• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning Model Approach to Predict Diabetes Type 2 Based on Clinical, Biochemical, and Gut Microbiota Profiles

Thumbnail
View/Open
applsci-15-02228-v2.pdf (762.9Kb)
Author
Caballero-María, Pablo
Caballero-Villarraso, Javier
Arenas-Montes, Javier
Díaz-Cáceres, Alberto
Castañeda Nieto, Sofía
Alcalá Díaz, Juan Francisco
Delgado-Lista, Javier
Rodríguez-Cantalejo, Fernando
Pérez Martínez, Pablo
López-Miranda, José
Camargo, Antonio
Publisher
MDPI
Date
2025
Subject
Deep learning
Neural network
Machine learning
Artificial intelligence
Predictive modelling
Diabetes mellitus
Cardiovascular risk
Gut microbiota
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease. Gut microbiota plays a key role in metabolic homeostasis and the development of T2DM and its complications. With the advance of artificial intelligence (AI), it is possible to develop novel models based on machine learning (ML) that can predict the risk of developing certain diseases and facilitate their early diagnosis, or even take preventive measures in advance. This can be the case of T2DM, for example. Our objective was to develop a predictive model of the risk of developing T2DM based on clinical, biochemical, and intestinal microbiota parameters, which estimates the time margin for developing this disease. To this end, a Deep Learning Multilayer Perceptron (MLP) algorithm was developed and trained with data from real patients from a current large population epidemiological study. The data were normalised and augmented to increase their diversity and avoid overfitting. The neural network developed was optimised, and the best hyperparameters were chosen for model building by Bayesian optimisation. We succeeded in getting the model to return a numerical result corresponding to the number of months it will take for a particular individual to develop T2DM with an accuracy of 95.2%.
URI
http://hdl.handle.net/10396/32960
Fuente
Caballero-María, P., Caballero-Villarraso, J., Arenas-Montes, J., Díaz-Cáceres, A., Castañeda-Nieto, S., Alcalá-Díaz, J. F., Delgado-Lista, J., Rodríguez-Cantalejo, F., Pérez-Martínez, P., López-Miranda, J., & Camargo, A. (2025). Deep Learning Model Approach to Predict Diabetes Type 2 Based on Clinical, Biochemical, and Gut Microbiota Profiles. Applied Sciences, 15(4), 2228.
Versión del Editor
https://doi.org/10.3390/app15042228
Collections
  • DMed-Artículos, capítulos, libros...
  • DBBM-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital