• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Supervised Approach for Land Use Identification in Trento Using Mobile Phone Data as an Alternative to Unsupervised Clustering Techniques

Thumbnail
View/Open
applsci-15-01753.pdf (26.10Mb)
Author
Mendoza-Hurtado, Manuel
Cerruela García, Gonzalo
Ortiz-Boyer, Domingo
Publisher
MDPI
Date
2025
Subject
Machine learning
Place identification
Call detail records
Urban mobility
Supervised learning
Clustering
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
This study explores land use classification in Trento using supervised learning techniques combined with call detail records (CDRs) as a proxy for human activity. Located in an alpine environment, Trento presents unique geographic challenges, including varied terrain and sparse network coverage, making it an ideal case for testing the robustness of supervised learning approaches. By analyzing spatiotemporal patterns in CDRs, we trained and evaluated several classification algorithms, including k-nearest neighbors (kNN), support vector machines (SVM), and random forests (RF), to map land use categories, such as home, work, and forest. A comparative analysis highlights the performance of each method, emphasizing the strengths of RF in capturing complex patterns, its good generalization ability, and the usage of kNN with different distance measures. Our supervised machine-learning approach outperforms unsupervised clustering techniques by capturing complex patterns and achieving higher accuracy. Results demonstrate the potential of CDRs for urban planning, offering a cost-effective approach for fine-grained land use monitoring with the particularities of Trento, as its landscape combines urban areas, agricultural fields, and forested regions, reflecting its alpine setting, in contrast with other metropolitan regions.
URI
http://hdl.handle.net/10396/33133
Fuente
Mendoza-Hurtado, M., Cerruela-García, G., & Ortiz-Boyer, D. (2025). A Supervised Approach for Land Use Identification in Trento Using Mobile Phone Data as an Alternative to Unsupervised Clustering Techniques. Applied Sciences, 15(4), 1753. https://doi.org/10.3390/app15041753
Versión del Editor
https://doi.org/10.3390/app15041753
Collections
  • DIAN-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital