• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Departamento de Ingeniería Gráfica y Geomática
  • DIGISIC-Artículos, capítulos, libros...
  • View Item
  •   DSpace Home
  • Producción Científica
  • Departamento de Ingeniería Gráfica y Geomática
  • DIGISIC-Artículos, capítulos, libros...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Crop Yield Estimation in Spinach Crops Using Synthetic Aperture Radar-Derived Normalized Difference Vegetation Index: A Sentinel-1 and Sentinel-2 Fusion Approach

Thumbnail
View/Open
Artículo (2.899Mb)
Author
Mesas Carrascosa, Francisco Javier
Arosemena Jované, Juan Tomás
Cantón-Martínez, Susana
Pérez Porras, Fernando
Torres-Sánchez, Jorge
Publisher
MDPI
Date
2025
Subject
SAR
Random forest
Precision agriculture
Remote sensing
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Accurate crop yield estimation is crucial for food security and effective crop management in precision agriculture. Previous studies have shown the correlation between remotely sensed data and crop yield, emphasizing the need for continuous time series of radiometric indices from satellite imagery. However, passive sensors are limited by cloud cover, restricting valid image acquisition. This study explored the integration of Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 optical data to enhance NDVI estimation and yield prediction of spinach. Random Forest Regression models were developed to predict NDVI from SAR data at two scales: (i) a general crop-scale model and (ii) specific plot-scale models. Both scales achieved R2 values above 0.9 for NDVI estimation, with better results at the plot scale. Integrating NDVI values derived from Sentinel-1 significantly improved yield estimation accuracy using NDVI time series compared to using NDVI from Sentinel-2 alone. The results indicated that plot-scale NDVI estimation had the lowest error rates (1.4%) and the highest R2 (0.89), outperforming the crop-scale model. The integration of SAR-based NDVI reduced data gaps caused by cloud cover and enabled earlier, more informed crop management decisions. These findings underscore the importance of SAR-based NDVI estimation for enhancing yield predictions in precision agriculture.
URI
http://hdl.handle.net/10396/33025
Fuente
Mesas-Carrascosa, F.-J., Arosemena-Jované, J. T., Cantón-Martínez, S., Pérez-Porras, F., & Torres-Sánchez, J. (2025). Enhancing Crop Yield Estimation in Spinach Crops Using Synthetic Aperture Radar-Derived Normalized Difference Vegetation Index: A Sentinel-1 and Sentinel-2 Fusion Approach. Remote Sensing, 17(8), 1412. https://doi.org/10.3390/rs17081412
Versión del Editor
http://dx.doi.org/10.3390/rs17081412
Collections
  • Artículos, capítulos, libros...UCO
  • DIGISIC-Artículos, capítulos, libros...

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital