• español
    • English
  • español 
    • español
    • English
  • Acceder
Ver ítem 
  •   Helvia Principal
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • Ver ítem
  •   Helvia Principal
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Novel Artificial Neural Network to Predict Compressive Strength of Recycled Aggregate Concrete

Thumbnail
Ver/
applsci-11-11077-v2.pdf (1.166Mb)
Autor
Suescum-Morales, David
Salas-Morera, Lorenzo
Jiménez, José Ramón
García-Hernández, Laura
Editor
MDPI
Fecha
2021
Materia
Construction and demolition waste
Recycled concrete aggregate
Compressive strength
Artificial neural networks
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadatos
Mostrar el registro completo del ítem
Resumen
Most regulations only allow the use of the coarse fraction of recycled concrete aggregate (RCA) for the manufacture of new concrete, although the heterogeneity of RCA makes it difficult to predict the compressive strength of concrete, which is an obstacle to the incorporation of RCA in concrete production. The compressive strength of recycled aggregate concrete is closely related to the dosage of its constituents. This article proposes a novel artificial neural network (ANN) model to predict the 28-day compressive strength of recycled aggregate concrete. The ANN used in this work has 11 neurons in the input layer: the mass of cement, fly ash, water, superplasticizer, fine natural aggregate, coarse natural or recycled aggregate, and their properties, such as: sand fineness modulus of sand, water absorption capacity, saturated surface dry density of the coarse aggregate mix and the maximum particle size. Two training methods were used for the ANN combining 15 and 20 hidden layers: Levenberg–Marquardt (LM) and Bayesian Regularization (BR). A database with 177 mixes selected from 15 studies incorporating RCA were selected, with the aim of having an underlying set of data heterogeneous enough to demonstrate the efficiency of the proposed approach, even when data are heterogeneous and noisy, which is the main finding of this work.
URI
http://hdl.handle.net/10396/22184
Fuente
Applied Sciences 11(22), 11077 (2021)
Versión del Editor
https://doi.org/10.3390/app112211077
Colecciones
  • DIR-Artículos, capítulos...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contacto | Sugerencias
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Listar

Todo HelviaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contacto | Sugerencias
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital