• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fusion of standard and ordinal dropout techniques to regularise deep models

Thumbnail
View/Open
1-s2.0-S1566253524000770-main.pdf (755.8Kb)
Author
Bérchez-Moreno, Francisco
Fernández, Juan Carlos
Hervás-Martínez, César
Gutiérrez, Pedro A.
Publisher
Elsevier
Date
2024
Subject
Deep learning
Dropout
Ordinal classification
Ordinal regression
Convolutional neural networks
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Dropout is a popular regularisation tool for deep neural classifiers, but it is applied regardless of the nature of the classification task: nominal or ordinal. Consequently, the order relation between the class labels of ordinal problems is ignored. In this paper, we propose the fusion of standard dropout and a new dropout methodology for ordinal classification regularising deep neural networks to avoid overfitting and improve generalisation, but taking into account the extra information of the ordinal task, which is exploited to improve performance. The correlation between the outputs of every neuron and the target labels is used to guide the dropout process: the higher the neuron is correlated with the expected labels, the lower its probability of being dropped. Given that randomness also plays a crucial role in the regularisation process, a balancing factor (B) is also added to the training process to determine the influence of the ordinality with respect to a constant probability, providing a hybrid ordinal regularisation method. An extensive battery of experiments shows that the new hybrid ordinal dropout methodology perform better than standard dropout, obtaining improved results in most evaluation metrics, including not only ordinal metrics but also nominal ones.
URI
http://hdl.handle.net/10396/29779
Fuente
Bérchez-Moreno, F., Fernández, J. C., Hervás-Martínez, C., & Gutiérrez, P. A. (2024). Fusion of standard and ordinal dropout techniques to regularise deep models. Information Fusion, 102299
Versión del Editor
https://doi.org/10.1016/j.inffus.2024.102299
Collections
  • DIAN-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital