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RESUMEN 
 
El pH juega un papel clave en el control de la patogénesis fúngica. En el patógeno 

del suelo Fusarium oxysporum, causante de la marchitez vascular, el pH actúa como 

regulador maestro de Fmk1, una MAPK altamente conservada, esencial para el 

crecimiento invasivo y patogénesis en raíces de tomate. Estudios previos 

demostraron que el pH también regula las MAPKs Mpk1 y Hog1, de manera 

opuesta a Fmk1. Sin embargo, se desconocen los mecanismos moleculares de la 

respuesta al pH. En el presente trabajo se ha investigado, si el pH del medio afecta 

las rutas MAPK a través de un cambio en el pH intracelular (pHi). Se ha 

determinado que el pHi funciona como una señal para la regulación de las rutas 

MAPK en F. oxysporum. El tratamiento de las células con diethylstilbestrol (DES), 

un inhibidor especifico de Pma1, la principal bomba de protones de la membrana 

plasmática, conlleva una rápida y sostenida bajada del pHi, acompañada de una 

rápida y transitoria activación de las MAPKs Mpk1 y Hog1, y la inactivación de 

Fmk1. Esta respuesta esta conservada en la levadura panadera Saccharomyces 

cerevisiae, lo que indica que está conservado en hongos. Por ello se ha utilizado la 

levadura como modelo para investigar el mecanismo de activación de Mpk1 por 

acidificación del pHi. Se identificaron: una ruta alternativa de la respuesta a stress 

de pared, mediada por la quinasa Ypk1/2; la rama Sln1 de la ruta Hog1; y la MAPK 

fosfatasa Msg5 cuya abundancia es afectada por el pHi. En segundo lugar, un 

escrutinio realizado con mutantes knockout sensibles a ácido identificó un gran 

número de proteínas candidatas implicadas en la activación de Mpk1 inducida por 

DES. Muchos de ellos poseen ortólogos en F. oxysporum. Las funciones celulares 

más relevantes en este proceso son tráfico celular, homeostasis de iones 

(principalmente V-ATPase) y metabolismo de lípidos. Los resultados revelan que el 

pHi es un nuevo mecanismo de regulación de MAPKs en hongos, y sugieren que 

existe una compleja interacción entre rutas de señalización y funciones celulares en 

la regulación de este proceso. 
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SUMMARY 
 
pH is as a key player in the control of fungal pathogenicity. In the soilborne 

vascular wilt fungus Fusarium oxysporum, ambient pH acts as a master switch for 

regulation of the conserved Fmk1 MAPK cascade, essential for invasive growth and 

pathogenicity toward tomato roots. Previous studies indicated that pH also 

modulates the activity of the two other MAPKs, Mpk1 and Hog1, in an opposite 

way to Fmk1. The molecular events underlying the pH response are currently 

unknown. Here we investigated whether ambient pH modulates MAPK signaling by 

affecting the intracellular pH (pHi). We found that pHi acts as a signal regulating 

MAPK activity in F. oxysporum. Diethylstilbestrol (DES), a specific inhibitor of the 

plasma membrane H+-ATPase Pma1, induced a rapid and sustained decrease of pHi 

accompanied by rapid and transitory phosphorylation of the MAPKs Mpk1 and 

Hog1, and inactivation of Fmk1. Analogously, pHi also regulates MAPK signaling 

in the budding yeast Saccharomyces cerevisiae, suggesting that this mechanism is 

conserved in fungi. We initially investigated the mechanism of pHi-induced Mpk1 

activation in the yeast model, using a candidate gene approach. Our studies revealed 

three potential mechanisms: an alternative branch of the canonical cell wall 

integrity pathway mediated by the Ypk1/2 kinase; the Sln1 branch of the Hog1 

cascade; and the dual specificity MAPK phosphatase Msg5 whose abundance is 

affected by pHi. Moreover, a screen with a subset of acid-sensitive yeast mutants 

identified a number of candidates affected in DES-triggered Mpk1 activation, many 

of which have predicted orthologues in F. oxysporum. These candidate proteins 

have conserved cellular functions including cellular trafficking, ion homeostasis 

(mainly V-ATPase function) and lipid metabolism. Our results discover pHi as a 

new mechanism for MAPK signaling in fungi and reveal a complex interplay 

between signaling pathways and cellular functions in the regulation of this process. 
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INTRODUCTION 
 
1.1.  PH: A GENERAL REGULATOR OF CELL FUNCTION 

pH balance is a key factor determining life or death in all known biological systems. 

Changes in pH affect the ionization state of all weak acids and weak bases, 

including a bewildering array of cellular molecules such as peptides, proteins and 

lipids which regulate fundamental processes in the cell. It is thus not surprising that 

pH affects a wide array of biological processes. Proton binding or release to the 

active site of enzymes can interfere with their substrate affinity and consequently 

with the metabolic route in which they are implicated. Further, protein folding can 

also be affected by variations in pH, since charged amino acid side chains are 

modified according to pH. As a consequence, electrostatic interactions between 

residues of the same protein as well as protein-protein interactions may suffer 

modifications in response to changes in pH (Orij et al., 2011). Besides proteins, 

some lipids can also sense changes in pH since they exhibit polar head groups that 

can be protonated or deprotonated depending on the environmental pH. Advances in 

structural and functional analysis of cell membranes revealed an asymmetric 

distribution of lipids, with negatively charged phospholipids such as 

phosphatidylserine (PS) and phosphatidylinositol (PI) located predominantly in the 

inner leaflet of the plasma membrane (PM) and neutral or positively charged 

phospholipids being mostly non-cytosolic (Carman and Han, 2011; Orij et al., 

2011). This asymmetric distribution of charged phospholipids at the PM is highly 

relevant for targeting of charged proteins (Heo et al., 2006).  

Because proteins and lipids are dependent on pH to maintain their structure and 

function, and protonation–deprotonation events dictate the charge of biological 

surfaces, pH determines cell metabolism and survival. Changes in pH have been 

shown to trigger cell disorders and serious diseases in animal cells. For instance, in 

tumor cells a drop of the surrounding pH which occurs apparently as consequence 

of elevated glycolysis and proton and lactate excretion under hypoxia, determines 
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tumor malignancy (Webb et al., 2011). Although more data are still required to 

understand how tumor cells respond to pH, recent findings suggest that there are 

low pH-responsive genes whose activation provides a growth advantage for tumor 

cells (Kondo et al., 2017). On the other hand, pH has also been shown to be a key 

factor in the control of programmed cell death (apoptosis) (Lagadic-Gossmann et 

al., 2004). Intracellular acidification is an early event in apoptosis and appears to be 

triggered by an inhibition of NHE1 (sodium-hydrogen antiporter 1) at the PM 

(Schelling and Abu Jawdeh, 2008). A drop in the intracellular pH (pHi) regulates 

the activity of endonucleases and of many proapoptotic proteins such as cytochrome 

c and caspases promoting cell death (Collins et al., 1996; Matsuyama et al., 2000). 

The finding that pH regulates a broad range of processes including cell 

development, apoptosis or cancer has given rise to new approaches for the study of 

pH dynamics and mechanisms of regulation. The genetically encoded pH-sensor 

pHluorin, a green fluorescent protein (GFP) variant which is sensitive to changes in 

pH, has been extensively used for determination of pHi. Although tightly regulated, 

pHi is significantly affected by changes in external pH. Therefore, it is likely that 

pH-driven cell responses are largely regulated by pHi dynamics.  

 

1.2.   FUNGAL PATHOGENS: HOW THEY LIVE AND INFECT 

The kingdom of Fungi is evolutionarily distant from the kingdoms Plants and 

Animals and encompasses a high diversity of taxa with varied habitats, life cycles, 

morphologies and nutrient requirements. Most fungi are found in rich environments, 

where they assimilate organic molecules such as proteins, polysaccharides and 

nucleotides. However, fungi are also found in extreme conditions. Aspergillus 

sydowii inhabits hydrothermal fluids with temperatures that can reach 400ºC 

(Burgaud et al., 2009), while Penicillium chrysogenum is found in the Atacama 

Desert, the driest non-polar desert in the world (Gonçalves et al., 2016) 
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and Nadsoniella nigra var. hesuelica survives periodic freezing and thawing in 

Antarctica (Lyakh et al., 1983). 

Some fungal species are pathogens that can thrive on living organisms. Fungal 

pathogens face unfavorable conditions during host colonization and thus need to be 

resilient to the immune defenses and able to obtain nutrients that can be difficult to 

acquire. Fungal pathogens include plant pathogens that cause crop diseases and 

have a serious economic impact on global agriculture, as well as human pathogens 

that cause life-threatening systemic infections in immunocompromised humans. 

Human pathogenic fungi are hidden killers taking the lives of one and a half million 

people every year. Although great effort has been made in the last years to reduce 

the number of people dying from fungal infections, progress has not been rapid and 

efficient enough to prevent or treat life-threatening fungal diseases. Among the 

fungal pathogens affecting humans, three pose the most consistent threat 

worldwide: Aspergillus fumigatus, Candida albicans and Cryptococcus 

neoformans, which cause aspergillosis, candidiasis and cryptococcosis, 

respectively. Each fungal pathogen preferentially infects specific sites in the human 

body, from the lung in pulmonary aspergillosis to the brain in cryptococcal 

meningoencephalitis and the blood stream in systemic candidiasis (Kim, 2016).  

Fungal phytopathogens are by far the most harmful class of plant pathogens. They 

cause over 70% of all crop diseases and each year destroy 15% of global 

agricultural production, enough food calories to feed half a billion people. The 

growing human population will unquestionably require a significant increase in 

agricultural production, which includes an efficient response to fungal infection. 

Based on relevance, the five most important fungal plant pathogens are 

Magnaporthe oryzae, Botrytis cinerea, Puccinia spp., Fusarium graminearum and 

Fusarium oxysporum (Dean et al., 2012).  

The ubiquitous soil-borne ascomycete F. oxysporum attacks a wide range of 

economically important crops as diverse as tomato (Lycopersicon spp.), cotton 
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(Gossypium spp.) or banana (Musa spp.) (Armstrong and Armstrong, 1981). It is the 

causal agent of vascular wilt, the major limiting factor in the production of many 

agricultural crops. Characteristic disease symptoms caused by this fungus include 

vascular browning, leaf epinasty, stunting, progressive wilting, defoliation and plant 

death (Agrios, 2005). F. oxysporum at the species complex level includes more than 

120 different formae speciales (ff. spp.) which have been identified according to 

their specificity for the host plant (Michielse and Rep, 2009). Thus, individual 

isolates of F. oxysporum affect only one or a few plant species. The intriguing host 

specificity in the different F. oxysporum isolates is currently subject to intense 

investigation. Phylogenetic studies revealed that different isolates of a given forma 

specialis (f. sp.) that infect the same host plant, have originated independently 

during evolution (O'Donnell et al., 2004). Since there is no known sexual stage in 

the life cycle of F. oxysporum, the most likely hypothesis is that horizontal transfer 

of genetic information between isolates could account for the emergence of new 

pathogenic lineages. Indeed, complete genome sequence analysis of the tomato 

pathogenic form F. oxysporum f. sp. lycopersici demonstrated the existence of 

certain lineage-specific (LS) genomic regions, including four entire chromosomes 

that are absent from other Fusarium species such as F. graminearum and 

F. verticillioides (Ma et al., 2010).  

Between plant infection, F. oxysporum can survive in the soil for long time periods, 

either as chlamydospores or by growing as a saprophyte on decaying organic 

matter. When the appropriate conditions for infection are found, spores in the soil 

germinate and grow towards the plant host. Germinated microconidia adhere to the 

plant roots and penetrate them directly without requirement of specialized structures 

such as apressoria which are formed in other fungal plant pathogens. Root 

penetration occurs mainly through natural openings or wounds in the roots (Pérez-

Nadales and Di Pietro, 2011). Infectious hypha grow inter- and intracellularly to 

invade the cortex and cross the endodermis, until reaching the xylem vessels which 

they use to colonize the entire plant [Figure 1] (Michielse and Rep, 2009).  
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Figure 1 - Life cycle of F. oxysporum. 
(A) Germination in response to host signals and direct penetration of the root. (B) Invasion of 
the root cortex. (C) Colonization of the xylem vessels. (D) Hyphae and conidia spread through 
the xylem. (E) Fungal mycelium and plant-produced vascular gels plug the xylem vessels. (F) 
Wilting and death of the plant. (G) Formation of micro- and macroconidia, and thick-walled 
chlamydospores on the dead plant tissue and in the soil (Perez-Nadales et al., 2014). 

 

The mechanism by which a fungal plant pathogen grows towards the host root relies 

on precise signals in the rhizosphere. To fight against root-infecting pathogenic 

fungi, plant roots exudate a wide range of chemicals with broad-spectrum antifungal 

properties and defense-related proteins (Bais et al., 2006). Among these, 

peroxidases which reduce hydrogen peroxide to produce reactive oxygen species 

(ROS), are highly abundant. Therefore, plants can increase oxidative stress at 

wounded sites and increase toxicity against invading pathogens (Shigeto and 

Tsutsumi, 2016). Recently, research in the fungal pathogen F. oxysporum f. sp. 

lycopersici demonstrated that the catalytic activity of class III peroxidases found in 

root exudates, mediates the fungal chemotropic response towards tomato roots 
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(Turrà et al., 2015). Thus, apart from being a plant defense mechanism, peroxidases 

act as signals for F. oxysporum to track and colonize tomato roots.  

Besides plant infection, F. oxysporum is also an opportunistic pathogen of humans 

(Nucci and Anaissie, 2007). F. oxysporum f. sp. lycopersici 4287 was the first 

fungal isolate shown to cause disease both in tomato plants and in 

immunodepressed mice. The striking ability to infect both plants and mammals 

makes this fungus a unique multihost pathogen for studying trans-kingdom 

pathogenicity in fungi (Ortoneda et al., 2004).  

 

1.3.   PH AS REGULATOR OF FUNGAL PATHOGENICITY  

Environmental pH is a critical factor controlling fungal growth and development. 

To survive and propagate in a dynamic pH environment, fungal pathogens have the 

capacity to sense and respond to environmental pH changes. Further, fungal 

pathogens also can change the surrounding pH to increase their infectious potential. 

Although the mechanism of pH sensing and response is well studied in fungi, how 

exactly fungus-induced pH change contributes to virulence is not fully understood. 

Below we provide a brief update of the current knowledge on how pH affects fungal 

pathogenicity.  

1.3.1.   How fungi sense and adapt to environmental pH changes 

High pH imposes severe stress on the fungal cell, including difficulties in the 

acquisition of nutrients or reduced availability of essential elements, such as iron or 

copper (Cyert and Philpott, 2013). The Pal/Rim pathway is the best-studied 

mechanism of alkaline pH sensing and response in fungi. First described in 

Aspergillus nidulans and Saccharomyces cerevisiae, this pathway has been since 

found throughout the ascomycetes and basidiomycetes (Peñalva et al., 2008). 

Signaling upon a shift to alkaline pH is initiated by the seven transmembrane 

domain receptor PalH/Rim21. How exactly PalH/Rim21 senses changes in pH is 
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not fully understood. Recent work in S. cerevisiae suggests that the C-terminal 

cytosolic domain detects altered lipid asymmetry of the PM as a result of alkaline-

induced depolarization (Nishino et al., 2015). PalH/Rim21 mediates ubiquitination 

and phosphorylation of its interaction partner, the α-arrestin PalF/Rim8, resulting in 

endocytosis of the PalH-PalF complex. ESCRT (endosomal sorting complexes 

required for transport) complex components Vps20 and Snf7, recruits the 

interacting proteins PalA/Rim20 and the calpain-like protease PalB/Rim13 to the 

endomembranes. Ultimately, PalB leads to processing and activation of the zinc 

finger transcription factor PacC/Rim101. PalA binds to the C-terminal inhibitory 

domain of the inactive full-length PacC and contributes to PalB induced proteolytic 

activation of PacC. The processed PacC protein functions both as an activator of 

alkaline-expressed genes and a repressor of acidic-expressed genes, thereby 

orchestrating the cellular response to alkaline pH [Figure 2] (Peñalva et al., 2008).  

 
Figure 2 - A model of the Pal/Rim pathway signaling in fungi. 
The PalH at the PM senses a shift to alkaline pH and mediates PalF activation. PalH-PalF 
complex is relocated to the endosomes and activates PalB, that leads to processing and 
activation of the transcription factor PacC. Activated PacC enters the nucleus and directs the 
transcription of alkaline-expressed genes (Adapted from (Chinnici et al., 2014)).  

PALF
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 This is crucial during fungal infection to ensure, for example, the correct 

deployment of virulence factors that function at a specific pH (Barad et al., 2016; 

Davis, 2009; Prusky and Yakoby, 2003).  

The Pal/Rim pathway is essential for infection in a number of fungal pathogens of 

humans. In C. albicans, the major invasive fungal pathogen of humans, Rim101 

mutant shown to be defective in yeast to hyphal transition, a key virulence trait in 

this species, and unable to cause disseminated infection (Davis, 2009). Rim101 was 

also implicated in regulation of the Als3 adhesin and the secreted aspartyl protease 

(Sap) Sap5 during the interaction of C. albicans with the mucosal surface, which 

explains the involvement of this pathway in oral pharyngeal candidiasis where 

filamentous growth is not required (Nobile et al., 2008; Villar et al., 2007). 

Similarly, Rim101 is required for virulence of the opportunistic pathogen A. 

fumigatus in a murine model of infection (Bertuzzi et al., 2015). The pacC null 

mutant fails to cause infection and constitutively expressed PacC induces earliest 

tissue invasion (Bignell et al., 2005). In C. neoformans, a Rim101 mutant presents 

capsular defects due to alterations in polysaccharide attachment and is hypervirulent 

in an animal model of cryptococcosis. Interestingly, the defective cell surface of this 

mutant triggers a dramatic hyper-inflammatory response that accelerates host death 

(O'Meara et al., 2013).  

During plant infection, PacC contributes to virulence in necrotrophic or postharvest 

pathogens such as Colletotrichum acutatum, Colletotrichum gloeosporioides and 

Sclerotinia sclerotiorum (Miyara et al., 2008; Rollins, 2003; You and Chung, 

2007), but is dispensable in others such as the hemibiotrophic root-infecting fungus 

F. oxysporum (Caracuel et al., 2003). Interestingly, a F. oxysporum pacC loss-of-

function mutant was more virulent than the wild type towards the plant host, but 

less virulent in a murine infection model (Caracuel et al., 2003; Ortoneda et al., 

2004). 

While necrotrophic pathogens trigger rapid host cell death and extensive tissue 
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necrosis by secreting toxins and enzymes to rapidly obtain nutrients for growth and 

reproduction, hemibiotrophic pathogens undergo a latent or biotrophic phase in 

which they manipulate plant defenses and obtain nutrients from living plant cells, 

followed by a switch to the necrotrophic phase. Therefore, the contrasting role of 

PacC is most likely associated with distinct modes of host infection of these 

different phytopathogens. 

1.3.2.   How fungi modulate the surrounding pH  

Fungal pathogens have been known for decades to adjust the extracellular pH in 

order to increase their infectious potential (Alkan et al., 2013; Jennings, 1989). 

Therefore, apart from efficient mechanisms to adapt to environmental pH, fungal 

pathogens have evolved amazing ways to modulate ambient pH. Some mechanisms 

have been described to explain this ability, including the secretion of acids or alkali 

during infection. Alkalinization has been described mainly for hemibiotrophic 

pathogens, such as the tomato root-infecting F. oxysporum, during the early 

biotrophic stages of infection, while acidification happens mostly in necrotrophic 

pathogens (Alkan et al., 2013). 

Host acidification by fungal pathogens is achieved by secretion of organic acids. S. 

sclerotiorum and B. cinerea secrete significant amounts of oxalic acid, while 

Phomopsis magnifera produces gluconic acid (Cessna et al., 2000; Davidzon et al., 

2010; Manteau et al., 2003). Some fungi such as Penicillium and Aspergillus, 

secrete a combination of gluconic and citric acids (Shindia et al., 2006).  

Alkalinization of the plant host was first reported in a number of fruit-infecting 

species such as Colletotrichum spp. and Alternaria alternata (Alkan et al., 2013; 

Prusky et al., 2001), and more recently in the root-infecting pathogen F. oxysporum 

(Masachis et al., 2016). These fungi are able to trigger an increase of more than two 

units in the pH of the surrounding fruit tissue or the rhizosphere, respectively. 

Similarly, the human pathogen C. albicans raises the pH in host macrophages by 

several units, resulting in neutralization of the normally acidic phagosome (Vylkova 
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et al., 2011; Vylkova and Lorenz, 2014). The main mechanism of host 

alkalinization reported in these fungal species is the release of ammonia that acts as 

a weak base (Prusky et al., 2001; Vylkova et al., 2011). Concentrations of up to 5 

mM ammonia have been measured in colonized fruit tissue (Miyara et al., 2010). 

The exact mechanism that leads to extracellular accumulation of ammonia remains 

to be elucidated. Work in S. cerevisiae, C. albicans and C. gloeosporioides showed 

that this process requires the regulated uptake of amino acids via amino acid 

permeases or their mobilization from vacuolar stores, followed by catabolism 

through different routes involving steps of deamination (Bi et al., 2016; Miyara et 

al., 2012; Vylkova et al., 2011). In C. gloeosporioides transformation of glutamate 

to α-ketoglutarate and ammonium was shown to be carried out by the NAD+-

specific glutamate dehydrogenase Gdh2 (Miyara et al., 2012). A second 

requirement for ammonia-mediated alkalinization is carbon deprivation. 

Presumably, lack of carbon prevents the efficient use of ammonia for biosynthesis 

of amino acids and nucleotides, favouring its accumulation (Bi et al., 2016; 

Vylkova et al., 2011). To protect the cell from the toxic effects ammonia is released 

either through passive diffusion or by action of transporters such as the members of 

the Ato protein family (Danhof and Lorenz, 2015; Palková et al., 2002; Vylkova et 

al., 2011). The precise mechanisms of ammonia extrusion during alkalinization 

remain to be determined.  

Phytopathogens have been traditionally classified into acidifiers and alkalinizers, 

based on their strategy to either decrease or increase the pH of the surrounding host 

tissue during infection (Alkan et al., 2013). However, this distinction might be less 

clear-cut than previously assumed. A recent study involving different fruit-infecting 

fungi revealed that each of them could induce either alkalinization or acidification 

of the environment, depending on the availability of carbon. Carbon limitation 

triggered extracellular accumulation of ammonia and alkalinization, whereas an 

excess of carbon induced acidification through the release of gluconic acid (Bi et 

al., 2016). These findings are of biological relevance, because pathogens are likely 
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to encounter different levels of carbon availability, depending on the host niche or 

the stage of infection (biotrophic or necrotrophic). For example, a postharvest 

pathogen will be exposed to gradually increasing sugar levels as the fruit ripens, and 

therefore may undergo a switch from alkalinization to acidification during the 

infection process. 

To efficiently alkalinize the plant tissue through the release of ammonia, fungal 

pathogens must first build up a significant amount of hyphal biomass. How then is 

alkalinization achieved during early stages of infection when only a low number of 

hyphae is present in the host? To overcome this limitation, some biotrophic and 

hemibiotrophic pathogens have co-opted a pH regulatory mechanism that is 

naturally present in the plant host. F. oxysporum was recently shown to secrete a 

functional homologue of RALF (Rapid ALkalinization Factor), a family of 

conserved plant regulatory peptides (Pearce et al., 2001). Similar to plant RALFs, 

the Fusarium (F-)RALF peptide triggers rapid alkalinization of the apoplast 

(Masachis et al., 2016). Isogenic F. oxysporum mutants lacking functional F-RALF 

failed to induce root alkalinization and showed markedly reduced virulence in 

tomato plants. Intriguingly, these strains also provoked a strong host immune 

response. F-RALF appears to target the plant receptor-like kinase FERONIA, which 

mediates responses to endogenous plant RALF peptides. An Arabidopsis mutant 

defective in FERONIA failed to respond to fungal F-RALF and displayed enhanced 

resistance against F. oxysporum (Masachis et al., 2016). While the details on the 

mode of action of F-RALF remain to be elucidated, it was recently shown that 

endogenous RALF-FERONIA signaling leads to inactivation of the plant PM H+-

ATPase AHA2 and inhibition of plant cell elongation [Figure 4A] (Haruta et al., 

2014). Intriguingly, fungal RALF homologues are found in phylogenetically distant 

species spanning both ascomycetes and basidiomycetes, as well as hemibiotrophs 

and biotrophs (Masachis et al., 2016; Thynne et al., 2017), This taxonomically 

discontinuous distribution suggests that co-option of FERONIA by fungal RALF 

peptides was acquired multiple times during evolution.  
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In summary, these studies illustrate how fungal pathogens have evolved multiple 

ways to manipulate host pH during different stages of infection. 

1.3.3.   How alkalinization drives fungal pathogenicity 

One of the key questions is how host pH modulation promotes fungal infection. 

Different mechanisms have been proposed, based either on the host or the fungal 

cell machinery. For example, ammonium secretion by Colletotrichum was shown to 

activate plant NADPH oxidase and to enhance host cell death (Alkan et al., 2009). 

On the other hand, alkaline pH triggers PacC/Rim101-mediated expression of genes 

encoding fungal virulence factors, such as the cell wall-degrading enzymes pectate 

lyase and endoglucanase from C. gloeosporioides that display maximum activity at 

alkaline pH typically observed in decaying fruit tissue (Prusky and Yakoby, 2003). 

Similarly, C. albicans PHR1, a gene encoding a cell wall remodeling β(1,3)-

glucanosyltransferase, is fundamental for host tissue adhesion and invasion and 

upregulated at alkaline pH via Rim101 (De Bernardis et al., 1998).   

Furthermore, alkalinization has been associated with infection-related 

morphogenetic changes. Ammonia release during germination of C. 

gloeosporioides conidia led to formation of specialized infection structures called 

apressoria. Apressorium formation is hampered by reduction of ammonia levels 

outside and was reestablished by increasing ammonia. Therefore, fungal-induced 

pH modulation through ammonia is believed to restrict pathogenicity, at least in 

part, in situations in which penetration is apressorium-dependent (Miyara et al., 

2010). In C. albicans, an upshift in pH promotes transition from the unicellular 

yeast to the filamentous hyphal form (Davis, 2009; Vylkova, 2017; Vylkova et al., 

2011). This morphogenetic switch, which is critical for virulence in the mammalian 

host, is mediated by a number of cell signaling pathways including the Pal/Rim 

pathway and the invasive growth (IG) mitogen-activated protein kinase (MAPK) 

cascade (Davis, 2009; Lengeler et al., 2000). 

Among the key pathways sensing and responding to external stimuli are the MAPK 
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cascades, a family of evolutionarily conserved three–tiered protein kinase modules 

composed of a MAPK kinase kinase (MAPKKK) that phosphorylates the 

downstream MAPK kinase (MAPKK), which in turn activates the MAPK for 

downstream transmission of cellular signals (Turrà et al., 2014). This module is 

activated mostly after sensing of external signals by receptors at the PM, and their 

activation results in a number of substrates phosphorylation including transcription 

factors that trigger the regulated expression of genes relevant for cell response to 

the stimuli (Rispail et al., 2009). Most of the current understanding of MAPK 

pathways is largely based on research in the model organism S. cerevisiae. Five 

MAPK signaling pathways have been reported in this fungus. Fus3 controls the 

response to mating pheromones, Kss1 (the IG MAPK) the morphogenetic switch in 

response to nutrient conditions, Hog1 regulates cells adaptation to hyperosmotic 

stress, Slt2/Mpk1 controls cell surface remodeling in response to cell wall integrity 

(CWI) stress, and Smk1 spore wall assembly (Chen and Thorner, 2007). By 

contrast, most of ascomycete fungi only possess three MAPK pathways, which are 

orthologous to yeast Fus3/Kss1, Mpk1 and Hog1 [Figure 3] (Turrà et al., 2014). In 

fungal plant pathogens, Xu and Hamer first reported that the ortholog of S. 

cerevisiae Fus3/Kss1 in the rice blast fungus M. oryzae, named Pmk1 (for 

Pathogenicity MAPK 1), is required for infection (Xu and Hamer, 1996). 

Subsequently, orthologs of the Fus3/Kss1 MAPK pathway were shown to be 

broadly conserved and essential for infection-related morphogenesis and IG in a 

wide range of plant pathogens (Turrà et al., 2014). The F. oxysporum IG Fmk1 

(Fusarium MAPK 1) was also found to be essential for virulence on tomato plants 

(Di Pietro et al., 2001). Infection-related processes such as IG, vegetative hyphal 

fusion, root adhesion and chemotropic sensing of nutrients are dependent on the 

Fmk1 MAPK pathway (Di Pietro et al., 2001; Prados Rosales and Di Pietro, 2008; 

Turrà et al., 2015). In F. oxysporum, a major effort was made to identify all key 

components of this pathway, as well as the mechanism of regulation in 

pathogenicity control. Thus, the mucin-like transmembrane protein Msb2 functions 

upstream of the cascade while the transcription factor Ste12 is regulated by the 
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Fmk1 MAPK (Pérez-Nadales and Di Pietro, 2011; Rispail et al., 2009).  

 

Figure 3 - MAPK signaling in plant pathogenic fungi.  
Green boxes at the top represent different inputs that are sensed by surface receptors and 
translated to the appropriate MAPK module. Arrows and bars denote positive and negative 
interactions, respectively. Solid arrows and bars refer to direct interactions; dashed arrows and 
bars refer to indirect and/or potential interactions. Red circles containing the letter p denote 
phosphorylated amino acid residues (Turrà et al., 2014). 

 

In addition to the Fmk1 MAPK, orthologs of the S. cerevisiae CWI Mpk1/Slt2 and 

the high osmolarity Hog1 MAPK signaling cascades were identified and 

characterized in fungal plant pathogens. The Mpk1 MAPK is involved in cell wall 

remodeling and maintenance of integrity. Activation of this pathway is fundamental 

during cell cycle progression and in response to compounds that imply a stress for 
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the cell wall. Not surprisingly, Mpk1 is fundamental for fungal pathogen 

development and virulence, especially during interaction with the host (Brown et 

al., 2014; Levin, 2011). Mpk1 orthologs of different fungal pathogens showed to be 

essential for resistance to heat stress and cell wall-damaging agents such as Congo 

Red (CR) or Calcofluor White (CFW), as well as to plant defense compounds such 

as chitinases, glucanases or antimicrobial peptides (Mehrabi et al., 2006; 

Ramamoorthy et al., 2007; Segorbe et al., 2017; Turrà et al., 2014). Further, mpk1 

mutants have serious defects in host sensing, penetration and colonization, leading 

to decreased fungal pathogenicity (Kojima et al., 2002; Kraus et al., 2003; Mey et 

al., 2002; Segorbe et al., 2017; Turrà et al., 2014). The high osmolarity glycerol 

(Hog1) MAPK is activated in response to hyperosmotic stress and its activation 

leads to adaptive responses such as temporary arrest of the cell-cycle, adjustment of 

transcription and translation patterns, and the synthesis of the compatible osmolyte 

glycerol (Saito and Posas, 2012). Fungal mutants lacking hog1 exhibit increased 

sensitivity to hyperosmotic stress due to defects in the synthesis and accumulation 

of compatible solutes. In some fungal pathogens, Hog1 is required for host 

penetration and virulence (Igbaria et al., 2008; Turrà et al., 2014). In summary, 

MAPK cascades are among the major signaling pathways controlling fungal 

pathogenicity [Figure 3] (Turrà et al., 2014).  

Although pH and MAPK signaling both act as master regulators of fungal 

pathogenicity, a link between pH and MAPK in fungal pathogenicity was not 

considered for many years. Recently, a study in F. oxysporum revealed that pH 

regulates fungal pathogenicity by modulating the phosphorylation status of the IG 

MAPK Fmk1, with alkalinization leading to enhanced IG and virulence through 

activation of this MAPK cascade [Figure 4A]. A series of experiments 

demonstrated that adjusting the pH to 7 or 5, respectively, activates or prevents 

cellophane penetration and other infection-related processes, as well as tomato root 

infection (Masachis et al., 2016). In addition, the two other MAPKs Mpk1 and 

Hog1 are also regulated by pH in an opposite way to Fmk1 (Segorbe, 2014) [Figure 
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4B]. These findings are of relevance, because although pH has been known for a 

long time to act as a master switch for fungal pathogenicity, most previous studies 

have focused on the Pal/Rim pathway. In fungus-host interactions where this 

pathway is not relevant for pathogenicity, the IG MAPK regulation could explain 

the effect of ambient pH on pathogenicity.  

 
Figure 4 – Fungus-triggered alkalinization modulates MAPK signaling.  
(A) Schematic illustration of the effect of F. oxysporum-secreted F-RALF peptide. F-RALF 
induced alkalinization triggers IG Fmk1 MAPK activation promoting virulence (adapted from 
(Kamoun and Zipfel, 2016)). (B) pH effect on MAPK phosphorylation status. Fmk1 MAPK is 
activated at pH 7, and inactivated at pH 5. By contrast, Mpk1 and Hog1 MAPK phosphorylation 
is induced at pH 5 and inhibited at pH 7 (adapted from (Segorbe, 2014)). 

 

1.3.3.1.  How ambient pH and pHi regulate cell signaling and pathogenicity: a 
hypothesis 

In contrast to ambient pH, pHi tends to be constant and tightly regulated in all 

organisms (Kane, 2016). Nevertheless, rapid changes in pHi can occur in response 

to different stimuli such as shifts in extracellular pH or nutrient status (Orij et al., 

2011). Two major mechanisms of pHi regulation have been reported in fungi, both 

Time%after%change%the%pH%(min)
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based on conserved proton-pumping ATPases. The primary determinant of 

cytosolic pH is the PM H+-ATPase 1 (Pma1), an essential H+-ATPase and the most 

abundant PM protein in S. cerevisiae. The second mechanism is the vacuolar H+-

ATPase (V-ATPase), a multiprotein complex, which mediates acidification of 

organelles, such as vacuoles, endosomes or the Golgi (Kane, 2016).  

Pma1 mediates ATP-dependent H+ extrusion from the cell, creating the driving 

force for nutrient uptake. Plants and fungi contain at least one isoform of this H+-

ATPase. Structurally, it consists of a single large catalytic subunit of around 100 

kDa, embedded in the lipid bilayer by 10 hydrophobic α -helices (Kane, 2016; 

Scarborough, 2000). Because of the abundance of Pma1 in the PM and its relative 

long half-life, Pma1 regulation occurs mainly at the post-translational level. An 

auto-inhibitory regulatory domain at the C-terminus reduces the hydrolysis of ATP 

under starvation conditions. By contrast, glucose-triggered phosphorylation releases 

the inhibitory effect of the C-terminus, causing increased affinity for ATP (Portillo 

et al., 1991). Mass spectrometry studies identified S899, S911 and Thr912 in the C-

terminal tail as the key phosphorylation sites required for Pma1 activation in 

response to glucose (Lecchi et al., 2007).    

Although the PM H+-ATPase Pma1 is the primary contributor to pHi regulation, the 

activity of the V-ATPase is also highly relevant. In contrast to the single-subunit P-

type H+-ATPase, the V-ATPases consist of fourteen subunits arranged in two 

subcomplexes. The peripheral subcomplex V1 harbors the sites for ATP hydrolysis, 

while the V0 subcomplex is embedded in the organellar membrane and contains the 

proton pore. V-ATPases are involved in pHi regulation by pumping protons out of 

the cytosol, keeping the organelles in which they are present more acidic than the 

surrounding cytosol (Martínez-Muñoz and Kane, 2008).  

Pma1 and V-ATPase are often co-regulated, for example in response to sudden 

shifts in ambient pH or glucose levels. In S. cerevisiae, high glucose levels lead to 

activation of Pma1 via phosphorylation of conserved C-terminal residues, and also 
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promote assembly of the V-ATPase complex. By contrast, glucose depletion results 

in Pma1 autoinhibition and disassembly of the V-ATPase complex, concomitant 

with an acidification of the cytosol (Dechant et al., 2010; Kane, 2016). As a general 

rule, activation of these proton-pumping ATPases leads to a pHi increase due to 

increased proton export, whereas their inhibition triggers intracellular acidification. 

It is increasingly appreciated that pHi acts as a general regulator of cellular 

functions, such as growth and proliferation (Reshkin et al., 2014), life span (Hughes 

and Gottschling, 2012) and nutrient response (Dechant et al., 2010). So far, the role 

of pHi in fungal infection has not been examined in detail. However, changes on 

extracellular pH had been showed to affects pHi dynamics in some fungi (Bagar et 

al., 2009). Therefore, it is conceivable that pHi could act as a signal linking fungal-

triggered extracellular pH change to activation of important signaling pathways 

governing fungal pathogenicity [Figure 5]. 

 

 
Figure 5 – Schematic illustration of how host alkalinization drives virulence in 
fungal pathogens.  
During infection, fungal pathogens induce alkalinization of the surrounding host tissue through 
regulated release of ammonia and, in certain phytopathogens, such as F. oxysporum, by 
secreting small regulatory peptides that mimick plant RALF (Rapid ALkalinization Factor) (left 
panel). The resulting increase in extracellular pH activates the fungal invasive growth (IG) 
MAPK cascade, likely via modulation of intracellular pH (pHi), to trigger phosphorylation of the 
IG MAPK and morphogenetic transition towards infectious growth (right panel). Yellow color 
denotes acidic pH while purple neutral to alkaline pH (Fernandes et al., 2017). 
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AIMS OF THE STUDY 
 

pH is as a key player in the control of fungal pathogenicity. Fungus-induced 

ambient pH modulation contributes to virulence, but the underlying mechanisms are 

not fully understood. Recent studies have revealed new and unexpected ways by 

which fungi induce host alkalinization to increase their infectious potential. In the 

root-infecting pathogen F. oxysporum, pH functions as a master switch for 

regulation of the conserved Fmk1 MAPK cascade, essential for IG and 

pathogenicity toward tomato roots (Masachis et al., 2016). Previous studies 

indicated that pH also modulates the phosphorylation status of the two other 

MAPKs, Mpk1 and Hog1, in an opposite way to Fmk1 (Segorbe, 2014). Moreover, 

Mpk1 activation at acidic pH appears to be required for Fmk1 dephosphorylation 

(Segorbe, 2014), suggesting a crosstalk between the MAPK cascades in mediating 

the pH response. 

Although the knowledge of how alkalinization affects fungal pathogenicity has 

advanced considerably, the pH sensing process that links extracellular alkalinization 

to pathogenicity signaling modules as the IG MAPK cascade remains unknown. pHi 

has been shown to act as a major regulator of cellular function and to be transitorily 

affected by changes in external pH (Orij et al., 2011). Therefore, the aim of this 

work was to understand whether ambient pH modulates MAPK signaling in fungi 

by affecting pHi homeostasis. To achieve this goal, we set out to: 1) measure pHi 

and monitor its effect on the three distinct MAPKs, 2) construct isogenic mutants 

defective in pHi homeostasis and ambient pH sensing, and 3) identify cellular 

processes that affect pHi-mediated MAPK signaling. 
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MATERIALS AND METHODS 
 
3.1.  BACTERIAL AND FUNGAL STRAINS. PLANT MATERIALS  

3.1.1.  Bacterial strains 

The strain of Escherichia coli used in this study is described in [Table 1]. 

Table 1 – Bacteria strain used in this study  
STRAIN GENOTYPE REFERENCE 
DH5a supE44, ΔlacU169 (Φ80lacZΔM15), hsdR17, recA1 endA1, 

gyrA96, thi-1, relA1  
Invitrogen™ 

 
3.1.2.  Yeast strains 

The S. cerevisiae strains used in this study are described in detail in [Table 2] and 

were kindly provided by Professor María Molina, Universidad Complutense de 

Madrid, Spain.  Most of the yeast strains used in this work are derived from the wild 

type strain BY4741 from Euroscarf (Frankfurt, Germany). 

Table 2 – Yeast strains used in this study 

STRAIN ORF  GENOTYPE REF. 
BY4741 - MATa his3D1 leu2D0 met15D0 ura3D0   Euroscarf 
Dalg5 YPL227C MATa his3D1 leu2D0 met15D0 ura3D0 alg5::KanMX4 Euroscarf 
Dalg6 YOR002W MATa his3D1 leu2D0 met15D0 ura3D0 alg6::KanMX4 Euroscarf 
Dalg8 YOR067C MATa his3D1 leu2D0 met15D0 ura3D0 alg8::KanMX4 Euroscarf 
Darg82 YDR173C MATa his3D1 leu2D0 met15D0 ura3D0 arg82::KanMX4 Euroscarf 
Daro1 YDR127W MATa his3D1 leu2D0 met15D0 ura3D0 aro1::KanMX4 Euroscarf 
Daro2 YGL148W MATa his3D1 leu2D0 met15D0 ura3D0 aro2::KanMX4 Euroscarf 
Dasc1 YMR116C MATa his3D1 leu2D0 met15D0 ura3D0 asc1::KanMX4 Euroscarf 
Datg14 YBR128C MATa his3D1 leu2D0 met15D0 ura3D0 atg14::KanMX4 Euroscarf 
Dbck1 YJL095W MATa his3D1 leu2D0 met15D0 ura3D0 bck1::KanMX4 Euroscarf 
Dbem2 YER155C MATa his3D1 leu2D0 met15D0 ura3D0 bem2::KanMX4 Euroscarf 
Dbst1 YFL025C MATa his3D1 leu2D0 met15D0 ura3D0 bst1::KanMX4 Euroscarf 
Dbud32 YGR262C MATa his3D1 leu2D0 met15D0 ura3D0 bud32::KanMX4 Euroscarf 
Dcch1 YGR217W MATa his3D1 leu2D0 met15D0 ura3D0 cch1::KanMX4 Euroscarf 
Dccs1 YMR038C MATa his3D1 leu2D0 met15D0 ura3D0 ccs1::KanMX4 Euroscarf 
Dcdc10 YCR002C MATa his3D1 leu2D0 met15D0 ura3D0 cdc10::KanMX4 Euroscarf 
Dclc1 YGR167W MATa his3D1 leu2D0 met15D0 ura3D0 clc1::KanMX4 Euroscarf 
Dcnb1 YKL190W MATa his3D1 leu2D0 met15D0 ura3D0 cnb1::KanMX4 Euroscarf 
Dcsf1 YLR087C MATa his3D1 leu2D0 met15D0 ura3D0 csf1::KanMX4 Euroscarf 
Dcsg2 YBR036C MATa his3D1 leu2D0 met15D0 ura3D0 csg2::KanMX4 Euroscarf 
Dcup5 YEL027W MATa his3D1 leu2D0 met15D0 ura3D0 cup5::KanMX4 Euroscarf 
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Dcwh41 YGL027C MATa his3D1 leu2D0 met15D0 ura3D0 cwh41::KanMX4 Euroscarf 
Ddcw1 YKL046C MATa his3D1 leu2D0 met15D0 ura3D0 dcw1::KanMX4 Euroscarf 
Ddid4 YKL002W MATa his3D1 leu2D0 met15D0 ura3D0 did4::KanMX4 Euroscarf 
Ddie2 YGR227W MATa his3D1 leu2D0 met15D0 ura3D0 die2::KanMX4 Euroscarf 
Ddrs2 YAL026C MATa his3D1 leu2D0 met15D0 ura3D0 drs2::KanMX4 Euroscarf 
Decm7 YLR443W MATa his3D1 leu2D0 met15D0 ura3D0 ecm7::KanMX4 Euroscarf 
Derg24 YNL280C MATa his3D1 leu2D0 met15D0 ura3D0 erg24::KanMX4 Euroscarf 
Derg28 YER044C MATa his3D1 leu2D0 met15D0 ura3D0 erg28::KanMX4 Euroscarf 
Derg3 YLR056W MATa his3D1 leu2D0 met15D0 ura3D0 erg3::KanMX4 Euroscarf 
Derg4 YGL012W MATa his3D1 leu2D0 met15D0 ura3D0 erg4::KanMX4 Euroscarf 
Derg6 YML008C MATa his3D1 leu2D0 met15D0 ura3D0 erg6::KanMX4 Euroscarf 
Dflc1 YPL221W MATa his3D1 leu2D0 met15D0 ura3D0 flc1::KanMX4 Euroscarf 
Dfur4 YBR021W MATa his3D1 leu2D0 met15D0 ura3D0 fur4::KanMX4 Euroscarf 
Dgas1 YMR307W MATa his3D1 leu2D0 met15D0 ura3D0 gas1::KanMX4 Euroscarf 
Dgly1 YEL046C MATa his3D1 leu2D0 met15D0 ura3D0 gly1::KanMX4 Euroscarf 
Dgup1 YGL084C MATa his3D1 leu2D0 met15D0 ura3D0 gup1::KanMX4 Euroscarf 
Dgyp1 YOR070C MATa his3D1 leu2D0 met15D0 ura3D0 gyp1::KanMX4 Euroscarf 
Dhog1 YLR113W MATa his3D1 leu2D0 met15D0 ura3D0 hog1::KanMX4 Euroscarf 
Dhom2 YDR158W MATa his3D1 leu2D0 met15D0 ura3D0 hom2::KanMX4 Euroscarf 
Dhom3 YER052C MATa his3D1 leu2D0 met15D0 ura3D0 hom3::KanMX4 Euroscarf 
Dhsl1 YKL101W MATa his3D1 leu2D0 met15D0 ura3D0 hsl1::KanMX4 Euroscarf 
Dhur1 YGL168W MATa his3D1 leu2D0 met15D0 ura3D0 hur1::KanMX4 Euroscarf 
Dics3 YJL077C MATa his3D1 leu2D0 met15D0 ura3D0 ics3::KanMX4 Euroscarf 
Dilv1 YER086W MATa his3D1 leu2D0 met15D0 ura3D0 ilv1::KanMX4 Euroscarf 
Dkcs1 YDR017C MATa his3D1 leu2D0 met15D0 ura3D0 kcs1::KanMX4 Euroscarf 
Dkex1 YGL203C MATa his3D1 leu2D0 met15D0 ura3D0 kex1::KanMX4 Euroscarf 
Dkre1 YNL322C MATa his3D1 leu2D0 met15D0 ura3D0 kre1::KanMX4 Euroscarf 
Dkre11 YGR166W MATa his3D1 leu2D0 met15D0 ura3D0 kre11::KanMX4 Euroscarf 
Dkre6 YPR159W MATa his3D1 leu2D0 met15D0 ura3D0 kre6::KanMX4 Euroscarf 
Dmid1 YNL291C MATa his3D1 leu2D0 met15D0 ura3D0 mid1::KanMX4 Euroscarf 
Dmid2 YLR332W MATa his3D1 leu2D0 met15D0 ura3D0 mid2::KanMX4 Euroscarf 
Dmot2 YER068W MATa his3D1 leu2D0 met15D0 ura3D0 mot2::KanMX4 Euroscarf 
Dmpk1 YHR030C MATa his3D1 leu2D0 met15D0 ura3D0 mpk1::KanMX4 Euroscarf 
Dmsg5 YNL053W MATa his3D1 leu2D0 met15D0 ura3D0 msg5::KanMX4 Euroscarf 
Dmtl1 YGR023W MATa his3D1 leu2D0 met15D0 ura3D0 mtl1::KanMX4 Euroscarf 
Dmtq2 YDR140W MATa his3D1 leu2D0 met15D0 ura3D0 mtq2::KanMX4 Euroscarf 
Dnbp2 YDR162C MATa his3D1 leu2D0 met15D0 ura3D0 nbp2::KanMX4 Euroscarf 
Doch1 YGL038C MATa his3D1 leu2D0 met15D0 ura3D0 och1::KanMX4 Euroscarf 
Dost4 YDL232W MATa his3D1 leu2D0 met15D0 ura3D0 ost4::KanMX4 Euroscarf 
Dpbs2 YJL128C MATa his3D1 leu2D0 met15D0 ura3D0 pbs2::KanMX4 Euroscarf 
Dpep3 YLR148W MATa his3D1 leu2D0 met15D0 ura3D0 pep3::KanMX4 Euroscarf 
Dpep5 YMR231W MATa his3D1 leu2D0 met15D0 ura3D0 pep5::KanMX4 Euroscarf 
Dpep7 YDR323C MATa his3D1 leu2D0 met15D0 ura3D0 pep7::KanMX4 Euroscarf 
Dpep8 YJL053W MATa his3D1 leu2D0 met15D0 ura3D0 pep8::KanMX4 Euroscarf 
Dper1 YCR044C MATa his3D1 leu2D0 met15D0 ura3D0 per1::KanMX4 Euroscarf 
Dpkh1 YDR490C MATa his3D1 leu2D0 met15D0 ura3D0 pkh1::KanMX4 Euroscarf 
Dpkh2 YOL100W MATa his3D1 leu2D0 met15D0 ura3D0 pkh2::KanMX4 Euroscarf 
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Dptp1 YDL230W MATa his3D1 leu2D0 met15D0 ura3D0 ptp1::KanMX4 Euroscarf 

Dptp2 YOR208W MATa his3D1 leu2D0 met15D0 ura3D0 ptp2::KanMX4 Euroscarf 

Dptp3 YER075C MATa his3D1 leu2D0 met15D0 ura3D0 ptp3::KanMX4 Euroscarf 
Drbl2 YOR265W MATa his3D1 leu2D0 met15D0 ura3D0 rbl2::KanMX4 Euroscarf 
Drgd1 YBR260C MATa his3D1 leu2D0 met15D0 ura3D0 rgd1::KanMX4 Euroscarf 
Drhk1 YBL082C MATa his3D1 leu2D0 met15D0 ura3D0 rhk1::KanMX4 Euroscarf 
Drmd7 YER083C MATa his3D1 leu2D0 met15D0 ura3D0 rmd7::KanMX4 Euroscarf 
Drny1 YPL123C MATa his3D1 leu2D0 met15D0 ura3D0 rny1::KanMX4 Euroscarf 
Drom2 YLR371W MATa his3D1 leu2D0 met15D0 ura3D0 rom2::KanMX4 Euroscarf 
Drot2 YBR229C MATa his3D1 leu2D0 met15D0 ura3D0 rot2::KanMX4 Euroscarf 
Dsac1 YKL212W MATa his3D1 leu2D0 met15D0 ura3D0 sac1::KanMX4 Euroscarf 
Dscp160 YJL080C MATa his3D1 leu2D0 met15D0 ura3D0 scp160::KanMX4 Euroscarf 
Dsdp1 YIL113W MATa his3D1 leu2D0 met15D0 ura3D0 sdp1::KanMX4 Euroscarf 
Dshe4 YOR035C MATa his3D1 leu2D0 met15D0 ura3D0 she4::KanMX4 Euroscarf 
Dsho1 YER118C MATa his3D1 leu2D0 met15D0 ura3D0 sho1::KanMX4 Euroscarf 
Dsit4 YDL047W MATa his3D1 leu2D0 met15D0 ura3D0 sit4::KanMX4 Euroscarf 
Dskm1 YOL113W MATa his3D1 leu2D0 met15D0 ura3D0 skm1::KanMX4 Euroscarf 
Dsla2 YBL007C MATa his3D1 leu2D0 met15D0 ura3D0 sla2::KanMX4 Euroscarf 
Dsmi1 YGR229C MATa his3D1 leu2D0 met15D0 ura3D0 smi1::KanMX4 Euroscarf 
Dsnf7 YLR025W MATa his3D1 leu2D0 met15D0 ura3D0 snf7::KanMX4 Euroscarf 
Dsod1 YJR104C MATa his3D1 leu2D0 met15D0 ura3D0 sod1::KanMX4 Euroscarf 
Dspc72 YAL047C MATa his3D1 leu2D0 met15D0 ura3D0 spc72::KanMX4 Euroscarf 
Dspt3 YDR392W MATa his3D1 leu2D0 met15D0 ura3D0 spt3::KanMX4 Euroscarf 
Dsrv2 YNL138W MATa his3D1 leu2D0 met15D0 ura3D0 srv2::KanMX4 Euroscarf 
Dssd1 YDR293C MATa his3D1 leu2D0 met15D0 ura3D0 ssd1::KanMX4 Euroscarf 
Dssk1 YLR006C MATa his3D1 leu2D0 met15D0 ura3D0 ssk1::KanMX4 Euroscarf 
Dsur1 YPL057C MATa his3D1 leu2D0 met15D0 ura3D0 sur1::KanMX4 Euroscarf 
Dthr1 YHR025W MATa his3D1 leu2D0 met15D0 ura3D0 thr1::KanMX4 Euroscarf 
Dtlg2 YOL018C MATa his3D1 leu2D0 met15D0 ura3D0 tlg2::KanMX4 Euroscarf 
Dtrk1 YJL129C MATa his3D1 leu2D0 met15D0 ura3D0 trk1::KanMX4 Euroscarf 
Dtyr1 YBR166C MATa his3D1 leu2D0 met15D0 ura3D0 tyr1::KanMX4 Euroscarf 
Dvam10 YOR068C MATa his3D1 leu2D0 met15D0 ura3D0 vam10::KanMX4 Euroscarf 
Dvma1 YDL185W MATa his3D1 leu2D0 met15D0 ura3D0 vma1::KanMX4 Euroscarf 
Dvma11 YPL234C MATa his3D1 leu2D0 met15D0 ura3D0 vma11::KanMX4 Euroscarf 
Dvma13 YPR036W MATa his3D1 leu2D0 met15D0 ura3D0 vma13::KanMX4 Euroscarf 
Dvma16 YHR026W MATa his3D1 leu2D0 met15D0 ura3D0 vma16::KanMX4 Euroscarf 
Dvma2 YBR127C MATa his3D1 leu2D0 met15D0 ura3D0 vma2::KanMX4 Euroscarf 
Dvma21 YGR105W MATa his3D1 leu2D0 met15D0 ura3D0 vma21::KanMX4 Euroscarf 
Dvma4 YOR332W MATa his3D1 leu2D0 met15D0 ura3D0 vma4::KanMX4 Euroscarf 
Dvma5 YKL080W MATa his3D1 leu2D0 met15D0 ura3D0 vma5::KanMX4 Euroscarf 
Dvma7 YGR020C MATa his3D1 leu2D0 met15D0 ura3D0 vma7::KanMX4 Euroscarf 
Dvma8 YEL051W MATa his3D1 leu2D0 met15D0 ura3D0 vma8::KanMX4 Euroscarf 
Dvph2 YKL119C MATa his3D1 leu2D0 met15D0 ura3D0 vph2::KanMX4 Euroscarf 
Dvps1 YKR001C MATa his3D1 leu2D0 met15D0 ura3D0 vps1::KanMX4 Euroscarf 
Dvps15 YBR097W MATa his3D1 leu2D0 met15D0 ura3D0 vps15::KanMX4 Euroscarf 
Dvps17 YOR132W MATa his3D1 leu2D0 met15D0 ura3D0 vps17::KanMX4 Euroscarf 
Dvps20 YMR077C MATa his3D1 leu2D0 met15D0 ura3D0 vps20::KanMX4 Euroscarf 
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Dvps24 YKL041W MATa his3D1 leu2D0 met15D0 ura3D0 vps24::KanMX4 Euroscarf 
Dvps25 YJR102C MATa his3D1 leu2D0 met15D0 ura3D0 vps25::KanMX4 Euroscarf 
Dvps29 YHR012W MATa his3D1 leu2D0 met15D0 ura3D0 vps29::KanMX4 Euroscarf 
Dvps3 YDR495C MATa his3D1 leu2D0 met15D0 ura3D0 vps3::KanMX4 Euroscarf 
Dvps45 YGL095C MATa his3D1 leu2D0 met15D0 ura3D0 vps45::KanMX4 Euroscarf 
Dvps5 YOR069W MATa his3D1 leu2D0 met15D0 ura3D0 vps5::KanMX4 Euroscarf 
Dvps51 YKR020W MATa his3D1 leu2D0 met15D0 ura3D0 vps51::KanMX4 Euroscarf 
Dvps9 YML097C MATa his3D1 leu2D0 met15D0 ura3D0 vps9::KanMX4 Euroscarf 
Dwsc1 YOR008C MATa his3D1 leu2D0 met15D0 ura3D0 wsc1::KanMX4 Euroscarf 
Dypk1 YKL126W MATa his3D1 leu2D0 met15D0 ura3D0 ypk1::KanMX4 Euroscarf 
Dypk2 YMR104C MATa his3D1 leu2D0 met15D0 ura3D0 ypk2::KanMX4 Euroscarf 

YMF1 - 1783 isogenic, msg5::6myc::leu2  (Marín et al., 
2009)  

YPH499 - MATa ade2-10 trp1-63 leu2-1 ura3-52 his3-Δ200 lys2-801 (Sikorski and 
Hieter, 1989)  

ypk1-ts/ 
Dypk2 

- YPH499 ypk1-ts::HIS3 ypk2::TRP1 (Casamayor et 
al., 1999) 

OHNY - MATa ura3 his3 trp1 leu2 ade2 (Ozaki et al., 
1996) 

HNY21 
(rho1-ts) - OHNY rho1–104 (Ozaki et al., 

1996) 

SEY6221 - MATa leu2-3,112 ura3-52 his3Δ200 trp1Δ901 suc2Δ9 ade2-
101 

(Paravicini et 
al., 1992) 

GPY1115S 
(pkc1-ts) - SEY6221 pkc1Δ1::HIS3 (Paravicini et 

al., 1992) 

 

3.1.3.  Fusarium oxysporum strains 

The F. oxysporum strains used in this study are described in detail in [Table 3]. All 

are derived from the F. oxysporum f. sp. lycopersici wild type strain 4287. 

Table 3 – F. oxysporum strains used in this study  

STRAIN GENOTYPE REFERENCE 
4287 (FGS 9935) Wild type, Race 2 FGS (1) 
pHluorin expressing strain pHluorin; HYG (Serrano, 2014) 
∆pacC pacC::HYG This study 
∆palH palH::HYG This study 
∆pacC expressing pHluorin pacC::NEO; pHluorin; HYG This study 
∆palH expressing pHluorin palH::NEO; pHluorin; HYG This study 
pacCc Truncated version of PacC; HYG (Caracuel et al., 2003) 
∆ptk2 ptk2::HYG This study 
∆msg5 msg5::HYG This study 
∆bck1 bck1::HYG (Turrà et al., 2015) 
∆rho1 rho1::HYG (Martinez-Rocha et al., 

2008) 
(1) Fusarium Genetics Stock Center  
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3.1.4.  Plant cultivars 

The tomato cultivar used in this study is described in [Table 4]. 

Table 4 – Tomato plant used in this study  

SPECIES CULTIVAR SPECIFICATIONS SOURCE 
Tomato 
(Lycopersicon 
esculentum) 

Monika (seeds) 
 

Susceptible to F. oxysporum f. sp. 
lycopersici Race 2 

Syngenta, Almeria, 
Spain 

 

3.2  PLASMIDS 

The plasmids used in this study are listed in [Table 5]. They include plasmids used 

for amplification of resistance cassettes to transform F. oxysporum and yeast 

vectors used for S. cerevisiae transformation. 

Table 5 – Plasmids used in this study  
PLASMID ORIGIN/FEATURES REFERENCE 

pGEMTâ-T Derived from plasmid pGEMâ-5Zf(+), linearized with EcoRV 
and with a T added in both 3’ ends Promega 

pAN7-1  
 

Derived from pUC18; A. nidulans GpdA promoter; 
phosphotransferase hygromycin B (hph) gene from 
Streptomyces spp.; A. nidulans TrpC terminator 

(Punt et al., 
1987) 

PGEMT -
hphBB 

Derived from pAN7-1 plasmid with shorter version of GpdA 
and TrpC Our group 

P_pHluorin Derived from pGEMT; A. nidulans gpdA promoter; pHluorin 
gene; S. cerevisiae ADH5 terminator (Serrano, 2014) 

pYEplac181 
pYEplac181 plasmid (2μ, ampR, LEU2+) containing the 
pHluorin gene flanked by the TEF1 promoter and CYC1 
terminator from S. cerevisiae 

Rajini Rao, 
Johns Hopkins 
University 
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3.3.  MEDIA AND BUFFER SOLUTIONS  

All media were prepared with RO deionized water and sterilized by autoclaving at 

1.2 atm and 120°C for 20 minutes. Buffer solutions were prepared with RO 

ultrapure water and sterilized by filtration (0.22 μm pore size, Millipore). RO 

deionized and RO ultrapure water were obtained through the Direct-Q® 8 UV 

remote water purification system (Merck Millipore). [Table 6] lists the media and 

buffer solutions used for cell growth. For each experimental protocol, the buffer 

solutions prepared will be described in the respective section.  

Table 6 – Media used for bacteria and fungi growth  
Media for E. Coli (w/v) 
LB 1% tryptone, 0.5% yeast extract, 1% sodium chloride 
LA 1% tryptone, 0.5% yeast extract, 1% sodium chloride and 2% agar 
Media for S. cerevisiae (w/v) 
YPD 2% tryptone, 2% glucose and 1% yeast extract 
YPDA 2% tryptone, 2% glucose, 1% yeast extract and 2% agar 

SC  0.17% yeast nitrogen base without amino acids and ammonium sulfate, 0.5% 
ammonium sulfate, 2% glucose, 0.2% Drop-out mix, plus 0.01% of amino acids 

Media for F. oxysporum (w/v) 

PDB Boil 200 g of peeled potatoes in 0.6 L of deionized water for 60 minutes. Stir 
and add 20 g of glucose and deionized water up to 1 L 

PDA 3.9% potato dextrose agar  
YPD 1% glucose and 1% yeast extract. Adjust the pH to 8.0 with NaOH 1N 
YPDA 1% tryptone, 2% glucose, 0.3% yeast extract and 1.5% agar 

Puhalla’s MM  0.05% MgSO4.7H2O, 0.05% KCl, 0.1% KH2PO4, 0.22% NaNO3, 3% sucrose 
and 2% oxoid agar. 

Regeneration 
MM 

0.05% MgSO4.7H2O, 0.05% KCl, 0.1% KH2PO4, 0.2% NaNO3, 2% glucose, 
20% sucrose and oxoid agar (1.5% for Petri dishes and 0.5% for top agar) 

Buffer solutions  
HEPES 1M Prepared with ultrapure water and adjust the pH to 7.4 with NaOH 10 N 

KSU 50 mM K2HPO4, 50 mM sodium succinate and 25 mM Urea. Adjust the pH 
accordingly to the experiment 

LB - Luria-Bertoni; LA - Luria-Bertoni with agar; YPD -Yeast Extract Peptone Dextrose; YPDA - 
Yeast Extract Peptone Dextrose Agar; SC - Synthetic Complete medium; PDB - Potato Dextrose 
Broth; PDA - Potato Dextrose Agar (BD Difco™); MM - Minimal Medium. 
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3.4.  GROWTH CONDITIONS 

3.4.1.   Bacteria 

The E. coli DH5a strain was grown overnight (O.N.) at 37 °C in LA medium. For 

bacteria transformants, LA medium was supplemented with ampicillin (Sigma 

Aldrich) at 100 μg/ml. Grown colonies on plate were picked and grown in LB 

medium O.N. at 37 °C with orbital shaking at 250 rpm. LB medium was 

supplemented with the same concentration of ampicillin as LA medium, when 

bacteria transformants were grown. Bacterial cells were preserved at -80 °C in 30% 

glycerol (v/v).  

3.4.2.   Yeast  

Yeast cells were cultured in YPDA medium at 30°C. Yeast mutant strains were 

cultured in YPDA supplemented with geneticin (G418; Sigma Aldrich) at 200 

µg/ml. Yeast transformants were cultured in solid SC medium lacking the 

auxotrophic marker, with or without (for wild type transformants) geneticin at 200 

µg/ml. For experimental assays, cells were grown O.N. at 30°C or 25°C, for 

temperature sensitive strains, with orbital shaking at 200 rpm in YPD medium. 

Gene repression in the temperature strains was induced by transferring the cells to 

34°C, 200 rpm for one hour before start the treatment. In all situations, cells were 

grown O.N. until reach an OD640nm of 0.9 and after that, they were collected at room 

temperature (RT) by centrifugation at 5000 rpm for 5 minutes and transferred to a 

new flask with KSU buffer at pH 6.5. Cells were then incubated for 1 hour at 30°C, 

or 34°C for temperature sensitive strains, with orbital shaking at 200 rpm. After this 

time of incubation, cells were treated with the respective chemical compound.  

Yeast cells were stored at -80°C in 20% glycerol (v/v).  
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3.4.3.   F. oxysporum  

F. oxysporum strains were cultured in PDB medium at 28°C with orbital shaking at 

170 rpm. When needed the following antibiotics were added to the culture medium: 

hygromicin B (InvivoGen) at 20 μg/ml or geneticin at 10 μg/ml. After 3 to 5 days of 

culture in liquid medium, microconidia were collected by filtration through a nylon 

filter (Monodur; mesh size 10 μm) and then by centrifugation at 10000 rpm for 10 

minutes. Depending of the experimental condition and design, microconidia were 

either germinated in rich medium or plated on solid media for phenotypical assays. 

For transformants selection on solid medium, antibiotics were added at the 

following concentrations: 55 μg/ml of hygromicin B or 27.5 μg/ml of geneticin. 

For long-term storage of the different strains, microconidia collected from 3 to 5 

days-old cultures were resuspended in 33% glycerol (v/v) and stored at -80°C. 

These suspensions were used for later inoculation to obtain fresh microconidia.  

3.4.4.   Tomato plant culture 

Tomato seeds were surface sterilized in 20% bleach (v/v). After 30 minutes, seeds 

were washed twice for 10 minutes with sterilized ultrapure water. Seeds were 

planted on wet vermiculite and incubated in plant growth chambers with fluorescent 

lights (36 W, photoperiod of 14 hours light and 10 hours dark) at 28°C. Infection 

assays with F. oxysporum were performed with 14 days-old tomato plants.  
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3.5  MOLECULAR METHODOLOGY 

Macromolecules were isolated from bacteria, yeast or F. oxysporum cultures for 

subsequent downstream processes, analytical or preparative purposes. The protocols 

employed in this study will be described in detail in the sections below.  

3.5.1.   DNA extraction and quantification 

3.5.1.1.  Plasmid DNA extraction from E. coli  

For plasmid DNA extraction from bacteria the CTAB method was used as 

previously described (Murray and Thompson, 1980). Briefly, a single colony of 

bacteria grown O.N. on a LA plate at 37°C was peaked to liquid LB medium 

(containing antibiotic if required) and grown O.N. at 37°C with orbital shaking of 

250 rpm. The day after, cells were collected by centrifugation 2 minutes at 13400 

rpm and resuspended in 200 μl of STET(2)  solution, supplemented with 4 μl of 

lysozyme (50 mg/ml; Sigma Aldrich) and 4 μl of RNase (10 mg/ml; Roche Life 

Science), and incubated 10 minutes at RT. Then, cells were boiled for 45 seconds 

and centrifuged 10 minutes at 13400 rpm. The obtained pellet was removed using a 

sterile wood stick and 10 μl of 5% CTAB extraction buffer(3) was added to 

precipitate the plasmid DNA. After 10 minutes of incubation at RT, samples were 

centrifuged 10 minutes at 13400 rpm. Each pellet was resuspended in 350 μl of 1.2 

M NaCl and 750 μl of 100% ice-cold ethanol and centrifuged again for 10 minutes 

at 13400 rpm. Precipitated plasmid DNA was then washed for two times more with 

1 ml of ethanol 70%, dried and resuspended in sterile ultrapure water.  
__________________________________________________

(2) STET:  8% sucrose (w/v), 0.1% Triton X-100 (v/v), 50 mM EDTA pH 8.0, 50 mM Tris-
HCl pH 8.0.  
(3) CTAB extraction buffer: 12.1 g/l Trizma base, 7.44 g/l EDTA, 81.8 g/l NaCl and 20 g/l 
Cetyltrimethylammonium bromide. Heat to 60ºC to dissolve and adjust to pH 8.0 with 
NaOH 10 N. Store at 37ºC to avoid precipitation.  
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3.5.1.2.  Nucleic acid extraction from F. oxysporum 

Genomic DNA was extracted from F. oxysporum mycelium using the CTAB 

method (Torres et al., 1993). Mycelium from 5-25 ml of 3 to 5 days-old cultures 

were transferred to a 2 ml Eppendorf centrifuge tube and frozen at −80°C. 

Completely frozen samples were then lyophilized using a freeze-drying system. 

Subsequently, a 5 mm diameter glass bead (Sigma Aldrich) was added to each 

sample, and samples were submitted in a BeadBeater to 3 cycles of 20 seconds of 

beat and pause, respectively. After that, DNA was extracted from samples following 

the CTAB method. To each sample, 1 ml of CTAB extraction buffer was added and 

vigorously vortexed. Next, 4 μl of β-mercaptoethanol (Merck) and 500 μl of a 

chloroform:octanol 24:1 (v/v) solution were added and the mix was incubated 

firstly at 65°C for 45 minutes and then, at RT, for 15 minutes more. The Eppendorf 

tube was centrifuged for 10 minutes at 7000 rpm at RT and 500 μl of the upper part 

of the supernatant was precipitated with 1 ml of 100 % ice-cold ethanol and 

incubated at -20°C for at least 30 minutes. Precipitated DNA was centrifuged for 10 

minutes at 13400 rpm and washed two times with 1 ml of ethanol 70%. Finally, the 

pellet was dried and resuspended in 50 μl of sterile ultrapure water with 5 μl de 

RNase (10 mg/ml; Roche Life Science) and incubated at 37°C for 30 minutes.  

3.5.1.3  Nucleic acid quantification 

The amount and quality of DNA extracted was monitored either by electrophoresis 

in a 0.7 % agarose gel (w/v) or in a Nanodrop® ND-1000 spectrophotometer at 260 

nm and 280 nm wavelength. 

3.5.2.   DNA amplification reactions 

After extraction and quantification, plasmid and genomic DNA were used to 

amplify fragments of interest. Standard and Fusion PCR reactions were employed 

using synthetic oligonucleotides that were designed according to the experimental 

purpose.    
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3.5.2.1.  Standard PCR 

PCR amplification reactions were performed in a thermocycler using the 

thermostable DNA polymerase of the Expand High Fidelity PCR System (Roche 

Life Sciences). Each PCR reaction contained 300 nM of each primers, 2.5 mM 

MgCl2, 0.8 mM of dNTPs mix and 0.05 U/μl of polymerase. Genomic DNA was 

added at 5-10 ng/μl and plasmid DNA at 1-5 ng/μl final concentration. PCR cycling 

conditions were defined by an initial step of denaturation (5 minutes, 94°C) 

followed by 35 cycles of 35 seconds at 94°C, 35 seconds at the calculated primer 

annealing temperature and 1 minute/1.5 Kb was stablished for DNA amplification 

at 72°C (or 68°C for templates larger than 3 kb), and a final extension step at 72°C 

(or 68°C) for 10 minutes. For knockout mutant confirmation, the thermostable 

BioTaq™ DNA Polymerase (Bioline) was used. PCR cycling conditions were 

defined by an initial step of denaturation (5 minutes, 94°C) followed by 35 cycles of 

35 seconds at 94°C, 35 seconds at the calculated primer annealing temperature and 

1 minutes/2 Kb was stablished for DNA amplification at 72°C, and a final extension 

step at 72°C for 10 minutes.   

3.5.2.2.  Fusion PCR 

Fusion PCR or overlap extension is a method used to fuse two or more PCR 

products (Yang et al., 2004) and is schematically represented in [Figure 6]. 

Complementary oligonucleotides and the polymerase chain reaction are used to 

generate two DNA fragments with overlapping ends. In this PCR reaction (PCR I), 

an approximately 2 Kb fragment upstream (promoter) and downstream (terminator) 

of the Open Reading Frame (ORF) of the target gene were amplified with 

oligonucleotides containing a tail homologous to the selectable marker cassette. The 

amplified fragments are then combined in a 'fusion' reaction without 

oligonucleotides in which the overlapping ends anneal. In this reaction, the 3' 

overlap of each strand serves as a primer for the 3' extension of the complementary 

strand and the promoter and terminator regions are fused with the selectable marker 

cassette (PCR II). The resulting fusion products are used as template for further 
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amplification by PCR (PCR III) using the primers of interest. In this work, the main 

purpose of fusion PCR was the generation of linear DNA consisting of a selectable 

marker gene conferring hygromycin/neomycin resistance, flanked by 1.5 kb 

stretches of DNA that target a gene of interest, for application of the “split-marker” 

deletion strategy for knockout mutant generation [Figure 6].  

 

Figure 6 - Schematic representation of the split-marker deletion strategy for gene 
knockout in F. oxysporum. 
Amplification of the upstream (promotor; P1-P2) and downstream (terminator; P3-P4) regions 
of the target gene with primers that contain overlapping ends to the antibiotic resistance cassette. 
The obtained PCR products are used as templates for the fusion PCR reactions between each 
flank and overlapping parts of the resistance cassette. Pairs of primers P7-P8 and P9-P10 were 
used to amplify the fragments which were subsequently used to transform F. oxysporum 
protoplasts for gene ORF replacement by the resistance cassette through homologous 
recombination. 

 

In all cases, we found that fusion of two PCR products was best achieved by 

precipitation of the extension PCR products following the protocol described in 

Section 3.5.2.4, and then using equimolar quantities of the purified products as 

templates for subsequent PCR reactions.  
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3.5.2.2.1.   Generation of the neomycin resistance cassette for targeted gene 
knockout in F. oxysporum 

The neomycin resistance cassette was generated by fusion PCR. The resistance gene 

amplified from plasmid pAc5-STABLE2-Neo was placed under control of the A. 

nidulans gpdA promoter and trpC terminator, amplified from the PGEMT-hphBB 

and pAN7-1 plasmids, respectively, as shown in [Figure 7].    

 

Figure 7 - Schematic representation of the generated Neomycin cassette. 
The gpdA promotor (1200 bp) and the TrpC terminator (760 bp) were amplified with the M13F-
Gpda9 and TrpC1-M13R primers, respectively. The Neomycin resistance gene (804 bp) was 
amplified with the primers NeoF and NeoR containing ends overlapping with the promotor and 
terminator. The three fragments were fused by Fusion PCR reactions using the Gpda15B and 
TrpC8B primers.  

 

3.5.2.3.  Synthetic oligonucleotides  

The oligonucleotides used in this study are listed in [Table 7] and were designed 

with the Primer Analysis Software Oligo version 7.0 (Molecular Biology Insights, 

Inc. – Colorado, USA). Internal stability, duplex and hairpin formation and different 

physicochemical parameters, such as temperature of melting (Tm; calculated 

through the [2(A+T)°+4(G+C)°] method) were determined in each case. 

Oligonucleotides were synthesized by Isogen Life Science, Netherlands. 
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Table 7 - List of primers used in this study. Lowercase nucleotides do not belong to the original 
sequence and were introduced to generate overlapping ends for fusion pcr reactions 

Gene/ 
Vector Name [Tm]_Sequence 5’-3’ 

hyg 
HygG 
HygY 

[62]_CGTTGCAAGACCTGCCTGAA 
[62]_GGATGCCTCCGCTCGAAGTA 

hyg/neo 
cassettes 

gpdA15B 
gpdA16B 
gpdA9B 
TrpC1 
TrpC8B 
TrpC4B 

[62]_GGATCCCGAGACCTAATACAGCCCCT  
[62]_AGGGGCTGTATTAGGTCTCG 
[62]_GTGATGTCTGCTCAAGCGG  
[64]_AGTAGATGCCGACCGCGGG 
[62]_GGATCCAAACAAGTGTACCTGTGCATTC  
[62]_CCTGGGTTCGCAAAGATAATT 

msg5 

Msg5_P_Fwd 
Msg5_P_Nested 
Msg5_P_Rv 
Msg5_T_Fwd 
Msg5_T_Nested 
Msg5_T_Rv 

[62]_CACGAGGTCTATATTTAGGATC 
[62]_TCAATAACCTTTGCCGAAACTG 
[62]_gaatgcacaggtacacttgtttGGATCCCTTGGCGATCTAGTGAGTCAA 
[62]_taggggctgtataggtctcgGGATCCCCAAGGGAAGAAGTACGACAA 
[62]_TGGAAAGAAGAAGGGCAGCAA 
[62]_GCGGGAATCTATGCTTCATTG 

neo 

NeoF (gpdA9) 
NeoR (TrpC1) 
NeoG 
NeoY 

[62]_ccgcttgagcagacatcacaATGGGATCGGCCATTGAACAA 
[64]_cccgcggtcggcatctactTCAGAAGAACTCGTCAAGAAGG 
[62]_TGCCCTGAATGAACTGCAAGA 
[62]_CCAAGTTCTTCAGCAATATCAC  

pacC 

pacC-1F 
pacC-1N 
pacC-1R 
pacC-2F 
pacC-2N 
pacC-2R 

[62]_CTCGGCGTTCTTATTTTCCTC 
[62]_GCAGTAAACGGCAGTGAAAAG 
[62]_tttacccagaatgcacaggtacacttgtttGACGGGAATAGAAGAGAATGC 
[62]_tggtcgttgtaggggctgtattaggtctcgAGCTGCTGGTTTGGCTGTAC 
[62]_AGGGAACTTACGAGAAACTGG 
[62]_TAGGGGTAGATGGATTTGGTG 

palH 

palH-1F 
palH-1N 
palH-1R 
palH-2F 
palH-2N 
palH-2R 

[64]_AGTGCGGATGGCTGAGGTTC 
[64]_GCAACCGATGAACCGATGAAC 
[64]_tttacccagaatgcacaggtacacttgtttGAGGCAACACGCAACAGTATG 
[62]_tggtcgttgtaggggctgtattaggtctcgACTTAGCGAGGCGTTGTTTTC 
[62]_TGGGAAATATGGGGGACTTAC 
[62]_CTGATCGTTTGCCGTGTTTAG 

pGEMT M13F 
M13R 

[62]_CGCCAGGGTTTTCCCAGTCACGAC  
[62]_AGCGGATAACAATTTCACACAGGA  

pHluorin 
pHl Fwd ATG 
pHl TAA 

[62]_ATGAGTAAAGGAGAAGAACTTTTC 
[62]_tttacccagatgcacaggtacacttgtttTTATTTGTATAGTTCATCCATGCC 

ptk2 

Ptk2_1F 
Ptk2_1N 
Ptk2_1R 
Ptk2_2F 
Ptk2_2N 
Ptk2_2R 

[62]_AGTATCTCGGGCTGTCCATC 
[62]_AGTTTTTGGCGTTGTGTATCTG 
[62]_tttacccagaatgcacaggtacacttgtttAAGTCGGGTGCTGAGAAATAG 
[62]_tggtcgttgtaggggctgtattaggtctcgGATTGTGCGCCTATAACTTTTG  
[62]_CACGCCCTTCTCTCATTCAC  
[62]_AATCAGCCCTCCTACCTCTC 

snf7 

Snf7_P_Fwd 
Snf7_P_Nested 
Snf7_P_Rv 
Snf7_T_Fwd 

[62]_AACTTCCATTTCCACCTCAGC 
[62]_ACAAGGAATTCGACACTGGAC 
[62]_gaatgcacaggtacacttgtttGGATCCCTGATCGGTGAAGATTGGGG 
[62]_taggggctgtattaggtctcgGGATCCGCATTTAGTTGGTAGGGACTG 
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Snf7_T_Nested 
Snf7_T_Rv 

[62]_ACAGAGGATACGACAGAGGAA 
[62]_GATAGTGAGATAAGTAGGATGG 

vma7 

Vma7_1F 
Vma7_1N 
Vma7_1R 
Vma7-2F 
Vma7-2N 
Vma7_2R 

[64]_TAAAGGGGATTCAGGGTGTTCT 
[64]_GATGTCCCAGTTGATGTGTAG 
[64]_tttacccagaatgcacaggtacacttgtttGTCCCTCTTGTTGTTGTTGATG 
[64]_tggtcgttgtaggggctgtattaggtctcgTGGAGCGAGCATGGTATAGAG 
[64]_CGAAGGACAATAGAGAGTAGAG 
[64]_CTATCGGCAAAGGTCAGCATG 

 
3.5.2.4.  Precipitation of DNA fragments and Southern blot probes 

To purify and concentrate PCR products, these were routinely precipitated with 

ammonium acetate. Briefly, 1/10 volume of 3 M sodium acetate was added and 

carefully mixed. Two volumes of 100% cold-ethanol were added and samples were 

incubated at -20ºC for one hour. Precipitated DNA was then centrifuged at 13400 

rpm for 30 minutes at RT. Pelleted DNA was washed with ethanol 70%, dried and 

finally resuspended with sterile ultrapure water. 

DNA probes for Southern blot were precipitated with lithium chloride (LiCl). To 25 

μl PCR product, 1/10 part of LiCl 8 M was added and carefully mixed.  DNA was 

precipitated by adding 100% ice cold-ethanol (75 μl) and incubated 30 minutes at -

20ºC. Precipitated DNA was then centrifuged at 13400 rpm for 30 minutes at 4ºC. 

Pelleted DNA was washed with ethanol 70%, dried and finally resuspended in 11 μl 

of sterile ultrapure water. 

 

3.6   GENETIC TRANSFORMATION 

3.6.1.   Generation of E. coli transformants 

3.6.1.1.  Generation of competent cells 

For preparation of E. coli DH5a competent cells, bacterial cells were streaked on 

LA plates and grown O.N. at 37°C. A single colony was then inoculated into 5 ml 

of PSI-b(4) medium and grown O.N. at 37°C with orbital shaking of 250 rpm. 

Grown culture was then used to inoculate 100 ml of fresh PSI-b (previously 
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warmed at 37°C). Cells were grown at 37°C with orbital shaking of 250 rpm, until 

reach an OD550 of 0.48. The culture was transferred to a centrifuge bottle, placed on 

ice for 5 minutes and centrifuged at 6000 rpm for 10 minutes at 4ºC. The 

supernatant was poured off and the pellet resuspended in 40 ml of cold Tfb-1(5) 

buffer. The centrifuge tubes were incubated on ice for 5 minutes and then 

centrifuged at 6000 rpm for 10 minutes at 4ºC. The pellet was finally resuspended 

in 4 ml of cold Tfb-2(6) solution and aliquots of 100 μl of cells prepared and stored 

at -80°C.  
__________________________________________________ 
(4) PSI-b: 5 g/l yeast extract, 20 g/l bactopeptone and 5 g/l MgSO4.7H2O. Adjust the pH to 
7.6 with KOH.  
(5) Tfb-1: 30 mM potassium acetate pH 6.9, 50 mM MnCl2, 100 mM KCl, 10 mM CaCl2 and 
15% glycerol (v/v). 
 (6) Tfb-2: 10 mM MOPS pH 7.0, 75 mM CaCl2, 10 mM KCl and 15% glycerol (v/v). 

 

3.6.1.2.  Transformation of E. coli  

For transformation of E. coli, 50 μl competent cells were combined with 10-100 ng 

of plasmid DNA. The mix was incubated on ice for 30 minutes, placed in a water 

bath at 42°C for 2 minutes and incubated again on ice for 5 minutes. Then, cells 

were incubated 10 minutes at RT and for selection of recombinants, cells were 

spread onto LA plates containing the appropriate antibiotics and incubated at 37°C 

O.N. For cells transformed with the pGEMT vector, the LA medium was 

supplemented with 134 μM isopropyl β-D-1-thiogalactopyranoside (IPTG; Apollo) 

and 0.005% (w/v) 5-bromo-4-chloro-3-indolyl β-D-galactorpyranoside (X-Gal; 

Sigma Aldrich) allowing the selection of ampicillin resistant strains, through the 

blue/white colonies. 
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3.6.2.   Generation of S. cerevisiae transformants 

3.6.2.1.  Generation of yeast competent cells 

Yeast competent cells were prepared following the instructions of the 

Yeastmaker™ Yeast Transformation System 2 manual (Clontech, USA), with few 

modifications. Briefly, a YPDA plate was streaked with the chosen yeast strain 

from a frozen yeast stock. The plate was incubated at 30ºC until isolated colonies 

appear (approximately 3 days). A single colony was inoculated in 3 ml YPD and 

incubated at 30°C with shaking at 200 rpm for 8 hours. 5 μl of this pre-culture was 

then transferred into 50 ml YPD and incubated on a shaker at 30°C O.N. (14-16 

hours). When the OD600 reached 0.4-0.5, 50 ml culture were divided into two 50 ml 

sterile Falcon conical tubes and cells were centrifuged for 5 minutes at 3500 rpm at 

RT and each pellet resuspended with 8 ml of sterile water. Cells were centrifuged 

again and the pellet resuspended in 750 μl of fresh prepared 1.1xTE/LiAc(7) 

solution, split into two Eppendorf centrifuge tube, and centrifuged 15 seconds at 

13400 rpm. Supernatants were discarded and each pellet was resuspended in 350 μl 

of 1.1xTE/LiAc solution and incubated on ice until transformation.  
__________________________________________________ 
(7) 1.1xTE/LiAc solution: 1.1 ml of 10x TE buffer and 1.1 ml of 1M LiAc (10x), add sterile 
ultrapure water until 10 ml.  

 
3.6.2.2.  Transformation of yeast competent cells 

Yeast transformation was performed accordingly with the instructions of the 

Yeastmaker™ Yeast Transformation System 2 manual (Clontech, USA), with few 

modifications. Briefly, in a pre-chilled Eppendorf tube was combined: plasmid 

DNA (approximately 100 ng), denatured carrier DNA (50 μg) and ultrapure sterile 

water for a final volume of 10 μl. Fresh prepared competent yeast cells (50 μl) were 

added and gently mixed by pipetting. Then, 450 μl of PEG/LiAc(8) were added, 

gently mixed with the cells, and incubated at 30ºC for 30 minutes, vortexing the 

samples every 10 minutes. Cells were treated with 20 μl of DMSO and incubated 

for 15 minutes more at 42ºC, mixing cells by vortexing every 5 minutes. Cells were 
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then centrifuged for 15 seconds at 13400 rpm at RT, and the pellet resuspended in 

500 μl of ultrapure sterile water. 100 μl and 1/10 dilution of the transformation mix 

were spread on the appropriate selection media and incubated upside down at 30°C 

until colonies appear.  
__________________________________________________ 
(8) PEG/LiAc solution: mix 8 ml of 50 % PEG 3350 with 1 ml 10x TE buffer and 1ml of 1M 
LiAc (10x). 

 
3.6.3.   Generation of F. oxysporum transformants 

3.6.3.1.   Generation of F. oxysporum protoplasts 

Protoplasts were obtained following the protocol described by (Powell and Kistler, 

1990), with minor modifications. Briefly, 5x108 microconidia were inoculated in 

200 ml of PDB for 14 hours at 28ºC and orbital shaking at 170 rpm. After O.N. 

incubation, germlings were harvested by filtration with a Monodur and carefully 

washed with OM(9). Washed germlings were then transferred to a sterile 50 ml 

Falcon tube, containing 0.5% (w/v) of the enzyme Glucanex® (Novozymes) 

dissolved in OM. The mix of germlings and enzyme was incubated for, at least, 1 

hour at 30ºC with slow shaking (60 rpm). Protoplasts generation were monitored 

every 15 minutes, 45 minutes after start the incubation, in a microscope. When a 

high number of protoplasts was achieved, the reaction was stopped by adding ice-

cold STC(10) solution to the 50 ml Falcon tube. Protoplasts were filtered through a 

double layer of Monodur filters and washed with 200 ml of STC. The flow-through 

containing the protoplasts was collected in pre-chilled Corex (Pyrex) centrifuge 

tubes. Samples were centrifuged at 3000 rpm for 15 minutes at 4ºC. Pelleted 

protoplasts were then carefully resuspended in 1 ml STC and counted. The 

protoplast suspension was adjusted to a final concentration of 3x108 protoplasts/ml 

and stored as 100 μl aliquots in Eppendorf tubes to be used for transformation. For 

long-term storage at -80ºC, 10% of PEG(11) (v/v) and 1% DMSO (v/v) were added.  
__________________________________________________ 
(9) OM:  1.2 M MgSO4, 10 mM Na2HPO4, pH 5.8 adjusted with orthophosphoric acid. 
(10) STC: 0.8 M sorbitol, 50 mM CaCl2 and 50 mM Tris-HCl pH 7.5. 
(11) PEG: 60% polyethylene glycol 4000 (p/v) in 0.6 M MOPS.  
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3.6.3.2.  Transformation of F. oxysporum protoplasts 

Transformation was performed as described (Malardier et al., 1989), with minor 

modifications. Briefly, in a pre-chilled Eppendorf tube were combined: 

transforming DNA (approximately 2 μg), aurintricarboxylic acid (ATA; Sigma 

Aldrich) (10 μl of a 0.1 M stock) and TEC(12) for a final volume of 60 μl. A control 

without DNA was also performed. Eppendorf tubes were incubated on ice for 20 

minutes. In simultaneous, 100 μl protoplasts (3x107) were incubated on ice. Next, 

protoplasts and DNA were carefully mixed and incubated on ice for 20 minutes 

more. Finally, 160 μl of PEG were added, mixed carefully, and the mix was 

incubated for 15 minutes at RT. STC (1 ml) was added to the transformed cells and 

samples were centrifuged 5 minutes at 3000 rpm. Protoplasts were then resuspended 

in 200 μl of STC and 50 μl aliquots were mixed with 3 ml of top agar(13) and spread 

onto plates containing 25 ml of solid regeneration MM. Plates were incubated at 

28ºC for 14 hours before addition of 3 ml of top agar containing 200 μg of 

hygromycin B or 100 μg of geneticin, respectively. Plates were then incubated until 

transformant colonies became visible which was in most cases achieved in 4-5 days. 

Colonies were transferred to PDA plates supplemented with the respective selective 

marker, and transformants were submitted to two consecutive rounds of single 

monoconidial purification on selective PDA plates.  
__________________________________________________ 
(12) TEC: 10 mM Tris-HCl pH 7.5, 1 mM EDTA pH 8.0 and 40 mM CaCl2.  
(13) Top agar: 0.4% agar (Oxoid) (w/v) in regeneration MM. 

3.6.3.3.  Gene deletion mutant confirmation  

For the confirmation of correct insertion of the deletion alleles constructed into the 

genome, genomic DNA of each transformant was extracted and analyzed by PCR 

and Southern blot. PCR was performed using pairs of primers located inside the 

selective marker and upstream or downstream of the insert. Southern blot analysis 

with gene-specific probes was performed as described (Di Pietro and Roncero, 

1998) using the non-isotopic digoxigenin labelling kit for DNA labeling and 

detection (Roche Life Sciences).  
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3.7.   WESTERN BLOT  

3.7.1.   Protein extraction and quantification in S. cerevisiae  

For western blot analysis in S. cerevisiae, cells were grown O.N. in YPD medium at 

30ºC and 200 rpm. Exponentially grown yeast cells were then washed and 

transferred to KSU buffer at pH 6.5. Cells were incubated at 30°C or 34°C, 200 rpm 

for one hour, and samples collected immediately after this period (time zero) and at 

different times after treatment. For western blot analysis, aliquots of 25 ml yeast 

culture were collected from each time-point. Samples were quenched by adding 

TCA (2% (v/v) final) and immediately chilled on ice. Quenched samples were 

harvested by centrifugation (5 minutes, 5000 rpm at RT) and resuspended in 1 ml of 

10 mM sodium azide. Yeast cells were centrifuged again, the supernatant was 

removed and pellets were frozen at -80°C.  

For protein extraction, frozen yeast pellets were thawed on ice and combined with 

500 μl of ice-cold TCA buffer(14). One half of the total volume of 0.5 mm glass 

beads (Sigma Aldrich) was added to each tube and cell membranes were disrupted 

by vortex mixing of the samples for 3 cycles of 1.5 minutes vortex and 0.5 minutes 

break on ice. Extracts were then incubated for 10 minutes on ice and precipitated 

proteins harvested by centrifugation at 13400 rpm for 10 minutes at 4°C. The 

supernatant was removed and the pellet resuspended in 75 μl of resuspension 

buffer(15), and heated to 95°C for 5 minutes. The denatured protein extracts were 

then centrifuged at 13400 rpm, 10 minutes to remove cellular debris, and the 

supernatants were transferred to a clean Eppendorf tube. The protein concentration 

in each protein extract was determined with the Bio-Rad DC™ Protein assay (Bio-

Rad), using bovine serum albumin (BSA) as standard and following the instructions 

of the manufacturer.  
__________________________________________________ 
(14) TCA buffer: 10 mM Tris pH 8.0, 10% (v/v) TCA, 25 mM NH4OAc, 1 mM Na2EDTA. 
(15) Resuspension buffer: 100 mM Tris, 3% SDS and adjust the pH to 11.0 with 10 N NaOH. 
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3.7.2.   Protein extraction and determination in F. oxysporum 

For western blot analysis in F. oxysporum, 2.5x106 spores/ml were germinated in 

YPD medium at pH 8.0 supplemented with 20 mM of HEPES pH 7.4, for 15 hours. 

Germinated microconidia were then washed, transferred to KSU buffer at pH 6.0 

and incubated for one hour at 28ºC, 170 rpm. At the indicated time-points, samples 

of 10 ml (2.5x107 germlings) were quickly harvested by filtration through a 

Monodur in a vacuum filter system, and immediately chilled in liquid nitrogen. 

Frozen mycelia were thawed on ice and combined with 1 ml of fresh prepared lysis 

buffer(16). Simultaneously to alkaline lysis, cellular disruption was achieved by 

mechanical homogenization using a T10 Ultra-Turrax (IKA). TCA (75 μl) was 

added to each sample to precipitate proteins, and samples were thoroughly mixed 

with the micropipette. Extracts were incubated for 10 minutes on ice, and 

precipitated proteins harvested by centrifugation at 13400 rpm for 5 minutes at 4°C. 

The supernatant was removed and the pellet resuspended in 100 μl of Tris-base 1 M 

and 200 μl 2X loading buffer(17). Samples were heated at 95°C for 5 minutes and 10 

μl of each sample was loaded into a Coomassie gel for determination of protein 

amounts. 
__________________________________________________ 
(16) Lysis buffer: 200 μM NaOH 10 N and 0.2 % β-mercaptoethanol (v/v). 
(17) Loading buffer: 20 mM Tris-HCl pH 6.8, 8% glycerol (v/v), 1.6 % SDS (w/v), 4% β-
mercaptoethanol (v/v) and 0.1 % bromophenol blue (w/v).  
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3.7.3.   Western blot 

For western blot analysis in yeast, 40 μg protein was resuspended in protein loading 

buffer. For F. oxysporum extracts, the volume to load was determined by 

Coomassie gel. In both cases, proteins were separated in 10% Bis-Tris 

acrylamide(18) gels at 80 mV during the initial 40 minutes and 180 mV for one hour 

more, using Tris-HCl/glycine/SDS as running buffer(19). The proteins in the gel were 

transferred to a nitrocellulose membrane (Bio-Rad) using the Trans-Blot® Turbo™ 

Transfer System RTA Transfer Kit (Bio-Rad) according to the instructions of the 

manufacturer. Membranes were blocked for 45 minutes in TBS-T(20) supplemented 

with 5% skim milk (w/v). Then membranes were incubated O.N. at 4ºC with the 

respective primary antibody. Membranes were washed three times with TBS-T for 

10 minutes and incubated with the secondary antibody for 1 hour at RT. Membranes 

were washed three times more with TBS-T for 10 minutes. Proteins of interest were 

detected by chemioluminescence in a FujiFilm LAS 3000, after membrane staining 

with the ECL SelectTM Western blotting Detection reagent (GE Healthcare, 

AmershamTM). 

Primary and secondary antibodies were prepared in TBS-T conjugated with 1% 

(w/v) BSA or 5% (w/v) skim milk, respectively. The primary and secondary 

antibodies used in this work as well as the concentration of antibodies and 

manufacturers are shown in [Table 8].  
__________________________________________________ 
(18) 10% Bis-Tris acrylamide 1.0 mm gel (1 gel): Resolving gel is prepared by mixing: 4.25 
ml deionized water, 2 ml LGB (1.5 M Trizma base and 0.4% SDS, dissolved in water and 
adjusted the pH to 8.8), 1.75 ml acrylamide (40%; 37.5:1), 10 μl 
tetramethylethylenediamine (TEMED) and 40 μl ammonium persulfate (APS) 10%. 
Stacking gel contains 3.25 ml deionized water, 1.25 ml UGB (0.5 M Trizma base and 0.4% 
SDS, dissolved in water and adjusted the pH to 6.8), 0.5 ml acrylamide (40%; 37.5:1), 10 μl 
TEMED and 30 μl APS 10%.   
(19) Running buffer: 250 mM Trizma base, 1.92 M glycine and 1% (w/v) SDS. 
(20) TBS-T: 202 mM Trizma base, 137 mM NaCl and 0.1% (v/v) Tween 20. Adjust the pH to 
7.6.  
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Table 8 - List of antibodies and respective concentrations used in this study 

ANTIBODY ISOTYPE DILUTION MANUFACTURE (product code) 
Anti-phospho-p44/42 

(Thr202/Tyr204) Rabbit IgG 1:3000 Cell Signaling (#4370) 

Anti-phospho-p38 
(Thr180/Tyr182) Rabbit IgG 1:3000 Cell Signaling (#9211) 

Anti-Mpk1 (yN-19) Goat IgG 1:1500 Santa Cruz Biotechnology (SC-6802) 
Anti-Fus3 (yN-19) Goat IgG 1:1000 Santa Cruz Biotechnology (SC-6772) 
Anti-c-Myc (9E10) Mouse IgG 1:1000 Santa Cruz Biotechnology (SC-40) 

Anti-a-tubulin Mouse IgG 1:5000 Sigma Aldrich (T9026) 
Anti-G6PDH Rabbit IgG 1:50000 Cell Signaling (#A9521) 

Anti-rabbit, HRP-linked - 1:5000 Cell Signaling (#7074) 
Donkey anti-goat, HRP-

linked - 1:5000 Santa Cruz Biotechnology (SC-2020) 

Anti-mouse, HRP-linked - 1:5000 Cell Signaling (#7076) 

 

3.7.4.   Western blot band intensity analysis 

Protein hybridization band intensity was quantified with the Image J Software. 

Intensity of each band was normalized to the loading control, a-tubulin in F. 

oxysporum and G6PDH in yeast. For time-course analysis, band intensity was 

normalized to the time-point zero. For analysis of yeast Mpk1/Slt2 MAPK 

phosphorylation levels in acid-sensitive mutants, the ratio between time-point 20 

min and zero (T20/T0) after Diethylstilbestrol (DES; Code: D4628; Sigma Aldrich) 

treatment was calculated. Yeast mutants with a ratio lower than 1.25 were 

considered to maintain phosphorylation of Mpk1 constant after DES treatment. 

Mutants with band intensities higher than 40000 at T0, were classified as 

hyperphosphorylated.  
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3.8.   IN VIVO DETERMINATION OF INTRACELLULAR PH THROUGH 
THE GENETICALLY ENCODED PH SENSOR PHLUORIN 

Yeast cells or F. oxysporum germlings were identically prepared for the 

determination of intracellular pH (pHi). A calibration curve was obtained by 

incubating cells in different pH calibration buffers(21) ranging from 5.0 to 8.5, 

supplemented with freshly prepared nigericin (37 mg/ml; Sigma Aldrich) to 

permeabilize cells. 100 μl of permeabilized cells were added, in triplicate for each 

strain (expressing or not pHluorin), to wells in one half of a 96-well Microtiter™ 

Microplate. For pHi analysis, test cells resuspended in 100 μl of KSU buffer were 

added in triplicate, for each strain (expressing or not pHluorin), to the wells in the 

other one half of the 96-well Microtiter™ Microplate, according to the scheme in 

[Figure 8].  

 

Figure 8 - Scheme of the cells distribution in a 96-well microtiter microplate for 
intracelular pH determination. 
 

The plate was incubated for 30 minutes to allow nigericin to equilibrate the intra- 

and extracellular pH for the calibration curve and cells to adapt to the KSU buffer 

for analysis of pHi. Fluorescence intensities after excitation at 395 and 475 nm on a 

spectrofluorometer (Infinite M200 PRO, TECAN Life Sciences, Switzerland) were 

recorded every 5 minutes for 30 minutes. After treatment with different compounds, 

fluorescence in cells incubated in KSU buffer was recorded for at least one hour 
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more. Ratios (395/475 nm) were calculated by first subtracting the background 

(wild type strain not expressing pHluorin) from each fluorescence value obtained in 

the wild type strain expressing pHluorin, as described in equation 1: 

Ri (395/475) = (F395 i- F395 background)/(F475 i- F475 background) 

Ri is the emission ratio at a given pH, F395nm and F475nm are the fluorescence 

intensities for a given pH, and F405nm background and F475nm background are average 

background fluorescence intensities for a given pH.  

The ratio of fluorescence intensities was converted to pHi values by fitting the 

following equation to the calibration curve:  

pH = pKa – log10 [(Ri-Rmin)/(Rmax-Ri)] 

Rmax and Rmin are the limiting values for the ratio at the extreme acid (pH 5.0) and 

alkaline (pH 8.5) pH values, respectively, and pKa the apparent pKa value of the 

pHluorin fluorophore. All data are shown as the mean and standard deviation from 

at least three independent experiments, with three replicates each.  
__________________________________________________ 
(21) Calibration buffer: 50 mM HEPES, 50 mM MES, 50 mM KCl, 50 mM NaCl, 0.2M 
C2H7NO2, 10 mM NaN3. Adjust the pH from 5.0 to 8.5, with 0.5 pH units steps. 

 

3.8.1.   Determination and manipulation of intracellular pH in yeast cells 

To measure pHi in S. cerevisiae, the wild type yeast strain was transformed with the 

pYEplac181 plasmid (2μ, ampR, LEU2+) containing the pHluorin gene under 

control of a TEF1 promoter (a gift from Henrik G. Dohlman, University of North 

Carolina, USA). For pHi analysis, the untransformed wild type and the wild type 

transformed with the pYEplac181 plasmid strains were grown in YPD at 30°C, with 

orbital shaking at 200 rpm O.N. until reaching an OD640 of 0.9. Cells were aliquoted 

to different Eppendorf tubes, collected by centrifugation at 5000 rpm for 5 minutes 

at RT and resuspended in KSU buffer at pH 6.5 or in the calibration curve buffers. 
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100 μl of cells were aliquoted into a 96-well Microtiter™ Microplate. The plate was 

pre-incubated 30 minutes at 30ºC and thereafter fluorescence intensities were 

measured as described above. After an additional 30 minutes, cells were treated 

with different chemical compounds and fluorescence was monitored for at least one 

hour more. For all pH measurements, the reported pH values correspond to the 

mean and standard deviation of at least three independent experiments, with three 

technical replicates each. In yeast, the effect of external pH on pHi dynamics was 

tested by treating the cells with 21.7 mM hydrochloric acid (HCl) or 6x10-3 N 

sodium hydroxide (NaOH), which resulted in a change of pH of the buffer from 6.5 

to 3.0 or 9.0, respectively. Pharmacological inhibition of Pma1 was achieved by 

treating cells with 25 μM DES, obtained by adding 0.25 μl of a 10 mM stock 

solution to each well. The solvent methanol was used as negative control.  

3.8.2.   Determination and manipulation of intracellular pH in F. oxysporum 

For analysis of pHi in F. oxysporum, the untransformed wild type strain and the 

wild type strain expressing the pH sensor pHluorin (Serrano, 2014), were used for 

background subtraction and pHi determination, respectively. 2.5x106 spores/ml were 

germinated in YPD medium at pH 8.0, supplemented with 20 mM HEPES pH 7.4, 

for 15 hours. Cultures were incubated at 28ºC, with orbital shaking at 170 rpm. 

Germinated microconidia were washed and resuspended in KSU buffer at pH 6.0, 

resulting in a concentration of approximately five times. A 96-well Microtiter™ 

Microplate was prepared by dispensing 80 μl of each calibration buffer, in triplicate. 

For the wells predetermined for pHi determination, 80 μl of KSU pH 6.0 was added 

in triplicate. To each well, 20 μl of germlings of the untransformed wild type or the 

wild type expressing pHluorin were added in triplicate for each calibration buffer or 

experimental condition. Cell concentration in each well was adjusted to OD640 0.5-

0.7 in both strains before the start of the experiment. Cells in each well were 

resuspended by pipetting, and the plate was pre-incubated 30 minutes at 28ºC, 170 

rpm. After that time, the fluorescence intensities were measured every 5 minutes for 

30 minutes. After this time, cells were treated with different chemical compounds 
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and fluorescence was monitored for at least one hour more. For all pHi 

measurements, the reported pHi values correspond to the mean and standard 

deviation of at least three independent experiments with three technical replicates 

each. All chemicals tested were prepared as 10x stock solutions in sterile ultrapure 

water. Cells were treated with 0.25 μl of DES 200 mM (0.5 mM final concentration 

in the well) and a 372.8 mM stock of DES was prepared by dissolving it with 

methanol. The carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) 

(Code: S20357; Sigma Aldrich) was prepared at 1 mM concentration by dissolving 

it in DMSO and cells were treated with 6 μl (60 μM final concentration in the well). 

Cells were treated with methanol or DMSO as control. The external pH was 

changed by applying different concentrations of HCl or NaOH, as shown in [Table 

9].  

 
Table 9 – Concentrations of HCl and NaOH used to change the pH of KSU buffer in a 
microwell 

Final pHex (from 6.0) Stock solution Final concentration 
2.0 HCl 1.21 M 24.12 mM 
3.0 HCl 0.12 M 19.3 mM 
4.0 HCl 0.12 M 12.1 mM 
5.0 HCl 0.12 M 4.8 mM 
7.0 NaOH 0.1 N 5x10-3 N 
8.0 NaOH 0.1 N 9x10-3 N 
9.0 NaOH 0.1 N 10x10-3 N 

 
3.9.   EXTRACELLULAR PH MEASUREMENTS  

The fluctuations of the external pH were analyzed in the wild type strain of F. 

oxysporum. The pH was recorded every 30 seconds, using a conventional pH meter 

(HI2002-01; Hanna Instruments) coupled to a computer (kindly provided by Prof. 

José Ramos Ruiz, Department of Microbiology, University of Córdoba, Spain). 
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3.10.  MEMBRANE ISOLATION FOR MEASUREMENT OF PMA1 
ACTIVITY IN F. OXYSPORUM 

The activity of the PM H+-ATPase Pma1 was measured in the wild type strain of F. 

oxysporum, following a protocol based on phosphate generation by the ATPase 

hydrolytic activity, previously described in yeast cells (Kahm et al., 2012) with 

minor modifications. For these experiments, 2.5x106 spores/ml were germinated in 

YPD medium at pH 8.0, supplemented with 20 mM HEPES pH 7.4 for 15 hours. 

Germinated microconidia were washed and transferred to KSU buffer at pH 6.0 and 

incubated for one hour at 28ºC, 170 rpm. For each time-point of analysis, samples 

of 10 ml (2.5x107 germlings) were quickly harvested by filtration through a 

Monodur in a vacuum filter system, and immediately frozen in liquid nitrogen. For 

crude membrane purification, frozen mycelia were thawed on ice and combined 

with 250 μl KSU pH 6.0 and 250 μl of extraction buffer(22). One half volume of 0.5 

mm glass beads (Sigma Aldrich) was added and cells were broken by vortexing the 

Eppendorf tubes for three cycles of 2.5 minutes vortexing and 30 seconds break on 

ice. 900 μl of GTED20 buffer(23) were added to the crude extract, which was then 

centrifuged at 4ºC for 20 minutes at 2000 rpm. The supernatant of each sample was 

transferred to a new Eppendorf tube and centrifuged for an additional 20 minutes at 

13400 rpm, 4ºC. The resulting pellet was resuspended in 75 μl GTED20 buffer and 

the samples were stored at -80ºC until protein determination. The protein 

concentration in each extract was determined with the Bio-Rad DC™ Protein assay 

(Bio-Rad), using BSA as standard and following the instructions of the 

manufacturer. Samples were adjusted to obtain 2 mg protein/ml. Activity assays 

were conducted in triplicate in a 96-well Microtiter™ Microplate. 3 μl of sample (6 

μg total protein) was assayed in the presence of 1 μl methanol (solvent control) or 1 

μl DES 0.8 mM (final concentration 0.2 mM). The plate was pre-incubated for 30 

minutes at RT to allow DES inhibition of Pma1 activity. The reaction was then 

started by adding 65 μl of reaction buffer(24) to each well, followed by incubation for 

40 minutes at 30ºC. The reaction was stopped by adding 130 μl of detection 

solution(25), and the plate was incubated at RT for 20 minutes before reading 
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absorbance at 750 nm in a spectrofluorometer (Infinite M200 PRO, TECAN Life 

Sciences, Switzerland). A calibration curve with serial dilutions of Na2HPO4 was 

performed in parallel. To calculate the specific Pma1 activity, the residual activity 

value obtained in the presence of DES (presumably corresponding to additional 

non-plasma membrane H+-ATPases which are not inhibited by DES) was subtracted 

from the total activity (methanol). Pma1 activity was expressed in mmol/min/g 

protein assayed and was normalized to time-point zero in the time-course analysis. 
__________________________________________________  
(22) Extraction buffer: 0.3 M Tris-HCl pH 8.0, 180 mM KCl, 30 mM EDTA, 6 mM DTT (Sigma 
Aldrich) and Protease Inhibitor Cocktail (Roche Life Sciences). 
(23) GTED20: 20% (v/v) glycerol, 10 mM Tris-HCl pH 7.6, 1 mM EDTA and 1 mM DTT (Sigma 
Aldrich). 
(24) Reaction buffer: 50 mM MES-Tris pH 5.7, 5 mM MgSO4, 50 mM KNO3, 5 mM Na Azide, 
0.3 mM ammonium molybdate (Sigma Aldrich), 2 mM ATP (Sigma Aldrich). 
(25) Detection solution: 2% (v/v) sulphuric acid, 0.5% (w/v) ammonium molybdate (Sigma 
Aldrich), 0.5% (w/v) SDS, 0.1% (w/v) ascorbic acid. 

 

3.11.  VEGETATIVE GROWTH ASSAY 

For phenotypic analysis of colony growth, drops of 2 μl of water containing 1x105, 

1x104 or 1x103 microconidia were spotted onto YPDA plates. The medium was 

buffered to pH 4.0 with 30.7 mM citric acid and 38.6 mM dibasic sodium 

phosphate; to pH 6.0 with 17.9 mM citric acid and 64.2 mM dibasic sodium 

phosphate and to pH 8.0 with 6 mM monobasic dihydrogen phosphate and 94 mM 

dibasic monohydrogen phosphate. For analysis of different hyperosmotic or cell 

wall stress, YPDA plates were supplemented with 0.6 M NaCl or 40 μg/ml CFW 

(Sigma), respectively. YPDA plates with CFW were buffered to pH 6.5 with 1% 

(w/v) MES. Plates were incubated at 28°C for 2 days and then imaged. All 

experiments included three replicates.  

 

3.12.  CELLOPHANE PENETRATION 

The cellophane penetration assay was performed as previously described (Prados 

Rosales and Di Pietro, 2008). Cellophane sheets with the same size of a Petri dish 
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were cut, autoclaved in deionized water and placed on the center of PDA or 

Puhalla’s MM plates buffered to pH 5.0 or 7.0 with 2% (w/v) of MES, avoiding the 

presence of bubbles. Drops of 5 μl of water containing 5x104 microconidia were 

spotted onto the center of the plates, and plates were incubated at 28ºC for 2 or 3 

days, respectively, for PDA or Puhalla’s MM. Then, the cellophane sheet with the 

fungal colony was carefully removed and the plates incubated for more 24 hours at 

28ºC. Plates were imaged before and after removal of the cellophane. All 

experiments included three replicates and were performed twice.  

 

3.1.3.   TOMATO ROOT INFECTION 

Tomato root infection assays were performed in a growth chamber as described (Di 

Pietro and Roncero, 1998), using the susceptible cultivar Monika. Briefly, 2-week-

old tomato seedlings were inoculated with F. oxysporum strains by immersing the 

roots in a microconidial suspension containing 5x106 spores/ml, planted in 

vermiculite, and maintained in a growth chamber. Ten days after inoculation, the 

severity of disease symptoms and percentage survival were recorded daily for 30 

days as previously described (López-Berges et al., 2012). Ten plants were used for 

each treatment. Survival was estimated by the Kaplan-Meier method and compared 

among groups using the log-rank test. Results were analyzed with the software 

GraphPad Prism 6.0. 

 

3.14.  CELL STAINING WTH FLUORESCENT DYES  

For vacuolar pH determination in F. oxysporum, a similar protocol to the pHi 

determination was established using the vacuole-specific dye BCECF-AM (2’,7’-

Bis-(2-Carboxyethyl)-5-(and-6)-Carboxyfluorescein, Acetoxymethyl Esther; SC 

Biotech). Briefly, microconidia were germinated for 15 hours and stained with 5 

μM BCECF-AM (stock prepared at 1 mg/ml in DMSO) for 15 minutes in the dark 

with orbital shaking (170 rpm) at 28ºC. Unstained cells were also incubated and 
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used as control. Cells were then washed and resuspended in KSU buffer to remove 

the excess of dye, and incubated for one more hour at 28ºC. A calibration curve was 

obtained by incubating cells in different pH calibration buffers ranging from 5.0 to 

8.5, supplemented with freshly prepared nigericin to permeabilize cells, as 

described in section 3.8 for pHi determination. Vacuolar pH was determined by 

measuring fluorescence intensity after excitation at 440 and 490 nm (535 nm 

emission) in a spectrofluorometer and calculating the ratio of intensities at 490/440 

nm. Ratios (490/440 nm) were calculated by first subtracting the background 

(unstained cells) from each fluorescence value obtained in stained cells with 

BCECF-AM and then by fitting the values to the standard curve to determine the 

vacuolar pH values, as described for the pHi. Stained cells with BCECF-AM were 

also inspected by fluorescence microscopy to confirm BCECF vacuolar 

localization. 

3.15.  FLUORESCENCE MICROSCOPY 

Wide-field fluorescence imaging was performed using a Zeiss Axio Imager M2 

microscope equipped with a Photometrics Evolve EMCCD camera. To visualize 

fluorescence localization in the F. oxysporum wild type strain expressing pHluorin, 

samples were observed at different times of germination in YPD medium buffered 

to pH 7.4 with 20 mM HEPES. Vacuolar localization of BCECF-AM was verified 

in cells incubated in KSU buffer.  

3.16.  BIOINFORMATIC ANALYSIS 

3.16.1.  Sequence retrieval  

The F. oxysporum orthologs of yeast proteins were identified by BLASTp search in 

FungiDB (The Fungal and Oomycete Genomics Resource, 

http://fungidb.org/fungidb/) using the S. cerevisiae protein sequences obtained from 

the Saccharomyces Genome Database (http://www.yeastgenome.org). Hits were 

considered putative orthologs when a score higher than 100 was obtained. 
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3.16.2.  Protein alignment and sequence domains  

Proteins alignment was made using the ClustalOmega software 

(http://www.ebi.ac.uk). Protein domains prediction was made using the Prosite 

database (ExPASy; http://prosite.expasy.org) and the SMART-EMBL website 

(http://smart.embl-heidelber.de). PEST domains were identified using the epestfind 

online software (http://emboss.bioinformatics.nl/cgi-bin/emboss/epestfind). 

Potential PEST domains were considered when a positive PEST score was obtained. 

3.17.  SOFTWARE AND ONLINE TOOLS 

Data management and processing was performed using the following software 

products listed in [Table 10]. 

Table 10 – List of software and online tools used in this study 
Program Application 
BioEdit Multiple sequence alignment 
Carl Zeiss Vision (AxioVision 4.7) Microscope imaging and analysis 
Endnote Bibliography editing 
Epson Scan Image scanning 
Fujifilm Image Reader Chemiluminescence image acquisition 
Image J Image processing/ Western blot bands quantification  
Kodak 1D Image Analysis DNA gel imaging  
Oligo 7 Synthetic oligonucleotides synthesis 
GraphPad Prism Version 6.0 Graph creating and statistical analysis   
OmniGraffle Image illustration  
SnapGene Sequence editor 
Online Software Application 
ClustalOmega Multiple Sequence alignment 
Epestfind PEST domains 

NCBI 
https://www.ncbi.nlm.nih.gov 

BLAST: Sequence alignment 
Genome database: Retrieval of gene and protein 
sequences 

SMART-EMBL Protein domains search 
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RESULTS 
 
4.1.   INTRACELLULAR PH DYNAMICS AND HOMEOSTASIS IN 

FUSARIUM OXYSPORUM  

4.1.1.   Fluorescence level analysis of the pH-sensor pHluorin in F. oxysporum  

For measuring pHi in living cells of F. oxysporum, the pH-sensitive variant of GFP, 

pHluorin was employed. Previously a wild-type strain expressing pHluorin was 

obtained in our group by co-transformation of protoplasts of the wild type strain of 

F. oxysporum f. sp. lycopersici 4287 with a cassette expressing the pHluorin gene 

under control of the strong constitutive A. nidulans gpdA promoter and the trpC 

terminator, and the hygromycin resistance (HygR) cassette (Serrano, 2014). HygR 

transformants were then screened by fluorescence microscopy for the fluorescence 

level of pHluorin, and a transformant (transformant #9) which presented the highest 

fluorescence intensity was selected for further studies. In vivo calibration 

demonstrated pH sensitivity and spectral characteristics, allowing the determination 

of pHi in this transformant strain (Serrano, 2014).  

We initially attempted to express the pHluorin gene in other F. oxysporum strains, 

such as isogenic deletion mutants. To this aim, protoplasts of these strains were 

transformed following the same experimental conditions as before (co-

transformation of pHluorin and HygR cassettes). However, we failed to obtain 

transformants with the same high intensity of fluorescence as observed in 

transformant #9. Similarly, co-transformation of the wild type strain with pHluorin 

and the phleomycin resistance (PhleoR) cassettes also failed to produce 

transformants with the same high intensity of fluorescence as observed in 

transformant #9. Finally, we attempted a new approach in which the pHluorin gene 

was placed under control of the strong elongation factor 1-alpha (tef-1) promoter 

from Neurospora crassa. Fusion PCR of the pHluorin cassette with HygR were 

performed, and the pHluorin-HygR construct was specifically directed to a non-

coding region of the genome of F. oxysporum. However, the fluorescence level of 
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the obtained transformants was still significantly lower than that in transformant #9. 

The low fluorescence level prevented to acquire a reliable calibration curve and, 

consequently, to determine the pHi in the transformants. In an attempt to understand 

the low levels of fluorescence in the newly obtained transformants compared to 

transformant #9, a Southern blot was performed to determine the number of copies 

of the pHluorin gene in these strains. This revealed that transformant #9 carries 

more than one copy of the gene oppositely to a single copy in the other 

transformants, which explains the high level of fluorescence observed in this strain 

(data not shown). Therefore transformant #9 was used in the subsequent 

experiments for quantification of pHi in F. oxysporum.  

Time-lapse microscopy analyses revealed that pHluorin distribution inside the cells 

changed significantly during germination of microconidia and hyphal growth. In 

conidia and young hypha with 3-7 hours of germination, fluorescence was mainly 

detected in spherical structures, but largely absent from the cytosol [Figure 9]. By 

contrast, in hyphae germinated for 15 hours, fluorescence was mainly localized in 

the cytosol. We thus decided to use 15-hours-old hyphae for all subsequent 

experiments of pHi measurements with transformant #9.   
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Figure 9 – Age-dependent distribution of pHluorin in F. oxysporum  hyphae.  
Microconidia of F. oxysporum expressing pHluorin were germinated in YPD medium and 
imaged by fluorescence microscope 3, 6, 7 and 15 hours after germination. Fluorescence 
localizes to spherical structures in young hyphae and to the cytosol in older hyphae. Bar, 10 μm.   

4.1.2.   In vivo calibration for determination of intracellular pH 

After validation of pHluorin localization, pHi measurements were made using a 

microwell reader coupled to a spectrofluorometer. This experimental approach 

allowed to simultaneously measure the fluorescence of 105 germlings per well and 

thus to follow rapid fluctuations of pHi in the cell population. To obtain a pHi 

calibration curve, cells were permeabilized with nigericin in the presence of buffers 

adjusted to different pH values. Fluorescence was measured and ratios of emission 

intensities were calculated after excitation at 395 nm and 475 nm. The obtained 

calibration curve displayed a linear response to pH values between 5.5 and 8.0 

[Figure 10A]. The calculated pKa of pHluorin was 6.9±0.1 [Figure 10B].  
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Figure 10 – In vivo calibration of pHluorin.  
(A) Plot of the fluorescence excitation ratio (Ri) versus buffer pH. Fifteen-hour germinated 
microconidia of F. oxysporum expressing pHluorin were washed and suspended in pH-adjusted 
buffers, ranging from 5.0 to 8.5, containing nigericin to equalize the extracellular pH with the 
pHi. Excitation at 395 nm and 475 nm was measured in a spectrofluorometer and the ratio 
between the two emission intensities collected both at 510 nm was calculated. All data are 
shown as mean and standard deviation from at least three independent experiments, with three 
independent replicates for each condition. (B) Logarithmic plot of the fluorescence excitation 
ratio versus buffer pH for determination of the constant pKa. Rmax and Rmin are the limiting 
values for the ratio at the extreme acid (pH 5.0) and alkaline (pH 8.5) conditions. Ri is the ratio 
determined in (A) for each pH.  
 
  

4.1.3.   Intracellular pH recovers rapidly in response to sudden shifts in 

external pH 

To explore the effect of extracellular pH on pHi dynamics, cells were initially 

maintained at pH 6.0, and then subjected to a sudden shift in extracellular pH 

ranging from a final value of 2.0 to 9.0 by adding different concentrations of diluted 

HCl or NaOH, respectively. Cells exposed to acidic pH shifts showed a rapid and 

transient acidification of the cytosol, while those subjected to extracellular 

alkalinization displayed a rapid and transitory increase of pHi [Figure 11A]. In 

almost all tested conditions, the maximum fluctuation of pHi was observed 6 

minutes after the change in the external pH. Cells exposed to maximum external 

acidification (pH 2.0) showed a drop in pHi of about one pH unit, while cells 

exposed to the most extreme alkaline condition (pH 9.0) displayed a rise in pHi of 

approximately 0.5 units. These results demonstrated, that in response to extreme 

shifts in extracellular pH, the pHi fluctuates within a range between 6.38±0.02 at pH 

A B
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2.0 and 7.81±0.16 at pH 9.0 [Figure 11B]. Interestingly, one hour after the initial 

shift in external pH, pHi had returned to homeostatic values ranging between 6.9 

and 7.3. These results reveal the existence of a robust mechanism of pHi 

homeostasis control in F. oxysporum, and suggest that the pHi homeostasis is 

unaffected even after prolonged exposure of cells to extreme external pH [Figure 

11C].  

 

Figure 11 - Response of intracellular pH to sudden shifts in extracellular pH. 
(A) Time course of pHi after a sudden shift in extracellular pH. Fifteen-hour germinated 
microconidia were washed and suspended in KSU buffer at pH 6.0 and pre-incubated for 45 
minutes at 28ºC. pHi measurements were initiated 15 minutes before treatment. Extracellular pH 
in each well was subjected to sudden shifts ranging from a final value of 2.0 to 9.0 by adding 
different concentrations of diluted HCl or NaOH, respectively. pHi was monitored every 3 
minutes for 1 hour. For pHi determination, the ratio between the emission intensities (collected 
at 510 nm) after excitation at 395 nm and 475 nm was calculated. Data shown represent the 
mean and standard deviation of one of three independent experiments, with three independent 
replicates for each condition. (B) pHi values measured 6 minutes after the shift in extracellular 
pH are shown for each pH condition of (A), coinciding with the maximum amplitude of pHi 
variation. (C) pHi values measured one hour after the shift in extracellular pH are shown for each 
pH condition of (A). Note the remarkable capacity of pHi homeostasis in F. oxysporum. 
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4.1.4.   Carbon sources trigger intracellular pH fluctuations 

In S. cerevisiae, an effect of glucose metabolism on pHi dynamics has been 

described (Dechant et al., 2010; Isom et al., 2013). Moreover, 10 mM ammonium 

chloride also triggered changes in pHi (Maresová et al., 2010). In F. oxysporum, 

directed hyphal growth towards carbon or nitrogen sources such as glucose or 

amino acids was reported, and was found to depend on the IG MAPK cascade 

(Turrà et al., 2015). Here we investigated the effect of different carbon and nitrogen 

sources on pHi of F. oxysporum. We found that addition of 110 mM glucose to the 

medium induced a rapid drop in pHi of approximately 0.8 units, followed by a 

partial recovery. Other sugars such as galactose, fructose or xylose, also induced a 

decrease of pHi, followed by partial recovery and stabilization at approximately 7.0. 

Glucose induced a stronger acidification of the cytosol (to approximately 6.5) 

compared to the other sugars tested. Moreover, glucose-treated cells showed the 

fastest recovery of pHi starting after 3 minutes, while cells treated with galactose, 

fructose or xylose needed at least 9 minutes [Figure 12A]. Inorganic nitrogen 

sources such as ammonium chloride, sodium nitrate and ammonium nitrate at 10 

mM failed to show a significant effect on pHi dynamics [Figure 12B]. However, 

amino acids such as sodium glutamate or sodium aspartate induced a rapid drop on 

pHi of approximately 0.8 units  [Figure 12C]. Importantly, addition of these 

compounds did not trigger a significant change in the extracellular pH (data not 

shown). 
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Figure 12 – Effect of carbon and nitrogen sources in intracellular pH.  
(A) Fifteen-hour germinated microconidia were washed and suspended in KSU buffer at pH 6.0 
and pre-incubated for 45 minutes at 28ºC. pHi measurements were initiated 15 minutes before 
treatment. At time 0, different sugars (A), inorganic nitrogen sources (B), or amino acids (C) 
were added and pHi was monitored every 3 minutes for 1 hour. For pHi determination, the ratio 
between the emission intensities (collected at 510 nm) after excitation at 395 nm and 475 nm 
was calculated. Data shown represent the mean and standard deviation of one of three 
independent experiments, with three independent replicates for each condition.   
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4.2.  INTRACELLULAR PH ACTS A SECOND MESSENGER FOR MAPK 

SIGNALING IN FUSARIUM OXYSPORUM   

4.2.1.   Extracellular pH affects MAPK phosphorylation status in Fusarium 

oxysporum 

External pH governs infectious growth in the plant pathogen F. oxysporum by 

reprogramming the phosphorylation level of the MAPK Fmk1 (Masachis et al., 

2016). Previous results in our group indicated that external pH also affects 

phosphorylation status of the two other MAPKs identified in F. oxysporum, Mpk1 

and Hog1 (Segorbe, 2014). Because in the present study a new experimental 

approach had been designed for measurement of pHi, we decided to re-evaluate the 

impact of extracellular pH on MAPK phosphorylation under the new experimental 

conditions. We found that Fmk1 was rapidly phosphorylated when pH increased to 

a value higher than 6.0, and dephosphorylated when pH decreased below 6.0. 

Conversely, Mpk1 was rapidly phosphorylated upon extracellular acidification and 

dephosphorylated upon alkalinization [Figure 13]. These results confirmed those 

obtained in previous experiments (Segorbe, 2014) and suggested that, 

independently of the experimental condition, extracellular pH regulates MAPK 

activity in F. oxysporum.  
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Figure 13 - MAPK phosphorylation is affected by shifts in ambient pH. 
(A) Mpk1 phosphorylation is induced at acidic pH while the Fmk1 phosphorylation is induced at 
neutral or alkaline pH. F. oxysporum conidia were germinated in YPD medium for 15 hours, 
collected, washed and resuspended in KSU buffer at pH 6.0. Ambient pH was subjected to a 
sudden downshift to a final value of 2, 3 or 4, or a sudden upshift to 7, 8 or 9 by adding different 
concentrations of diluted HCl or NaOH, respectively. Total protein extracts collected before 
(control at pH 6.0) or 5 minutes after the pH shift were subjected to immunoblot analysis with 
anti-phospho-p44/42 MAPK antibodies for pMpk1 and pFmk1 detection. Anti-tubulin antibody 
was used as loading control. (B) Graphs show the ratio of pMpk1 or pFmk1 band intensity 
normalized to tubulin and expressed as fold response compared with control at pH 6.0.  
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4.2.2.   Establishment of an experimental system to change intracellular pH 

through a mechanism independent of extracellular pH 

The molecular events underlying the regulation of MAPK activity in response to 

ambient pH are currently unknown. Because our previous data revealed that 

ambient pH affects pHi homeostasis in a rapid and transitory way (see Figure 11), 

we asked whether pHi could act as a second messenger for MAPK activity. To test 

this idea, we set out to design an experimental system allowing manipulation of pHi 

independently of extracellular pH. In another study, chemical inhibition of the 

plasma membrane (PM) H+-ATPase or depolarization of the plasma membrane had 

been used successfully to  manipulate pHi in fungi (Bagar et al., 2009).  

 

4.2.2.1.  DES, a specific inhibitor of plasma membrane H+-ATPase (Pma1), 

induces prolonged intracellular acidification  

The PM H+-ATPase (Pma1) has been described as the main regulator of pHi in 

fungi (Kane, 2016). Exogenous application of DES, a specific inhibitor of Pma1, 

was previously reported in Saccharomyces cerevisiae (Kahm et al., 2012; Moskvina 

et al., 1999). Here we tested the effect of different concentrations of DES, ranging 

from 0.25 to 2.5 mM, on pHi of F. oxysporum. Addition of DES to the germlings 

induced a rapid and sustained intracellular acidification. With all concentrations, the 

pHi dropped from 7.20±0.13 to 6.37±0.05 in only 15 minutes, with the major part of 

the drop occurring within the first 5 minutes. No recovery of pHi to the baseline was 

observed during one hour  [Figure 14A]. This suggests that DES is highly effective 

in F. oxysporum Pma1 inhibition, and that Pma1 acts as a major regulator of pHi 

homeostasis in this species [Figure 14A]. Importantly, addition of methanol (the 

solvent of DES) had no effect on pHi (data not shown). To confirm that the 

observed drop in pHi was not a consequence of external pH change, we monitored 

the effect of DES on extracellular pH, with measurements taken every 30 seconds. 
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We saw that DES addition to the medium made the extracellular pH constant 

[Figure 14B].  

 

Figure 14 – The Pma1 inhibitor DES triggers rapid and sustained intracellular 
acidification. 
Fifteen-hour germinated microconidia were washed and suspended in KSU buffer at pH 6.0 and 
pre-incubated for 45 minutes at 28ºC. (A) pHi measurements were initiated 15 minutes before 
treatment. At time 0, DES was added at the indicated concentrations and fluorescence was 
measured every 5 minutes for 1 hour. For pHi determination, the ratio between the emission 
intensities (collected at 510 nm) after excitation at 395 nm and 475 nm was calculated. Data 
shown represent the mean and standard deviations of one of three independent experiments, with 
three independent replicates. (B) Extracellular pH was measured over time in the absence 
(control) or presence of 0.5 mM DES. 

 

4.2.2.2.  The membrane uncoupler FCCP equilibrates pH gradients across 

plasma membrane and causes a rapid decrease of intracellular pH 

As a second approach to manipulate pHi independent of extracellular pH changes, 

we tested different concentrations of FCCP, a protonophore which has been 

described to act as an uncoupler of oxidative phosphorylation (Bagar et al., 2009). 

A rapid and dose-dependent effect on pHi was observed for FCCP, but not for 

DMSO (the solvent of FCCP) [Figure 15A]. At the highest concentration tested (60 

µM), pHi decreased from 7.2 to approximately 6.0, which equals the pH of the 

external KSU buffer medium [Figure 15A]. As with DES, no recovery of pHi 

homeostasis was observed within 1 hour of treatment. Moreover, no effect of FCCP 

on extracellular pH was detected when compared with the control [Figure 15B].  

A DES B
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Figure 15 – The membrane uncoupler FCCP applied in KSU triggers rapid and 
sustained intracellular acidification. 
Fifteen-hour germinated microconidia were washed and suspended in KSU buffer at pH 6.0 and 
pre-incubated for 45 minutes at 28ºC. (A) pHi measurements were initiated 15 minutes before 
treatment. At time 0, FCCP was added at the indicated concentrations and fluorescence was 
measured every 5 minutes for 1 hour. For pHi determination, the ratio between the emission 
intensities (collected at 510 nm) after excitation at 395 nm and 475 nm was calculated. Data 
shown represent the mean and standard deviations of one of three independent experiments, with 
three independent replicates. (B) Extracellular pH was measured over time in the absence 
(control) or presence of FCCP 60 μM. 

 

4.2.3.   Pma1 activity controls intracellular pH in Fusarium oxysporum 

DES has been described as a specific inhibitor of Pma1 in S. cerevisiae (Kahm et 

al., 2012; Moskvina et al., 1999). However, no studies in filamentous fungi have 

been performed so far using this compound. The rapid intracellular acidification 

induced by DES suggested that it also inhibits Pma1 in F. oxysporum. To confirm 

this, we measured the ATPase activity of Pma1 in this fungus using a method 

previously established for S. cerevisiae (Kahm et al., 2012), with few modifications. 

Briefly, ATPase hydrolytic activity of Pma1 was determined by subtracting the 

activity obtained in the presence of DES (presumably corresponding to additional 

non-plasma membrane H+-ATPases which are not inhibited by DES) from total 

activity.   
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4.2.3.1.  DES induces intracellular acidification through complete inhibition of 

the activity of Pma1 

To explore the effect of DES on Pma1 activity, membranes were isolated from 15 

hours germinated microconidia before and at different times after treatment with 0.5 

mM DES. Samples were collected every 5 minutes during 15 minutes, and ATPase 

activity was measured. DES caused a drastic inhibition of Pma1 activity in F. 

oxysporum [Figure 16]. In membranes isolated 5 minutes after DES treatment, 

Pma1 activity was almost null, showing a drop from 1 (time-point zero) to 

0.085±0.014. The activity of Pma1 did not recover during the 15 min of the 

experiment, and a slight decrease in the last time-point analyzed (0.036±0.021) was 

even detected. Importantly, the solvent control (methanol) had no significant effect 

on Pma1 activity [Figure 16].   

 

Figure 16 – DES inhibits the activity of the plasma membrane H+-ATPase Pma1. 
Time-course analysis of Pma1 activity in the presence of 0.5 mM DES or methanol (solvent of 
DES used as control). ATPase activity was assayed in total membranes isolated from 15-hours 
germinated microconidia of F. oxysporum. Activity was normalized to that of the time-point 
zero. Results represent the average and standard deviation of three independent measurements at 
each time-point and essentially identical results were observed in three separate experiments. 
****p<0.0001, DES versus methanol, according to two-way ANOVA and Bonferroni Test. 
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4.2.3.2.  FCCP does not affect the activity of Pma1 

To investigate the effect of FCCP on Pma1 activity, membranes were isolated 

before and after FCCP treatment and ATPase activity was determined. In the 

presence of 60 µM FCCP the activity of Pma1 was not affected suggesting that the 

effect of FCCP on proton conductivity of the PM does not affect the activity of 

Pma1 [Figure 17]. 

 

Figure 17 – The membrane uncoupler FCCP has no direct effect on the activity of 
Pma1. 
Activity of Pma1 was assayed in total membranes isolated from 15-hours germinated 
microconidia of F. oxysporum. Time-course analysis of ATPase activity in the presence of 60 
μM FCCP. Activity was normalized to that of time-point zero. Results represent the average and 
standard deviation of three independent measurements at each time-point, and essentially 
identical results were observed in three separate experiments. ns = non-significant, p<0.001; 
versus T0 according to one-way ANOVA and Bonferroni Test. 

 

4.2.3.3.  Extracellular pH and glucose regulate Pma1 activity  

Our previous data showed that sudden changes in extracellular pH or addition of 

sugars such as glucose trigger rapid and transitory fluctuations in pHi (see Figure 11 

and 12). The mechanism underlying these pHi variations is not understood. Here we 

examined the effect of extracellular pH shifts or glucose addition on Pma1 activity. 

When the pH of the buffer medium was dropped from 7.0 to 5.0, Pma1 activity 

decreased drastically 15 minutes after extracellular acidification and only recovered 

slightly after 30 minutes [Figure 18A]. When the extracellular pH was shifted back 
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from 5.0 to 7.0, the activity of Pma1 increased and reached 0.860±0.071, almost the 

same as before the external acidification [Figure 18A]. 

Glucose treatment first triggered a rapid reduction of Pma1 activity of about 50%, 

followed by a recovery after 10 minutes, reaching the initial activity after 30 

minutes [Figure 18B]. Altogether, these results demonstrate that pHi dynamics 

mirrors, at least in part, the activity of Pma1, suggesting a key role for this proton 

pump on pHi homeostasis control.  

 

Figure 18 – Shifts in extracellular pH and addition of glucose impact Pma1 activity. 
Activity of Pma1 was assayed in total membranes isolated from 15-hours germinated 
microconidia of the wild type strain of F. oxysporum. (A) Time-course analysis of Pma1 activity 
upon a shift in extracellular pH from 7.0 to 5.0 and back to 7.0. ATPase activity was determined 
at the indicated times. (B) Time-course analysis of Pma1 activity before and after addition of 
110 mM glucose. (A, B) The graphs show the activity of Pma1 normalized to that of the time 0. 
Results represent the average and standard deviation of three independent measurements at each 
time-point. ns = non-significant p<0.001; **** p<0.0001; ** p<0.01; * p<0.05; versus T0 
according to one-way ANOVA and Bonferroni Test. 
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4.2.4.   DES- and FCCP-triggered intracellular acidification affects MAPK 

phosphorylation in F. oxysporum 

In order to understand the role of pHi in regulation of MAPK activity, MAPK 

phosphorylation was analyzed by western blot after treatment of germlings with 

DES or FCCP to induce a drop in pHi. We found that DES triggered a marked 

increase (more than 8 times) in the phosphorylation levels of Mpk1 and Hog1. By 

contrast, the phosphorylation level of Fmk1 decreased approximately 30% upon 

DES treatment [Figure 19].  

 

Figure 19 - DES-triggered intracellular acidification activates Mpk1 and Hog1 and 
inhibits Fmk1.  
(A) Fifteen-hour germinated microconidia were washed and resuspended in KSU buffer at pH 
6.0 and pre-incubated for 1 hour at 28ºC. At time 0, 0.5 mM DES was added to the buffer. 
Protein extracts collected before (time 0) and 5 or 10 minutes after DES treatment were 
subjected to immunoblot analysis with anti-phospho-p44/42 MAPK or anti-phosho-p38 MAPK 
antibodies, for pMpk1 and pFmk1, or pHog1 detection, respectively. Anti-Mpk1 and anti-Fus3 
(Fmk1) antibodies were used for MAPK loading control, and anti-tubulin antibody was used as 
total extract loading control. (B) Graphs show the ratio of pMpk1, pFmk1 or pHog1 band 
intensity normalized to tubulin and expressed as fold response compared with untreated cells 
(time zero).  
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Likewise, FCCP triggered rapid phosphorylation of Mpk1 and Hog1 and 

dephosphorylation of Fmk1 [Figure 20]. In all cases, the pattern of MAPK 

phosphorylation in response to DES- and FCCP-induced intracellular acidification 

was consistent with that triggered by extracellular acidification. These results 

suggest that changes in pHi directly affect MAPK activity in F. oxysporum.  

 

Figure 20 – The membrane uncoupler FCCP applied in KSU activates Mpk1 and 
Hog1 and inhibits Fmk1. 
(A) Fifteen-hour germinated microconidia were washed and resuspended in KSU buffer at pH 
6.0 and pre-incubated for 1 hour at 28ºC. At time 0, 60 μM FCCP was added to the buffer. 
Protein extracts collected before (time 0) and 5 or 10 minutes after FCCP treatment were 
subjected to immunoblot analysis with anti-phospho-p44/42 MAPK or anti-phosho-p38 MAPK 
antibodies, for pMpk1 and pFmk1, or pHog1 detection, respectively. Anti-tubulin antibody was 
used as total extract loading control. (B) Graphs show the ratio of pMpk1, pFmk1 or pHog1 
band intensity normalized to tubulin and expressed as fold response compared with untreated 
cells (time zero).  
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4.3.  ROLE OF KEY REGULATORS OF PH HOMEOSTASIS ON MAPK 

SIGNALING IN F. OXYSPORUM  

Our previous results demonstrated that pHi acts as a second messenger for MAPK 

signaling in F. oxysporum. First, we found that a shift in the external pH triggers a 

rapid and transient change in the pHi. Further, we found that DES induced sustained 

drop in pHi is accompanied by changes in MAPK phosphorylation, supporting the 

idea that pHi acts as a key switch controlling MAPK activity. Expecting that defects 

on pHi homeostasis control will impact MAPK signaling, we generated knockout 

mutant strains of possibly relevant regulators of pHi homeostasis in F. oxysporum. 

Targeted deletion of the PM pH-sensor PalH and of the transcription factor PacC, 

components of the alkaline pH-response Pal/Rim pathway, as well as of Ptk2, a 

kinase that promotes Pma1 activation in response to glucose, were generated in F. 

oxysporum. With this approach, we aimed to genetically validate the role of pHi in 

MAPK signaling regulation.      

 

4.3.1.   Generation of deletion mutants 

4.3.1.1.  Targeted deletion of pacC and palH, two key components of the Pal 

pathway in F. oxysporum 

The Pal/Rim pathway is arguably the best-studied mechanism of environmental pH 

sensing and response in fungi. Neutral-alkaline pH is sensed by the seven-

transmembrane-domain receptor PalH/Rim21 located at the PM. This results in 

activation of the downstream signaling pathway which culminates with the 

proteolytic activation of the transcription factor PacC/Rim101 and its translocation 

to the nucleus where it governs transcriptional changes that promote neutral-

alkaline pH-dependent responses (Peñalva et al., 2008). Although Pal/Rim pathway 

has been extensively described for fungal response to external pH changes, a role of 

this pathway in pHi homeostasis control has not been reported so far.  
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PacC of F. oxysporum (FOXG_02222) was previously identified and a PacC loss-

of-function mutant constructed (Caracuel et al., 2013). Here, to investigate in more 

detail the role of PacC in pHi homeostasis control in F. oxysporum, we generated a 

ΔpacC allele by replacing the complete ORF with the HygR resistance cassette 

[Figure 21A]. The two split-marker deletion constructs obtained by fusion PCR 

were used to co-transform protoplasts of the F. oxysporum wild type strain. 

Transformants carrying a homologous insertion at the pacC locus were initially 

identified by PCR analyses using two pairs of primers that hybridize outside of the 

fragments used for transformation and inside of the resistance cassette [Figure 21B]. 

Further analysis of the selected candidate transformants was performed by Southern 

blot to verify the correct insertion of a single copy into the genome. We identified 

three transformants in which the 9.5 Kb hybridizing NdeI fragment corresponding 

to the wild type pacC allele had been replaced by a hybridizing fragment of the 

expected size of 4.3 Kb, consistent with homologous insertion of the deletion 

construct in these transformants [Figure 21C]. 
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Figure 21 – Targeted deletion of the F. oxysporum pacC gene. 
(A) Physical maps of the pacC locus and the split-marker gene replacement construct obtained 
by fusion PCR (∆pacC allele). Relative positions of the primers used for generation of the gene 
disruption construct and PCR analyses of the transformants, as well as the probe used for 
Southern blot are indicated. (B) PCR analyses for homologous integration of the gene disruption 
construct into the genome of the transformants. Genomic DNA of the wild type strain (negative 
control) and transformants was amplified using the pairs of primers: PacC-1f/TrpC-4B 
(promoter region) and GpdA16B/PacC-2r (terminator region). (C) Southern blot hybridization 
analysis of the wild type strain 4287 and the different ∆pacC transformants. Genomic DNA 
treated with NdeI was hybridized with the probe indicated in (A).   

 

A BLASTp search of the F. oxysporum genome sequence with the S. cerevisiae 

Rim21 sequence identified a single PalH ortholog (FOXG_09368). The F. 

oxysporum PalH is a predicted protein of 779 amino acids which exhibits 24% 

identity with yeast Rim21 and more than 50% with PalH proteins from the 

filamentous ascomycetes N. crassa (NCU_0007), M. oryzae (MGG_06440) or A. 

nidulans (AN_6886). 

To investigate the biological relevance of PalH in F. oxysporum, we generated a 
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were used to co-transform protoplasts of the F. oxysporum wild type strain. 

Transformants carrying a homologous insertion at the palH locus were initially 

identified by PCR analyses using two pairs of primers that hybridize outside of the 

fragments used for transformation and inside of the resistance cassette [Figure 22B]. 

Further analysis of the selected candidate transformants was performed by Southern 

blot to verify the correct insertion of a single copy into the genome. We identified 

two transformants in which the 2.4 Kb hybridizing XhoI fragment corresponding to 

the wild type palH allele had been replaced by a hybridizing fragment of the 

expected size of 5.7 Kb, consistent with homologous insertion of the deletion 

construct in these transformants [Figure 22C]. 

 

Figure 22 - Targeted deletion of the F. oxysporum palH gene. 
(A) Physical maps of the palH locus and the split-marker gene replacement construct obtained 
by fusion PCR (∆palH allele). Relative positions of the primers used for generation of the gene 
disruption construct and PCR analyses of the transformants, as well as the probe used for 
Southern blot are indicated. (B) PCR analyses for homologous integration of the gene disruption 
construct into the genome of the transformants. Genomic DNA of the transformants was 
amplified using the pairs of primers: PalH-1f/TrpC-4B (promoter region) and GpdA16B/PalH-2r 
(terminator region). (C) Southern blot hybridization analysis of the wild type strain 4287 and the 
different ∆palH transformants. Genomic DNA treated with XhoI was hybridized with the probe 
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indicated in (A).   

4.3.1.2.  Targeted deletion of ptk2 in F. oxysporum 

In S. cerevisiae, the protein kinase Ptk2, a member of the NPR/HAL5 family, is 

located at the PM and phosphorylates Pma1 at S899 during glucose activation 

(Eraso et al., 2006; Moskvina et al., 1999).  

A BLASTp search of the F. oxysporum genome sequence with the S. cerevisiae 

Ptk2 sequence identified with close and relative low score more than one putative 

Ptk2 orthologs. A BLASTp search of the genome sequence of other ascomycetes 

revealed a similar result. Therefore, the sequence with highest score 

(FOXG_03632) was considered to generate a Δptk2 allele in F. oxysporum.  

As previously described for the Pal/Rim pathway deletion mutants, a Δptk2 allele 

was generated by replacing the complete ORF with the HygR resistance cassette 

[Figure 23A]. The two split-marker deletion constructs obtained by fusion PCR 

were used to co-transform protoplasts of the F. oxysporum wild type strain. 

Transformants carrying a homologous insertion at the ptk2 locus were initially 

identified by PCR analyses using two pairs of primers that hybridize outside of the 

fragments used for transformation and inside of the resistance cassette [Figure 23B]. 

Further analysis of the selected candidate transformants was performed by Southern 

blot to verify the correct insertion of a single copy into the genome. We identified 

two transformants in which the 2.5 Kb hybridizing HindIII fragment corresponding 

to the wild type ptk2 allele had been replaced by a hybridizing fragment of the 

expected size of 6.0 Kb, consistent with homologous insertion of the deletion 

construct in these transformants [Figure 23C]. 
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Figure 23 - Targeted deletion of the F. oxysporum ptk2 gene. 
(A) Physical maps of the ptk2 locus and the split-marker gene replacement construct obtained by 
fusion PCR (∆ptk2 allele). Relative position of the primers used for generation of the gene 
disruption construct and PCR analyses of the transformants, as well as the probe used for 
Southern blot are indicated. (B) PCR analyses of homologous integration of the gene disruption 
construct into the genome of the transformants. Genomic DNA of the transformants was 
amplified using the pairs of primers: Ptk2-1f/TrpC-4B (promoter region) and GpdA16B/Ptk2-2r 
(terminator region). (C) Southern blot hybridization analysis of the wild type strain 4287 and the 
two ∆ptk2 transformants. Genomic DNA treated with HindIII was hybridized with the probe 
indicated in (A).   
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4.3.2.   Phenotype of ΔpalH, ΔpacC and Δptk2 mutants under pH, 

hyperosmotic and cell wall stress 

We examined the growth of the generated deletion mutants in YPD medium 

buffered to pH 4, 6 and 8, or supplemented with 0.6 M NaCl (hyperosmotic stress) 

or 40 μg/ml CFW (cell wall stress). The ΔpacC and ΔpalH mutants exhibited a 

complete absence of growth at alkaline pH and a significant reduction at pH 6 and 

in the presence of hyperosmotic stress, compared to the wild type [Figure 24]. 

On the other hand, the Δptk2 mutants only showed a slight reduction of growth at 

acidic pH and in the presence of CFW [Figure 24]. 

 

Figure 24 – The Pal pathway is required for growth at alkaline pH, while Ptk2 is 
dispensable for pH, osmotic and cell wall stress responses. 
Colony phenotype of the indicated strains grown on YPDA, YPDA buffered at the indicated pH 
or YPDA supplemented with 0.6 M NaCl or 40 μg/ml CFW. Plates were spot-inoculated with 
105, 104 and 103 microconidia, incubated for 2 days at 28ºC and scanned. 
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4.3.3.   The Pal pathway regulates vacuolar pH but is not required for pH 

homeostasis of the cytosol 

Although the Pal pathway has been demonstrated to be fundamental for the alkaline 

pH response, its role in pHi homeostasis control has not been reported so far. 

Therefore, we compared the vacuolar and cytosolic pH of the ∆pacC and ∆ palH 

mutants with that of the wild type strain. We also included a F. oxysporum strain 

carrying a truncated, dominant activating pacCc allele (Caracuel et al., 2003).  

 For measurement of pHv, cells were stained with the ratiometric dye BCECF-AM 

as previously described for S. cerevisiae (Diakov and Kane, 2010). For pHv 

analysis, strains stained and unstained (control) with BCECF-AM were used. To 

obtain a pHv calibration curve, cells were permeabilized with nigericin in the 

presence of buffers adjusted to different pH values, similarly to that described for 

pHi determination. Fluorescence was measured and ratios of emission intensities 

were calculated after excitation at 490 nm and 440 nm.  

To confirm that BCECF also localizes to the vacuole in F. oxysporum, we 

performed fluorescence microscopy of the wild type hyphae stained with 5 μM 

BCECF-AM and observed fluorescence localizing mostly in vacuole-like structures  

[Figure 25A]. Moreover, addition of Concanamycin A, a specific inhibitor of the 

vacuolar H+-ATPase, induced an increase of pHv by 0.3 units [Figure 25B]. Based 

on these to results, we concluded that BCECF-AM staining constitutes a valid 

experimental approach for measuring pHv in F. oxysporum. 
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Figure 25 – The dye BCECF-AM localizes to vacuoles in F. oxysporum. 
Fifteen-hour germinated microconidia of F. oxysporum in KSU buffer at pH 6.0 were stained 
with 5 μM BCECF-AM for 15 minutes at 28ºC, 170 rpm. Cells were then washed with KSU pH 
6.0 to remove the excess of dye and incubated for one more hour at 28ºC. (A) Vacuolar 
localization of the dye was assessed by fluorescence microscopy. Bar 20 μm. (B) Fluorescence 
intensities were recorded after excitation at 490 nm and 440 nm in a spectrofluorometer. For 
determination of vacuolar pH (pHv) the ratio between the emission intensities (collected at 535 
nm) was calculated. pHv was determined every 5 minutes for 1 hour. Bars represent pHv at time 
zero and one hour after treatment of cells with 10 μM Concanamycin A or the solvent DMSO 
(control). Data shown represent the mean and standard deviations of three technical replicates. 
ns = non-significant p<0.001; **** p<0.0001; versus T0 according to two-way ANOVA and 
Bonferroni Test. 

 

Next, pHv was determined in the wild type strain and in the different deletion 

mutants exposed to different extracellular pH environments. In all strains tested, 

pHv increased at higher external pH  [Figure 26]. For example, in the wild type 

strain pHv increased from 5.57±0.024 at external pH 4 to 6.04±0.022 at external pH 

7. Interestingly, at acidic environmental pH (4.0 or 5.0), the ΔpacC and ΔpalH 

mutants showed a significantly more acidic pHv than the wild type strain. However, 

at near to neutral or neutral pH, no differences in pHv were observed between the 

strains [Figure 26]. 
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Figure 26 – Pal mutants have a lower vacuolar pH in acidic environments than the 
wild type strain. 
Fifteen-hour germinated microconidia of F. oxysporum wild type, ∆ pacC, ∆ palH and PacCc 
strains in KSU buffer at pH 6.0 were stained with 5 μM BCECF-AM for 15 minutes at 28ºC, 
170 rpm. Cells were then washed and incubated in KSU at pH 4.0, 5.0, 6.0 or 7.0. After one 
hour at 28ºC, excitation at 440 nm and 490 nm was measured and the ratio between the emission 
intensities collected at 535 nm was calculated. Bars show pHv values one hour after incubation 
at different pH buffers. Data shown represent the mean and standard deviations of one of two 
independent experiments, with three technical replicates. ns = non-significant p<0.001; *** 
p<0.001; ** p<0.01; * p<0.05; versus WT. Student t-test. 
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wild type pacC allele had been replaced by the expected 5.8 Kb fragment [Figure 

27].  

 

Figure 27 - Targeted disruption of the pacC gene in the F. oxysporum strain 
expressing pHluorin. 
(A) Physical maps of the pacC locus and the split-marker gene replacement construct obtained 
by fusion PCR (∆pacC allele). Relative positions of the primers used for generation of the gene 
disruption construct and PCR analysis of the transformants, as well as the probe used for 
Southern blot are indicated. (B) Southern blot hybridization analysis of the wild type strain 4287 
and the different ∆pacC transformants. Genomic DNA treated with PvuII was hybridized with 
the probe indicated in (A).   

 

 

Moreover, three ΔpalH transformants were identified in which the 2.4 Kb 

hybridizing XhoI corresponding to the wild type allele was replaced by a 5.7 Kb 

fragment, revealing homologous insertion in these transformants [Figure 28]. 
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Figure 28 - Targeted disruption of the palH gene in the F. oxysporum strain 
expressing pHluorin. 
(A) Physical maps of the palH locus and the split-marker gene replacement construct obtained 
by fusion PCR (∆palH allele). Relative positions of the primers used for generation of the gene 
disruption construct and PCR analysis of the transformants, as well as the probe used for 
Southern blot are indicated. (B) Southern blot hybridization analysis of the wild type strain 4287 
and the different ∆palH transformants. Genomic DNA treated with XhoI was hybridized with the 
probe indicated in (A).   
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the wild type strain [Figure 29C]. These results suggest that the Pal pathway does 

not play a major role in pHi homeostasis, at least under the conditions tested here. 

 

Figure 29 - ∆pacC and ∆palH mutants are not affected in pHi homeostasis. 
Fifteen-hour germinated microconidia of the F. oxysporum wild type, ∆pacC and ∆palH strains 
expressing pHluorin were washed and suspended in KSU buffer at pH 6.0 and pre-incubated for 
45 minutes at 28ºC. (A) pHi in the indicated strains was measured every 5 minutes for 2 hours. 
(B, C) pHi measurements were initiated 15 minutes before time zero and 30 minutes later diluted 
HCl was added to change extracellular pH to 3.0 (B), or 0.5 mM DES was added (C), and pHi 
was measured every 3 minutes for one more hour. For pHi determination, the ratio between the 
emission intensities (collected at 510 nm) after excitation at 395 nm and 475 nm was calculated. 
Data shown represent the mean and standard deviations of three independent replicates for each 
strain. 
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4.3.4.   The Pal pathway contributes to rapid activation of Mpk1 in response to 

pHi acidification  

We previously observed that phosphorylation of the CWI MAPK Mpk1 is rapidly 

induced in response to extra- or intracellular acidification. To test the role of the Pal 

pathway in this rapid response, we followed the phosphorylation level of Mpk1 in 

the ΔpacC and ΔpalH mutants treated with diluted HCl. We found that both ΔpacC 

and ΔpalH exhibited a delay in Mpk1 phosphorylation in response to extracellular 

acidification compared to the wild type strain, whereas the concomitant 

dephosphorylation of Fmk1 was unaffected in these mutants [Figure 30].  

 

Figure 30 – Pacc and Palh contribute to the rapid activation of Mpk1 in response to 
extracellular acidification. 
Fifteen-hour germinated microconidia of the F. oxysporum wild type, ∆pacC and ∆palH strains 
were washed and resuspended in KSU buffer at pH 6.0 and pre-incubated for 1 hour at 28ºC. At 
time 0, diluted HCl was added to change the pH of the buffer from 6.0 to 3.0. Protein extracts 
collected before (time 0) and 5, 10, 15 or 30 minutes after acidification were subjected to 
immunoblot analysis with anti-phospho-p44/42 MAPK antibody for pMpk1 and pFmk1 
detection.  
 

A similar delay in Mpk1 phosphorylation was observed in the ΔpacC mutant upon 

DES-triggered intracellular acidification [Figure 31]. Interestingly, the dominant 

activating PacCc mutant exhibited a faster Mpk1 phosphorylation in response to 

DES than the wild type. Collectively, these results indicate that the Pal pathway 

contributes to acid pH-triggered Mpk1 activation. 
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Figure 31 – PacC contributes to the rapid activation of Mpk1 in response to 
intracellular acidification. 
Fifteen-hour germinated microconidia of the F. oxysporum wild type, ∆pacC and ∆palH strains 
were washed and resuspended in KSU buffer at pH 6.0 and pre-incubated for 1 hour at 28ºC. At 
time 0, 0.5 mM DES was added to the buffer. Protein extracts collected before (time 0) and 5 or 
10 minutes after DES were subjected to immunoblot analysis with anti-phospho-p44/42 MAPK 
antibody for pMpk1 and pFmk1 detection.  
 

We next evaluated the role of the protein kinase Ptk2 in MAPK phosphorylation 

responses to extracellular pH changes. Our results showed a very similar 

phosphorylation pattern of the Mpk1 and Fmk1 MAPK cascades in the Δptk2 

mutant as in the wild type strain. Mpk1 MAPK was phosphorylated at pH 5.0 and 

dephosphorylated at 7.0, while Fmk1 follows an opposite pattern [Figure 32] 

(compare with Figure 4B).  
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Figure 32 – Ptk2 is not required for MAPK regulation by extracellular pH. 
(A) Fifteen-hour germinated microconidia of the F. oxysporum ∆ptk2 strain were washed and 
resuspended in KSU buffer at pH 7.0 and pre-incubated for 1 hour at 28ºC. The pH of the buffer 
was then shifted from 7.0 to 5.0 and back to 7.0, by adding diluted HCl or NaOH, respectively. 
Protein extracts collected before (control at pH 7.0) and 15 or 30 minutes after each pH shift 
were subjected to immunoblot analysis with anti-phospho-p44/42 MAPK antibodies for pMpk1 
and pFmk1 detection. Anti-tubulin antibody was used as loading control. (B) Graphs show the 
ratio of pMpk1 or pFmk1 band intensity normalized to tubulin and expressed as fold response 
compared with time zero (control at pH 7.0).  
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To test the role of the Pal pathway and of Ptk2 in virulence of F. oxysporum on 
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although the difference was not statistical significant. These results are consistent 
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with those obtained in a previous study using a PacC loss-of-function mutant 

(Caracuel et al., 2003). Moreover, the Δptk2 appeared to cause slightly less 

mortality, although again the difference was not statistical significant. Collectively, 

these results indicate that the Pal pathway and Ptk2 are not essential for plant 

infection in this fungal pathogen. 

 

Figure 33 – The Pal pathway and Ptk2 are not required for virulence of F. 
oxysporum on tomato plants. 
Kaplan–Meier plot of survival of tomato plants infected with the indicated F. 
oxysporum strains. Mortality significance was evaluated through the log-rank test. Data are 
from one representative experiment.  
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4.4.  YEAST AS A MODEL SYSTEM TO STUDY pHi-INDUCED MAPK 

REGULATION IN FUSARIUM OXYSPORUM 

We previously found that pHi acts as second messenger for the activity of the 

MAPK signaling in F. oxysporum. However, the molecular mechanisms underlying 

this response are unknown. The identification of new components regulating pHi-

mediated MAPK signaling is one of the steps towards such a goal. However, it 

requires a broad approach where hundreds of mutants could be assayed and in F. 

oxysporum although an efficient gene targeting protocol has been developed over 

the last years, a complete mutant library is not still available for this organism. On 

the other hand, the budding yeast S. cerevisiae (hereafter called "yeast") has been 

widely used as a model organism for studying eukaryotic cellular processes, mainly 

through genome-wide analysis of biological functions. There are many advantages 

to working with yeast. It shares a high level of conservation of essential cellular 

processes with more complex eukaryotes and it is easy to grow in the laboratory and 

genetically tractable. Therefore, the yeast versatility makes it a useful model to 

investigate new components regulating pHi-mediated MAPK signaling.  

 

4.4.1.    Intracellular pH also acts as a second messenger for MAPK signaling 

in yeast  

4.4.1.1.  Ambient pH impacts intracellular pH homeostasis and MAPK 

signaling  

We first examined the pHi dynamics in S. cerevisiae upon extracellular pH change, 

using a yeast strain transformed with the pYEplac181 plasmid containing the 

pHluorin gene under control of a TEF1 promoter (a gift from Henrik G. Dohlman, 

University of North Carolina, USA). As for F. oxysporum, pHi measurements in 

yeast cells were performed using a microwell reader coupled to a 

spectrofluorometer. For pHi analyses, the yeast wild type and the wild type 

expressing pHluorin strains were used. To obtain a pH calibration curve, yeast cells 
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were permeabilized with nigericin in the presence of buffers adjusted to different 

pH values. Fluorescence was measured and ratios of emission intensities were 

calculated after excitation at 395 nm and 475 nm. Determination of pHi revealed 

that steady state pHi under these conditions is more acidic in yeast than in F. 

oxysporum (6.61±0.05 versus 7.45±0.13, respectively) [Figure 34]. After a sudden 

shift in extracellular from pH 6.5 to 3.0, a rapid acidification of the cytosol by 0.7 

pH units was detected in 20 minutes. After one hour, the pHi almost returned to the 

initial value [Figure 34A]. On the other hand, external alkalinization triggered an 

even faster increase of 1.38 units, followed by a complete recovery to the initial 

value after 25-30 minutes [Figure 34B]. These pHi responses resemble those 

previously observed in F. oxysporum (see Figure 11A). 

 

Figure 34 – Extracellular pH shifts induce a rapid and transitory change of 
intracellular pH in yeast. 
Exponentially growing cells of the S. cerevisiae wild type strain were washed and resuspended 
in KSU buffer at pH 6.5, and pre-incubated for 45 minutes at 30ºC. pHi measurements were 
initiated 15 minutes before treatment. Extracellular pH in each well was subjected to sudden 
shift to 3.0 (A) or 9.0 (B) by adding diluted HCl or NaOH, respectively. pHi was monitored 
every 5 minutes for 1 hour. For pHi determination, the ratio between the emission intensities 
(collected at 510 nm) after excitation at 395 nm and 475 nm was calculated. Data shown 
represent the mean and standard deviations of one of three independent experiments, with three 
independent replicates. 

 

Western blot analysis of MAPK phosphorylation patterns in the same experimental 

conditions revealed that a shift in extracellular pH from 6.5 to 3.0 induced rapid 

phosphorylation of Mpk1/Slt2 and Hog1 and a slight dephosphorylation of the 
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Fmk1 ortholog Fus3 [Figure 35]. These responses display the same trend as 

previously observed in F. oxysporum. Similarly, when the extracellular pH was 

rapidly shifted from 6.5 to 9.0 a marked dephosphorylation of Mpk1 and Hog1 was 

observed, again mirroring the results obtained in F. oxysporum. However, in 

contrast to F. oxysporum, phosphorylation levels of Fmk1 orthologs Fus3 and Kss1 

did not increase upon alkalinization [Figure 35]. Intrigued by this difference we 

determined the phosphorylation patterns of Fus3 and Kss1 at different pH 

conditions ranging from 6.0 to 9.0, and we found that both MAPKs display pH-

dependent phosphorylation levels with a peak at pH 6.5 [Figure 36]. As expected, 

Mpk1 and Hog1 phosphorylation levels decreased progressively as extracellular pH 

increased. 

 

Figure 35 – Effect of ambient pH on MAPK phosphorylation in yeast. 
(A) Exponentially growing cells of the S. cerevisiae wild type strain were washed and 
resuspended in KSU buffer at pH 6.0 and incubated for 1 hour at 30ºC. After this hour, the pH of 
the buffer was suddenly shifted to 3.0 or to 9.0, with diluted HCl or NaOH, respectively. 
Proteins extracts collected before (control pH 6.0) and 5 minutes after pH change were subjected 
to immunoblot analysis with anti-phospho-p44/42 MAPK or anti-phosho-p38 MAPK antibodies, 
for pMpk1, pFus3 and pKss1, or pHog1 detection, respectively. Anti-Mpk1, anti-Fus3 and anti-
Hog1 antibodies were used for MAPK loading control. Anti-G6PDH antibody was used as total 
extract loading control. (B) Graphs show the ratio of pMpk1, pFus3, pKss1 or pHog1 band 
intensity normalized to G6PDH and expressed as fold response compared with control (pH 6.0).  
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Figure 36 – MAPK phosphorylation in yeast is regulated by ambient pH. 
(A) Exponentially growing cells of the S. cerevisiae wild type strain were washed and 
resuspended in KSU buffer at different pH values, ranging from 6.0 to 9.0, and incubated for 1 
hour at 30ºC. Proteins extracts collected after this hour were subjected to immunoblot analysis 
with anti-phospho-p44/42 MAPK or anti-phosho-p38 MAPK antibodies, for pMpk1, pFus3 and 
pKss1, or pHog1 detection, respectively. Anti-G6PDH antibody was used as total extract 
loading control. (B) Graphs show the ratio of pMpk1, pFus3, pKss1 or pHog1 band intensity 
normalized to G6PDH and expressed as fold response compared with control (pH 6.0).  

 

4.4.1.2.  DES-triggered intracellular acidification activates Mpk1 

phosphorylation and inhibits Fus3 and Kss1 phosphorylation in yeast 

Taken together, our previous results suggest that MAPK signaling in yeast is 

regulated by external pH in a similar way as in F. oxysporum. To examine whether 

pHi also acts as a second messenger in this process, yeast cells were treated with the 

Pma1-specific inhibitor DES. Among different concentrations tested, 25 µM DES 

induced maximum levels of Mpk1 phosphorylation [Figure 37]. With this 

concentration, Hog1 also became phosphorylated. The phosphorylation level of 

Fus3 and Kss1 is apparently highly sensitive to DES, since a dephosphorylation was 

perceptible even with the lower concentration of DES tested (to compare with the 

phosphorylation level at pH 6.5/control condition see Figure 35) suggesting that 

these MAPKs are rapidly dephosphorylated in response to DES treatment.  
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Figure 37  – DES treatment of yeast cells leads to changes in MAPK 
phosphorylation. 
(A) Exponentially growing cells of the S. cerevisiae wild type strain were washed and 
resuspended in KSU buffer at pH 6.5 and incubated for 1 hour at 30ºC. After this hour, DES at 
different concentrations was added to the buffer. Proteins extracts collected 5 minutes after DES 
treatment were subjected to immunoblot analysis with anti-phospho-p44/42 MAPK or anti-
phosho-p38 MAPK antibodies, for pMpk1, pFus3 and pKss1, or pHog1 detection, respectively. 
Anti-Mpk1, anti-Fus3 and anti-Hog1 antibodies were used for MAPK loading control. Anti-
G6PDH antibody was used as total extract loading control. (B) Graphs show the ratio of pMpk1, 
pFus3, pKss1 or pHog1 band intensity normalized to G6PDH and expressed as fold response 
compared with lower concentration of DES assayed (6.25 µM).  
 

We next followed pHi dynamics in yeast cells after treatment with 25 µM DES. A 

decrease of pHi by 0.4 units was observed 20 minutes after DES treatment, which 

was not detected with the solvent control [Figure 38A]. A gradual recovery of pHi 

started 25 minutes after DES treatment. In accordance with these results, western 

blot revealed a maximum induction of Mpk1 phosphorylation after 20 minutes, 

followed by a progressive decrease [Figure 38B]. The phosphorylation levels of 

Fus3 and Kss1 decreased over the entire period of the experiment. Collectively, 

these results reveal that in yeast, MAPK phosphorylation is regulated by pHi, 

suggesting that pHi acts as a second messenger in this process. 
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Figure 38 – DES-triggered intracellular acidification regulates MAPK signaling in 
yeast. 
Exponentially growing cells of the S. cerevisiae wild type strain were washed and resuspended 
in KSU buffer at pH 6.5 and incubated for 1 hour at 30ºC. At time 0, 25 µM DES or methanol 
(solvent control) were added to the buffer. (A) pHi was monitored every 5 minutes for 1 hour.  
For pHi determination, the ratio between the emission intensities (collected at 510 nm) after 
excitation at 395 nm and 475 nm was calculated. Data shown represent the mean and standard 
deviations of three independent replicates. (B) Protein extracts collected before (time 0) and 5 to 
60 minutes after DES were subjected to immunoblot analysis with anti-phospho-p44/42 MAPK 
antibody for pMpk1, pFus3 and pKss1 detection. Anti-G6PDH antibody was used as total 
extract loading control. (C) Graphs show the ratio of pMpk1, pFus3 or pKss1 band intensity 
normalized to G6PDH and expressed as fold response compared with control.  

 
 

4.4.2.   Understanding the molecular mechanism of Mpk1 activation by 

intracellular acidification  

Our results from F. oxysporum and yeast suggest that the role of pHi in regulation of 

MAPK signaling is conserved among fungi. The molecular bases of this process are 

currently unknown. In an attempt to understand the mechanism of pHi-triggered 

Mpk1 activation, we approached the question from three experimental angles using 

the genetically tractable yeast model: 1) role of known upstream regulators of the 

Mpk1 cascade; 2) role of Hog1 cascade; 3) role of known MAPK phosphatases; 4) 
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selection of mutants affected in pHi-mediated MAPK signaling from known acid-

sensitive mutants.  

4.4.2.1.  Role of known upstream regulators of the Mpk1 cascade  

The yeast Slt2/Mpk1 MAPK pathway ensures cell wall integrity and is crucial for 

the response to environmental stresses such as low osmolarity, high temperature, or 

nutrient limitation. Stress signals are sensed by three plasma membrane receptors, 

Wsc1, Mid2 and Mtl1, depending on the nature of the stimulus. The signal is then 

transmitted to Rom2, a guanine exchange factor of the GTP-binding protein Rho1. 

Rho1 then activates Pkc1 which in turn activates the three-tiered MAPK module 

Bck1-Mkk1/Mkk2-Mpk1 [Figure 39] (Levin, 2011) 

In addition to the canonical CWI upstream pathway, recent studies had 

demonstrated that Mpk1 activation can also be promoted by the yeast AGC kinase 

orthologs Ypk1 and Ypk2 that control important cellular functions such as 

endocytosis and sphingolipids metabolism (deHart et al., 2002). The full activation 

of the redundant Ypk1/2 is complex and appears to require a multi-step process. 

First, sphingolipid depletion triggers Ypk1/2 localization at the PM (Luo et al., 

2008; Niles et al., 2012; Niles and Powers, 2012). Second, Ypk1/2 are 

phosphorylated by TORC2 at two different sites located at its C-terminal regulatory 

domain, possibility increasing its competence to be additionally phosphorylated 

(Niles et al 2012). Third, Pkh1/2 phosphorylate Ypk1/2 within the activation loop of 

their kinase domain in order to be fully activated (deHart et al., 2002; Niles et al., 

2012; Roelants et al., 2002). In the final, the activation of the Pkh-Ypk module 

leads to an induction of sphingolipids synthesis. The exact mechanism by which the 

Ypk1/2 modulate the CWI MAPK pathway is not still completely understood. 

Recently it was demonstrated that Ypk1 kinase regulates the Pkc1 activity through 

proper localization of Rom2 at the PM (Niles and Powers, 2014). More studies are 

still required to fully understand this process [Figure 39]. 
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Figure 39  – Schematic diagram of the CWI MAPK signaling pathway in S. 
cerevisiae. 
Cell wall stress conditions stimulate the CWI MAPK signaling pathway through the stress 
sensors located at the PM. The stress sensors Wsc1, Mid2 or Mtl1 sense cell wall perturbing 
conditions and transmit it to Rom2 that activates Rho1. Rho1 then activates Pkc1 which in turn 
activates the MAPK module Bck1-Mkk1/2-Mpk1. The redundant kinases Ypk1/2, which are 
activated by TORC2 and Pkh1/2, can also activate the CWI pathway through proper localization 
of Rom2 at the PM (Adapted from (Levin, 2011)).   
 

 

The finding that DES-triggered cytosolic acidification induces phosphorylation of 

Mpk1 prompted us to test the role of known upstream components in this response. 

As shown in [Figure 40], mutants lacking wsc1, mid2, mtl1 or rom2 showed an 

increase in Mpk1 phosphorylation and a decrease in Fus3 and Kss1phosphorylation 

after DES treatment, similar to that of the wild type strain. We conclude that these 

components are not required for pHi-mediated MAPK signaling. 
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Figure 40  – Upstream regulators Wsc1, Mid2, Mtl1 and Rom2 are not required for 
DES-triggered Mpk1 activation. 
(A) Exponentially growing cells of the S. cerevisiae ∆wsc1, ∆mid2, ∆mtl1and ∆rom2 strains 
were washed and resuspended in KSU buffer at pH 6.5 and incubated for 1 hour at 30ºC. At time 
0, 25 µM DES was added to the buffer. Protein extracts collected at time zero (-) and 20 minutes 
after (+) DES treatment were subjected to immunoblot analysis with anti-phospho-p44/42 
MAPK for pMpk1, pFus3 and pKss1 detection. Anti-G6PDH antibody was used as total extract 
loading control. (B) Graphs show the ratio of pMpk1, pFus3 or pKss1 band intensity normalized 
to G6PDH and expressed as fold response compared with control (time zero; -).  

 

Because Rho1 and Pkc1 are essential for cell survival, we used mutants carrying 

temperature-sensitive alleles to study their involvement in DES-triggered Mpk1 

activation. Since these mutants had been generated in a background different from 

BY4741, the respective wild type strains were also included in the experiment. 

After O.N. growth at permissive temperature (25°C), cells were shifted for one hour 

to restrictive temperature conditions (34°C) before treatment with 25 µM DES. The 

rho1-ts strain showed a reduced level of Mpk1 phosphorylation even before DES 

treatment, reflecting the crucial role of this GTP-binding protein in the CWI MAPK 

cascade activity [Figure 41]. Nevertheless, DES-triggered cytosolic acidification 

still induced a clear increase of Mpk1 phosphorylation in the rho1-ts strain, 

suggesting that this response is not mediated by Rho1. The pkc1-ts strain displayed 
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an even more drastic reduction of baseline Mpk1 phosphorylation than the rho1-ts 

strain, confirming that Pkc1 is essential even for basal Mpk1 activity. In contrast to 

the rho1-ts strain, no induction of Mpk1 phosphorylation upon DES treatment was 

detected in the pkc1-ts strain, even with high exposition times. Importantly, the 

respective wild type strains presented the same MAPK phosphorylation phenotype 

previously described for the BY4741 strain. 

 

Figure 41 – Pkc1, but not Rho1, is essential for DES-triggered Mpk1 activation. 
(A) Exponentially growing cells of the S. cerevisiae rho1-ts and pkc1-ts strains, and respective 
OHNY and SEY6211 wild type strains, were washed and resuspended in KSU buffer at pH 6.5 
and incubated for 1 hour at 34ºC. At time 0, 25 µM DES was added to the buffer. Protein 
extracts collected at time zero (-) and 20 minutes after (+) DES treatment were subjected to 
immunoblot analysis with anti-phospho-p44/42 MAPK for pMpk1, pFus3 and pKss1 detection. 
Anti-G6PDH antibody was used as total extract loading control. (B) Graphs show the ratio of 
pMpk1, pFus3 or pKss1 band intensity normalized to G6PDH and expressed as fold response 
compared with control (time zero; -).  

 

The finding that Pkc1, but not its canonical upstream component Rho1, is required 

for DES-triggered Mpk1 activation [Figure 42], prompted us to evaluate the role of 

the alternative Pkh-Ypk branch in this process. When single mutants were analyzed, 

we found that loss of Pkh1, Pkh2, Ypk1 or Ypk2 did not affect DES-triggered 
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induction of Mpk1 phosphorylation or Fus3 and Kss1 dephosphorylation [Figure 

42].  

 
Figure 42 – Single mutants in Pkh1/2 or Ypk1/2 are not affected in DES-triggered 
Mpk1 activation. 
(A) Exponentially growing cells of the S. cerevisiae ∆ypk1, ∆ ypk2, ∆ pkh1 and ∆pkh2 strains 
were washed and resuspended in KSU buffer at pH 6.5 and incubated for 1 hour at 30ºC. At time 
0, 25 µM DES was added to the buffer. Protein extracts collected at time zero (-) and 20 minutes 
after (+) DES treatment were subjected to immunoblot analysis with anti-phospho-p44/42 
MAPK for pMpk1, pFus3 and pKss1 detection. Anti-G6PDH antibody was used as total extract 
loading control. (B) Graphs show the ratio of pMpk1, pFus3 or pKss1 band intensity normalized 
to G6PDH and expressed as fold response compared with control (time zero; -).  

 
 

However, since Pkh1/2, as well as Ypk1/2 were previously shown to be functionally 

redundant, we checked the double mutants lacking both ypk1 and ypk2. Because 

these double mutants are inviable (indicating that the duplicated genes share an 

essential function), we again employed temperature-sensitive ypk1-ts/∆ypk2 strain. 

After O.N. growth at permissive temperature (25°C), cells were shifted for one hour 

to restrictive temperature conditions (34°C), before treatment with 25 µM DES. 

Interestingly, in contrast to the corresponding wild type strain the ypk1-ts/∆ypk2 

mutant failed to induce activation of Mpk1 upon DES treatment [Figure 43].  
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Figure 43 – Ypk1/Ypk2 have important but redundant roles in DES-triggered Mpk1 
activation. 
(A) Exponentially growing cells of the S. cerevisiae wild type YPH499 and ypk1-ts/∆ypk2 
mutant strains were washed and resuspended in KSU buffer at pH 6.5 and incubated for 1 hour 
at 34ºC. At time 0, 25 µM DES was added to the buffer. Protein extracts collected at time zero (-
) and 20 minutes after (+) DES treatment were subjected to immunoblot analysis with anti-
phospho-p44/42 MAPK for pMpk1, pFus3 and pKss1 detection. Anti-G6PDH antibody was 
used as total extract loading control. (B) Graphs show the ratio of pMpk1, pFus3 or pKss1 band 
intensity normalized to G6PDH and expressed as fold response compared with control (wild 
type untreated cells; -).  
 

Finally, we also monitored the phosphorylation response in mutants lacking either 

the MAPKKK Bck1 or the MAPK Mpk1 itself. As expected, Bck1 was essential for 

basal Mpk1 phosphorylation, but interestingly DES-triggered dephosphorylation of 

Fus3 and Kss1 was still functional in this mutant. Thus, Mpk1 phosphorylation is 

apparently not required for DES-triggered dephosphorylation of Fus3 and Kss1. 

Strikingly, in the ∆mpk1 mutant Fus3 and Kss1 were not dephosphorylated upon 

DES-treatment suggesting a phosphorylation-independent role of Mpk1 in this 

process [Figure 44]. 
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Figure 44 – Evidence for a phosphorylation-independent role of Mpk1 in DES-
triggered Fus3 and Kss1 dephosphorylation.  
(A) Exponentially growing cells of the S. cerevisiae ∆bck1 and ∆mpk1 strains were washed and 
resuspended in KSU buffer at pH 6.5 and incubated for 1 hour at 30ºC. At time 0, 25 µM DES 
was added to the buffer. Protein extracts collected at time zero (-) and 20 minutes after (+) DES 
treatment were subjected to immunoblot analysis with anti-phospho-p44/42 MAPK for pMpk1, 
pFus3 and pKss1 detection. Anti-G6PDH antibody was used as total extract loading control. (B) 
Graphs show the ratio of pMpk1, pFus3 or pKss1 band intensity normalized to G6PDH and 
expressed as fold response compared with control (time zero; -). 

 

4.4.2.2.  Role of the Hog1 cascade in DES-triggered Mpk1 activation 

The Hog1 MAPK cascade is crucial for fungal growth under hyperosmotic 

conditions and appears also to have a role in the low temperature response in yeast 

(Hohmann et al., 2007; Panadero et al., 2006). The Pbs2-Hog1 MAPK module can 

be activated by two upstream branches [Figure 45]. The first involves the redundant 

MAPKKKs Ssk2/Ssk22 and a two-component histidine kinase phospho-relay 

module comprised of Sln1, Ypd1, and Ssk1. The other branch involves the 

MAPKKK Ste11, which functions downstream of the membrane sensors Sho1 and 

Msb2 (Saito and Posas, 2012). 
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Figure 45 - Schematic Diagram of the hyperosmotic stress Hog1 MAPK signaling 
pathway in S. cerevisiae. 
The Pb2-Hog1 MAPK module can be activated by two different upstream branches. One 
involves the MAPKKK Ste11 which is activated by membrane sensors as Sho1 or Msb2. The 
other involves the redundant MAPKKKs Ssk2/Ssk22 and a two-component histidine kinase 
phospho-relay module comprised of Sln1, Ypd1 and Ssk1 (Adapted from (Saito and Posas, 
2012)). 

 

We previously found that Hog1 is also phosphorylated upon DES-triggered 

intracellular acidification, in parallel with Mpk1 (see Figure 37). Western blot 

analysis of selected deletion mutants in the Hog1 pathway revealed that the ∆sho1 

mutant displayed the same Hog1 phosphorylation response as the wild type, while 

the ∆ssk1 mutant failed to activate Hog1 upon DES treatment [Figure 46].  This 

suggests that Hog1 activation in response to intracellular acidification is mediated 

by the Sln1-Ssk1 branch, while the Sho1-Ste11 branch is dispensable for this 

process. As expected, we failed to detect any Hog1 phosphorylation signal in the 

∆pbs2 and ∆hog1 mutants. Interestingly, the Mpk1 phosphorylation levels before 

DES treatment appeared to be higher in the ∆ssk1, ∆pbs2 and ∆hog1 mutants 

compared to those observed in previous experiments in the wild type strain. 
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Furthermore, Mpk1 phosphorylation was not induced in these mutants after DES 

treatment. However, DES-triggered Fus3 and Kss1 dephosphorylation was not 

affected in any of the Hog1 pathway mutants. 

 

Figure 46 – Role of the Hog1 pathway in DES-mediated Mpk1 activation. 
(A) Exponentially growing cells of the S. cerevisiae ∆sho1, ∆ ssk1, ∆ pbs2 and ∆hog1 strains 
were washed and resuspended in KSU buffer at pH 6.5 and incubated for 1 hour at 30ºC. At time 
0, 25 µM DES was added to the buffer. Protein extracts collected at time zero (-) and 20 minutes 
after (+) DES treatment were subjected to immunoblot analysis with anti-phospho-p44/42 
MAPK or anti-phosho-p38 MAPK antibodies, for pMpk1, pFus3 and pKss1, or pHog1 
detection, respectively. Anti-G6PDH antibody was used as total extract loading control. (B) 
Graphs show the ratio of pMpk1, pFus3, pKss1 or pHog1 band intensity normalized to G6PDH 
and expressed as fold response compared with control (time zero; -).  
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4.4.2.3.  Role of known MAPK phosphatases in DES-triggered Mpk1 activation 

Proper activation of the MAPK Mpk1 is crucial for maintenance of cell wall 

integrity in different environmental conditions. However, hyperactivation of this 

MAPK cascade, as well as of any other MAPK cascade, can be lethal for the cell. 

Therefore, cells have developed mechanisms for controlling the magnitude and 

duration of MAPK activation. Phosphorylation of both threonine and tyrosine 

within the activation loop is required for MAPK activity, and dephosphorylation of 

either residue is sufficient for MAPK inactivation. Protein phosphatases are able to 

downregulate MAPK signaling by removing the phosphate from the tyrosine, 

threonine or from both residues. At present, three classes of protein phosphatases 

have been described: protein tyrosine phosphatases (PTPs), serine/threonine protein 

phosphatases and dual-specificity protein phosphatases (DSPs) (Martín et al., 2005) 

[Figure 47]. 

 

Figure 47 – Schematic diagram of the known MAPK phosphatases inhibiting MAPK 
signaling in S. cerevisiae. 
The specificity of the protein tyrosine phosphatases (PTPs) Ptp1, Ptp2 and Ptp3, as well as of the 
dual-specificity protein phosphatase (DSPs) Sdp1 and Msg5 is indicated in the figure (Adapted 
from (Martín et al., 2005)). 
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Because protein phosphatases act as negative regulators of MAPK phosphorylation, 

we reasoned that they might contribute to pHi-mediated regulation of MAPK 

activity. We thus decided to explore the role of known MAPK phosphatases, 

including the PTPs Ptp1, Ptp2 and Ptp3, as well as the DSPs Spd1 and Msg5 

[Figure 47], using yeast deletion mutants. We found that DES-triggered induction 

of Mpk1 was still functional in the ∆ptp1, ∆sdp1, ∆ptp2 and ∆ptp3 mutants [Figure 

48]. Interestingly, the ∆ptp2 mutant strain appeared to have a stronger increase of 

Mpk1 phosphorylation than previously observed in the wild type strain. Strikingly, 

the ∆msg5 mutant showed no apparent induction of Mpk1 phosphorylation upon 

DES-induced intracellular acidification. Moreover, the baseline phosphorylation 

level of Mpk1 before DES treatment was increased in the ∆msg5 mutant.  

 

Figure 48 – The dual-specificity protein phosphatase Msg5 regulates pH-triggered 
Mpk1 phosphorylation in yeast. 
(A) Exponentially growing cells of the S. cerevisiae ∆ptp1, ∆ sdp1, ∆ ptp2, ∆ ptp3 and ∆msg5 
strains were washed and resuspended in KSU buffer at pH 6.5 and incubated for 1 hour at 30ºC. 
At time 0, 25 µM DES was added to the buffer. Protein extracts collected at time zero (-) and 20 
minutes after (+) DES treatment were subjected to immunoblot analysis with anti-phospho-
p44/42 MAPK for pMpk1, pFus3 and pKss1 detection. Anti-G6PDH antibody was used as total 
extract loading control. (B) Graphs show the ratio of pMpk1, pFus3 or pKss1 band intensity 
normalized to G6PDH and expressed as fold response compared with control (time zero; -). 
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4.4.2.3.1.   Msg5 is a key regulator of Mpk1 activity 

To further investigate the role of Msg5 in pHi-mediated regulation of Mpk1 activity, 

a time-course analysis of Mpk1 phosphorylation was performed in the wild type and 

∆msg5 mutant strains after DES-induced intracellular acidification. In the wild type 

strain, as previously observed, Mpk1 became rapidly phosphorylated while 

Fus3/Kss1 became dephosphorylated [Figure 49]. In the ∆msg5 mutant, the Mpk1 

phosphorylation level at time 0 was three times higher than in the wild type, but still 

increased after DES-triggered intracellular acidification, although less than in the 

wild type strain. Fus3 and Kss1 MAPKs dephosphorylation was apparently not 

affected by the loss of Msg5 [Figure 49].  

 

Figure 49 – Msg5 inhibits Mpk1 phosphorylation in no-treated yeast cells. 
(A) Exponentially growing cells of the S. cerevisiae wild type and ∆msg5 strains were washed 
and resuspended in KSU buffer at pH 6.5 and incubated for 1 hour at 30ºC. At time 0, 25 µM 
DES was added to the buffer. Protein extracts collected before (time zero) and 1, 5 or 20 minutes 
after DES treatment were subjected to immunoblot analysis with anti-phospho-p44/42 MAPK 
for pMpk1, pFus3 and pKss1 detection. Anti-G6PDH antibody was used as total extract loading 
control. (B) Graphs show the ratio of pMpk1, pFus3 or pKss1 band intensity normalized to 
G6PDH and expressed as fold response compared with wild type at time zero. 
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So far, our data suggest that Msg5 is a major regulator of Mpk1 activity, and that it 

limits the phosphorylation of this MAPK to baseline level at time 0. But does Msg5 

have a role in the rapid activation of Mpk1 upon DES-triggered intracellular 

acidification? One hypothetical mechanism for such a role would be a reduced 

interaction between Msg5 and Mpk1, which should prevent dephosphorylation of 

the MAPK and therefore result in its activation. Reduced Msg5-Mpk1 interaction 

could occur either as a consequence of reduced affinity of Msg5 or due to higher 

instability and rapid decrease of Msg5 protein levels in the cell. To test the latter 

hypothesis, we monitored the abundance of Msg5 after DES treatment in a yeast 

strain carrying a msg5-Myc6 allele integrated into the msg5 locus (Flández et al., 

2004). Detection of Myc-tagged protein was carried out by western blot with a 

commercial anti-c-Myc antibody. These experiments revealed that the level of 

Msg5 decreased by approximately 40%, twenty minutes after DES-induced 

intracellular acidification [Figure 50]. This result provides a first evidence 

suggesting that intracellular acidification triggers a decrease in Msg5 protein levels, 

which should result in higher levels of phosphorylated Mpk1 protein. 

 

Figure 50 – The level of the Msg5 phosphatase is affected by intracellular 
acidification. 
(A) Time-course analysis of Msg5 level in the YMF1 yeast strain carrying a c-Myc tagged Msg5 
protein. Exponentially growing cells were washed and resuspended in KSU buffer at pH 6.5 and 
incubated for 1 hour at 30ºC. At time 0, 25 µM DES was added to the buffer. Protein extracts 
collected before (time zero) and 5 or 20 minutes after DES treatment were subjected to 
immunoblot analysis with anti-phospho-p44/42 MAPK or anti-c-Myc antibodies for pMpk1, 
pFus3 and pKss1 or c-Myc detection, respectively. Anti-G6PDH antibody was used as total 
extract loading control. (B) Graphs show the ratio of c-Myc band intensity normalized to 
G6PDH and expressed as fold response compared with control (time zero). Data shown 
represent the mean and standard deviations of three independent replicates. 
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4.4.2.4.  Identification of fungal genes regulating pHi-triggered Mpk1 activation 

4.4.2.4.1.   Design of a general strategy to identify new regulators of DES-

triggered Mpk1 activation using yeast deletion mutants 

Our results obtained so far established that pHi acts as a key regulator of MAPK 

phosphorylation, both in F. oxysporum and in yeast. Moreover, the finding that the 

Mpk1 MAPK cascade is activated in response to extra- and intracellular 

acidification suggests that this pathway must be important for cell survival at acidic 

conditions. In line with this idea, previous screens for acid-sensitive deletion 

mutants in yeast identified Mpk1 and several upstream regulators of the CWI 

MAPK cascade (Kawahata et al., 2006; Schüller et al., 2004). We thus 

hypothesized that at least some of the acid-sensitive mutants identified in these 

previous studies should also be affected in pHi-mediated MAPK regulation. If this 

is the case, the available list of acid-sensitive mutants could be used as a starting 

point for the identification of new components regulating pHi-mediated Mpk1 

activation in fungi, using our well-established western blot protocol after DES-

treatment.  

Based on this idea, we designed the following general strategy: 

1) Select a subset of the acid-sensitive yeast mutants identified in the studies by 

(Kawahata et al., 2006; Schüller et al., 2004) from the EUROSCARF haploid 

knockout strain collection. A preselection was necessary, because the high 

investment of time and cost associated with the western blot protocol would only 

allow us to screen approximately one hundred candidate mutants.  

2) Analyze the selected subset of acid-sensitive mutants for DES-triggered 

phosphorylation of Mpk1 in comparison with the wild type strain, using our 

established western blot protocol and two time-points, 0 and 20 min (T0, T20). 

3) Identify the mutants affected in the phosphorylation response and classify the 

proteins encoded by the deleted genes according to their cellular functions. 
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4) Subject the most interesting candidates to additional analysis, including 

phosphorylation of other MAPKs or presence of potential orthologs in Fusarium 

oxysporum.  

4.4.2.4.2.   Criteria for the preselection of a subset of the acid-sensitive yeast 

mutants for analysis of DES-triggered Mpk1 phosphorylation 

The following criteria were established to preselect a subset of acid-sensitive 

mutants from the EUROSCARF haploid knockout strain collection. First, only HCl-

sensitive mutants (as opposed to mutants sensitive to other acids such as acetic or 

sorbic acid) were selected, since HCl had been used consistently for acidification in 

our experiments. Second, after clustering the mutants into functional categories 

according to Gene Ontology in the Saccharomyces Genome Database (SGD), all 

downstream components of the Mpk1 cascade which are mostly associated with 

gene expression or translational control, were excluded. Application of these two 

selection criteria yielded a total of 106 haploid mutant strains to be submitted to 

analysis of DES-triggered Mpk1 activation [Table 11].  

 
Table 11 – List of acid-sensitive yeast mutant strains preselected for analysis in this study, 
clustered into functional categories. 
GENE ORF   GENE ORF  

METABOLISM   
Amino acid metabolism 
ARO1 YDR127W  HOM3 YER052C 
ARO2 YGL148W  ILV1 YER086W 
FUR4 YBR021C  THR1 YHR025W 
GLY1 YEL046C  TYR1 YBR166C 
HOM2 YDR158W    
Lipid, fatty acid and isoprenoid metabolism 
ARG82 YDR173C  ERG6 YML008C 
CSG2 YBR036C  KCS1 YDR017C 
ERG24 YNL280C  SAC1 YKL212C 
ERG28 YER044C  SKM1 YOL113W 
ERG3 YLR056W  SUR1 YPLL057C 
ERG4 YGL012W    
CELLULAR TRAFFICKING   
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BST1 YFL025C  SNF7 YLR025W 
CLC1 YGR167W  TLG2 YOL018C 
CSF1 YLR087C  VPS1 YKR001C 
DID4 YKL002W  VPS15 YBR097W 
DRS2 YAL026C  VPS17 YOR132W 
GYP1 YOR070C  VPS20 YMR077C 
KRE11 YGR166W  VPS24 YKL041W 
PEP3 YLR148W  VPS25 YJR102C 
PEP5 YMR231W  VPS29 YHR012W 
PEP7 YDR323C  VPS45 YGL095C 
PEP8 YJL053W  VPS5 YOR069W 
RMD7 YER083C  VPS51 YKR020W 
SLA2 YBL007C  VPS9 YML097C 
REGULATION OF INTERACTION WITH CELLULAR ENVIRONMENT 
Ion homeostasis  
CCH1 YGR217W  VMA16 YHR026W 
CUP5 YEL027W  VMA2 YBR127C 
ECM7 YLR443W  VMA21 YGR105W 
ICS3 YJL077C  VMA4 YOR332W 
MID1 YNL291C  VMA5 YKL080W 
TRK1 YJL129C  VMA7 YGR020C 
VMA1 YDL185W  VMA8 YEL051W 
VMA11 YPL234C  VPH2 YKL119C 
VMA13 YPR036W  VPS3 YDR495C 
Cellular sensing and response / signal transduction pathways  
ASC1 YMR116C  RGD1 YBR260C 
CCS1 YMR038C  SCP160 YJL080C 
CNB1 YKL190W  SOD1 YJR104C 
NBP2 YDR162C    
CONTROL OF CELLULAR ORGANIZATION 
Cell wall   
CWH41 YGL027C  KRE1 YGL203C 
DCW1 YKL046C  KRE6 YPR159W 
FLC1 YPL221W  ROT2 YBR229C 
GAS1 YMR307W  SMI1 YGR229C 
Cytoskeleton and cell polarity 
BEM2 YER155C  SHE4 YOR035C 
CDC10 YCR002C  SPC72 YAL047C 
RBL2 YOR265W  SRV2 YNL138W 
PROTEIN FATE (FOLDING, MODIFICATION AND FATE) 
ALG5 YPL227C  MOT2 YER068W 
ALG6 YOR002W  OCH1 YGL038C 
ALG8 YOR067C  OST4 YDL232W 
DIE2 YGR227W  PER1 YCR044C 
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GUP1 YGL084C  RHK1 YBL082C 
CELL CYCLE 
HSL1 YKL101W    
SIT4 YDL047W    
GENE EXPRESSION 
BUD32 YGR262C    
SPT3 YDR392W    
TRANSLATION REGULATION 
MTQ2 YDR140W    
RNY1 YPL123C    
SSD1 YDR293C    
OTHERS 
ATG14 YBR127C    
HUR1 YGL168W    
KEX1 YGL203C    
VAM10 YOR068C    

 

4.4.2.4.3.   Analysis of Mpk1 activation in the pre-selected acid-sensitive 

mutants 

Mutant strains were grown until an OD640 of 0.9, washed and incubated in KSU 

buffer medium at pH 6.5, for one hour. Afterwards, samples were collected before 

(T0) and 20 minutes (T20) after DES addition to the buffer. The amount of protein 

was determined in each sample using the Bradford assay and western blot analysis 

performed in all selected mutants as described above [Figure 51].  
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Figure 51 – Identification of acid-sensitive mutants involved on DES-triggered Mpk1 
activation. 
Exponentially growing cells of the S. cerevisiae acid-sensitive mutant strains were washed and 
resuspended in KSU buffer at pH 6.5 and incubated for 1 hour at 30ºC. At time 0, 25 µM DES was 
added to the buffer. Protein extracts collected at time zero (-) and 20 minutes after (+) DES 
treatment were subjected to immunoblot analysis with anti-phospho-p44/42 MAPK for pMpk1, 
pFus3 and pKss1 detection. 
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4.4.2.4.4.   Criteria for the identification of candidate regulators of DES-

triggered Mpk1 phosphorylation 

To identify mutants affected in DES-triggered Mpk1 activation two selection 

criteria were established, both based on phosphorylation levels of Mpk1 before (T0) 

and 20 min after DES treatment (T20). In previous experiments with the wild type 

strain, Mpk1 phosphorylation level at T0 was 14543±4980 (arbitrary units provided 

by the ImageJ software) while those at T20 was 32111±12060. This corresponds to 

a T20/T0 ratio of 2.19±0.23, or an approximately two-fold induction of Mpk1 

phosphorylation. We thus quantified the intensity of Mpk1 phosphorylation in the 

analyzed mutant strains at T0 and T20, and calculated the T20/T0 ratio. First, 

mutants with a ratio <1.25 were considered to present no significant increase in 

Mpk1 phosphorylation. Second, mutants with an intensity of at T0 >40000 (twice 

the wild type at T0) were considered to exhibit constitutive hyperphosphorylation of 

Mpk1. After applying these two criteria, we identified three different categories of 

mutants: 

1) low initial phosphorylation levels, DES-triggered induction (similar to the wild 

type): T0<40000, T20/T0>1.25. 

2) low initial phosphorylation levels, no DES-triggered induction: T0<40000, 

T20/T0<1.25. 

3) constitutive hyperphosphorylation, no DES-triggered induction: T0>40000, 

T20/T0<1.25. 

From all acid-sensitive yeast mutants analyzed (106 in the total), we identified 39 

mutants in the category 1 presenting an induction similar to the wild type. From the 

mutants exhibiting no DES-triggered induction of Mpk1, 59 mutants showed a 

similar phosphorylation at T0 to the wild type (category 2), while 8 mutant strains 

showed constitutive hyperphosphorylation at T0 (category 3). An example of 

mutant exhibiting the features of each category is showed in [Figure 52].  
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Figure 52 - Result of the analysis of 106 pre-selected acid-sensitive mutants for DES-
triggered Mpk1 phosphorylation. 
Western blotting analysis was performed in 106 haploid mutant strains of S. cerevisiae. 
Exponentially growing cells were washed and resuspended in KSU buffer at pH 6.5 and 
incubated for 1 hour at 30ºC. At time 0, 25 µM DES was added to the buffer. Protein extracts 
collected at time zero (-) and 20 minutes after (+) DES treatment were subjected to immunoblot 
analysis with anti-phospho-p44/42 MAPK for pMpk1 detection. Each mutant was grouped in 
Category 1, 2 or 3, accordingly with the level of phosphorylation at T0 and ratio T20/T0. 
Mutants in Category 1 presented an induction similar to the wild type strain. Category 2 and 3 
include mutants in which no induction of Mpk1 was observed. Category 3 differ from Category 
2 by presenting mutants with constitutive hyperphosphorylation of Mpk1 at T0. An example for 
each category is exhibited. 

 
 

Mutants affected in DES-triggered Mpk1 activation (T20/T0 <1.25; Category 2 and 

3) were classified into functional categories according to their biological function 

[Table 12]. In addition, the fold change of Mpk1 phosphorylation (T20/T0), as well 

as the absolute Mpk1 phosphorylation level at T0 (Mpk1-P T0) are indicated in the 

table.  
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Table 12 - Classification of mutants impaired in DES-triggered Mpk1 phosphorylation 
according to biological function. Mutants with Mpk1-P level T0>40000 are in bold 

GENE T20/T0 Mpk1-P 
level T0 CELLULAR FUNCTION 

METABOLISM  
Amino acid metabolism 

ARO2 0,71 20004 
Bifunctional chorismate synthase and flavin reductase; 
catalyzes the conversion of 5-enolpyruvylshikimate 3-
phosphate (EPSP) to chorismate 

Lipid, fatty acid and isoprenoid metabolism 

CSG2 1,13 21382 
ER membrane protein; required for mannosylation of 
inositolphosphorylceramide and for growth at high calcium 
concentrations 

ERG28 0,71 27527 
ER membrane protein; may facilitate interactions between 
the Erg26 dehydrogenase and the Erg27 3-ketoreductase 

ERG4 0,62 23309 C-24(28) sterol reductase; catalyzes the final step in 
ergosterol biosynthesis 

SAC1 0,57 24200 

Phosphatidylinositol phosphate (PtdInsP) phosphatase 
regulates PtdIns[4]P hydrolysis; involved in protein 
trafficking and processing, secretion, and cell wall 
maintenance; regulates sphingolipid biosynthesis (through 
PtdIns(4)P metabolism) 

SKM1 0,89 26950 
Predicted serine/threonine kinase similar to Ste20 and Cla4; 
involved in negative regulation of sterol import  

SUR1 1,22 12536 
Mannosylinositol phosphorylceramide (MIPC) synthase 
catalytic subunit; forms a complex with regulatory subunit 
Csg2; function in sphingolipid biosynthesis  

CELLULAR TRAFFICKING  

BST1 0,80 45800 

GPI inositol deacylase of the ER; negatively regulates COPII 
vesicle formation; prevents production of vesicles with 
defective subunits; required for proper discrimination 
between resident ER proteins and Golgi-bound cargo 
molecules 

CLC1 0,74 19909 
Structural light chain protein component of clathrin vesicle 
coats; required for proper trimerization of clathrin heavy 
chains; positively regulates endocytosis 

CSF1 0,87 30316 Protein plays a role in the maturation of secretory proteins 

DID4 0,77 26729 

Class E Vps protein of the ESCRT-III complex; required for 
sorting of integral membrane proteins into lumenal vesicles 
of multivesicular bodies (MVB), and for delivery of newly 
synthesized vacuolar enzymes to the vacuole, involved in 
endocytosis 

DRS2 0,91 28881 
Subunit of the Cdc50-Drs2 aminophospholipid flippase 
complex; maintains membrane lipid asymmetry in post-
Golgi secretory vesicles; contributes to clathrin-coated 
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vesicle formation, endocytosis, protein trafficking between 
the Golgi and endosomal system and the cellular response to 
mating pheromone 

KRE11 0,83 17685 

Component of transport protein particle (TRAPP) complex 
II; TRAPPII is a multimeric guanine nucleotide-exchange 
factor for the GTPase Ypt1, regulating intra-Golgi and 
endosome-Golgi traffic; role in cell wall beta-glucan 
biosynthesis  

PEP3 0,86 34646 

Component of CORVET membrane tethering complex; 
vacuolar peripheral membrane protein that promotes 
vesicular fusion reactions in conjunction with SNARE 
proteins, required for vacuolar biogenesis 

PEP5 0,90 26397 

Histone E3 ligase, component of CORVET membrane 
tethering complex; peripheral vacuolar membrane protein 
required for protein trafficking and vacuole biogenesis; 
interacts with Pep7; involved in ubiquitination and 
degradation of excess histones 

PEP7 0,47 40032 
Adaptor protein involved in vesicle-mediated vacuolar 
protein sorting; ensures high-fidelity vesicle docking and 
fusion, essential for targeting vesicles to the endosome 

PEP8 0,88 26037 

Vacuolar protein that forms part of the multimeric 
membrane-associated retromer complex involved in vacuolar 
protein sorting along with Vps35, Vps29, Vps17, and Vps5; 
essential for endosome-to-Golgi retrograde protein transport 

RMD7 1,09 21019 
Subunit of the GET complex; involved in insertion of 
proteins into the ER membrane 

SLA2 0,41 33212 
Adaptor protein that links actin to clathrin and endocytosis; 
involved in membrane cytoskeleton assembly and cell 
polarization 

SNF7 0,72 15191 
Subunit of the ESCRT-III complex; involved in the sorting 
of transmembrane proteins into the MVB pathway; recruited 
from the cytoplasm to endosomal membranes 

VPS1 0,68 30940 
Dynamin-like GTPase required for vacuolar sorting; 
involved in cytoskeleton organization, endocytosis, late 
Golgi-retention of some proteins 

VPS15 0,75 44558 

Serine/threonine protein kinase involved in vacuolar protein 
sorting; function as a membrane-associated complex with 
Vps34; active form recruits Vps34 to the Golgi; interacts 
with the GDP-bound form of Gpa1 

VPS20 1,03 28059 
Myristoylated subunit of the ESCRT-III complex; 
cytoplasmic protein recruited to endosomal membranes 

VPS24 0,72 17410 
Subunit of the ESCRT-III complex; forms a subcomplex 
with Did4; involved in the sorting of transmembrane proteins 
into the multivesicular body (MVB) pathway 
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VPS25 0,84 13696 
Component of the ESCRT-II complex; ESCRT-II is involved 
in ubiquitin-dependent sorting of proteins into the endosome 

VPS29 0,49 28070 
Subunit of the membrane-associated retromer complex; 
essential for endosome-to-Golgi retrograde transport; forms a 
subcomplex with Vps35 and Vps26 

VPS45 0,91 49232 
Protein of the Sec1/Munc-18 family; required for the 
function of Pep12 and Tlg2; essential for fusion of Golgi-
derived vesicles with the prevacuolar compartment 

VPS5 0,28 32077 
Component of prevacuolar/late endosomal compartment 
back to late Golgi; forms a retromer subcomplex with Vps17 

VPS51 1,20 16358 
One of four components of the GARP (Golgi-associated 
retrograde protein) complex, required for the recycling of 
proteins from endosomes to the late Golgi 

VPS9 0,48 23066 

Guanine nucleotide exchange factor (GEF) and ubiquitin 
receptor; involved in Golgi-endosome trafficking and sorting 
through the MVB; required for localization of the CORVET 
complex to endosomes 

REGULATION OF INTERACTION WITH CELLULAR ENVIRONMENT  
Ion homeostasis 

CUP5 0,76 9163 
Proteolipid subunit c of the V0 domain of V-ATPase; 
required for vacuolar acidification and important for copper 
and iron metal ion homeostasis  

ECM7 1,16 13197 
Putative integral membrane protein with a role in calcium 
uptake 

ICS3 0,99 24781 
Protein with a role in copper homeostasis; possible role in 
vacuolar sorting and processing of secretory proteins 

TRK1 0,81 7045 Component of the Trk1-Trk2 potassium transport system 

VMA1 1,13 25577 
Subunit A of the V1 peripheral membrane domain of V-
ATPase 

VMA11 0,91 11355 V-ATPase V0 domain subunit c’ 

VMA13 0,47 10864 
Subunit H of the V1 peripheral membrane domain of V-
ATPase 

VMA16 0,34 14419 Subunit c’’ of the V-ATPase V0 domain  

VMA2 1,16 14085 
Subunit B of V1 peripheral membrane domain of the V-
ATPase 

VMA21 1,08 10978 

Integral membrane protein required for V-ATPase function; 
not an actual component of the V-ATPase; functions in the 
assembly of the V-ATPase 

VMA4 0,86 18409 Subunit E of the V1 domain of the V-ATPase 

VMA5 0,83 19199 
Subunit C of the V1 peripheral membrane domain of V-
ATPase 

VMA7 1,19 16480 
Subunit F of the V1 peripheral membrane domain of V-
ATPase 
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VMA8 0,58 6727 
Subunit D of the V1 peripheral membrane domain of V-
ATPase 

VPS3 1,24 24118 
Component of CORVET complex; required for the sorting 
and processing of soluble vacuolar proteins, and assembly of 
the V-ATPase 

Cellular sensing and response / signal transduction pathways 

ASC1 0,39 28257 

G-protein beta subunit and guanine dissociation inhibitor for 
Gpa2; core component of the small (40S) ribosomal subunit; 
required to prevent frameshifting at ribosomes stalled at 
repeated CGA codons; represses Gcn4 in the absence of 
amino acid starvation 

CNB1 0,53 37201 
Regulatory subunit of calcineurin, a Ca2+/calmodulin-
regulated type 2B protein phosphatase that regulates the 
stress-response transcription factor Crz1 

NBP2 0,88 46603 

Protein involved in the HOG pathway; negatively regulates 
Hog1 by recruitment of phosphatase Ptc1 to the Pbs2p-Hog1 
complex; interacts with Bck1 and down regulates the CWI 
pathway 

SCP160 0,65 30448 

Essential RNA-binding G protein effector of mating response 
pathway; ligand-activated RNA-binding protein that delivers 
RNAs involved in polarization and perpetualizing mating 
signal to shmoo tip during pheromone signaling; Scp160p-
mediated RNA trafficking essential for chemotropism and 
successful mating 

SOD1 0,47 31083 
Cytosolic copper-zinc superoxide dismutase, that detoxifies 
superoxide 

CONTROL OF CELLULAR ORGANIZATION  
Cell wall 

CWH41 0,90 24428 
Processing alpha glucosidase I; ER type II integral 
membrane N-glycoprotein involved in assembly of cell wall 
beta 1,6 glucan and asparagine-linked protein glycosylation. 

DCW1 0,72 16836 
Putative mannosidase; GPI-anchored membrane protein 
required for cell wall biosynthesis in bud formation. 

GAS1 1,15 45247 Beta-1,3-glucanosyltransferase; required for cell wall 
assembly; localizes to cell surface via a GPI anchor 

ROT2 0,88 9738 
Glucosidase II catalytic subunit; required to trim the final 
glucose in N-linked glycans; required for normal cell wall 
synthesis 

SMI1 1,04 23853 
Protein involved in the regulation of cell wall synthesis; 
proposed to be involved in coordinating cell cycle 
progression with cell wall integrity 

Cytoskeleton and cell polarity 

BEM2 0,83 23010 
Rho GTPase activating protein (RhoGAP); involved in the 
control of cytoskeleton organization and cellular 
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morphogenesis 

SHE4 0,72 44701 
Binds to myosin motor domains to regulate myosin function; 
involved in endocytosis and polarization of the actin 
cytoskeleton 

SPC72 1,12 21275 

Gamma-tubulin small complex (gamma-TuSC) receptor; 
recruits the gamma-TuSC complex to the cytoplasmic side of 
the Spindle pole body (SPB); involved in astral microtubule 
formation and stabilization 

SRV2 0,67 28372 

CAP (cyclase-associated protein); N-terminus binds 
adenylate cyclase and facilitates activation by RAS; N-
terminus forms novel hexameric star-shaped shuriken 
structures that directly catalyze cofilin-mediated severing of 
actin filaments; C-terminus binds and recycles cofilin bound, 
ADP-actin monomers, facilitating regulation of actin 
dynamics and cell morphogenesis 

PROTEIN FATE (FOLDING, MODIFICATION AND FATE)  

ALG5 1,12 26235 
UDP-glucose:dolichyl-phosphate glucosyltransferase; 
involved in asparagine-linked glycosylation in the ER 

DIE2 0,46 3657 

Dolichyl-phosphoglucose-dependent alpha-1,2-
glucosyltransferase; functions in pathway that synthesizes 
the dolichol-linked oligosaccharide precursor for N-linked 
protein glycosylation in the ER 

GUP1 0,96 50805 

Plasma membrane protein involved in remodeling GPI 
anchors; member of the MBOAT family of putative 
membrane-bound O-acyltransferases; role in misfolded 
protein quality control 

PER1 0,41 23652 
Protein of the ER required for GPI-phospholipase A2 activity 
that remodels the GPI anchor as a prerequisite for association 
of GPI-anchored proteins with lipid rafts 

CELL CYCLE  

HSL1 0,77 21880 
Septin-binding kinase that localizes to the bud neck septin 
ring and regulates the morphogenesis checkpoint 

GENE EXPRESSION  

BUD32 0,91 19292 

Protein kinase; component of the EKC/KEOPS complex with 
Kae1, Cgi121, Pcc1, and Gon7; EKC/KEOPS complex is 
required for t6A tRNA modification and telomeric TG1-3 
recombination; may have role in transcription 

OTHERS  

KEX1 0,99 22204 
Cell death protease essential for hypochlorite-induced 
apoptosis; involved in the processing of killer toxin and 
alpha factor precursor 

ATG14 0,94 16647 
Autophagy-specific subunit of phosphatidylinositol 3-kinase 
complex I; Atg14 targets complex I to the phagophore 
assembly site (PAS) 
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The classification into functional categories allowed us to gain an understanding of 

the main cellular functions involved in pHi-mediated Mpk1 activation. It is 

important to note, however, that the representation of the functional categories may 

partly reflect the differential abundance in the pre-selected acid-sensitive mutants in 

[Table 11]. To account for this, the number of mutants with loss of DES-triggered 

Mpk1 phosphorylation (Mpk1 phosphorylation level at T0<40000 and 

T20/T0<1.25; Category 2 in the Figure 52) in a given functional category was 

considered as a function of the total number of mutants analyzed for this category 

[Figure 53A]. Therefore, the most relevant cellular functions for pHi-triggered 

Mpk1 activation were identified [Figure 53B]. The biological processes “Cellular 

Trafficking”, “Ion homeostasis”, “Cellular sensing and response” and “Cell Wall” 

were particularly represented, since >50% of the mutants tested in these categories 

were impaired in DES-triggered Mpk1 activation. The “Cellular Trafficking” 

category contains a significant number of proteins with a role in endocytosis, 

sorting into multivesicular bodies (MVB) and vacuole sorting for protein 

degradation, as well as, in endosome-to-Golgi retrograde transport for recycling. 

Importantly, all tested mutants with a function in V-ATPase activity (classified in 

the “Ion homeostasis” category) were affected in pHi-mediated Mpk1 activation. 

Copper and potassium cellular homeostasis also appears to be important for this 

process, while only one of the mutants with a role in calcium uptake, ∆ecm7, was 

affected in Mpk1 phosphorylation. The “Cellular sensing and response” category 

encompassed proteins with different functions including detoxification of 

superoxide (Sod1) or effectors of the mating response pathway, among others 

[Table 12]. In addition, other categories such as “Lipid, fatty acid and isoprenoid 

metabolism” and “Cytoskeleton and cell polarity” also contained a substantial 

number of genes whose deletion abrogated Mpk1 activation. By contrast, the 

categories “Amino acid metabolism” or “Protein fate” were apparently not relevant 

for this process, since only a low number of the mutants analyzed were affected in 

Mpk1 phosphorylation [Figure 53A].  
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Figure 53 – Most represented biological functions among the identified mutants 
affected in pHi-mediated Mpk1 activation. 
(A) Representation of the number of mutants impaired in DES-triggered Mpk1 activation (Mpk1 
phosphorylation level at T0<40000 and T20/T0<1.25; Category 2 in the Figure 52) among the 
total number of mutants analyzed in each category. (B) Schematic representation of the most 
relevant biological functions, with > 50% of the mutants analyzed with impaired activation of 
Mpk1. Abbreviations: Ion Homeost. = Ion Homeostasis; Lipid Metab. = Lipid, fatty acid and 
isoprenoid metabolism; Cytoskel. = Cytoskeleton and Cell Polarity. 

 

Among the categories of genes whose deletion resulted in constitutive 

hyperphosphorylation of Mpk1 at T0, “Cellular Trafficking” was the most 

representative, containing half (4 of 8) of the identified mutants. The presence of 

mutants in bst1 and pep7, which regulate vesicle production and docking/fusion, 

respectively, suggest that endocytosis may have a role in preventing inappropriate 

activation of the Mpk1 signaling cascade [Table 12].  
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4.4.2.4.5.    Identification of common pHi-mediated activators of the Mpk1 and 

Hog1 MAPKs 

We had previously found that DES-induced intracellular acidification triggers 

activation of both Mpk1 and Hog1 (see Figure 37). To further investigate the 

mechanism of pHi-mediated Hog1 activation, we first asked whether the Mpk1 

cascade could function upstream of Hog1. However, we observed that ∆mpk1, 

∆bck1 and ∆rom2 mutants exhibited a similar level of Hog1 phosphorylation as the 

wild type strain, suggesting that the CWI pathway is not required for DES-triggered 

Hog1 activation [Figure 54, first panel]. We next tested the different phosphatase 

mutants and found that only Sdp1 appeared to be involved in Hog1 activation 

[Figure 54, second panel]. To test whether the most relevant functional categories 

involved in pHi-mediated Mpk1 activation are also required for Hog1 activation, 

representative mutants were analyzed for DES-triggered Hog1 activation [Figure 

54, third panel]. The V-ATPase function appeared to be dispensable for Hog1 

activation, while the ∆trk1, both in the “Ion homeostasis” category, showed no 

induction of Hog1 activation. Interestingly, the lack of Hog1 activation in the ∆snf7 

and ∆vps24 mutants, both in the “Cellular Trafficking” category, suggests that the 

ESCRT-III complex, which mediates the sorting of transmembrane proteins to the 

MVB pathway, is also important for Hog1 activation. Moreover, the results 

obtained with the ∆sod1, ∆die2 and ∆hsl1 mutants point towards a role of oxidative 

stress response, N-linked protein glycosylation and cell cycle control, respectively, 

in Hog1 activation. Interestingly, the two negative regulators of Mpk1 

phosphorylation tested (mutants from the Category 3 in the Figure 52; Mpk1 

phosphorylation level at T0>40000 and T20/T0<1.25), ∆bst1 and ∆gup1 mutants, 

did not show an increased baseline Hog1 phosphorylation. 
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Figure 54 – Analysis of DES-triggered Hog1 phosphorylation in representative 
mutants of the CWI pathway, MAPK phosphatases and acid-sensitive mutants with 
loss of DES-triggered Mpk1 activation. 
Western blotting analysis in the indicated S. cerevisiae strains. (A) Exponentially growing cells 
were washed and resuspended in KSU buffer at pH 6.5, and incubated for 1 hour at 30ºC. At 
time 0, 25 µM DES was added to the buffer. Protein extracts collected at time zero (-) and 20 
minutes after (+) DES treatment were subjected to immunoblot analysis with anti-phospho-p38 
MAPK for pHog1 detection. (B) Graphs show pHog1 band intensity expressed as fold response 
compared with control (time zero; -).  

pHog1

DES%25%µM* + * + * + * +

WT ∆bck1 ∆mpk1 ∆rom2

pHog1

DES%25%µM* + * + * + * +

∆ptp2 ∆ptp3 ∆msg5∆sdp1

pHog1

DES%25%µM* + * + * + * +

∆ecm7 ∆die2 ∆bud32∆vma2

pHog1

DES%25%µM* + * + * + * +

∆hsl1 ∆erg4 ∆sur1∆trk1

pHog1

DES%25%µM* + * + * + * +

∆vps24 ∆snf7 ∆ptp1∆spc72

pHog1

DES%25%µM* + * + * + * +

∆bst1 ∆gup1 ∆sod1∆tfp1

A

CWI(pathway(

MAPK(
phosphatases

Acid8sensitive(
mutants(with(
loss(of(DES8
triggered(
Mpk1(
activation

WT ∆bck1 ∆mpk1 ∆rom2 ∆sdp1 ∆ptp2 ∆ptp3 ∆msg5 ∆vma2 ∆ecm7 ∆die2 ∆bud32

∆tfp1 ∆bst1 ∆gup1 ∆sod1∆spc72 ∆vps24 ∆snf7 ∆ptp1∆trk1 ∆hsl1 ∆erg4 ∆sur1

B

DES

DES



[Results] 
 

 133 

Although only a limited number of mutants was analyzed, our data appears to 

indicate that some biological processes are involved in pHi-triggered activation of 

both Mpk1 and Hog1. These include “Cellular Trafficking”, “Cellular Sensing”, 

“Protein glycosylation” and “Cell cycle” [Figure 55].  

 
Figure 55 – Schematic diagram of the biological functions relevant for pHi-triggered 
Mpk1 and Hog1 activation. 
Protein Glycosylat. = Protein Glycosylation. 
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4.5.   COMPARATIVE ANALYSIS OF DES-TRIGGERED MAPK 

SIGNALING IN FUSARIUM OXYSPORUM AND SACCHAROMYCES 

CEREVISIAE 

The results obtained in S. cerevisiae revealed a number of biological processes 

involved in pHi-mediated Mpk1 activation. These findings help to clarify the main 

intermediates of this process and shed light on possible molecular mechanisms 

regulating Mpk1 MAPK signaling. We next asked whether the role of key 

mediators of pHi-mediated MAPK regulation in yeast is also conserved in F. 

oxysporum.  

 

4.5.1.   As in S. cerevisiae, Rho1 is not involved in DES-triggered Mpk1 

activation in F. oxysporum 

To explore the role of Mpk1 upstream regulators in pHi-triggered activation of 

Mpk1 and Hog1, we analyzed mutant strains in the small GTPase Rho1 or the 

MAPKKK Bck1 previously generated in our group (Martinez-Rocha et al., 2008; 

Turrà et al., 2015). In the F. oxysporum ∆rho1 mutant, Mpk1 and Hog1 MAPK 

were phosphorylated, while Fmk1 was dephosphorylated [Figure 56]. As expected, 

Mpk1 remained completely dephosphorylated in the absence of the MAPKKK 

Bck1. However, Hog1 was still activated and Fmk1 dephosphorylated in this 

mutant, similar to the wild type. In line with S. cerevisiae, these results indicate that 

DES treatment regulates Mpk1 phosphorylation independently of Rho1 and that 

these upstream components of the Mpk1 MAPK cascade are not involved in pHi-

mediated control of Fmk1 and Hog1 MAPK cascades.   
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Figure 56 – Rho1 is not required for DES-triggered phosphorylation of Mpk1 and 
Hog1 or dephosphorylation of Fmk1 in F. oxysporum. 
(A) Fifteen-hours germinated microconidia of the F. oxysporum wild type, ∆ rho1 and ∆ bck1 
strains were washed and resuspended in KSU buffer at pH 6.0 and pre-incubated for 1 hour at 
28ºC. At time 0, 0.5 mM DES was added to the buffer. Protein extracts collected before (time 0) 
and 5 or 10 minutes after DES treatment were subjected to immunoblot analysis with anti-
phospho-p44/42 MAPK or anti-phosho-p38 MAPK antibodies, for pMpk1 and pFmk1, or 
pHog1 detection, respectively. Anti-Mpk1 and anti-Fus3 (Fmk1) antibodies were used as MAPK 
loading control. Anti-tubulin antibody was used as total extract loading control. (B) Graphs 
show the ratio of pMpk1, pFmk1 or pHog1 band intensity normalized to tubulin and expressed 
as fold response compared with untreated wild type cells (time zero).  
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4.5.2.   Role of the phosphatase Msg5 in regulation of Mpk1 phosphorylation  

In this study we found that the dual-specificity MAPK phosphatase Msg5 functions 

as a major regulator of Mpk1 phosphorylation status in S. cerevisiae, as reported 

previously (Sacristán-Reviriego et al., 2015). Therefore, the role of Msg5 in F. 

oxysporum was explored. 

4.5.2.1.  Targeted deletion of msg5 in F. oxysporum 

A BLASTp search of the F. oxysporum genome with the S. cerevisiae Msg5 

sequence identified a putative ortholog, FOXG_01836, a predicted protein of 788 

amino acids. Amino acid sequence alignment of the predicted F. oxysporum Msg5 

with orthologs in other fungal species revealed 97%, 56% and 38% identity with 

dual-specificity MAPK phosphatases from F. fujikuroi, Trichoderma reesei and A. 

nidulans, respectively. The predicted active site (HC(X)5RS) showed perfect amino 

acid identity to Msg5 from S. cerevisiae (YNL053W) [Figure 57A]. However, F. 

oxysporum Msg5 contains a N-terminal extension of about 150 amino acids which 

is lacking in S. cerevisiae Msg5. The presence of a PEST sequence suggests that 

this region could hypothetically affect stability of F. oxysporum Msg5 [Figure 57B].  

 
Figure 57 – Sequence alignment of fungal Msg5 proteins. 
(A) Amino acid sequence alignments of DSP active sites of the predicted Msg5 proteins from F. 
oxysporum, S. cerevisiae, F. fujikuroi, T. reesei, M. oryzae and A. nidulans. The green bar 
indicates the highly-conserved HC(X)5RS DSP motif. Protein alignment was performed with the 
ClustalOmega Software. (B) Schematic representation of the domain structure of F. oxysporum 
and S. cerevisiae Msg5 proteins. The DSP domain is depicted as a grey box and the active site 
by a dark grey box with a star. Predicted PEST domains are shown as hatched boxes. Total 
number of amino acids (aa) is indicated on the right. 
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To investigate the biological role of Msg5 in F. oxysporum, we generated a Δmsg5 

allele by replacing the ORF with the HygR resistance cassette [Figure 58A]. Two 

split-marker deletion constructs obtained by fusion PCR were used to co-transform 

protoplasts of the F. oxysporum wild type strain. Transformants carrying a 

homologous insertion at the msg5 locus were identified first by PCR analysis and 

then by Southern blot. We identified three transformants in which a 4.8 Kb 

hybridizing HindIII fragment corresponding to the wild type msg5 allele had been 

replaced by a fragment of the expected size of 11.4 Kb, consistent with a single 

homologous insertion of the deletion construct in these transformants [Figure 58B]. 

 

Figure 58  - Targeted deletion of the F. oxysporum msg5 gene. 
(A) Physical maps of the msg5 locus and the split-marker gene replacement construct obtained 
by fusion PCR (∆msg5 allele). Relative positions of the primers used for generation of the gene 
deletion construct and PCR analysis of the transformants, as well as of the probe used for 
Southern blot are indicated. (B) Southern blot hybridization analysis of the wild type strain 4287 
and the different ∆msg5 transformants. Genomic DNA treated with HindIII was hybridized with 
the probe indicated in (A).   
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4.5.2.2.  Fusarium oxysporum Msg5 is a key regulator of Mpk1 activity 

To investigate the role of F. oxysporum Msg5 in regulation of Mpk1 activity, a 

time-course western blot analysis of Mpk1 phosphorylation upon DES-triggered 

intracellular acidification was performed in the wild type and three ∆msg5 mutant 

strains, ∆msg5#5, ∆msg5#6 and ∆msg5#10. In all mutants, the Mpk1 

phosphorylation level at T0 was increased up to three times compared to the wild 

type strain [Figure 59]. Moreover, DES-triggered Mpk1 activation was abolished in 

the ∆msg5 mutants. Thus, F. oxysporum Msg5 has an important role as a negative 

regulator of Mpk1 phosphorylation. As in the wild type strain, Fmk1 was 

dephosphorylated in the ∆msg5 mutants after DES-triggered intracellular 

acidification.   

 

Figure 59  – F. oxysporum Msg5 negatively regulates Mpk1 phosphorylation and is 
required for DES-triggered Mpk1 activation. 
(A) Fifteen-hour germinated microconidia of F. oxysporum wild type and three different ∆msg5 
mutant strains were washed and resuspended in KSU buffer at pH 6.0 and pre-incubated for 1 
hour at 28ºC. At time 0, 0.5 mM DES was added to the buffer. Protein extracts collected before 
(time 0) and 5, 10 or 20 minutes after DES treatment were subjected to immunoblot analysis 
with anti-phospho-p44/42 MAPK antibody for pMpk1 and pFmk1 detection. Anti-tubulin 
antibody was used as total extract loading control. (B) Graphs show the ratio of pMpk1 or 
pFmk1 band intensity normalized to tubulin and expressed as fold response compared with 
untreated wild type cells (time zero).  
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4.5.3.   Analysis of F. oxysporum candidate genes involved in pHi-triggered 

Mpk1 activation  

Our previous analysis of a sub-set of acid-sensitive S. cerevisiae mutants identified 

59 proteins required for DES-triggered Mpk1 activation. The amino acid sequences 

were used for BLASTp searches in FungiDB to identify predicted gene orthologs in 

F. oxysporum. Using the criteria described on Material and Methods we found clear 

orthologs for 37 of the 59 yeast proteins in F. oxysporum [Table 13]. 

 
Table 13 – F. oxysporum orthologs of S. cerevisiae proteins mediating pHi-triggered Mpk1 
activation identified by Blastp analysis. 

Yeast 
protein Function Ortholog in Fox 

AA 
identity 

(%) 

Predicted function 
in Fox 

METABOLISM  
Amino acid metabolism 

ARO2 Chorismate synthase and 
flavin reductase 

FOXG_11059 61 Chorismate 
synthase 

Lipid, fatty acid and isoprenoid metabolism 

ERG4 C-24(28) sterol reductase FOXG_05355 51 Delta24(24(1))-
sterol reductase 

SAC1 
Phosphatidylinositol 
phosphatase  

FOXG_01012 40 
Hypothetical 
protein 

SUR1 
Mannosylinositol 
phosphorylceramide 
synthase catalytic subunit 

FOXG_16891 31 Hypothetical 
protein 

CELLULAR TRAFFICKING  

CSF1 
Protein plays a role in the 
maturation of secretory 
proteins 

FOXG_06277 31 
Hypothetical 
protein 

DID4 Class E Vps protein: 
ESCRT-III complex 

FOXG_11524 53 Hypothetical 
protein 

DRS2 
Aminophospholipid 
flippase complex  FOXG_02086 60 

Phospholipid-
translocating 
ATPase 

PEP3 
CORVET membrane 
tethering complex 

FOXG_09431 24 
Hypothetical 
protein 

PEP5 
Histone E3 ligase, 
component of CORVET  FOXG_11089 26 

Hypothetical 
protein 

PEP8 Vacuolar protein; FOXG_00236 64 Hypothetical 
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multimeric membrane-
associated retromer 
complex  

protein 

SLA2 
Adaptor protein; links 
actin to clathrin and 
endocytosis 

FOXG_03618 53 
Hypothetical 
protein 

SNF7 Subunit of the ESCRT-III 
complex 

FOXG_05316 45 Vacuolar-sorting 
protein SNF7 

VPS1 
Dynamin-like GTPase 
required for vacuolar 
sorting 

FOXG_01628 61 
Vacuolar sorting-
associated protein 1 

VPS29 Membrane-associated 
retromer complex 

FOXG_11158 43 Hypothetical 
protein 

VPS5 
Component of retromer 
complex 

FOXG_04343 34 
Hypothetical 
protein 

VPS9 
Guanine nucleotide 
exchange factor (GEF) and 
ubiquitin receptor 

FOXG_00470 33 Hypothetical 
protein 

REGULATION OF INTERACTION WITH CELLULAR ENVIRONMENT  
Ion homeostasis 

VMA1 
Subunit A of the V1 of V-
ATPase FOXG_01804 69 

V-ATPase catalytic 
subunit A 

VMA13 Subunit H of the V1 of V-
ATPase 

FOXG_00239 34 V-ATPase 54 kDa 
subunit 

VMA16 
Subunit c’’ of the V-
ATPase V0 domain  

FOXG_06367 67 
V-ATPase 21 kDa 
subunit 

VMA2 
Subunit B of V1 of the V-
ATPase FOXG_00954 83 

V-ATPase catalytic 
subunit B 

VMA4 
Subunit E of the V1 of V-
ATPase FOXG_03408 45 

V-ATPase catalytic 
subunit E 

VMA5 Subunit C of the V1 of V-
ATPase 

FOXG_00056 35 Hypothetical 
protein 

VMA7 
Subunit F of the V1 of V-
ATPase 

FOXG_06289 62 
V-ATPase catalytic 
subunit F 

VMA8 
Subunit D of the V1 of V-
ATPase FOXG_14288 77 

V-ATPase catalytic 
subunit D 

Cellular sensing and response / signal transduction pathways 

ASC1 
G-protein beta subunit and 
guanine dissociation 
inhibitor for Gpa2 

FOXG_05557 59 

Guanine 
nucleotide-binding 
protein subunit 
beta-like protein 

CNB1 Regulatory subunit of 
calcineurin 

FOXG_01489 63 Calcineurin subunit 
B 

SCP160 Essential RNA-binding G FOXG_06187 25 Hypothetical 



[Results] 
 

 141 

protein effector of mating 
response pathway 

protein 

SOD1 
Cooper-zinc superoxide 
dismutase 

FOXG_03076 74 
Superoxide 
dismutase 

CONTROL OF CELLULAR ORGANIZATION  
Cell wall 

CWH41 
Processing alpha 
glucosidase I 

FOXG_07965 38 
Mannosyl-
oligosaccharide 
glucosidase 

ROT2 Glucosidase II catalytic 
subunit 

FOXG_07678 39 alpha 1,3-
glucosidase 

SMI1 
Cell wall synthesis; 
coordinated cell cycle with 
cell wall integrity 

FOXG_01811 36 
Hypothetical 
protein 

Cytoskeleton and cell polarity 

SRV2 
CAP (cyclase-associated 
protein) FOXG_04210 38 

Hypothetical 
protein 

PROTEIN FATE (FOLDING, MODIFICATION AND FATE)  

ALG5 
UDP-glucose:dolichyl-
phosphate 
glucosyltransferase 

FOXG_08496 38 
Dolichyl-phosphate 
beta-
glucosyltransferase  

PER1 
Protein of the ER required 
for GPI-phospholipase A2 
activity  

FOXG_00251 34 Hypothetical 
protein 

GENE EXPRESSION  
BUD32 Protein kinase; component 

of the EKC/KEOPS 
complex 

FOXG_05368 40 BUD32 protein 
kinase 

OTHERS  

KEX1 
Cell death protease 
essential for hypochlorite-
induced apoptosis 

FOXG_05262 39 Carboxypeptidase 
D 

 

We detected orthologs in F. oxysporum of almost all subunits of the V-ATPase 

complex, one of the key components involved in DES-triggered Mpk1 activation. 

To understand the role of this conserved proton pump in MAPK signaling of F. 

oxysporum, we decided to generate ∆vma7 mutant strains in a component of the V1 

subcomplex of the V-ATPase. However, we were unable to isolate genetically 

purified transformants with a replacement of the vma7 allele. A similar result was 
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previously obtained in an independent study for the vma2 and vma5 genes, which 

also encode components of the V1 subcomplex (Segorbe et al., unpublished). Taken 

together, these results suggest that the V1 complex of V-ATPase might be essential 

for growth of F. oxysporum under the conditions used in this study. 

Among the identified yeast proteins with a crucial role in pHi-triggered Mpk1 

activation, Snf7, a subunit of the ESCRT-III complex involved in the control of 

endocytosis and protein sorting to the MVB pathway, has a clear ortholog in F. 

oxysporum. However, generation of a ∆snf7 mutant in F. oxysporum was also 

unsuccessful. Although PCR analysis revealed replacement of the snf7 allele by 

Hyg in 11 of the obtained transformants, we noted a low level of DNA 

amplification suggesting that they are heterokaryons carrying a high proportion of 

wild type nuclei. Indeed, Southern blot analysis of two transformants exhibiting a 

4.6 Kb SacI hybridizing fragment corresponding to the ∆snf7 allele also revealed 

the presence of a second hybridizing 6.7 Kb SacI fragment corresponding to the 

wild type allele. Although snf7 is a non-essential gene in S. cerevisiae, our results 

strongly suggest that snf7 might be essential in F. oxysporum, as previously 

described in the yeast Yarrowia lipolytica (Blanchin-Roland et al., 2005).  
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DISCUSSION 
 

Previous studies demonstrated that ambient pH acts as a key regulator of 

pathogenicity in F. oxysporum by modulating the activity of the IG MAPK Fmk1 

(Masachis et al., 2016). Moreover, a shift in external pH triggers rapid changes in 

the phosphorylation status of Mpk1 and Hog1, in a way opposite to Fmk1 (Segorbe, 

2014). However, the molecular events underlying MAPK regulation by pH were not 

known. Here, we present evidence suggesting that pHi acts as a key regulator of 

MAPK signaling, both in F. oxysporum and S. cerevisiae. Experimentally induced 

acidification of the cytosol through pharmacological inhibition of Pma1 activates 

both Mpk1 and Hog1, and inactivate Fmk1. Because previous results had suggested 

that Mpk1 is required for Fmk1 dephosphorylation at acid pH (Segorbe, 2014), we 

decided to investigate in more detail the mechanism of pHi-induced Mpk1 

activation. Because the identification of new components involved in this process 

requires the screening of hundreds of mutants, we decided to use the model 

organism S. cerevisiae where a knockout library is available. Analysis of a subset of 

yeast mutants suggests that the sphingolipid-regulated Ypk1/2 upstream branch as 

well as the Sln1 upstream branch of the Hog1 MAPK cascade contribute to Mpk1 

phosphorylation by acidic pH. In addition, proteins functioning in cellular 

trafficking and ion homeostasis (mainly V-ATPase function) and lipid metabolism, 

most of which have orthologs in F. oxysporum, are also fundamental for DES-

triggered Mpk1 activation.  

 

5.1.  INTRACELLULAR PH GOVERNS MAPK PHOSPHORYLATION 

Although tightly regulated, pHi is affected by changes in external pH. The finding 

that pHi is a regulator of a broad range processes in the cell have given rise to new 

approaches to evaluate pHi dynamics and to understand the precise mechanisms of 

its regulation. The genetically encoded pH-sensitive probe pHluorin has proven 

exceptionally valuable for studies on pHi, in yeast (Dechant et al., 2010; Hughes 
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and Gottschling, 2012; Isom et al., 2013; Peters et al., 2013; Young et al., 2010), 

filamentous fungi (Bagar et al., 2009; Valkonen et al., 2014) and higher eukaryotes 

(Rathje et al., 2013). In yeast cells, different approaches for in vivo monitoring of 

pHi in pHluorin expressing strains have been developed. Fluorescence microscopy 

is the most commonly used approach, since it allows studies of pHi 

compartmentalization within the cell and offers spatial and temporal insights into 

population variability (Bagar et al., 2009; Orij et al., 2009). Ratiometric flow 

cytometry analysis of pHluorin expressing cells has also emerged as an efficient 

approach, since it combines high-throughput analysis at the single-cell level with 

monitoring of pHi distribution within cell populations (Valkonen et al., 2014; Valli 

et al., 2005; Weigert et al., 2009). In addition, analysis of pHi in a microwell reader 

coupled to a spectrofluorometer has proven useful for high-throughput analysis 

combining fast data acquisition with the possibility to simultaneously assay 

different experimental conditions (Isom et al., 2013). Considering our aim of 

evaluating the effect of different external pH conditions on pHi dynamics, we 

established the spectrofluorometer approach to measure pHi in F. oxysporum. To 

our knowledge, this is the first description of pHluorin-based pHi analysis in 

filamentous fungi using an approach other than fluorescence microscopy. 

Importantly, our pHi measurements in F. oxysporum provided values that are close 

to those described in other filamentous fungi such as A. niger (Bagar et al., 2009), 

validating the accuracy of our experimental approach. 

As described in other organisms (Orij et al., 2009; Valkonen et al., 2014), we found 

that F. oxysporum exhibits a huge capacity of pHi homeostasis. Even upon extreme 

shifts in external pH followed by a rapid oscillation in pHi, the value returned to 

homeostatic level after one hour, suggesting the presence of an efficient cellular 

mechanism of pHi buffering. This is of biological relevance, since fungal pathogens 

are constantly exposed to oscillations in the pH of the surrounding medium. 

Therefore, these organisms require a robust homeostatic mechanism to maintain pHi 

at constant levels in order to survive, proliferate and invade the host. Intriguingly, 
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we observed a difference in the amplitude of pHi fluctuation in response to external 

acidification or alkalinization in F. oxysporum, similarly to the findings reported in 

A. niger (Bagar et al., 2009). Our results demonstrated that a shift in the external pH 

from 6.0 to pH 2.0 triggered a drop in pHi of about 1 unit of pH, while an external 

increase of pH from 6.0 to 9.0 induced a rise in pHi of approximately 0.5 units. 

Although more studies are required, we speculate that the higher fluctuation of pHi 

in response to external acidification might be of relevance considering the acidic pH 

of the roots encountered by F. oxysporum during infection. 

In this study we observed that the activity of Pma1 governs fluctuations in pHi. Our 

data suggest that a decrease of Pma1 activity in response to extracellular 

acidification is, at least in part, responsible for the observed acidification of the 

cytosol, while a rise in Pma1 activity occurs after external alkalinization, increasing 

pHi (see Figure 18). In agreement with these results, studies in yeast revealed that 

the activity of Pma1 is markedly inhibited by acidification of the medium 

(Simkovic et al., 2007; Stratford et al., 2013; Trushina et al., 2013). Furthermore, 

the yeast pma1-007 strain whose Pma1 activity is reduced by >50%, showed a more 

severe decrease of pHi upon external acidification than the wild type (Porat et al., 

2005; Young et al., 2010). The lack of recovery of pHi to the baseline upon 

pharmacological inhibition of Pma1 by DES reinforces the idea that its activity is of 

major importance for pHi homeostasis in F. oxysporum. To better characterize and 

genetically elucidate for the role of Pma1 in this process, a transformant expressing 

pma1 under control of an inducible promoter was recently obtained in our group 

(Franco, 2017).  

Our results demonstrated that pHi is affected by glucose and other carbon sources. 

Various studies in yeast cells treated with glucose described a rapid and transient 

intracellular acidification, followed by alkalinization (Orij et al., 2009; Ullah et al., 

2013; Valkonen et al., 2014). The initial decrease of pHi appears to be a 

consequence of rapid proton influx during the uptake of the sugar (Guimarães et al., 

2008), while the increased generation of ATP during glycolysis was shown to 
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increase the activity of Pma1 and trigger intracellular alkalinization (Cyert and 

Philpott, 2013). However, we failed to observe a net increase of Pma1 activity upon 

glucose treatment, which is in line with the lack of intracellular alkalinization. It is 

possible that the KSU buffer used in our experiments may be responsible for the 

lack of such a response. While Pma1 was reported to normally export protons from 

the cytoplasm with a stoichiometry of one proton ejected per ATP (Cid et al., 

1987), this value was found to decline to 0.1 proton per ATP in starved cells 

(Venema and Palmgren, 1995). KSU buffer is a nutrient poor medium, and the 

constant acidification of the cytosol observed in the wild type strain under control 

condition suggests that Pma1 activity might be decreasing throughout the 

experiment as consequence of nutrient deprivation.  

Although pHi is a tightly regulated physiological parameter in F. oxysporum, we 

found that shifts in external pH transitorily affect pHi dynamics. The timing and 

magnitude of pHi fluctuations resembles the behavior of well-known second 

messengers such as cAMP or calcium. It is increasingly appreciated that pHi acts as 

a second messenger in a variety of cellular functions, such as cell growth (Orij et 

al., 2009), life span (Hughes and Gottschling, 2012) and glucose response (Dechant 

et al., 2010). Here we provide evidence that pHi acts as a second messenger for 

MAPK signaling, both in yeast and in F. oxysporum. Some differences between 

these two organisms were found in pHi regulation of MAPK activity. For example, 

in F. oxysporum the Fmk1 MAPK phosphorylation status responded in an almost 

linear fashion to extracellular pH variations, while in yeast Fus3 and Kss1 showed 

maximal phosphorylation at pH 6.5. A similar effect of pH in the control of Fus3 

phosphorylation level was previously described (Isom et al., 2013).     

Although pHi fluctuations have been reported to regulate important cellular 

processes, less is known about the mechanism of pHi sensing. One of the big 

challenges has been to identify the cellular components able to detect changes in 

pHi and transmit the signal to the cellular machinery. In yeast, so far the V-ATPase, 

phosphatidic acid and Ga subunits have been identified as potential pHi sensors. 
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However, there are still mistakes in the in vitro analysis and in vivo experimental 

reports. For example, the Ga protein Gpa1 was shown to respond to pH variations 

in vitro through networks of pH-sensing sidechains that promote a conformational 

change after a proton binding (Isom et al., 2013). However, the authors failed to 

demonstrate a direct connection between Gpa1 protonation and activation of the 

downstream MAPK cascades. Furthermore, they were able to show Fus3 and Kss1 

MAPK activation in response to pHi in cells treated with acetic acid or a-

pheromone, but not with the tetracycline-dependent Pma1 repression system used to 

demonstrate pHi-dependent Gpa1 phosphorylation (Isom et al., 2013). 

As shown for V-ATPase activity (Dechant et al., 2010), we found that Pma1 

activity is regulated by environmental pH. However, Pma1 itself is unlikely to act 

as a pHi sensor, because instead of sensing fluctuations of pHi Pma1 is creating 

them. In addition, our results with the membrane uncoupler FCCP which perturbs 

pHi in a mechanism independent of Pma1 activity, also support the idea that this 

proton pump is not directly regulating MAPK signaling, but that it is the Pma1-

induced pHi change that functions as a signal for the MAPK response.  

Uncovering the mechanism by which pHi governs MAPK signaling is a complex 

task that needs to be addressed in the future. A huge number of proteins can bind or 

release protons, but few have been confirmed as bona fine pHi sensors. A 

hypothetical pHi sensor must couple physiological changes in pHi to regulation of 

MAPK signaling. In this work, we attempted to identify cellular processes involved 

in pHi-induced MAPK regulation. The results bring us closer to the mechanisms 

that mediate MAPK activity in response to changes in pHi. 
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5.2.  ROLE OF DIFFERENT SIGNAL TRANSDUCTION PATHWAYS IN 

PHI-INDUCED MPK1 ACTIVATION 

In fungi, the Pal/Rim signaling pathway is arguably the best-studied mechanism of 

sensing and response to external alkalinization (Peñalva et al., 2014). Since Pal and 

MAPK signaling pathways are both regulated by ambient pH, we wondered 

whether the Pal pathway could directly regulate MAPK activity. Our studies with 

the F. oxysporum ∆pacC and ∆ palH mutants revealed a delay in Mpk1 

phosphorylation pattern after DES-induced intracellular acidification, but failed to 

detect significant defects in Fmk1 dephosphorylation. Interestingly, the Pal/Rim 

pathway was reported to be required for yeast adaptation and resistance to acids 

(Mira et al., 2009). Thus, even if not essential for activation of the Mpk1 cascade, 

our data suggest that the Pal pathway might be important for a rapid activation of 

the CWI MAPK pathway. Interestingly, when the extracellular pH acidified, the 

∆pacC and ∆palH mutants displayed a more acidic vacuolar pH but a similar pHi 

compared to the wild type strain. This suggests that the Pal pathway regulates rapid 

Mpk1 phosphorylation downstream of pHi acidification. In summary, our results 

suggest that the Pal pathway is not a major regulator of MAPK activity in F. 

oxysporum. 

Preliminary results from our group suggested that Mpk1 activation is required for 

Fmk1 dephosphorylation at acidic external pH (Segorbe, 2014). It is likely that 

Mpk1-mediated inactivation of Fmk1 determines the reduced virulence of F. 

oxysporum in acidic environments (Masachis et al., 2016). Here we show that in S. 

cerevisiae the ∆mpk1 mutant also fails to dephosphorylate the orthologous Fus3 and 

Kss1 MAPKs in response to intracellular acidification. Although these results still 

need to be corroborated in F. oxysporum, our overall results indicate that inhibition 

of Fmk1 activity at acidic pH is dependent on Mpk1 activation. Thus, our attention 

then focused on the mechanism of Mpk1 activation at acidic conditions.   
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pHi governs MAPK signaling both in Fusarium and in yeast, suggesting that the 

mechanism is conserved in fungi. To comprehensively characterize the cellular 

functions involved in pHi-mediated MAPK responses, we screened a subset of acid 

sensitive yeast mutants for loss of DES-triggered Mpk1 activation. We found a 

significant enrichment of GO biological process terms related to cellular sensing 

and response/signal transduction pathways, including components of the 

calcineurin-Crz1 pathway or of the oxidative stress response. The calcineurin-Crz1 

pathway has been reported to be important for resistance to high temperature or to 

cell wall stress (Cruz et al., 2001; Odom et al., 1997), both stimuli that promote the 

activation of the CWI pathway. However, it was not established so far whether the 

calcium responsive pathway regulates the activity of the CWI pathway or whether 

both pathways act in parallel in response to cell wall stress conditions. Regarding to 

oxidative stress, an activation of the CWI pathway has been reported in response to 

different oxidizing agents such as linoleic acid hydroperoxide, diamide and 

hydrogen peroxide, both in yeast and in human fungal pathogens (Alic et al., 2003; 

Gerik et al., 2008; Staleva et al., 2004). These data suggest that the activation of the 

CWI pathway in response to oxidative stress is a common stage of agents operating 

on different targets, and that the activation of CWI pathway must be fundamental 

for an effective response to oxidative stress. Our results appear to indicate that 

intracellular acidification may trigger an oxidative stress in the cell that is important 

for efficiently signal for the Mpk1 activation. Overall, our results suggest that the 

interplay between different signaling pathways is required for fully activate the 

Mpk1 MAPK in response to intracellular acidification. 

We found that like Mpk1, Hog1 is activated in response to intracellular 

acidification, both in Fusarium and in yeast. In a previous study, the ∆hog1 mutant 

was identified in a screen for acid-sensitive yeast mutants (Kawahata et al., 2006), 

supporting the relevance of this pathway in the acid pH response. Importantly, the 

Pbs2 MAPKK and the Hog1 MAPK, as well as the Ssk1 upstream regulator of the 

Ssk2 MAPKKK, showed high phosphorylation level of Mpk1 at baseline and loss 
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of DES-triggered Mpk1 activation, suggesting that Hog1 may function upstream of 

Mpk1 activation in response to pHi decrease. A similar effect of Hog1-dependent 

activation of Mpk1 MAPK was also reported in response to other stimuli. For 

instance, in C. albicans the activation of the Mpk1 ortholog Mkc1 in response to 

oxidative stress showed to be also Pbs2 and Hog1 dependent (Arana et al., 2005). 

Further, in the yeast S. cerevisiae the activation of Mpk1 after treatment with the 

cell wall perturbing agent Zymolyase also showed to be Hog1 dependent (Bermejo 

et al., 2008; Garcia et al., 2009). Importantly, Bermejo et al., 2008 showed that 

Zymolyase-mediated Mpk1 activation was also independent of the upstream 

GTPase Rom2 or of the stress sensors Mid2 and Wsc1 (Bermejo et al., 2008), 

suggesting that Mpk1 activation by the Hog1 pathway could be highly relevant 

when the regulation is independent of the classical upstream components of the 

Mpk1 MAPK module. In summary, our results suggest that pHi-triggered Mpk1 

activation is, at least in part, mediated by the Hog1 pathway.  

We also explored a direct role of upstream regulators of the CWI pathway in pHi -

mediated Mpk1 activation.  While none of the three classical sensors of the CWI 

pathway, Wsc1, Mid2 or Mtl1, was required for Mpk1 activation in response to 

intracellular acidification, our data appear to indicate that the Ypk1/2 branch acts 

upstream of Mpk1 activation upon DES treatment. Although Ypk1/2 were recently 

suggested to act via Rom2 (Niles and Powers, 2014), we show here that this 

GDP/GTP exchange factor for Rho1 and Rho2 is dispensable for pHi-mediated 

Mpk1 activation in yeast. While Rho1-deficient mutants in yeast and F. oxysporum 

showed a low level of Mpk1 phosphorylation at baseline, in both species an 

induction of Mpk1 phosphorylation was still observed after DES treatment. Thus, 

components downstream of Rho1 must be mediating Mpk1 activation in our 

experimental conditions. On the other hand, Pkc1, the upstream protein kinase of 

the Mpk1 MAPK module, was required for DES-triggered Mpk1 activation. While 

Pkc1 activation was mainly shown to depend on its association at the PM with 

Rho1 in its GTP-bound form, there is also evidence for Pkc1 activation via the two 
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redundant Pkh1/2 kinases upstream of Ypk1/2 (Inagaki et al., 1999; Roelants et al., 

2004). Our results suggest that DES-triggered Mpk1 activation is mediated by Pkc1, 

whose activation likely depends of the AGC upstream kinases Ypk1/2. 

Interestingly, the Ypk1/2-mediated signaling was previously shown to be activated 

in response to acetic acid, and its phosphorylation and activation was strictly 

required for acid tolerance (Guerreiro et al., 2016; Mira et al., 2010). Acid-triggered 

Ypk1/2 activation appears to be mediated by sphingolipid depletion at the PM 

(Roelants et al., 2011). In this process, the final effectors of Ypk1/2 regulate de 

novo synthesis of sphingolipids through phosphorylation of Orm1 and Orm2, two 

inhibitors of the L-serine:palmitoyl-CoA acyltransferase (SPT), the enzyme 

complex that catalyzes the first step in sphingolipid biosynthesis (Breslow et al., 

2010), or by activation of Lac1 and Lag1, the catalytic subunits of the ceramide 

synthase complex (Muir et al., 2014). Thus, the Ypk1/2-mediated signaling is part 

of a homeostatic mechanism whose activation by PM stress mediates compensatory 

changes in cellular lipid synthesis to improve stress tolerance (Guerreiro et al., 

2016; Niles and Powers, 2014). It is interesting to note that our screen of acid-

sensitive yeast mutants detected sphingolipid synthesis as a mechanism for pHi-

mediated Mpk1 activation, since mutants in the sac1, sur1 or csg2 genes encoding 

enzymes involved in sphingolipid biosynthesis, failed to activate Mpk1. Altogether, 

these data suggest that sphingolipid levels and composition may regulate Mpk1 

activation via Ypk1/2. If sphingolipid depletion is the signal for Ypk1/2 activation 

after DES-triggered Pma1 inhibition, it is reasonable that sphingolipid-deficient 

strains should lose the ability to activate the Mpk1 cascade. In yeast, the 

transmembrane protein Nce102 has been described as a sensor of sphingolipid 

levels and to regulate the activity of Ypk1/2 (Frohlich et al., 2009; García-Marqués 

et al., 2016). Therefore, it will be interesting to test whether the distribution and 

level of sphingolipids at the PM and Nce102 translocation are regulated by pHi, and 

whether it could modulate the activity of the Mpk1 MAPK cascade.  

Our results suggest that the levels of ergosterol in the PM also regulate Mpk1 
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activity, since the ∆erg28 and ∆erg4 mutants lose the ability to activate this MAPK. 

Sphingolipids, along with ergosterol, are critical for the formation of microdomains 

at the PM that have been referred to as lipid rafts. Interestingly, mutants in both 

types of lipids show hypersensitivity to different cell wall perturbing agents (García 

et al., 2015), suggesting that they could regulate the CWI MAPK pathway in a 

different context of pHi decrease.  

5.3.  A ROLE OF PHI IN MAPK PHOSPHATASE STABILITY?  

MAPKs are activated through phosphorylation of conserved threonine and tyrosine 

residues in their phosphorylation loop by the specific upstream MAPKK. While the 

lack of signaling through MAPK pathways leads to a defective cellular response to 

the corresponding stimulus, inappropriate hyperactivation of MAPK routes also 

results in deleterious effects. Therefore, the duration and extent of MAPK activation 

is tightly regulated through the balance of upstream kinases and protein 

phosphatases. Apart of their importance in desensitization and adaptation to 

external signals, MAPK phosphatases are fundamental for keeping the adequate 

level of phosphorylated MAPK protein both at basal and stimulating conditions 

(Martín et al., 2005). 

The aim of this work was to characterize the molecular mechanism underlying 

Mpk1 activation in response to pHi decrease. Much attention in yeast has focused 

on the components that transfer signals to activate MAPK cascades, while 

knowledge on the MAPK phosphatases that act as negative regulators to inactive 

the phosphorylated elements is more limited. Here we analyzed the role of known 

MAPK phosphatases in DES-triggered Mpk1 activation. Our results confirm that 

the DSP Msg5 and the tyrosine phosphatase Ptp2 are important regulators of the 

Mpk1 phosphorylation level. Ptp2 appears to be relevant for regulation of Mpk1 

phosphorylated level after intracellular acidification, as previously described for cell 

wall stress conditions such as high temperature or CR (Flández et al., 2004; Marín 

et al., 2009; Sacristán-Reviriego et al., 2015). However, in F. graminearum Ptp2 
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had no influence on sensitivity to CR, indicating that its function in this fungus may 

not be associated with the CWI MAPK pathway or may be redundant (Yun et al., 

2015). Therefore, we decided to explore the role of Msg5 in Mpk1 regulation in F. 

oxysporum. The Msg5 ortholog was identified by its homology to the Msg5 protein 

from S. cerevisiae. Although the amino acid sequence identity between the two 

Msg5 proteins is relatively low, several lines of evidence suggest that they are 

structural orthologous. Both F. oxysporum and yeast Msg5 have dual specificity 

phosphatase and PEST domains and contain a highly conserved active site. 

Moreover, in both species Msg5 is fundamental for inhibition of Mpk1 

phosphorylation at basal conditions.  

In S. cerevisiae, Msg5 is essential to regulate the level of Mpk1 phosphorylation 

after CR treatment, since a ∆msg5 mutant showed higher level of Mpk1 activation 

than the wild type (Sacristán-Reviriego et al., 2015). However, in our experiments 

the yeast ∆msg5 mutant showed no increased activation of Mpk1 after intracellular 

acidification (see Figure 49), suggesting that Msg5 is not fundamental for Mpk1 

downregulation after pHi decrease. Oppositely to yeast cells, in all F. oxysporum 

∆msg5 mutants analyzed the activation of Mpk1 after DES-triggered pHi decrease 

was abolished (see Figure 59), suggesting that Msg5 is important for this process. 

A hypothesis can be drawn to explain the differences in the results obtained with the 

∆msg5 mutants of S. cerevisiae and F. oxysporum. The mechanism of Mpk1 

downregulation might be more complex in yeast cells. It has been well established 

that MAPK phosphatases show redundancy and promiscuity, since more than one 

phosphatase can regulate the same MAPK in yeast cells. Therefore, the existence of 

parallel mechanisms acting on Mpk1 phosphorylation under stimulating conditions 

could explain the lack of effect in the ∆msg5 mutant. On the other hand, our results 

in F. oxysporum suggest that it is more sensitive to msg5 loss. The lack of induction 

of Mpk1 phosphorylation indicates that Msg5 is important in this process. However, 

the hyperphosphorylation of Mpk1 at basal conditions could affect its response to 

pHi decrease, and might be deleterious for this fungus. A viability assay needs to be 
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performed in the future to elucidate the relationship between loss of pHi triggered 

CWI response and cell survival in this mutant. 

In the yeast Msg5 it was shown that the motif I102YT104 is required for its binding to 

Mpk1 (Palacios et al., 2011). However, since this domain is not conserved in F. 

oxysporum Msg5 we speculate that Msg5 may have distinct mechanisms of Mpk1 

regulation, explaining the different degree of inhibition in these fungal species. 

MAPK phosphatases and MAPKKs compete for the same binding site within the 

MAPK. Thus, the increase of Mpk1 phosphorylation levels in the absence of Msg5 

could be the result of reduced dephosphorylation by this phosphatase as well as a 

higher phosphorylation rate by the upstream MAPKK (Andersson et al., 2004). 

Both the yeast and F. oxysporum Msg5 proteins present PEST domains, which are 

characteristic of rapidly degraded proteins and have been suggested to mediate 

proteolysis. Since the presence of PEST sequences predicts that Msg5 could be 

unstable, we asked whether DES-triggered intracellular acidification affects the 

stability of this phosphatase [Figure 60A]. This hypothesis was experimentally 

confirmed using a yeast strain expressing a c-Myc-tagged Msg5 version, in which 

Msg5 protein levels decreased by approximately 40% after DES treatment. Previous 

studies in animal cells showed that degradation of the MAPK phosphatases MKP-1 

and MKP-7 which inhibit phosphorylation of the ERK1/2 and p38 MAPKs, 

respectively, was induced by inhibitors of the ubiquitin-directed proteasome 

complex (Katagiri et al., 2005; Lin et al., 2003). Our results suggest that Msg5 

degradation could, at least in part, be responsible for the acid-induced increase of 

Mpk1 phosphorylation [Figure 60A]. In addition, Msg5 degradation could explain 

the lack of effect of Msg5 on pHi-stimulated Mpk1 activation.  
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Figure 60 – Two models summarizing how Msg5 could affect pHi-mediated MAPK 
signaling. 
(A) Model 1: Intracellular acidification affects Msg5 stability. In normal conditions (control; left 
panel) Msg5 inhibits Mpk1 activation, while intracellular decrease of pH (right panel) induces 
Msg5 degradation reducing the negative effect on Mpk1. Consequently, Mpk1 is activated by 
upstream positive regulators and an increase of phosphorylation is observed. (B) Model 2: 
Intracellular acidification negatively affects Msg5-Mpk1 binding while simultaneously 
promoting Msg5-Fus3/Kss1 interaction. In normal conditions (control; left panel), Msg5 inhibits 
Mpk1 activation and has no effect on Fus3/Kss1 MAPKs that are phosphorylated. Intracellular 
acidification (right panel) promotes Msg5 binding to Fu3/Kss1 leading to their inactivation and, 
loss of interaction with Mpk1 allows its activation by upstream positive regulators. Green circles 
containing the letter P denote phosphorylated amino acid residues, while grey circles denote no-
activated MAPKs. 

 

In yeast, the DSP Msg5 regulates both Mpk1 and Fus3/Kss1 phosphorylation 

(Palacios et al., 2011). We therefore hypothesized that in our experimental 

conditions, DES-triggered pHi decrease could negatively affect Msg5-Mpk1 

binding while simultaneously promoting Msg5-Fus3/Kss1 interaction [Figure 60B]. 

A pHi-dependent switch in MAPK affinity of Msg5 would readily explain the 

observed effects on MAPK phosphorylation status. However, in our experiments 

phosphorylation of Fus3/Kss1 or Fmk1 in yeast and F. oxysporum, respectively, 

appeared to be unaffected by loss of Msg5. Thus, other mechanism(s) could 

mediate acid-induced downregulation of the IG MAPK cascade. 
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In summary, we propose that DES-triggered Mpk1 activation is the result of a 

synergetic effect between increased phosphorylation by the upstream MAPKK and 

a decrease of inhibition by MAPK phosphatases [Figure 61]. 

 

Figure 61 – Intracellular acidification triggers Mpk1 activation through a negative 
effect in Msg5 stability. 
DES-triggered intracellular acidification affects Msg5 stability promoting degradation of this 
phosphatase. Activation of Mpk1 is the result of a synergetic effect between increased 
phosphorylation by upstream MAPKK and a decrease of inhibition by Msg5. 

 

5.4.  CELLULAR TRAFFICKING AND ION HOMEOSTASIS AS 

REGULATORS OF MAPK SIGNALING 

The process of protein synthesis, modification and intracellular transport is complex 

and highly conserved in eukaryotic cells. During their synthesis, proteins are 

translocated to the endoplasmic reticulum (ER) and directed to the correct target 

compartment in order to fulfill their specific function, undergo modifications, or be 

degraded. From the Golgi apparatus, newly synthesized proteins are either sorted to 

the PM, outside the cell (secretory or SEC pathway) or to the vacuole (vacuolar 

sorting or VPS pathway) through the endosomes [Figure 62]. PM proteins can be 

internalized by endocytosis (END) and transported to the endosomes where they are 

either targeted for vacuolar degradation (VPS pathway) or redirected to the Golgi 

where they enter the secretory pathway to be readdressed to the PM (recycling or 

RCY pathway). In our yeast mutant screen we identified almost all these processes 
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as essential for DES-triggered Mpk1 activation [Figure 62], suggesting that cellular 

trafficking has an important role in regulation of Mpk1 activity. This is further 

supported by the discovery of “cytoskeleton and cell polarity” as another highly 

represented category involved in DES-triggered Mpk1 activation, considering the 

close relation of these two processes with endocytosis. Indeed, the actin 

cytoskeleton contributes to the formation of endocytic vesicles by stimulating actin 

depolymerization at the site of the vesicle budding. Interestingly, the requirement of 

endocytosis for CWI MAPK activity is not exclusive of the pH response, since 

mutants of S. cerevisiae and C. albicans affected in cellular trafficking showed an 

increased sensitivity to cell wall perturbing agents (Cornet et al., 2006; García et 

al., 2015).  

 

Figure 62 – Membrane trafficking pathways in yeast. 
Schematic representation of the most relevant membrane trafficking pathways in yeast. Different 
trafficking steps shown to affect pHi-induced Mpk1 activation include the secretory (SEC), 
recycling (RCY), endocytic (END) and vacuolar protein sorting (VPS) pathways. Proteins 
identified in each step are highlighted with the same color as the respective pathway. Scheme 
adapted from Feyder et al., 2015.   
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The mechanism(s) by which cellular trafficking affects MAPK signaling appear to 

be complex. Recent studies in mammalian cells have focused on the interplay 

between endocytosis and cellular signaling. One of the most extensively described 

functions of endocytosis is the downregulation of signaling pathways by removing 

activated receptors at the PM and sending them to degradation in the vacuole. 

However, it is becoming increasingly clear that the output of a signaling process 

depends not only on the activation of the signaling molecules, but also on the 

propagation and amplification of the signal (Kholodenko, 2006; Sorkin and von 

Zastrow, 2009). Indeed, most of the signaling pathways, including ERK-type 

MAPKs in mammals and fungi are activated at the PM, and the signal needs to be 

propagated through the cell to its target via endocytosis. In addition, endocytosis 

could regulate MAPK signaling through the localization of proteins at the 

endosomal membranes or through direct interaction of activated signaling 

molecules with critical components in the endosomes such as phosphoinositols, 

whose synthesis is regulated by cellular trafficking. Furthermore, it has been also 

proposed that signaling can be mediated at the endosomal membranes. In yeast, it 

was recently demonstrated that the activation of the CWI pathway can be triggered 

at the post-Golgi endosomes, where Pkc1 protein kinase upstream of the Mpk1 

MAPK module and Wsc1, Rho1 and Rom2 co-localize in this compartment to 

activate Mpk1 (Fernandez-Acero et al., 2015). In summary, our exciting new 

findings together with those of other groups suggest that the importance of cellular 

trafficking in signaling goes well beyond its conventional role in cargo degradation, 

and that these processes contribute in a fundamental manner to MAPK regulation. 

Our set of yeast mutants showing impaired activation of Mpk1 in response to 

cytosolic acidification was also enriched for subunits of the V-ATPase complex. V-

ATPase is a highly conserved proton pump that resides at the membrane of 

organelles such as the vacuole, Golgi apparatus and endosomes, where it mediates 

intraluminal acidification in an ATP-dependent manner. Interestingly, mutants in 

cellular trafficking tend to have an increased compartmental pH (Sambade et al., 
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2005). This suggests that the lack of Mpk1 activation in cellular trafficking mutants 

could be a consequence of impaired V-ATPase activity.  

V-ATPase is an important regulator of the pHi homeostasis and vma mutants exhibit 

a more acidic cytosolic pH (Dechant et al., 2010; Martínez-Muñoz and Kane, 

2008). Trk1, a K+ transporter at the PM, also controls pHi homeostasis through 

activation of Pma1 (Rodríguez-Navarro, 2000). Therefore, it is likely that ∆ trk1 

mutant has a more acidic cytosol, as previously described (Young et al., 2010). In 

this work, we found evidences showing that both V-ATPase and Trk1 are involved 

in DES-triggered Mpk1 activation. Our results suggest that a functional machinery 

controlling pHi is fundamental for MAPK signaling regulation. Further, the 

observed enrichment of mutants affected in pHi homeostasis control reinforces the 

importance of pHi in regulation of MAPK signaling.  

We also obtained some controversial results. Given that vma and ∆trk1 mutants 

should likely present a more acidic cytosol, we would expect a higher level of 

Mpk1 phosphorylation after DES treatment, or even at T0. There are a number of 

hypotheses to explain this: (1) since the mutants are hypersensitive to acid, as 

described (Milgrom et al., 2007), they may not survive the strong DES-induced 

intracellular acidification and thus no induction of Mpk1 is seen; (2) a relative 

decrease of pHi similar to that observed in the wild type strain is required for Mpk1 

activation; therefore mutants with a constitutively acidic cytosol are unable to signal 

Mpk1 activation; (3) the V-ATPase complex itself, independent of its function in 

pHi homeostasis, is fundamental for Mpk1 activation.  

So far we have no data on cell survival or baseline pHi in the mutants analyzed, 

therefore we cannot confirm or exclude these hypotheses. Nevertheless, we did 

observe that the DES-triggered decrease in pHi in the yeast wild type strain leads to 

an increase in vacuolar pH (data not shown), suggesting that V-ATPase is inhibited 

by a drop in pHi, as previously described (Martínez-Muñoz and Kane, 2008). Thus, 

an intriguing question is how V-ATPase mediates Mpk1 activation while its activity 
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is inhibited. Dechant et al., 2010 demonstrated that alkalinization of the cytosol as a 

result of glucose addition to starved cells, promotes V-ATPase assembly, and that 

this process positively regulates the cAMP-dependent PKA pathway in yeast 

(Dechant et al., 2010). More recently, the authors demonstrated that GTPases which 

mediate activation of the PKA pathway interact with the V-ATPase complex 

(Dechant et al., 2014). Interestingly, in mammalian cells V-ATPase was also found 

to regulate ERK MAPK signaling. It was reported that the B2 subunit of the V-

ATPase complex, which has no apparent structural ortholog in ascomycetes, can 

stimulate ERK signaling through direct interaction with important upstream 

activators of this pathway. These results suggest that protein-protein interaction 

rather than V-ATPase activity itself mediates V-ATPase triggered ERK activation 

(Li et al., 2006; Liu et al., 2016). If pHi decrease also mediates V-ATPase 

disassembly in our experimental conditions, it is possible that the inability of vma 

mutants to dissociate the V-ATPase complex in response to pH, prevents them from 

activating MAPK signaling.  

In F. oxysporum we made every effort to create knockout mutants in components of 

the V-ATPase complex, by targeting subunits b (Vma2), c (Vma5) and f (Vma7) 

from the V1 domain. Unfortunately, however, we failed to observe single 

homologous recombination events in the obtained transformants. This suggests that 

the function of the V-ATPase is essential in this phytopathogen. However, Chen et 

al 2013 performed targeted gene disruption of vma11, encoding the c’ subunit of the 

V0 domain of the V-ATPase of M. oryzae, to show that the vacuolar H+-ATPase 

complex is fundamental for pathogenicity in this fungus. Interestingly, they found 

that the ∆vma11 mutant exhibits cell wall defects, reinforcing the idea that the V-

ATPase has a regulatory role in the CWI MAPK pathway (Chen et al., 2013). 

Our results obtained in the yeast mutant screen pave the way for further studies in 

F. oxysporum. A subunit of the V0 domain of V-ATPase will likely be the next 

target for gene disruption. Moreover, since recent data demonstrated that V-ATPase 

regulates various cellular signaling pathways by recruitment of small GTPases 
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(Dechant et al., 2014; Hurtado-Lorenzo et al., 2006; Zoncu et al., 2011) we should 

consider investigating the physical interaction between upstream regulators of the 

CWI pathway and the V-ATPase subunits, in response to pHi decrease.  

 

5.5.  CELLULAR FUNCTIONS INVOLVED IN BOTH MPK1 AND HOG1 

CASCADE ACTIVATION  

In this work we discovered a new role of pHi as a regulator for MAPK signaling in 

S. cerevisiae and F. oxysporum. In addition to Mpk1, Hog1 was also induced by a 

decrease in pHi. To find out whether the conserved cellular functions mediate 

activation of both acid-induced MAPK cascades, we tested key mutants from each 

of the most enriched categories required for the Mpk1 activation, for loss of pHi-

mediated Hog1 activation. First, we found that the components of the Mpk1 cascade 

are not involved in Hog1 activation. On the other hand, the Mpk1 phosphorylation 

levels before DES treatment appeared to be higher in the ∆ssk1, ∆pbs2 and ∆hog1 

mutants compared to those observed in previous experiments in the wild type strain. 

Furthermore, Mpk1 phosphorylation was not induced in Hog1 MAPK component 

mutants after DES treatment, suggesting that Hog1 is upstream of Mpk1 activation 

in response to pHi decrease. A preliminary analysis revealed that cellular trafficking 

is fundamental for Hog1 activation. In yeast cells, Hog1 activation has been related 

to acid stress-induced endocytosis of the aquaglycerolporin Fps1 (Mollapour and 

Piper, 2007). However, a link between cellular trafficking and regulation of Hog1 

was not reported so far. We also found that Trk1 and V-ATPase, both key 

regulators of pHi homeostasis, have different roles in Hog1 activation. While the 

∆trk1 mutant failed to activate Hog1, the vma mutants were not affected, in line 

with a recent publication placing the V-ATPase complex downstream of Hog1 (Li 

et al., 2012). Thus, additional mechanisms besides pHi are likely involved in Hog1 

activation. Finally, sphingolipids or ergosterol deficiency had no major effect on 

pHi-mediated Hog1 activation. This contrasts with a report by Tanigawa et al., 

2012, who described that different mutants in sphingolipid synthesis presented 
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hyper-phosphorylation of Hog1. Thus, future experiments need to validate whether, 

depending on the sphingolipid species, lipid metabolism controls exclusively Mpk1 

or both MAPK cascades in response to pHi. 

 

5.6.  PMA1 AND V-ATPASE FUNCTIONS AID TO DISTRIBUTE 
CELLULAR FUNCTIONS ACCORDINGLY WITH THEIR 
INVOLVEMENT ON MPK1 OR HOG1 MAPKS ACTIVATION 

Pma1 is the most abundant protein in the yeast PM and the main player in fungal 

pHi homeostasis (Kane, 2016). Although the activity of Pma1 is strictly regulated, 

different processes in the cell had been described to impact its function. These 

include lipids or the transport of ions throughout the PM as well as the activity of 

the vacuolar H+-ATPase.   

Sphingolipids and ergosterol, which are critical for the formation of 

microdomains in membranes commonly known as lipid rafts (Grossmann et al., 

2007), are vital for sorting and delivery, as well as maintaining of Pma1 at the 

PM (Czyz et al., 2013; Permyakov et al., 2012). Therefore, alterations in 

membrane lipid composition can strongly impact Pma1 activity. 

The uptake of potassium through Trk1 has been shown to induce a difference on 

PM potential that promotes the activity of Pma1. Importantly, the described 

intracellular acidification in ∆trk1 mutants is thought to be mainly a 

consequence of loss of activity of Pma1.  

The activity of V-ATPase has also been demonstrated to affect the activity of 

Pma1. Yeast vma mutants target Pma1 to the vacuoles through endocytosis for 

degradation, leading to lower levels of Pma1 at the PM (Martínez-Muñoz and 

Kane, 2008).  

Our results obtained in the yeast mutant screen revealed that sphingolipids and 

ergosterol, as well as Trk1 and V-ATPase are fundamental for pHi-mediated Mpk1 
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activation. Considering that mutants in all these cellular functions could have 

defects in Pma1 activity, we consider that the compromised activation of Mpk1 in 

acidic pHi could be caused by Pma1. But how does reduced Pma1 activity block 

DES-mediated Mpk1 activation? We speculate that mutants with less Pma1 at the 

PM might be more sensitive to certain stresses impacting on pHi homeostasis than 

the wild type strain. This would lead to loss of viability upon strong intracellular 

acidification induced by DES. On the other hand, lower levels of Pma1 at the PM 

could also lead to a less efficient inhibition by DES and a less pronounced decrease 

of pHi, thus reducing Mpk1 activation.  

However, it is likely that Pma1 is not the only factor responsible for the observed 

phenotypes. Analysis of Hog1 phosphorylation in mutants lacking DES-triggered 

Mpk1 activation allowed to differentiate between those cellular functions that are 

specifically required for activation of only one, or both MAPKs. Through an 

unknown mechanism, Hog1 appears to inhibit Mpk1 under non-induced conditions, 

while promoting its activation upon pHi decrease. On the other hand, Trk1 is 

essential for both Mpk1 and Hog1 activation, while V-ATPase is only required for 

Mpk1 activation. This suggests that the role of V-ATPase in Mpk1 phosphorylation 

could be independent of pHi control. Reinforcing this idea, cellular trafficking that 

should affect compartmental pH, functions in both MAPK signaling cascades. This 

suggests that lack of Mpk1 activation in these mutants is not a consequence of V-

ATPase function. 

In summary, our data suggest a model in which DES-triggered pHi decrease affects 

both Hog1 and Mpk1, with Hog1 functioning upstream of Mpk1  [Figure 63]. 

Cellular trafficking is relevant for signal propagation and duration, affecting both 

MAPK cascades either through an interdependent or an independent mechanism. 

Sphingolipids and ergosterol appear to function exclusively in Mpk1 activation, 

most likely via Ypk1/2. Finally, V-ATPase mediate specifically Mpk1 activation, 

possibly by protein-protein interaction with important intermediates of the CWI 
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MAPK pathway. Integration of these different cellular processes will thus lead 

collectively to Mpk1 activation in response to intracellular acidification [Figure 63]. 

 

Figure 63 – Schematic model of the proposed mechanisms whereby DES-triggered 
intracellular acidification triggers Mpk1 activation. 
In response to DES-triggered intracellular acidification, Hog1 pathway functions upstream of 
Mpk1 activation. Mpk1 is also activated by an alternative upstream branch involving Ypk1/2, 
likely through a lipids-mediated signaling. Biological processes as cellular trafficking or ion 
homeostasis affect both pHi-induced Hog1 and Mpk1 activation. On the other hand, V-ATPase 
function, which is partially inhibited by intracellular acidification, is only relevant for Mpk1 
activation. Green triangle and square at the PM represents sphingolipids and ergosterol. END 
means endocytosis and is presented as representative of the Cellular Trafficking category. 

 

A major goal in future studies will be to elucidate the mechanism of acid pHi-

mediated Fmk1 inactivation. Our data in yeast and F. oxysporum suggest that this 

process depends on Mpk1, but is independent of Msg5. More efforts are needed to 

understand how pHi can differently regulate MAPK signaling in fungi. Finally, a 

key goal is to further dissect the identified mechanisms, particularly lipids and the 

V-ATPase complex, to elucidate the pH sensing mechanism that transmits the 

changes in pHi to the MAPK signaling machinery.  
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CONCLUSIONES 
 

•   Los cambios en el pH extracelular inducen fluctuaciones rápidas y transitorias en 

el pH intracelular (pHi). 

•   La H+-ATPasa de la membrana plasmática Pma1, un regulador importante de la 

homeostasis del pHi en Fusarium oxysporum, controla las fluctuaciones en 

repuesta a nutrientes y a cambios del pH extracelular. 

•   El pHi actúa como un señal para la regulación de las rutas MAPK en F. 

oxysporum. 

•   La ruta MAPK Mpk1, que regula la respuesta a estreses de pared, es activada por 

una bajada del pHi. Esta respuesta esta conservada entre Fusarium oxysporum y 

Saccharomyces cerevisiae. 

•   En levadura, la ruta mediada por la quinasa Ypk1/2 y la rama Sln1 de la ruta 

Hog1 funcionan aguas arriba de Mpk1 tras la acidificación del citoplasma. 

•   La fosfatasa Msg5 es un regulador negativo de Mpk1 y su abundancia se ve 

afectada por el pHi.  

•   Distintas funciones celulares como el tráfico celular, la homeostasis de iones y el 

metabolismo de lípidos estan implicadas en la activación de Mpk1 en respuesta a 

una bajada del pHi.  
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CONCLUSIONS 
 

•   Extracellular pH changes induce rapid and transitory fluctuations in the 

intracellular pH (pHi). 

•   The PM H+-ATPase Pma1 is a major determinant of pHi homeostasis in 

Fusarium oxysporum, regulating pHi fluctuations in response to nutrients and 

external pH changes. 

•   pHi acts as a signal for the regulation of MAPK cascades in the fungal plant 

pathogen F. oxysporum.  

•   The CWI Mpk1 MAPK is rapidly activated by a decrease in pHi. This response 

is conserved between F. oxysporum and Saccharomyces cerevisiae.  

•   In yeast, the Ypk1/2 branch of the CWI pathway and the Sln1 branch of the 

Hog1 pathway function upstream of Mpk1 in response to pHi decrease. 

•   The phosphatase Msg5 acts as a negative regulator of Mpk1 and its abundance is 

affected by pHi.  

•   Several cellular functions such as cellular trafficking, ion homeostasis and lipid 

metabolism are involved in pHi-mediated Mpk1 activation.  
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