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ABSTRACT 

This article proposes a new mathematical programming model for the simulation of farmers’ 

decision-making. We have developed a model based on a multi-attribute utility approach that 

takes into consideration the most relevant attributes of farmers within a positive framework. 

This approach overcomes the limitations found in some mathematical models used in the 

literature to simulate farmers’ behavior. A five-step procedure is presented in order to elicit the 

utility function that reproduces farmers’ current decision-making. We illustrate this positive 

multi-attribute approach using a sample of farmers in an irrigated area in southern Spain, where 

our simulations demonstrate the accurateness of the model in reproducing actual farmers’ 

decision-making. We also find evidence that the model is able to explain the heterogeneous 

behavior of farmers within a homogeneous agricultural system. 
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Modeling at farm level: Positive Multi-Attribute Utility 

Programming 

1. Introduction and objective 

Ex-ante policy impact assessment usually depends on the reaction of the farmers affected by 

the policy instruments implemented. Mathematical programming (MP) models have been 

widely applied to simulate their behavior, usually under the assumption that farmers behave 

“rationally” as profit maximizers, i.e., their decision-making is led by a utility function 𝑈𝑈 

equivalent to profit (𝑈𝑈 = 𝜋𝜋). Traditionally, the parameters of the objective function and the 

constraints were not calibrated to observed data and, as a consequence, these MP models did 

not guarantee a perfect reproduction of farmers’ observed behavior. This has led some authors 

to label these models as normative mathematical programming (NMP) models [1, 2]. In 

addition to this inability to reproduce observed behavior, another disadvantage of the NMP 

models is the discontinuity of the simulations provided (i.e., a switch from one corner-point 

solution to another when some variables are modified). 

Differences between simulations using NMP models and decision-makers’ (farmers) 

observed behavior have encouraged authors to develop a more general theoretical framework 

to model and predict farmers’ behavior. A first attempt to cope with the limitations of such 

models was to include uncertainty and farmers’ risk preferences into the analysis. This was 

introduced by the Expected Utility Theory (EUT) developed by von Neumann and Morgenstern 

[3], where profit is considered a stochastic rather than a deterministic variable. The EUT 

assumes the existence of a utility function U, which has profit as the unique argument (𝑈𝑈(𝜋𝜋)), 

and also that decision-makers try to maximize its expected value. In fact, EUT has become one 

of the most popular approaches to simulate farmers’ decision-making, and is implemented 

through several mathematical programming tools [4]. The EUT can be considered as a first step 

toward broadening the profit maximizer assumption, including higher moments of the expected 

profit and incorporating observed attitudes of farmers toward risk. However, differences 

between observed and simulated behavior through EUT approaches have led to criticism of 

EUT, and consequently alternative non-EUT approaches have recently been developed (for a 

review see [5], and for applications in agriculture see [6]). Nevertheless, EUT is currently the 

dominant theory concerning choice under risk in applied economic research [7]. 
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In late 1980s the emergence of Positive Mathematical Programming (PMP) brought an 

appealing breath of positivism to MP, as adjustments of the parameters of the model allowed 

the reproduction of farmers’ behavior in a given reference situation or base year. This approach, 

formalized by Howitt [8], calibrates a non-linear profit objective function on the basis of the 

observed behavior of farmers (i.e., observed crop mix) to exactly reproduce their behavior. 

Another advantage of the PMP is that it provides more flexible and realistic simulation 

responses than NMP models (i.e., it avoids unlikely abrupt discontinuities in simulated 

behavior) [9]. Moreover, more recent developments [10, 11] has extended PMP approach to 

include risk preferences in the analysis, calibrating mean-variance (E-V) farm models under the 

assumption of EUT maximization. This positive approach has renewed interest in MP modeling 

for assessing the ex-ante impacts of agricultural and environmental policies. In fact, since its 

introduction, PMP and related methods have been applied to a rapidly growing number of 

models at farm, regional, and sectorial level. For a review of this literature see Nakashima [12] 

and Heckelei et al. [13]. 

Despite the PMP and the EUT are based on the assumption that farmer’s behavior can be 

modeled by maximizing profits or any utility function with profits as a single attribute, since 

the 1970s, real-life observations have refuted this simplification (e.g., [14-18]). These authors 

argued that farmers’ decision-making processes are driven by various -usually conflicting- 

criteria, related to their economic, social, cultural, and natural environment situation, in addition 

to the expected profit (or its higher moments). Recent empirical studies (e.g., [19-23]) confirm 

this evidence. 

The Theory of Planned Behavior (TPB) provides a comprehensive assessment of the relevant 

attributes guiding the decision-making process [24]. According to the TPB, individuals’ 

behavior derives from their intentions, which are also based on their beliefs. Three types of 

beliefs can be distinguished: (i) attitudes or behavioral beliefs, related to the outcomes of the 

behavior and the evaluations of these outcomes, producing favorable or unfavorable attitudes 

toward the behavior; (ii) norms or normative beliefs, related to the normative expectations of 

others and the motivation to comply with these expectations, resulting in perceived social 

pressure or subjective norms, and (iii) control beliefs or perceived behavioral control, related 

to the presence of factors that may facilitate or impede performance of the behavior and the 

perceived power of these factors. 

The TPB has been widely implemented to analyze farmers’ behavior in various real 

situations [25]. Most of these studies (e.g., [26-30]) show that farmers’ attitudes toward their 
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behavior explain a great deal of the variance in intentions, and thus are the major determinants 

of farmers’ strategic and entrepreneurial behavior. 

Therefore, attitudes can be seen as a summary of psychological evaluations based on the 

individual’s beliefs about the “goodness” or “badness” of an object, normally associated with 

a particular attribute [31]. The implication of the TPB is clear: modeling farmers’ decision-

making processes (building models capable of simulating farmers’ behavior) requires the 

consideration of more than one attribute. Hence, it can be assumed that producers’ beliefs 

concerning the attributes will govern their decision-making towards maximizing a multi-

attribute utility function (MAUF, 𝑈𝑈(𝜋𝜋, 𝑎𝑎1, … ,𝑎𝑎𝑛𝑛)), where all attitudes/attributes considered are 

condensed [27, 29, 30, 32]. This is the main idea underlying Multi-Attribute Utility Theory 

(MAUT), an approach largely developed after the publication of the seminal work by Keeney 

and Raiffa [33] to overcome the limitations of the single-attribute utility function. 

The objective of this article is to develop a new mathematical programming approach at farm 

level based on both the MAUT framework (i.e., considering a MAUF capable of including the 

most relevant farmers’ criteria) and a positive approach (i.e., a ‘calibrated’ method to accurately 

reproduce farmers’ actual decision-making). This new approach also provides a new tool for 

ex-ante assessment since it will allow simulating farmers’ decision-making at present but also 

when facing any hypothetical future scenario, such as any agricultural policy reform or market 

change. 

In order to achieve this objective the document is organized as follows. After this 

introduction, the next section critically reviews existing methods to estimate farmer’s MAUFs 

and explains the differences observed between simulated and actual behavior. The third section 

introduces the positive method we propose to simulate farmers’ behavior under the MAUT 

paradigm, aiming to overcome the limitations found in previously developed approaches. The 

fourth section demonstrates an empirical application of the proposed method and illustrates the 

main results obtained, and the last section concludes. 

2. Multi-Attribute Utility Functions: a literature review 

Farmers’ decision-making is mainly focused on the selection of those crop-mixes that allow 

the maximization of their utility function subject to a set of constraints. The multi-attribute 

utility function (𝑈𝑈) depends on the attributes the farmer is concerned with, such as profit, risk, 

etc. The values of the attributes also depend on the crop mixes selected by the farmer (decision 
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variables) and the limitations (constraints) established by resources availability (land use, labor, 

machinery, water, etc.), technical requirements (agronomic and soil and weather conditions) 

and legal or policy requirements (e.g., production quotas). 

Modeling farmers’ behavior requires the definition of these three elements: decision 

variables ( 𝑥⃗𝑥𝑐𝑐 = (𝑥𝑥1, … , 𝑥𝑥𝑐𝑐, … , 𝑥𝑥𝑛𝑛)), attributes (𝑓𝑓𝑖𝑖(𝑥⃗𝑥𝑐𝑐)) and constraints (𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵)1. Thus, the 

decision-making problem a farmer faces at the beginning of each cropping year can be 

represented as the following:  

𝑀𝑀𝑀𝑀𝑀𝑀 𝑈𝑈 (𝑥⃗𝑥𝑐𝑐) = 𝑈𝑈 �𝑢𝑢1�𝑓𝑓1(𝑥⃗𝑥𝑐𝑐)�, … ,𝑢𝑢𝑖𝑖�𝑓𝑓𝑖𝑖(𝑥⃗𝑥𝑐𝑐)�, … ,𝑢𝑢𝑚𝑚�𝑓𝑓𝑚𝑚(𝑥⃗𝑥𝑐𝑐)��    (1) 

𝑠𝑠. 𝑡𝑡. :     𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵 

where 𝑢𝑢𝑖𝑖(𝑓𝑓𝑖𝑖(𝑥⃗𝑥𝑐𝑐)) is the single-attribute or partial utility function related to attribute 𝑖𝑖. 

By solving the problem (1) farmers determine their decision variables (i.e., farm area 

cultivated with each crop, 𝑥⃗𝑥𝑐𝑐), which can be observed ex-post (𝑥⃗𝑥𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜). If an analyst aims to 

accurately simulate farmers’ behavior, the observed decision variables must be considered as 

the optimal solution for the problem (1), i.e., the observed decision variables must be the 

solution of maximizing the utility function considering the efficient set defined by the 

constraints. Therefore a positive approach requires the analyst to elicit the expression of the 

efficient set and the functional form of the MAUF to be consistent with the observed decision 

variables. 

We next review associated literature to critically revisit previous studies focused on the 

positive assessment of the MAUF, highlighting elements to be addressed in order to build a 

sounder model. 

2.1. Dealing with ‘inefficient’ observed decision-making 

Since (i) MP models are simplifications of real complex systems (i.e., not all actual decision 

variables, attributes or constraints involved in farmers’ decision making are included in the 

model due to the difficulty of their identification and/or mathematical modelization), and (ii) 

MP models are fed with data which is not perfectly accurate (i.e., measurement errors during 

data gathering), the actual efficient set cannot be perfectly assessed. As a consequence, 

observed decisions may be considered as “inefficient” when they do not belong to the calculated 

                                                 
1 Despite only a set of linear constraints is considered in this article, non-linear constraints can be included in the 
analysis without affecting the validity of the model. 
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efficient set. However, Paretian efficiency is a necessary condition which guarantees the 

rationality of any solution provided by the MAUT approach [34], and consequently any 

“inefficient” observed solution needs to be projected onto the efficient set. This projected point 

is considered the “closest” rational solution of farmers’ decision-making for operational 

purposes. 

Previous studies on the positive assessment of the MAUF projected “inefficient” observed 

decisions by calculating the closest efficient point belonging to a proxy of the actual efficient 

set [35-38], or by projecting radially the observed decisions using a Data Envelopment Analysis 

(DEA) approach [39]. This last approach allows the attainment of efficient projected decisions, 

but it does not consider the different importance given to each attribute by decision-makers 

when projecting observed decisions. As explained subsequently, the method developed in this 

article projects “inefficient” observed decisions onto the efficient set, considering the relevance 

of each attribute for the farmer. “Inefficient” observed decisions are projected using a sound 

directional projection that considers the ideal point as reference and overcoming the limitations 

of any misspecification of the model derived from simplification or measurement errors. 

2.2. Defining the efficient set 

The feasible set is established by the 𝑝𝑝 inequalities and 𝑞𝑞 equalities constraining the farmer’s 

decision problem (1). Among all the points defining the feasible set, we are only interested in 

the efficient set, since this is where the indifference or iso-utility curve lands and consequently 

where decision-makers maximize their utility function. 

Although calculating points belonging to the efficient set is possible using traditional 

methods (i.e., constraint, weighting or the multi-objective simplex methods, see [40]), the 

analytical expression of this set is usually unknown, especially when non-linear constraints are 

included in the problem. Sumpsi et al. [35], Amador et al. [36], and André et al. [38] 

approximated the feasible set using a hyper-plane connecting the efficient points included in 

the pay-off matrix (equivalent to the segment formed by the points B and C in two dimensions, 

see Fig. 1). This implies that any linear combination of the points of the pay-off matrix was 

(incorrectly) considered to belong to the efficient set, and thus would be wrongly eligible to be 

the “optimum” solution for eliciting farmers’ MAUF. André and Riesgo [37] developed a more 

accurate approximation of the efficient set by regressing a hyper-plane on the basis of a limited 

number of efficient points included in the compromise set, as a subset of the whole efficient set 

interpreted as the “landing area” for the utility curve [34, 41]. However, as the authors 
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themselves noted, this approach also results in approximation errors, since the points belonging 

to the regressed hyper-plane may not belong to the actual efficient set. These approximation 

errors suggest a need to consider the actual efficient set in order to properly estimate farmers’ 

MAUF. 

An illustration of the approximation errors caused by projecting observed points onto a linear 

approximation of the real efficient set can be seen in Fig. 1. 

Case 1 Case 2 

  

Fig.1. Potential errors caused by projecting observed points onto linear approximations of the 
efficient set 

In the first case, the observed solution (𝑂𝑂) can be considered inefficient since it is not located 

on the actual efficient frontier. If this point is projected onto the linear approximation of the 

efficient set defined by the segment 𝐵𝐵𝐵𝐵����, the resulting point is 𝑃𝑃𝑝𝑝. Considering this point as the 

“optimum” solution where the utility function is landing, the result achieved by the maximized 

MAUF is 𝑈𝑈1. However, an approximation error occurred since if the projection were correctly 

applied onto the actual efficient set (𝑃𝑃𝑒𝑒), the resulting MAUF would be 𝑈𝑈2 (𝑈𝑈1 ≠ 𝑈𝑈2). 

Similarly, in case 2, the observed solution (𝑂𝑂) is beyond the linear approximation of the 

efficient set. Projecting the observed point onto the linear approximation of the efficient set 

(point 𝑃𝑃𝑝𝑝 in segment 𝐵𝐵𝐵𝐵����) also causes an approximation error, resulting in a biased MAUF 

estimation (𝑈𝑈1). Calculating the utility function landing in the real projected point 𝑃𝑃𝑒𝑒 results in 

a different utility function 𝑈𝑈2 (𝑈𝑈1 ≠ 𝑈𝑈2).  

  



8 

These approximation errors suggest the need to consider the actual efficient set to properly 

estimate farmers’ MAUF. 

As is mentioned above, André [39] developed an approach that avoids any approximation to 

the efficient set, using a method that identifies points of the actual efficient set by radially 

expanding the single-attribute utility functions as much as possible using a DEA-based method. 

However, this approach assumes arbitrary weights assigned to each attribute when applying the 

radial expansion of the observed point. This shortcoming means that this approach is not 

sufficiently accurate in eliciting farmers’ MAUFs in order to exactly simulate their behavior. 

2.3. Selecting the MAUF functional form and eliciting MAUF parameters 

The selection of the functional form of a MAUF should be based on both the mathematical 

and economic properties and the ability of such function to simulate farmers’ decision-making. 

Due to their simplicity in terms of interpretation and elicitation, most of the existing literature 

has relied on the use of additive MAUFs (e.g., [42-44]). Despite the fact that additive utility 

function is associated with the assumption of somewhat restrictive conditions [33], this 

functional form may be considered as an approximation to the real utility function under certain 

conditions [45]. In any case, non-linear utility functions such as linear-multiplicative [37] or 

power functions [39, 46] seem to be better approximations to the real utility function. 

The Positive Multi-Attribute Utility Programming (PMAUP) proposed in this article to 

simulate farmers’ behavior aims at overcoming the weaknesses of previous studies and to 

develop a sound and useful approach to simulate actual producers’ decision-making processes. 

According to this new approach, the observed solution will be projected onto the actual efficient 

set following a directional vector connecting observed and ideal points, taking into account the 

relative importance given to all criteria. Moreover, assuming farmers act rationally, the 

resulting efficient solution will be considered as the landing point of the farmers’ MAUF. At 

this tangency point, the value of the slope of the efficient set (marginal rate of transformation, 

MRT2) must be equal to the value of the slope of the iso-utility curve (marginal rate of 

substitution, MRS3). Finally, assuming a MAUF shaped as a homothetic Cobb-Douglass 

function, the expression equaling MRT and MRS will allow the estimation of the unknown 

                                                 
2 The marginal rate of transformation (𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ,𝑗𝑗) within the MAUT framework can be interpreted as the rate at which 
the achievement of one attribute (𝑓𝑓𝑖𝑖) must be sacrificed in order to reach a marginal unit of another attribute (𝑓𝑓𝑗𝑗). 
3 The marginal rate of substitution (𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗) between any pair of attributes 𝑖𝑖 and 𝑗𝑗 (𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗) shows the rate at which 
a decision-maker (i.e., a farmer) is willing to renounce attribute 𝑖𝑖 in exchange for achieving an additional unit of 
attribute 𝑗𝑗 while maintaining the same level of utility. 

http://en.wikipedia.org/wiki/Utility
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parameters of the utility function. This MAUF can be considered the objective function that the 

farmer aims at maximizing in any scenario he/she must face. 

3. Positive Multi-Attribute Utility Programming 

This section is focused on the development of the PMAUP approach proposed, explaining 

the five steps required to estimate the utility function that simulates farmers’ behavior under 

the MAUT framework. 

3.1. Projecting the observed solution 

As mentioned in Section 2, farmers’ decision-making is driven by the maximization of a 

MAUF including the 𝑚𝑚 attributes 𝑓𝑓𝑖𝑖(𝑥⃗𝑥𝑐𝑐) relevant for farm management (problem (1)). For 

operational purposes, we assume that (a) all relevant attributes are objectives to be maximized 

(i.e., more-is-better attributes)4, and (b) each single-attribute or partial utility function 

(𝑢𝑢𝑖𝑖  (𝑓𝑓𝑖𝑖(𝑥⃗𝑥𝑐𝑐)) is equal to the corresponding attribute5 ( 𝑓𝑓𝑖𝑖(𝑥⃗𝑥𝑐𝑐)) properly normalized to be bounded 

between 0 and 1. Thus, the crop-mix selection (𝑥⃗𝑥𝑐𝑐) can be seen as a multi-objective 

programming (MOP) decision-making problem. 

MOP problems seek to obtain the Pareto-efficient subset from the feasible solutions 

(election-possibility set, denoted as 𝐹𝐹), assuming that whatever preferences decision-makers 

may have, their choice will belong to the efficient frontier [48]. A first approximation to this 

efficient frontier can be assessed through the pay-off matrix. This matrix is obtained by 

maximizing each of the objectives separately, subject to the constraint set (see Table 1). 

  

                                                 
4 Note that this assumption does not imply any loss of generality. A less-is-better attribute (objective to be 
minimized) can be transformed into a more-is-better attribute simply by multiplying it by -1. If the attribute is to 
precisely reach a certain target (goal), this can be written as an objective minimizing the distance (or maximizing 
the opposite of the distance) from the attained value to the target value, so that it can be formulated as a less-is-
better (or more-is-better) objective. Therefore, the formulation proposed, which considers all attributes as 
objectives to be maximized, allows us to deal with any problem involving any of the relevant types of attributes 
(objectives or goal types) considered in the farmer’s MAUF. 
5 This simplification assumes the use of linear single-attribute utility-indifferent curves (constant partial marginal 
utility), a rather strong assumption that can be regarded as a close enough approximation if the attributes vary 
within a narrow range [47]. There is some evidence for this hypothesis in agriculture. Huirne and Hardaker [45] 
have shown how the slope of the single-attribute utility function has little impact on the ranking of alternatives. 
Likewise, Amador et al. [36] analyzed how linear and quasi-concave functions yield almost the same results. This 
evidence, therefore, justifies the adoption of this simplification in the elicitation of our positive MAUF. 
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Table 1 
Pay-Off Matrix for m Objectives 

 Value for 𝑓𝑓1 Value for 𝑓𝑓2 … Value for 𝑓𝑓𝑚𝑚 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓1(𝑥⃗𝑥𝑐𝑐)     𝑠𝑠. 𝑡𝑡.    𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵 𝑓𝑓11 = 𝒇𝒇𝟏𝟏∗  𝑓𝑓12 … 𝑓𝑓1𝑚𝑚 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓2(𝑥⃗𝑥𝑐𝑐)     𝑠𝑠. 𝑡𝑡.    𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵 𝑓𝑓21 𝑓𝑓22 = 𝒇𝒇𝟐𝟐∗  … 𝑓𝑓2𝑚𝑚 

… … … … … 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑚𝑚(𝑥⃗𝑥𝑐𝑐)     𝑠𝑠. 𝑡𝑡.    𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵 𝑓𝑓𝑚𝑚1 𝑓𝑓𝑚𝑚2 … 𝑓𝑓𝑚𝑚𝑚𝑚 = 𝒇𝒇𝒎𝒎∗  

 

The elements of the main diagonal in the pay-off matrix represent the “ideal point” (𝐼𝐼). The 

ideal point is typically infeasible given the usual conflict among objectives. However this is a 

point of reference, since any rational decision-maker seeks a feasible solution as “close” as 

possible to this point. The method proposed in this article considers the ideal point as a reference 

point to project the observed solution (𝑂𝑂) onto the efficient frontier. Thus, as a first step, the 

“closest” efficient point (𝑃𝑃) to points 𝑂𝑂 and 𝐼𝐼 is calculated (see Fig. 2). 

Projecting a point requires the introduction of a distance function in the analysis. The 

measure of the distance (that may be interpreted as a degree of closeness) between the points 𝑂𝑂 

and 𝐼𝐼 regarding the ith attribute is defined by: 

𝑑𝑑𝑖𝑖 = �𝑓𝑓𝑖𝑖∗ − 𝑓𝑓𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜� = �𝑓𝑓𝑖𝑖∗ − 𝑓𝑓𝑖𝑖𝑃𝑃� + �𝑓𝑓𝑖𝑖𝑃𝑃 − 𝑓𝑓𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜�      (2) 

where 𝑓𝑓𝑖𝑖∗ is the ideal point of the attribute 𝑖𝑖, and 𝑓𝑓𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑓𝑓𝑖𝑖𝑃𝑃 are the values for attribute 𝑖𝑖 in the 

observed (𝑂𝑂) and the projected point (𝑃𝑃), respectively. 

The distances obtained for all the attributes can be aggregated into a composite distance 

function. The Minkowski’s distance functions 𝐿𝐿ℎ help to calculate different composite distance 

functions by following the general expression: 

𝐿𝐿ℎ = �∑ 𝑤𝑤𝑖𝑖�𝑓𝑓𝑖𝑖∗ − 𝑓𝑓𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜�
ℎ𝑚𝑚

𝑖𝑖=1 �
1
ℎ = �∑ 𝑤𝑤𝑖𝑖�𝑓𝑓𝑖𝑖∗ − 𝑓𝑓𝑖𝑖𝑃𝑃�

ℎ𝑚𝑚
𝑖𝑖=1 �

1
ℎ + �∑ 𝑤𝑤𝑖𝑖�𝑓𝑓𝑖𝑖𝑃𝑃 − 𝑓𝑓𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜�

ℎ𝑚𝑚
𝑖𝑖=1 �

1
ℎ

 (3) 

where 𝑤𝑤𝑖𝑖 is the weight assigned to each attribute 𝑖𝑖, showing its relative importance for the 

decision-maker, and ℎ is a parameter that shows the metric used to define the distance functions. 

Including weights 𝑤𝑤��⃗ = (𝑤𝑤1, … ,𝑤𝑤𝑖𝑖, … ,𝑤𝑤𝑚𝑚) in the expression for distance measurement aims 

to modulate the individual distances within the composite distance function according to the 

relative importace of the attributes for the farmer (the more important an attribute 𝑖𝑖, the more 
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relevant the distance for that attribute 𝑖𝑖 within 𝐿𝐿ℎ). For operational purposes the weights are 

normalized to total one (∑ 𝑤𝑤𝑖𝑖
𝑚𝑚
𝑖𝑖=1 = 1). 

Since at the beginning of the process we do not have any knowledge on the weights given to 

the attibutes by the farmer, a process of 𝐾𝐾 iterations is proposed to estimate those values. 

Initially (for iteration 𝑘𝑘 = 1) we consider that all weights have the same importance (i.e., 𝑤𝑤𝑖𝑖
 1 =

1/𝑚𝑚 for every 𝑖𝑖)6. 

Theoretically, there are infinite measures of distance by varying ℎ. However, three metrics 

are identified as the most used in the literature: ℎ = 1 (Manhattan distance), ℎ = 2 (Euclidean 

distance) and ℎ = ∞ (Chebyshev distance). We propose the use of the Euclidean distance for 

point projections, as is normal in economic analysis. Note that by using this metric, the closest 

efficient solution is the result of the intersection between the straight-line connecting 𝑂𝑂 and 𝐼𝐼 

and the efficient frontier. Thus, for the Euclidean metric, the closest efficient solution to points 

𝑂𝑂 and 𝐼𝐼 for the first interaction (for 𝑘𝑘 = 1, point 𝑃𝑃1) can be obtained by solving the following 

problem: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝜆𝜆            (4) 

𝑠𝑠. 𝑡𝑡. :     𝑓𝑓𝑖𝑖(𝑥⃗𝑥𝑐𝑐) =   𝑓𝑓𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜆𝜆 𝑤𝑤𝑖𝑖
 1�𝑓𝑓𝑖𝑖∗ − 𝑓𝑓𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜�      ∀𝑖𝑖 

𝐴𝐴𝑥⃗𝑥𝑐𝑐 − 𝐵𝐵 ≤ 0 

𝑤𝑤𝑖𝑖
 1 = 1/𝑚𝑚     ∀𝑖𝑖 

where the first set of constraints represents the expression of the straight-line connecting 𝑂𝑂 and 

𝐼𝐼. 

This problem allows us to obtain both the efficient values of each attribute in 𝑃𝑃1 (i.e., 

𝑓𝑓𝑖𝑖1 = 𝑓𝑓11, … ,𝑓𝑓𝑖𝑖1, … ,𝑓𝑓𝑚𝑚1) and the corresponding efficient crop-mix (𝑥⃗𝑥𝑐𝑐1). By using different 

weights 𝑤𝑤𝑖𝑖
 𝑘𝑘 in problem (4), additional efficient points 𝑃𝑃𝑘𝑘(𝑓𝑓𝑖𝑖𝑘𝑘) will be obtained in successive 

iterations. 

                                                 
6 Any other alternative values for 𝑤𝑤𝑖𝑖  can be considered as a starting point for the iterative process proposed. Despite 
the initial values actually taken for the first iteration, results will converge into the actual ones. 
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Fig. 2. Method for a MAUF with two attributes (𝒎𝒎=2) in the first iteration (𝒌𝒌=1) 

3.2. Estimating the Marginal Rate of Transformation (MRT) 

As mentioned above, the analyst may not accurately determine the mathematical expression 

for the actual efficient set when dealing with MOP problems. Thus, the slope of the efficient 

set in the projected point 𝑃𝑃𝑘𝑘 (i.e., the marginal rate of transformation for any pair of attributes 

𝑖𝑖 and 𝑗𝑗, 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗) needs to be calculated numerically. In order to do so, two additional efficient 

points close to 𝑃𝑃𝑘𝑘 are obtained in each iteration (denoted as 𝑃𝑃𝑘𝑘′  and 𝑃𝑃𝑘𝑘′′) for each pair of 

attributes 𝑖𝑖 and 𝑗𝑗. Points 𝑃𝑃𝑘𝑘′and 𝑃𝑃𝑘𝑘′′ allow us to calculate the 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗 as the slope 𝛽𝛽𝑖𝑖,𝑗𝑗  between 

those points7. Mathematically, these additional solutions in the kth iteration are obtained by 

solving the following problems8: 

  

                                                 
7 Note that the estimation of the MRT is carried out using pairs of attributes ceteris paribus, i.e., it is calculated on 
the resulting isoquant for the two attributes considered, assuming the rest of the attribute values remain constant 
as in point 𝑃𝑃𝑘𝑘. 
8 It can be proved that for a sufficiently small value of ε the 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗𝑘𝑘  can equally be obtained by maximizing 𝑓𝑓𝑖𝑖 
subject to 𝑓𝑓𝑗𝑗( 𝑥⃗𝑥𝑐𝑐) = 𝑓𝑓𝑗𝑗𝑘𝑘 ± 𝜀𝜀. 
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𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑗𝑗( 𝑥⃗𝑥𝑐𝑐)    (5) 

𝑠𝑠. 𝑡𝑡. :     𝐴𝐴𝑥⃗𝑥𝑐𝑐 − 𝐵𝐵 ≤ 0 

𝑓𝑓𝑖𝑖( 𝑥⃗𝑥𝑐𝑐) = 𝑓𝑓𝑖𝑖𝑘𝑘 + 𝜀𝜀 

𝑓𝑓𝑙𝑙( 𝑥⃗𝑥𝑐𝑐) = 𝑓𝑓𝑙𝑙𝑘𝑘    ∀𝑙𝑙 ≠ 𝑖𝑖, 𝑗𝑗 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑗𝑗( 𝑥⃗𝑥𝑐𝑐)    (6) 

𝑠𝑠. 𝑡𝑡. :     𝐴𝐴𝑥⃗𝑥𝑐𝑐 − 𝐵𝐵 ≤ 0 

𝑓𝑓𝑖𝑖( 𝑥⃗𝑥𝑐𝑐) = 𝑓𝑓𝑖𝑖𝑘𝑘 − 𝜀𝜀 

 𝑓𝑓𝑙𝑙( 𝑥⃗𝑥𝑐𝑐) = 𝑓𝑓𝑙𝑙𝑘𝑘    ∀𝑙𝑙 ≠ 𝑖𝑖, 𝑗𝑗 

where 𝜀𝜀 is a small positive number. 

Results from (5) and (6), denoted as 𝑃𝑃𝑘𝑘′  �𝑓𝑓1𝑘𝑘, … ,𝑓𝑓𝑖𝑖𝑘𝑘 + 𝜀𝜀 , … 𝑓𝑓𝑗𝑗𝑘𝑘
′
, … 𝑓𝑓𝑚𝑚𝑘𝑘� and 

𝑃𝑃𝑘𝑘′′  �𝑓𝑓1𝑘𝑘, … ,𝑓𝑓𝑖𝑖𝑘𝑘 − 𝜀𝜀 , … 𝑓𝑓𝑗𝑗𝑘𝑘
′′

, … 𝑓𝑓𝑚𝑚𝑘𝑘�, determine the 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗𝑘𝑘  as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗𝑘𝑘 = 𝜕𝜕𝜕𝜕𝑗𝑗
𝜕𝜕𝑓𝑓𝑖𝑖
�
𝑃𝑃𝑘𝑘

= 𝛽𝛽𝑖𝑖,𝑗𝑗𝑘𝑘   =
𝑓𝑓𝑗𝑗
𝑘𝑘′′−𝑓𝑓𝑗𝑗

𝑘𝑘′  

�𝑓𝑓𝑖𝑖
𝑘𝑘−𝜀𝜀�−�𝑓𝑓𝑖𝑖

𝑘𝑘+𝜀𝜀�
=   

𝑓𝑓𝑗𝑗
𝑘𝑘′− 𝑓𝑓𝑗𝑗

𝑘𝑘′′

2𝜀𝜀
     (7) 

3.3. Estimating the Marginal Rate of Substitution (MRS) 

Since the 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗 measures the slope of the iso-utility curve, it can also be considered as a 

measure of the relative importance given for the farmer to attributes 𝑖𝑖 and 𝑗𝑗 (weights 𝑤𝑤𝑖𝑖 and 

𝑤𝑤𝑗𝑗): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗 = 𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑𝑗𝑗

= −𝜕𝜕𝜕𝜕/𝜕𝜕𝑢𝑢𝑗𝑗 
𝜕𝜕𝜕𝜕/𝜕𝜕𝑢𝑢𝑖𝑖

= −𝑤𝑤𝑗𝑗

𝑤𝑤𝑖𝑖
        (8) 

According to economic theory, a rational farmer chooses an efficient solution at point 

𝑃𝑃𝑘𝑘  where the 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗𝑘𝑘  over the iso-utility curve is equal to the 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗𝑘𝑘  over the efficient frontier 

for every pair of attributes 𝑖𝑖 and 𝑗𝑗 [49, 50]. In other words, in equilibrium decisions over 

attributes (and corresponding crop-mixes) are such that: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗𝑘𝑘  = 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗𝑘𝑘     ∀𝑖𝑖 ≠ 𝑗𝑗         (9) 

Which implies: 

𝛽𝛽𝑖𝑖,𝑗𝑗𝑘𝑘 = −
𝑤𝑤𝑗𝑗

 𝑘𝑘+1

𝑤𝑤𝑖𝑖
 𝑘𝑘+1         ∀𝑖𝑖 ≠ 𝑗𝑗         (10) 

3.4. Iterative procedure converging in actual MRT and MRS 

As is explained in Section 3.1, we propose starting the first iteration by considering 𝑤𝑤𝑖𝑖
 1 =

1/𝑚𝑚 for every attribute in order to obtain the initial projection of the observed solution 𝑂𝑂 onto 

the efficient frontier (point 𝑃𝑃1). Even if the weights of attributes were wrongly assigned in the 

first iteration (i.e., in (4) all attributes were assumed to be equally important for the farmer), the 
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expression (10) allows us to re-estimate weights 𝑤𝑤��⃗  in each iteration 𝑘𝑘. This requires the solution 

to a system of 𝑚𝑚(𝑚𝑚− 1)/2 equations including one equation per each pair of attributes, and 

an additional normalizing equation ∑ 𝑤𝑤𝑖𝑖
 𝑘𝑘𝑚𝑚

𝑖𝑖=1 = 1. Although the number of equations is larger 

than the number of variables (𝑚𝑚), the system yields a single feasible solution, since all equations 

derived from (10) are slopes of straight lines passing (infinitesimally) through the point 𝑃𝑃𝑘𝑘 and 

included within a unique hyper-plane in the m-dimensional attribute space. The re-estimated 

weights ( 𝑤𝑤��⃗ 𝑘𝑘+1) are then used to project the point 𝑂𝑂 again onto the frontier, obtaining the point 

𝑃𝑃𝑘𝑘+1. 

Despite the values initially allocated to 𝑤𝑤��⃗ 1, it has been empirically proved that the iterative 

process allows convergence into unique values of 𝑤𝑤��⃗ 𝐾𝐾,𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗𝐾𝐾  and 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗𝐾𝐾  that can be considered 

as the actual values. Iterations will be performed until the differences in the weights calculated 

in two successive iterations were lower than a positive small number 𝛿𝛿: 

�𝑤𝑤𝑖𝑖
 𝑘𝑘 − 𝑤𝑤𝑖𝑖

 𝑘𝑘+1�  < 𝛿𝛿      ∀𝑖𝑖         (11) 

Therefore, actual values for 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗 in equilibrium can be achieved through 𝐾𝐾 

iterations, regardless the weights allocated in the first iteration. 

3.5. Eliciting farmers’ MAUF 

The information provided by the equilibrium point 𝑃𝑃𝐾𝐾 over the efficient frontier (𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗) 

allow us to integrate a MAUF landing on the projected decision (proxy of the observed point) 

as the optimal decision given the existing constraints, whatever the mathematical functional 

form for the utility function. 

Taking into account the pros and cons of alternative MAUF specification forms, we propose 

to use the homothetic Cobb-Douglas specification [51] as a reasonable approximation to a real 

farmer’s utility function [52]: 

𝑈𝑈 (𝑢𝑢1, … ,𝑢𝑢𝑚𝑚) = ∏ [𝑢𝑢𝑖𝑖(𝑓𝑓𝑖𝑖)]𝛼𝛼𝑖𝑖𝑚𝑚
𝑖𝑖=1         (12) 

where ∑ 𝛼𝛼𝑖𝑖𝑚𝑚
𝑖𝑖=1 = 1 and 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 1. 

The main advantage of this formulation compared to other alternatives (i.e., additive or 

multiplicative-additive forms) is that Cobb-Douglas MAUF is coherent with neoclassic 

Economic Theory, since it meets Inada [53] conditions that guaranty there is a global optimum 

when the efficient frontier is convex, and this formulation is consistent with the postulate of 

decreasing marginal utility for every attribute (exponents 𝛼𝛼𝑖𝑖 are lower than one). 
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Using expressions (8)-(10) and (12), for any pair of attributes 𝑖𝑖 and 𝑗𝑗, the 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗 can be 

calculated as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖

= −
𝛼𝛼𝑗𝑗

𝑈𝑈 (𝑢𝑢1,…,𝑢𝑢𝑚𝑚)
𝑢𝑢𝑗𝑗

𝛼𝛼𝑖𝑖
𝑈𝑈 (𝑢𝑢1,…,𝑢𝑢𝑚𝑚)

𝑢𝑢𝑖𝑖

= −𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖
𝛼𝛼𝑖𝑖𝑢𝑢𝑗𝑗

= −
𝑤𝑤𝑗𝑗

 𝐾𝐾

𝑤𝑤𝑖𝑖
 𝐾𝐾 =  𝛽𝛽𝑖𝑖,𝑗𝑗𝐾𝐾         ∀𝑖𝑖 ≠ 𝑗𝑗   (13) 

where 𝑢𝑢𝑖𝑖 is the value of 𝑓𝑓𝑖𝑖 in the equilibrium (efficient point 𝑃𝑃𝐾𝐾). 

Considering the 𝑚𝑚(𝑚𝑚− 1)/2 combinations of attributes 𝑖𝑖 and 𝑗𝑗 derived from (13), and the 

normalizing equation ∑ 𝛼𝛼𝑖𝑖 = 1𝑚𝑚
𝑖𝑖=1 , it is possible to calculate the values for 𝛼𝛼𝑖𝑖 using expression 

(14), which allows us to elicit the parameters of a MAUF able to represent farmers’ actual 

decision-making. 

𝛼𝛼𝑖𝑖 = 𝑓𝑓𝑖𝑖
𝐾𝐾

𝑓𝑓𝑖𝑖
𝐾𝐾−∑ 𝛽𝛽𝑖𝑖,𝑗𝑗

𝐾𝐾 ·𝑓𝑓𝑗𝑗
𝐾𝐾𝑚𝑚

𝑗𝑗=1
     ∀𝑖𝑖 ≠ 𝑗𝑗         (14) 

4. Illustrative application 

The irrigated area of Sector BXII is located on the left-hand side of the river Guadalquivir, 

close to its mouth in the Atlantic Ocean in the Andalusia region of southern Spain. This irrigated 

area comprises 14,643 hectares (ha), divided into 499 farms (average farm size is 29.3 ha). The 

main crops are cotton, corn, tomatoes, sugar-beet, wheat, sunflower, carrots, and onions. 

In order to collect primary data from farmers, an ad hoc survey was conducted, and a 

stratified sample method was adopted with respect to farm size, to determine a representative 

sample of farmers/farms. In each stratum, farmers were selected randomly, and a total of 60 

farmers were interviewed face-to-face. Data gathered allows the description of individual farms 

(farm structure, crop-mix, agricultural practices, etc.) and their holders (socio-demographic 

profiles of farmers). 

4.1. Farmers’ heterogeneity 

A large number of studies have highlighted farmers’ heterogeneity regarding their decision-

making within the same agricultural system [42, 54, 55]. This heterogeneity was also found in 

the data collected in our survey, as several crop-mixes (i.e., farmers’ decision-making) were 

identified. Provided an irrigated area offers the same production possibilities to all farmers, 

similar technological level, a proportional availability of resources, and similar profit 

expectations for each crop, differences in farmers’ decision-making must be primarily due to 

differences in their objective functions (i.e., different individual MAUFs). Therefore the 
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method proposed to elicit farmers’ individual MAUF is suitable for analyzing heterogeneity in 

farmers’ decision-making, as shown in this case study. 

Empirically implementing the PMAUP requires the application of this approach to each 

individual farmer sampled. However to facilitate clear reporting of the results, we have applied 

this method to a reduced number of representative farmers/farms. Cluster analysis was 

conducted to group farmers using the crop mixes of each farmer in 2014 (crop’s share of total 

planted area) as classification variables. As a result, homogeneous groups or clusters of 

farmers/farms were identified according to variables that can be considered as proxies of their 

decision-making criteria. 

Considering these homogeneous groups and the data collected in the survey, we identified 

three different farm-types (i.e., average farms of each cluster). A profile of each farm-type is 

assigned taking into account only statistically significant variables: 

− Farm-type 1: “Large commercial farmers”. This group of farmers represents 39% of 
the farmers in the sample and 52% of the total area. They cultivate the largest farms in 
the irrigated area (35.8 ha on average) and farm mainly horticultural crops (around 
40% of the farm area): tomatoes (28.3%), carrots (7.7%) and onions (2.5%), which are 
the most profitable crops the farmers can choose. Other crops of importance are cotton 
(30.1%) and sugar-beet (22.2%). 

− Farm-type 2: “Risk-diversification farmers”. This group of farmers represents 41% of 
the farmers in the sample who farm 36% of the total irrigated area. They manage 
medium-size farms (23.9 ha on average), mostly growing cotton (58.1%), tomatoes 
(12.0%), corn (9.0%), wheat (6.1%), and sugar-beet (4.5%). This variety of crops 
suggests farmers use crop diversification as a strategy to minimize their production 
risk. 

− Farm-type 3: “Extensive farmers”. This group of farmers represents the smallest 
proportion of farmers and irrigated area (20% and 11% respectively). They cultivate 
the smallest farms (15.0 ha on average), growing extensive crops such as cotton 
(57.1%), and sugar-beet (38.5%), and are highly dependent on the European Common 
Agricultural Policy (CAP) subsidies. 

Although the results for each farmer/farm sampled are also available, the sections 4.2 and 

4.3 focus on the results obtained for these three farm-types as representative farm profiles of 

the agricultural system analyzed. 
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4.2. Model building 

Modeling farmers’ behavior first requires the definition of crop-mix or decision variables 

( 𝑥⃗𝑥𝑐𝑐 = (𝑥𝑥1, … , 𝑥𝑥𝑐𝑐, … , 𝑥𝑥𝑛𝑛)). In this case decision variables are represented by the area devoted to 

each crop. 

The questionnaire used for data gathering was designed to collect information about farm 

characteristics (e.g., size, hired workers, crop rotations), management of each crop (e.g., yields, 

subsidies, etc.), current farmers’ decision-making (crops pattern adopted in 2014) and direct 

questions on criteria relevance (ranking of eight potential criteria), and socio-demographic data 

from the respondents. Data from the survey, alongside secondary data, allowed us to estimate 

the technical coefficients needed for model building, as shown in Table 2. 

Table 2 
Yield, Price, direct subsidy, variable production cost, gross margin and labor requirements for 
each crop 
Decision variable Yield 

(kg) 
Price 

(Euro/kg) 
CAP subsidy 

(Euro/ha) 
Var. costs 
(Euro/ha) 

Gross margin 
(Euro/ha) 

Labor 
(hours/ha) 

Wheat 6,686 0.24 --- 608 992 8.3 

Corn 14,824 0.23 --- 1,629 1,784 13.0 

Sugar-beet 77,476 0.03 1,167 1,209 2,123 47.0 

Cotton 3,536 0.53 1,314 1,386 1,789 14.6 

Sunflower 3,457 0.45 --- 611 928 7.9 

Tomato 118,533 0.07 --- 3,954 4,817 46.0 

Onion 48,436 0.19 --- 3,497 5,792 29.5 

Carrot 45,078 0.17 --- 3,398 4,351 24.5 

 

Responses from farmers on criteria importance demonstrated that 95% of the producers 

ranked higher expected profit, lower risk and lower management complexity as the most 

important management criteria. Similar evidence can be found in the literature [36, 46, 56, 57], 

and therefore, these are the potentially relevant attributes considered by farmers to be included 

in their MAUF. 

The first attribute can be easily measured through the expected total gross margin (TGM). 

As a proxy of profit in the short-run, this attribute was calculated by multiplying the expected 

gross margin per crop and hectare (see Table 2) by the area cultivated with each crop (𝑥𝑥𝑐𝑐). 

Results are shown in 2014 constant euros. 
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The attribute of risk was measured through the variance of the TGM (VAR). Risk was 

computed as 𝑥⃗𝑥𝑐𝑐′ [𝐶𝐶𝐶𝐶𝐶𝐶]𝑥⃗𝑥𝑐𝑐, where [𝐶𝐶𝐶𝐶𝐶𝐶] is the variance-covariance matrix of the crop gross 

margins per hectare obtained by using a time series of seven years (2007-2013). 

Measuring management complexity is more difficult as several indicators can be used. For 

this case study total labor input (TL) was considered as the best proxy for managerial 

involvement, on the basis that labor-intensive crops require more technical supervision by the 

farmer [58]. This attribute was calculated by multiplying labor requirements per crop and 

hectare in hours (see Table 2) by the area cultivated with each crop (𝑥𝑥𝑐𝑐). 

For operational purposes all attributes are normalized in order to: (i) be transformed into 

more-is-better objective functions and (ii) be bounded between 0 and 1. First, transforming less-

is-better to more-is-better attributes has been done by multiplying the attribute by (-1). 

Normalizing can be assessed by using different alternatives such as considering the observed 

value of the attribute ( fi
fi
obs) or the ideal point ( fi

fi
∗ ) as reference points. In addition, some authors 

such as [59] suggested that a suitable range of performance for any attribute can be defined 

considering its best (ideal) and worst (anti-ideal) feasible values. Thus, a useful way for 

normalizing attributes measured in different scales is by considering the difference between the 

ideal and anti-ideal values as a reference point. In this paper, we decided to follow this last 

approach, identifying the ideal and anti-ideal values in the pay-off matrix (see Section 3 for 

details on the pay-off matrix calculation). Due to this selection, and in order to bound attributes 

between 0 and 1, the anti-ideal value is also included in the numerator as a reference (see [37] 

for an application of this normalization process). 

Following this last approach, the normalization of all attributes in the application of the 

PMAUP approach has been done by using the following expressions: ui = fi(x�⃗ c)−fi∗
fi
∗−fi∗

 for more-

is-better attributes, and ui = fi∗−fi(x�⃗ c)
fi∗−fi

∗  for less-is-better attributes9. As a result all attributes 

become an objective to be maximized (i.e. for less-is-better attributes ′fi′, ui can be interpreted 

as ‘avoided fi’), and vary between 0 and 1, being 1 the ideal point and 0 the anti-ideal point10. 

                                                 
9 Different normalization procedures may result in slightly differences in the simulation process, but the validity of the method 
does not depend on this choice. 
10 The normalization method uses ideal and anti-ideal points as a reference, as the multicriterion TOPSIS method 
does (see [60-64] for recent applications of the TOPSIS method). In this sense, both approaches are similar, since 
the closest the value to 1 (0) the closest the alternative or point to the ideal (anti-ideal) point. However, the purpose 
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Thus, the attributes have been transformed into normalized objective functions as follows: 

𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇(𝑥⃗𝑥𝑐𝑐)−𝑇𝑇𝑇𝑇𝑇𝑇∗
𝑇𝑇𝑇𝑇𝑇𝑇∗−𝑇𝑇𝑇𝑇𝑇𝑇∗

 ;   𝑢𝑢𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉∗− 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥⃗𝑥𝑐𝑐)
𝑉𝑉𝑉𝑉𝑉𝑉∗−𝑉𝑉𝑉𝑉𝑉𝑉∗

 ;   𝑢𝑢𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇∗−𝑇𝑇𝑇𝑇(𝑥⃗𝑥𝑐𝑐)
𝑇𝑇𝑇𝑇∗−𝑇𝑇𝑇𝑇∗

    (15) 

where 𝑇𝑇𝑇𝑇𝑇𝑇∗ (𝑇𝑇𝑇𝑇𝑇𝑇∗), 𝑉𝑉𝑉𝑉𝑉𝑉∗ (𝑉𝑉𝑉𝑉𝑉𝑉∗) and 𝑇𝑇𝑇𝑇∗ (𝑇𝑇𝑇𝑇∗) are the ideal (anti-ideal) values for each 

attribute in the pay-off matrix. As commented above, using this approach 𝑢𝑢𝑉𝑉𝑉𝑉𝑉𝑉 can be 

considered as ‘avoided risk’, and 𝑢𝑢𝑇𝑇𝑇𝑇 as ‘avoided complexity management’. 

Including these single-attribute functions, farmers’ behavior can be reasonably explained by 

the maximization of the following homothetic Cobb-Douglas MAUF: 

𝑈𝑈 (𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇,𝑢𝑢𝑉𝑉𝑉𝑉𝑉𝑉 ,𝑢𝑢𝑇𝑇𝑇𝑇) = 𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇𝛼𝛼1  ∙ 𝑢𝑢𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼2 ∙ 𝑢𝑢𝑇𝑇𝑇𝑇𝛼𝛼3      (16) 

where 𝛼𝛼𝑖𝑖 are the parameters associated to each single-attribute function, which are normalized 

to add up to one.  

Finally, the following constraints (𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵 in expression (1)) have been included in the 

construction of the models: 

a) Land constraint. The sum of the area farmed with each crop (𝑥𝑥𝑐𝑐) must be equal to the 
total area available for each farm/farm-type (𝑆𝑆𝑡𝑡). 

b) Water constraint. Total irrigation water requirements (𝑊𝑊𝑊𝑊𝑡𝑡) must be lower than or equal 
to total water allotment to each farm-type (𝑊𝑊𝑊𝑊𝑡𝑡). The total irrigation water requirements 
in each farm-type is 𝑊𝑊𝑊𝑊𝑡𝑡 = ∑ 𝑤𝑤𝑤𝑤𝑐𝑐𝑛𝑛

𝑐𝑐=1 ∙ 𝑥𝑥𝑐𝑐, being 𝑤𝑤𝑤𝑤𝑐𝑐 the water requirement per crop 
and hectare. 

c) Sugar-beet quota. Due to production quotas established by the CAP, the share of the 
farm cultivated with sugar-beet was constrained to the maximum area in the period 
studied in each farm-type. 

d) Rotational and agronomic constraints. These restrictions were included in the model 
according to the criteria revealed by the farmers in the survey. 

e) Market constraints. Some crops are subject to marketing channels due to the fact that 
they cannot be stored for extended periods (perishable products). This implies that it is 
unlikely that farmers would modify significantly the area cultivated with such crops due 
to the inability of the market to absorb great variations in the short-run. This is the case 
for tomatoes, onions, and carrots. In order to model this constraint, an upper limit of the 
area cultivated with these crops was included on the basis of the maximum historical 
cultivation during the previous seven years. 

                                                 
of both methods are rather different, and while TOPSIS aims at evaluating and ranking a discrete set of alternatives, 
the normalization approach aims at assessing a continuous space of alternatives (i.e., crop-mixes). 
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f) In addition to the previous constraints, we assume that the decision variables (𝑥⃗𝑥𝑐𝑐) must 
be greater or equal to zero. 

Once the main elements of the model (i.e., decision variables, objective function and 

constraints) are properly defined, the first step is to obtain the pay-off matrix for each 

farm/farm-type by individually maximizing each of the three attributes included in the farmers’ 

MAUF (𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇, 𝑢𝑢𝑉𝑉𝑉𝑉𝑉𝑉 and 𝑢𝑢𝑇𝑇𝑇𝑇). These matrices evidence the conflict existing among the various 

criteria, and how observed values for each attribute in each farm are within the ranges defined 

by the ideal and anti-ideal values (see Table 3). 

Table 3 
Pay-off matrix of each farm-type 

  TGM 
(euros) 

VAR 
(104 euros2) 

TL 
(hours) 

Farm-type 1 

(S1=35.8 ha) 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇(𝑥⃗𝑥𝑐𝑐)  𝑠𝑠. 𝑡𝑡.    𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵 111,228∗ 32,663∗ 1,211∗ 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑢𝑢𝑉𝑉𝑉𝑉𝑉𝑉(𝑥⃗𝑥𝑐𝑐)  𝑠𝑠. 𝑡𝑡.    𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵 83,035 1,590* 917 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑢𝑢𝑇𝑇𝑇𝑇(𝑥⃗𝑥𝑐𝑐)     𝑠𝑠. 𝑡𝑡.    𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵 49,715∗ 23,741 389∗ 

Observed (year 2014) 105.647 25.108 1.159 

Farm-type 2 

(S2=23.9 ha) 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇(𝑥⃗𝑥𝑐𝑐)  𝑠𝑠. 𝑡𝑡.    𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵 55,911* 5,838* 517* 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑢𝑢𝑉𝑉𝑉𝑉𝑉𝑉(𝑥⃗𝑥𝑐𝑐)  𝑠𝑠. 𝑡𝑡.    𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵 37,609 834* 356 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑢𝑢𝑇𝑇𝑇𝑇(𝑥⃗𝑥𝑐𝑐)     𝑠𝑠. 𝑡𝑡.    𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵 22,985* 5,756 194* 

Observed (year 2014) 53,051 3,047 489 

Farm-type 3 

(S3=15.0 ha) 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇(𝑥⃗𝑥𝑐𝑐)  𝑠𝑠. 𝑡𝑡.    𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵 27,348* 824 428 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑢𝑢𝑉𝑉𝑉𝑉𝑉𝑉(𝑥⃗𝑥𝑐𝑐)  𝑠𝑠. 𝑡𝑡.    𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵 24,731 634* 371* 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑢𝑢𝑇𝑇𝑇𝑇(𝑥⃗𝑥𝑐𝑐)     𝑠𝑠. 𝑡𝑡.    𝐴𝐴𝑥⃗𝑥𝑐𝑐 ≤ 𝐵𝐵 19,421* 1,469* 172* 

Observed (year 2014) 26,683 797 405 

Note: (∗) shows ideal values and (∗) shows anti-ideal values. 

4.3. Results 

Implementing the PMAUP approach, (4) to (10), implies that the weights of each attribute 

(𝑤𝑤��⃗ 𝑘𝑘) are obtained successively in each iteration (𝑘𝑘) for each farmer’s profile (farm-types 1 to 

3), as can be seen in Table 4. It can be observed that weights converge rather quickly. In fact, 

if 𝛿𝛿 in expression (11) is fixed at 0.0001, actual weights are obtained in less than seven 

iterations. 
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Table 4 
Attributes, weights and MRT/MRS obtained for each attribute i in each iteration k 

   Attributes Weights Marginal Rate of Transformation (𝛽𝛽𝑖𝑖,𝑗𝑗
𝑘𝑘 ) = 

= Marginal Rate of Substitution 

   
Total Gross 

Margin 
(Euro) 

Variance  
(104 Euro 2) 

Total Labor 
Input 

(hours) 
𝑤𝑤𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇 𝑤𝑤𝑢𝑢𝑉𝑉𝑉𝑉𝑉𝑉  𝑤𝑤𝑢𝑢𝑇𝑇𝑇𝑇 𝛽𝛽𝐺𝐺𝐺𝐺,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐺𝐺𝐺𝐺 

Farm-type 1 

Iteration 
number 

(𝑘𝑘) 

𝑘𝑘 = 1 106,224 22,673 1,079 0.33333 0.33333 0.33333 -0.2304 -0.6849 -6.3375 

𝑘𝑘 = 2 107,166 23,633 1,126 0.72038 0.16595 0.11367 -0.2305 -0.5653 -7.6746 

𝑘𝑘 = 3 107,200 23,599 1,131 0.73486 0.16939 0.09575 -0.2315 -0.5472 -7.8954 

𝑘𝑘 = 4 107,202 23,590 1,132 0.73630 0.17044 0.09326 -0.2317 -0.5444 -7.9292 

𝑘𝑘 = 5 107,203 23,589 1,132 0.73650 0.17061 0.09289 -0.2317 -0.5440 -7.9343 

𝑘𝑘 = 6 107,203 23,589 1,132 0.73653 0.17064 0.09283 -0.2317 -0.5440 -7.9351 
Observed (year 2014) 105,647 25,108 1,159       

Farm-type 2 

Iteration 
number 

(𝑘𝑘) 

𝑘𝑘 = 1 53,349 2,733 458 0.33333 0.33333 0.33333 -1.7476 -0.4184 -1.3676 

𝑘𝑘 = 2 53,561 2,798 459 0.50235 0.21019 0.28746 -1.7529 -0.4131 -1.3811 

𝑘𝑘 = 3 53,563 2,800 459 0.50415 0.20824 0.28761 -1.7529 -0.4129 -1.3815 

𝑘𝑘 = 4 53,563 2,800 459 0.50418 0.20820 0.28763 -1.7529 -0.4129 -1.3815 
Observed (year 2014) 53,051 2,964 489       

Farm-type 3 

Iteration 
number 

(𝑘𝑘) 

𝑘𝑘 = 1 26,682 796 405 0.33333 0.33333 0.33333 -1.1532 -0.3353 -2.5864 
𝑘𝑘 = 2 26,682 796 405 0.45404 0.15223 0.39373 -1.1532 -0.3353 -2.5864 
𝑘𝑘 = 3 26,682 796 405 0.45404 0.15223 0.39373 -1.1532 -0.3353 -2.5864 

Observed (year 2014) 26,682 796 405       
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Weights of single-attribute utility functions show different behavior among the groups 

defined by the cluster analysis, confirming the need to define a different MAUF for each group. 

In addition, these weights support the profile assigned to each farm-type on the basis of the 

observed crop-mixes. Decision-making in Farm-type 1 is mainly led by profit maximization 

(𝑤𝑤𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇=73.7%), although avoiding risk and management complexity are also taken into 

account (𝑤𝑤𝑢𝑢𝑉𝑉𝑉𝑉𝑉𝑉=17.1% and 𝑤𝑤𝑢𝑢𝑇𝑇𝑇𝑇=9.3%). Despite profit maximization is the main objective for 

Farm-type 2 (𝑤𝑤𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇=50.4%), the attributes related to risk and management complexity are 

more relevant (𝑤𝑤𝑢𝑢𝑉𝑉𝑉𝑉𝑉𝑉=20.8% and 𝑤𝑤𝑢𝑢𝑇𝑇𝑇𝑇=28.8%) in its decision-making than for Farm-type 1. 

Finally, Farm-type 3 is driven by both profit maximization and minimizing management 

complexity (𝑤𝑤𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇=45.4% and 𝑤𝑤𝑢𝑢𝑇𝑇𝑇𝑇=39.4%). 

Once the weights have converged, including 𝑤𝑤𝑖𝑖
 𝐾𝐾 in the problem (4) allowed us to obtain the 

efficient solution 𝑃𝑃𝐾𝐾, that might also be achieved by solving model (1) considering an adequate 

MAUF. As previously mentioned, the MAUF that represents famers’ behavior can be 

reasonably assumed to have a homothetic Cobb-Douglas specification (12), whose 𝛼𝛼𝑖𝑖 

parameters can be obtained by solving the expression (14). Following this approach we obtained 

the MAUFs for each farm-type: 

𝑈𝑈1 = 𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇0.9215 · 𝑢𝑢𝑉𝑉𝑉𝑉𝑉𝑉0.0667 · 𝑢𝑢𝑇𝑇𝑇𝑇0.0118       (17) 

𝑈𝑈2 = 𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇0.7284 · 𝑢𝑢𝑉𝑉𝑉𝑉𝑉𝑉0.1912 · 𝑢𝑢𝑇𝑇𝑇𝑇0.0804       (18) 

𝑈𝑈3 = 𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇0.7254 · 𝑢𝑢𝑉𝑉𝑉𝑉𝑉𝑉0.2137 · 𝑢𝑢𝑇𝑇𝑇𝑇0.0609       (19) 

Differences in these MAUFs show different farmer-type decision-making [42]. 

Finally, in order to test the capacity of the model to reproduce farmers’ behavior, it is worth 

analyzing the differences between the observed behavior and the estimated results provided by 

the PMAUP approach (Table 5). The Percentage Absolute Deviation (PAD) and the Finger-

Kreinin similarity index (FK, see [65]) have been calculated to show the differences in crop-

mixes: 

𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (%) = ∑ �𝑥𝑥𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜−𝑥𝑥𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈𝑃𝑃�𝑛𝑛
𝑐𝑐=1

∑ 𝑥𝑥𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛
𝑐𝑐=1

       (20) 

𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑥𝑥𝑐𝑐
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑆𝑆𝑡𝑡
; 𝑥𝑥𝑐𝑐

𝑜𝑜𝑜𝑜𝑜𝑜

𝑆𝑆𝑡𝑡
�𝑛𝑛

𝑐𝑐=1       (21) 

PAD compares calibrated (𝑥𝑥𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) and observed (𝑥𝑥𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜) crop areas by adding all absolute 

deviations and is expressed as a percentage. Thus, this index varies form 0% (perfect calibration 
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fitting) to 200% (the worst possible calibration). The FK index compares the calibrated 

�𝑥𝑥𝑐𝑐
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑆𝑆𝑡𝑡
� and the observed �𝑥𝑥𝑐𝑐

𝑜𝑜𝑜𝑜𝑜𝑜

𝑆𝑆𝑡𝑡
� shares of each crop-mix, varying between 0% and 100%, 

with the latter being an exact match between observed and simulated crop-mixes. 

PAD ranges from 0.0% (Farm-type 3) to 33.2% (Farm-type 2), while FK index fluctuates 

from 100.0% (Farm-type 3) to 83.4% (Farm-type 2). Although there is no limit or threshold 

values for both indexes to validate this methodological approach, the results show that estimated 

and actual crop-mixes are quite similar for each cluster. Similar results were obtained for 

individual farms simulation. In conclusion, the PMAUP is able to provide a reliable approach 

to modeling farmers’ decision processes. 

Table 5 
Simulated and observed crop-mix for each farm-type (hectares) 
 Farm-type 1 Farm-type 2 Farm-type 3 

Crop-mix PMAUP 
estimation Observed 

PMAUP 
estimation Observed 

PMAUP 
estimation Observed 

Wheat 0.00 1.94 0.00 1.58 0.59 0.59 

Corn 2.09 1.17 6.20 2.30 --- --- 

Sugar-beet 7.50 8.65 0.67 1.54 5.86 5.86 

Cotton 12.68 10.64 12.89 14.21 8.55 8.55 

Sunflower --- --- 0.53 0.51 --- --- 

Tomato 10.81 10.91 2.97 3.17 --- --- 

Onion 0.65 0.59 0.15 0.14 --- --- 

Carrot 2.09 1.90 0.54 0.49 --- --- 

Total (ha) 35.80 35.80 23.95 23.95 15.00 15.00 

PAD index 17.9% 33.2% 0.0% 

FK index 91.1% 83.4% 100.0% 

 

Similarly, the accuracy of the PMAUP can be tested by comparing the differences between 

observed and simulated results for attributes. As shown in Table 6, all deviations are below 

6.2%, suggesting an accurate approximation of farmers’ actual decision-making. The analysis 

conducted at individual farm level also confirms the model’s ability to accurately reproduce 

farmers’ decision-making. 
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Table 6 
Simulated and observed values of attributes for each farm-type 

  

Attributes 

Total Gross 

Margin (Euro) 
Variance  

(104 Euro 2) 

Total Labor 

Input (hours) 

Farm-type 1 

PMAUP estimation 107,203 23,589 1,132 

Observed (year 2014) 105,647 25,108 1,159 

Divergence -1.5% +6.1% +2.3% 

Farm-type 2 

PMAUP estimation 53,564 2,800 459 

Observed (year 2014) 53,051 2,964 489 

Divergence -1.0% +5.5% +6.2% 

Farm-type 3 

PMAUP estimation 26,683 797 405 

Observed (year 2014) 26,683 797 405 

Divergence 0.0% 0.0% 0.0% 

 

5. Concluding remarks 

In this article we offer a new mathematical programming model to simulate farmers’ 

decision-making on the basis of a positive multi-attribute approach. Evidence shows that 

expected profitability (or its higher moments) is not the only criterion considered by farmers in 

their decision-making. Invoking the multi-attribute decision-making paradigm, the positive 

multi-attribute utility programming (PMAUP) proposed allows us to overcome the limitations 

of positive mathematical approaches found in the literature by including other criteria that are 

relevant to farmers’ decision-making. The PMAUP also addresses some weaknesses of 

previous multi-attribute approaches used to simulate farmers’ behavior, such as the assessment 

of the efficient set and the elicitation of the multi-attribute utility function (MAUF). 

Following a five-step procedure, the PMAUP allows us to assess the actual efficient set and 

the parameters of the MAUF as consistent with the observed farmer’s behavior (both decision 

variables –crop-mix– and the attributes considered), in the sense that this observed decision-

making is ‘close’ enough to the optimal results obtained maximizing the elicited MAUF. 

Through an iterative process, the PMAUP also allows the estimation of the importance 

(weights) given by farmers to each attribute included in the MAUF. Our results corroborate 

previous studies with respect to heterogeneous behaviors of agricultural producers within 
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homogeneous agricultural systems. This heterogeneity can be assessed by using different 

MAUFs as surrogates of farmers’ behavior. 

The potential of the PMAUP model to replicate farmers’ decision-making has been proven 

by applying it to a sample of irrigated farms in southern Spain. In order to present the results, a 

cluster analysis was conducted to group farmers into homogeneous groups according to their 

crop-mix, as a proxy of their decision-making criteria. Results show that the PMAUP provides 

an accurate simulation of farmers’ observed decisions, with dissimilarities that range between 

0% and 17% for crop-mixes, and below 6.3% for attributes. Thus, we can conclude that the 

lower the number of crops the higher the accuracy of the PMAUP model in replicating farmers’ 

decision-making.  

This new approach not only allows accurate simulations of observed decisions but enables 

to conduct proper simulations of the response of individual farmers (or farmer typology) when 

facing hypothetical scenarios (policy reforms, market shocks, etc.), providing further insights 

into their current heterogeneous behavior and their feasible response to these changes. In any 

case further empirical research on the PMAUP method is needed to compare its simulation 

goodness-of-fit when compare to other alternative approaches (e.g., PMP, EUT and other 

alternative approaches aiming at a positive elicitation of the decision-makers’ MAUF). 

Therefore, comparing ex-ante analysis of policy measures (e.g., reform of agricultural policies) 

by different modeling approaches could be of interest in order to compare their power to model.  

From the methodological point of view, further work is also needed to analyze how different 

distance measures may have an influence on projections (e.g. testing whether metrics different 

to the Euclidean distance yields better fitting), or test the performance of other MAUF 

functional forms. This future research may provide further insights on farmers’ behavior, 

leading to more accurate simulation procedures. 
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