techniques including X-ray diffraction (XRD), adsorption-desorption of N2, scanning electron microscopy coupled with energy dispersive X-ray analysis for elemental analysis (SEM-EDX), inductively coupled plasma mass spectrometry (ICP-MS), pulse chromatography with pyridine and dimethyl pyridine as titration bases, magnetic nuclear resonance (NMR) and magnetic susceptibility studies. Solid state NMR studies pointed to different aluminium coordination states in the synthesised material, including framework aluminium species which strongly suggested that the mechanochemical procedure was able to introduce aluminium species within SBA-15 and MCM-41 post-synthetically with low Al content, being the first literature report on such post-synthetic mechanochemically assisted framework incorporation of catalytically active species in mesoporous materials. Despite the extremely low contents in Al (0.2-0.4% by weight), the isolated species of aluminum show promising catalytic activities in selective oxidation reactions using mild reaction conditions (microwave irradiation and mechanochemical milling) including the oxidations of benzyl alcohol to benzaldehyde, isoeugenol to vanillin and diphenyl sulfide to diphenyl sulfoxide.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isospaes_ES
dc.publisherUniversidad de Córdoba, UCOPresses_ES
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.subjectNanotecnologíaes_ES
dc.subjectNanomaterialeses_ES
dc.subjectNanopartículases_ES
dc.subjectMateriales SBAes_ES
dc.subjectMateriales MCM-41es_ES
dc.subjectMateriales porosos nanoestructuradoses_ES
dc.subjectCatálisises_ES
dc.subjectActividad catalíticaes_ES
dc.subjectBiomasaes_ES
dc.subjectQuímica Verdees_ES
dc.titleNanomateriales multifuncionales mesoporosos del tipo SBA-15 y MCM-41 aplicados a procesos de química finaes_ES
dc.title.alternativeMesoporous multifunctional nanomaterials SBA-15 and MCM-41 type applied to fine chemical processeses_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem