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Resumen  

La población mundial, en continuo crecimiento, alcanzará de forma estimada los 9,7 

mil millones de habitantes en el 2050. Este incremento, combinado con el aumento en los 

estándares de vida y la situación de emergencia climática (aumento de la temperatura, 

intensificación del ciclo del agua, etc.) nos enfrentan al enorme desafío de gestionar de 

forma sostenible los cada vez más escasos recursos disponibles. El sector agrícola tiene 

que afrontar retos tan importantes como la mejora en la gestión de los recursos naturales, 

la reducción de la degradación medioambiental o la seguridad alimentaria y nutricional. 

Todo ello condicionado por la escasez de agua y las condiciones de aridez: factores 

limitantes en la producción de cultivos. Para garantizar una producción agrícola 

sostenible bajo estas condiciones, es necesario que todas las decisiones que se tomen estén 

basadas en el conocimiento, la innovación y la digitalización de la agricultura de forma 

que se garantice la resiliencia de los agroecosistemas, especialmente en entornos áridos, 

semi-áridos y secos sub-húmedos en los que el déficit de agua es estructural.  

Por todo esto, el presente trabajo se centra en la mejora de la precisión de los actuales 

modelos agrometeorológicos, aplicando técnicas de inteligencia artificial. Estos modelos 

pueden proporcionar estimaciones y predicciones precisas de variables clave como la 

precipitación, la radiación solar y la evapotranspiración de referencia. A partir de ellas, 

es posible favorecer estrategias agrícolas más sostenibles, gracias a la posibilidad de 

reducir el consumo de agua y energía, por ejemplo. Además, se han reducido el número 

de mediciones requeridas como parámetros de entrada para estos modelos, haciéndolos 

más accesibles y aplicables en áreas rurales y países en desarrollo que no pueden 

permitirse el alto costo de la instalación, calibración y mantenimiento de estaciones 

meteorológicas automáticas completas. Este enfoque puede ayudar a proporcionar 

información valiosa a los técnicos, agricultores, gestores  y responsables políticos de la 

planificación hídrica y agraria en zonas clave. 

Esta tesis doctoral ha desarrollado y validado nuevas metodologías basadas en 

inteligencia artificial que han ser vido para mejorar la precision de variables cruciales en 

al ámbito agrometeorológico: precipitación, radiación solar y evapotranspiración de 

referencia. En particular, se han modelado sistemas de predicción y rellenado de huecos 

de precipitación a diferentes escalas utilizando redes neuronales. También se han 

desarrollado modelos de estimación de radiación solar utilizando exclusivamente 

parámetros térmicos y validados en zonas con características climáticas similares a lugar 

de entrenamiento, sin necesidad de estar geográficamente en la misma región o país. 

Analógamente, se han desarrollado modelos de estimación y predicción de 

evapotranspiración de referencia a nivel local y regional utilizando también solamente 

datos de temperatura para todo el proceso: regionalización, entrenamiento y validación. 

Y finalmente, se ha creado una librería de Python de código abierto a nivel internacional 

(AgroML) que facilita el proceso de desarrollo y aplicación de modelos de inteligencia 
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artificial, no solo enfocadas al sector agrometeorológico, sino también a cualquier modelo 

supervisado que mejore la toma de decisiones en otras áreas de interés.  
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Abstract 
The world population, which is constantly growing, is estimated to reach 9.7 billion 

people in 2050. This increase, combined with the rise in living standards and the climate 

emergency situation (increase in temperature, intensification of the water cycle, etc.), 

presents us with the enormous challenge of managing increasingly scarce resources in a 

sustainable way. The agricultural sector must face important challenges such as 

improving natural resource management, reducing environmental degradation, and 

ensuring food and nutritional security. All of this is conditioned by water scarcity and 

aridity, limiting factors in crop production. To guarantee sustainable agricultural 

production under these conditions, it is necessary to based all the decision made on 

knowledge, innovation, and the digitization of agriculture to ensure the resilience of 

agroecosystems, especially in arid, semi-arid, and sub-humid dry environments where 

water deficit is structural. 

Therefore, this work focuses on improving the precision of current 

agrometeorological models by applying artificial intelligence techniques. These models 

can provide accurate estimates and predictions of key variables such as precipitation, solar 

radiation, and reference evapotranspiration. This way, it is possible to promote more 

sustainable agricultural strategies by reducing water and energy consumption, for 

example. In addition, the number of measurements required as input parameters for these 

models has been reduced, making them more accessible and applicable in rural areas and 

developing countries that cannot afford the high cost of installing, calibrating, and 

maintaining complete automatic weather stations. This approach can help provide 

valuable information to technicians, farmers, managers, and policy makers in key water 

and agricultural planning areas. 

This doctoral thesis has developed and validated new methodologies based on 

artificial intelligence that have been used to improve the precision of crucial variables in 

the agrometeorological field: precipitation, solar radiation, and reference 

evapotranspiration. Specifically, prediction systems and gap-filling models for 

precipitation at different scales have been modeled using neural networks. Models for 

estimating solar radiation using only thermal parameters have also been developed and 

validated in areas with similar climatic characteristics to the training location, without the 

need to be geographically in the same region or country. Similarly, models for estimating 

and predicting reference evapotranspiration at the local and regional level have been 

developed using only temperature data for the entire process: regionalization, training, 

and validation. Finally, an internationally open-source Python library (AgroML) has been 

created to facilitate the development and application of artificial intelligence models, not 

only focused on the agrometeorological sector but also on any supervised model that 

improves decision-making in other areas of interest. 
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mTE Length of the test dataset 

mTR Length of the train dataset 

mV Length of the validation dataset 

meas Measured values 

𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅ Mean of the measured values 

n Number of sunlight hours 

N Maximum theoretical sunlight hours 

pred Predicted values 

𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅ Mean of the predicted values 
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Ra Extraterrestrial solar radiation 

ReLU Rectified Linear Unit 

Rs Shortwave radiation 

Rso Shortwave clear-sky radiation 

Rn Net radiation 

Rnl Net solar radiation 

Rns Net solar radiation 

stats Statistics values like (R2, NSE, MSE and others) 

tanh Hyperbolic tangent 

Tm Mean daily air temperature 

Tn Minimum daily air temperature 

TX Maximum daily air temperature 

w Weight coefficients 

x Inputs of a model 

𝑥* Inputs of a model standardized 

�̅� mean 

y Outputs of a model 

u2 Wind speed at 2 m above ground surface  

uz Wind speed at z m above ground surface  

z height of measurement above ground surface  
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Chapter 1 

Introduction 

 

1. The current situation 

During the last decades, the world’s population is growing and their living standards 

are increasing remarkably rapidly. Therefore, it has become imperative to optimize the 

consumption of natural resources while not affecting the production of two main sectors, 

food, and energy, among others.  

Taking into account the first sector, water resources management is crucial to 

reducing its consumption and increasing food production, considering not only the 

aforementioned problems but also climate change. The escalating frequency and intensity 

of droughts, floods, and other weather-related phenomena are expected to exacerbate the 

already challenging task of managing water resources [1–3], which is highly influential 

in arid and semiarid regions like Andalusia, where the scarce precipitations and high 

water demands have developed a structural water deficit. Besides, future temperature and 

precipitation predictions from the three RCP scenarios (RCP4.5, RCP6.0, and RCP8.5) 

do not highlight a promising future, with average changes in temperature up to +11ºC and 

in precipitation up to -30% in the worse scenario (RCP 8.5). In these terms, the 

introduction of automation in agriculture will help to contribute to raising productivity, 

improving product quality, and helping to achieve the Sustainable Development Goals by 

2030 (no poverty and zero hunger) [4]. Thus, introducing motorized mechanization and 

other technologies such as sensors and robots relying on machine learning models would 

significantly impact all the phases of the cycle of an automation system (Figure 1. 1), 

especially focused on optimizing water resources management. 
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Figure 1. 1. The three-phase cycle of an automation system [4]  

On the other hand, considering the energy sector, governments are investing in 

producing clean and sustainable energy, with the objective of minimizing the release of 

global warming emissions. As a result, the number of renewable energy plants is 

increasing by leaps and bounds, with special consideration for PV plants due to their 

easier and cheaper installations on both, high and low scales[5,6]. As an illustration, the 

global cumulative PV installations have been growing at an annual rate of 32.5% in the 

period 2010 to 2021, being the total cumulative installed PV capacity around 1.15TW in 

March 2022 [7,8]. Focusing on the European Union, the cumulated PV capacity reached 

165 GW in 2021, with Germany, Spain, Poland, and the Netherlands being the top 

installing countries, each with more than 1 GW of installed capacity. Hence, developing 

accurate solar radiation models would be crucial for determining appropriate solar plant 

locations, for decision-taking criteria on BESS about whether to save the current energy 

production according to future availability and needs, and for agronomy, since solar 

radiation is highly important in processes like transpiration and evaporation.  

Thereby, developing novel algorithms based on AI to outperform agrometeorological 

estimations and predictions variables such as solar radiation, precipitation, and reference 

evapotranspiration, among others, is impactful to contribute to the current society 

situation. Not only is high accuracy required, but reducing the number of 

agrometeorological measures needed is also important. 

2. Agrometeorological variables 

2.1.Air Temperature 

The air temperature quantifies the amount of solar radiation absorbed by the 

atmosphere plus the heat emitted by the Earth. It is the most common agrometeorological 

measured variable because of its high accuracy even with low-cost sensors [9,10], as well 

as being very important in modeling other parameters.[11–13]. According to the IS, it is 

measured in K, although the unit ºC is very common due to its similarity to K (ºC = 

K−273). 

The air temperature can be measured using different technologies. Firstly, one of the 

most common sensors is the  Resistance Temperature Detector (RTD), which consists of 

a fine metal wire (usually platinum) whose electrical resistance changes with the 
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temperature. The equivalences between resistance and temperature for a PT100 (100Ω at 

0ºC) and a PT1000 (1000 Ω at 0ºC) are standardized in IEC 60751 [14]. One of the main 

advantages of RTDs is that they have high accuracy and stability, which allows their use 

in industrial environments. However, they have a high price and they require a power 

supply. Secondly, thermocouples are another type of sensor based on a different principle. 

In this case, the thermocouple is made of two different metallic wires joined at one end 

(this point is known as the hot junction), which is usually in contact with the object to be 

measured. The temperature at this spot induces a voltage at the other end of the wire (cold 

junction), being able to determine the first according to the second. The thermocouples 

have a lower price than RTDs, although they are less stable and less accurate. Thirdly, 

the thermistors have similar functionality to RTDs but they are composed of polymers or 

ceramics instead of metals. These sensors usually achieve a very high precision within a 

limited temperature range. 

In Automated Weather Stations (AWS) the temperature must be measured at 2m 

height, following the World Meteorological Organization (WMO) standard, allowing its 

calculation on RTD, generally. 

2.2.Relative humidity 

The relative humidity is a measure of the water vapor density in the air compared to 

the maximum amount that can be held at a given temperature. It is expressed in a 

percentage, indicating how close the water vapor density is to being saturated, thereby, a 

100% value means that the air cannot contain more moisture at that temperature. 

Additionally, the relative humidity is influenced by the temperature, warmer temperatures 

result in a higher moisture retention capacity and a decrease in relative humidity, and 

vice-versa. 

In agronomy, this parameter is very important, since it can slow down the rate of 

evapotranspiration. Thus, a well-watered field located in a hot dry region will allow high 

evapotranspiration to happen, whereas well-watered fields in humid topical sites will 

decrease this rate because the air is closer to saturation [15]. Moreover, due to the high 

relationship between relative humidity and the probability of rain and/or the presence of 

clouds, it is also very important for the renewable energy sector. 

In order to measure this variable, the hygrometer is used. It estimates relative humidity 

by measuring other parameters like temperature, pressure, and mass, among others, 

defining the type of device. Mechanical hygrometers, on the one hand, are based on the 

principle that organic substances expand/contract in response to humidity. Electrical 

hygrometers can be classified into two main types, the devices that measure the resistance 

or the capacitance variations according to the absorbed amount of water. The dew point 

hygrometer can calculate the relative humidity from the dew point temperature. Finally, 

the psychrometer consists of two thermometers, one of which has a wet wick around its 

bulb. The psychrometer works on the principle that when water evaporates from the wet 

wick, it cools the thermometer bulb, causing the temperature reading to be lower than the 

dry bulb thermometer. The difference in temperature readings between the two 

thermometers can be used to calculate relative humidity. 
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2.3.Solar radiation 

Solar radiation refers to the electromagnetic radiation emitted by the sun that reaches 

the Earth. In the IS, the solar radiation is measured in W/m2, although it is also common 

to find kWh/m2, J/m2, and MJ/m2day as alternative units 

It is the primary energy source for the climate and weather systems, as well as PV 

plants, among others. It plays a crucial role in agronomy and renewable energy sectors 

alike. 

• Extraterrestrial radiation. It refers to the amount of solar radiation that reaches 

the outermost layer of the Earth’s atmosphere, representing the amount of energy 

that the sun emits and reaches the atmosphere per unit area (on a horizontal 

surface). Its value can be theoretically calculated using the date and the latitude 

[16]. Figure 1. 2 shows the extraterrestrial radiation values for the northern and 

southern continental sites of Andalusia in MJ/m2day. 

  

Figure 1. 2. Extraterrestrial solar radiation in the most northern and southern continental sites of 

Andalusia (El Viso and Tarifa, respectively) 

• Shortwave radiation. As solar radiation enters the atmosphere, there is a portion 

that is absorbed, reflected, and scattered due to clouds and atmospheric gases. The 

amount of energy that eventually reaches a horizontal plane in the Earth's ground 

is called shortwave radiation.  The amount of radiation in clear-sky conditions is 

called clear-sky shortwave radiation (Rso). Its value, as well as the clearness index 

(KT), can be calculated using the methodology proposed by Allen [15] (equations 

1.1 and 1.2). 

RSO = KT Ra Eq. 1. 1 

KT = 0.75 + 2·10-5 z Eq. 1. 2 

 

The ratio between the shortwave radiation and the shortwave radiation in clear sky 

atmospheric conditions is known as the relative shortwave radiation, which is a 
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way to determine how cloudy a day is. Their values range from 1 on a clear sky 

day to 0.33 on a dense cloudy day. 

• Relative sunshine duration. Another important ratio in order to determine the 

cloudiness of the atmosphere is the ratio between the actual daylight hours (n) and 

the theoretical maximum possible duration (N). On clear-sky conditions, n should 

be equal to N.  

• Albedo. The albedo( α ) quantifies the amount of solar radiation reflected by the 

surface, which is sensitive to the characteristics of the surfaces and vegetation. 

The amount of solar radiation that does not reflect is called net solar radiation 

(RNS). 

• Net longwave radiation. The Earth absorbs solar radiation, which is converted 

into heat energy. However, part of this is lost by several processes, for example, 

emitting radiative energy. This radiation is known as net longwave radiation 

(Rnl). Part of this energy is reabsorbed by the atmosphere, whereas the rest is lost 

in space. 

• Net radiation. The net radiation reflects the balance between Rns and Rnl, which 

takes into account the energy reflected, absorbed, and emitted by the Earth’s 

surface. Rn is usually positive during a 24-hour period, positive during the day, 

and negative during the night. 

Figure 1. 3 shows a visual representation of the different solar radiation components. 

  

Figure 1. 3. Solar radiation components. 
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Solar radiation can be measured using three main devices, the pyranometers, the 

radiometers, and the solarimeters. The pyranometer is designed to measure the total 

amount of solar radiation that reaches a particular site, combining direct and diffuse solar 

radiation. Besides, the radiometer measures the amount of electromagnetic radiation 

presented in a particular environment, being able to detect wavelengths outside the visible 

light spectrum. Eventually, the solarimeter is specifically designed to quantify the 

intensity of sunlight. On the other hand, solar radiation can be estimated from n and N 

using the Angstrom formula [17], where n is measured using a Campbell-Stoke sunshine 

recorder.  

2.4.Wind speed 

The wind speed is composed of two main components, the velocity, which quantifies 

the intensity, and the direction, which refers to the wind's trajectory. According to the IS, 

the velocity is measured in m·s-1 using the anemometer. Besides, the direction is 

commonly measured by counting the time the wind blows in each direction quadrant 

(North, East, South, and West).  

It is worth noting that wind speed has different values depending on the height due to 

the surface friction. The anemometer is standardized and located at 10m in meteorology 

AWSs and at 2 or 3m in agrometeorological AWS. The values can be estimated using Eq 

1.3 

𝑢2=𝑢𝑧

4.87

ln(67.8 · z - 5.42)
 Eq. 1. 3 

2.5.Precipitation 

The precipitation quantifies the amount of water that falls from the atmosphere to the 

surface. It is measured using a rain gauge, which automatically records a fixed water 

volume using a rocker arm system and buckets. The rain gauge measures the amount of 

rainfall by collecting water in a funnel, which then flows into one of two tipping buckets 

located at one end of a rocker arm. When one of the buckets fills up, it tips over and 

empties the water, while positioning the other bucket under the funnel to start its filling 

process. As each bucket tips over, the rocker arm briefly contacts a tongue for a few 

milliseconds. The amount of water collected is measured by counting the number of tips 

or pulses, with each pulse equivalent to a fixed rainfall measure. 

The precipitation is measured in l, which is a unit of volume in IS, quantifying the 

amount of water in a given area. Besides, it can be measured in mm, which is a unit of 

length, corresponding to the height of the fallen rain in a 1 m2 area. The equivalences are 

1mm = 1 lm-2. 

2.6.Reference evapotranspiration 

One of the most important agronomical parameters is evapotranspiration, which 

quantifies the actual water needs taking into account the crop characteristics, its 

management, and the weather parameters. The concept encompasses the water needs in 

crops that are produced through evaporation and transpiration. Evaporation is the process 
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in which water is evaporated from a surface, whereas transpiration corresponds to the 

process in which the water contained in plant tissues is transferred to the atmosphere 

through the stomata, mainly. Both processes simultaneously happen without having an 

easy method to distinguish one another.  

The evapotranspiration can be accurately determined using lysimeters. There exist 

different types of devices according to their functionality basis such as weighing, 

drainage, and wick lysimeters, among others, although the weighing lysimeter is most 

commonly used. It consists of a large buried container having plants and the soil they 

grow in. It is equipped with a system of load cells and sensors that allow measuring the 

weight of the entire system (plants, soil, and lysimeter) with high precision. By regularly 

weighing the lysimeter over time, it can be determined how much water is being lost from 

the system due to ET. 

The main factor affecting evapotranspiration is the weather condition in the first term, 

being the air temperature, relative humidity, solar radiation, precipitation, and wind 

speed, among others, the principals. Besides, the crop characteristics such as the crop type 

and its development stage have to be considered as well. Eventually, the management 

conditions as the presence of fertilizers and well-watered irrigations also affect 

evapotranspiration. According to these factors, three main evapotranspiration variables 

can be derived: (I) the reference evapotranspiration (ET0), which measure the water needs 

of a reference surface (standardized characteristics like the albedo and the crop height, 

among others) and management conditions, only affected by the weather parameters; (2) 

the crop evapotranspiration under standard conditions (ETC), which considers the crop 

features in the formula; and (3) the crop evapotranspiration under non-standard conditions  

(ETc adj), considering the actual crop characteristics, management, and environmental 

conditions. 

Since the cost associated to measure, ETc adj is very high, the use of ET0 is considered 

an alternative for making water resources management decisions. The reference surface 

in this variable is a hypothetical grass reference crop assuming a 0.12m height, an albedo 

of 0.23, and a surface resistance of 70sm-1, and. It can be mathematically expressed using 

the FAO PM equation [15] as Eq 1.4: 

ET0 =
0.408∆(RN − G) + γ

900
T𝑚 + 273

u2(𝑒𝑠 − e𝑎)

∆ + γ(1 + 0.34𝑢2)
 Eq. 1. 4 

where 0.408 corresponds to a coefficient (MJ−1 m2 mm), ∆ is the slope of the saturation 

vapor pressure versus temperature curve (kPa °C−1), RN is the net radiation calculated at 

the crop surface (MJ m−2 day−1), G is the soil heat flux density at the soil surface (MJ m−2 

day−1), γ is the psychrometric constant (kPa °C−1), Tm is the mean daily air temperature 

(°C), u2 is the mean daily wind speed at 2 m height (m s−1), and es and ea are the saturation 

vapor pressure and the mean actual vapor pressure, respectively (kPa). The Eq 1.4 to 



 

 

41 

 

determine ET0 has been widely applied in different climate conditions [18–21] and 

countries, becoming the sole standard methodology for FAO. 

However, the geographical density of AWS measuring all the meteorological 

measurements for FAO PM is very low, especially in rural areas and developing countries 

[22] due to the high cost associated with installation, maintenance, and calibration. Thus, 

novel models had been developed using a limited dataset, like the Hargreaves Samani 

[23] or the Bristow Campbell [24] equations which determine solar radiation and 

reference evapotranspiration using the maximum and minimum air temperature and the 

extraterrestrial solar radiation, which had been assessed in different countries and climate 

regions like Italy, Switzerland, Turkey, China, Mexico, and Spain [25–30], among others. 

3. Automated Weather Stations in Andalusia 

In Andalusia (Southern Spain), there coexist three main AWS networks, the 

Agroclimatic Information Network (RIA), the State Meteorological Agency (AEMET), 

and the Crop Health Alert and Information Network (RAIF). Figure 1. 4 show the 

geographical location of all the AWS from the RIA, RAIF, and AEMET networks. 

 

Figure 1. 4. AWS sites from AEMET, RIA, and RAIF 

The RIA AWS network consists of 122 sites measuring wind speed and direction at 

2 meters above ground level, solar radiation, relative humidity, air temperature, and 

precipitation using the sensors in Table 1. 1. Sensors specifications from the RIA AWS 

network [31]. The dataset covers a period from December 1999 to June 2022 with daily 

sampling frequency, which can be freely downloaded at the following link: 

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/riaweb/web/ (Accessed on 

March 17th, 2023). Besides, the RAIF AWS network consists of a total of 79 AWS also 

measuring air temperature, relative humidity, solar radiation, accumulated precipitation, 

and the wind speed and direction at 10 m height. The dataset covers the period from 

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/riaweb/web/
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January 2002 to December 2021, which can be freely downloaded at the following link: 

https://www.juntadeandalucia.es/datosabiertos/portal/dataset/raif-clima (Accessed on 

March 17th, 2023). It is worth noting that both RIA and RAIF networks offer free access 

to daily records, but hourly records are only available upon request and for research 

purposes. Moreover, the AEMET AWS network is composed of a total of 1754 AWS 

measuring the air temperature and/or precipitation, thus they are limited compared to RIA 

and RAIF. Furthermore, daily records are available upon request, but only for research 

purposes and they are subject to payment. 

Table 1. 1. Sensors specifications from the RIA AWS network [31] 

Parameter Sensor Range Accuracy 

Solar radiation Skye SP1110 350 to 1100 nm ±5 % 

Relative Humidity Humicap 180 0.8 to 100 % ±3 % (90-100%) 

±2 % (0.8-90%) 

Wind speed 

Wind direction 

Young 05103 0 to 60 m s-1 

0 to 360○ 

±0.3 m s-1 

±3 ○ 

Temperature PT1000 -39.2 to 60 ○C ±0.3 ○C 

Precipitation ARG 100  0.2 mm/tip 

 

4. Quality Control Procedures 

Ensuring the use of reliable, high-quality data is the first requirement when 

conducting studies using time series datasets and modeling tasks. Thereby, carrying out 

quality control procedures is a critical process in data science to ensure the accuracy and 

reliability of analysis results. It involves evaluating data quality in order to identify and 

correct errors and/or inconsistencies, whose problems can be associated with different 

sources: 

• Problems associated with sensor failures. Like any electronic component, 

sensors have a lifespan, and components can break. There also exists the 

possibility of failure associated with a blow or adverse weather conditions. This 

would generate the storage of a null or incorrect value.  

• Problems associated with sensor drifts. Sensor drifts are a common problem in 

time series datasets, they can deviate from their original calibration due to factors 

such as temperature variation, vibration, or prolonged use. When this happens, the 

data measured by the sensors can be incorrect and not accurately represent the 

reality being measured. This can be a serious problem, as inaccurate data can lead 

to incorrect conclusions and decisions. There are various techniques to address 

sensor drifts, such as recalibrating the sensors and applying correction models to 

adjust the measured data. Additionally, it is important to regularly monitor sensors 

and take preventive measures to minimize deviation from their original 

calibration.  

• Problems associated with datalogger failure. A data logger is a device used to 

automatically collect data over time. These devices can be very useful for 

collecting data in remote environments and in real time. However, a common 

https://www.juntadeandalucia.es/datosabiertos/portal/dataset/raif-clima
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problem is data loss due to device failure. If a datalogger breaks before the data 

has been collected/downloaded, all the stored information contained on the device 

will be lost. To minimize the risks associated with datalogger failure, it is 

important to use high-quality devices and ensure regular maintenance and checks 

are performed. Additionally, it is important to have a contingency plan in case the 

device fails or breaks. This could include the use of redundant devices and/or 

manual data collection, among others.  

• External problems. Studies such as Estévez et al [36] detect the occurrence of 

spurious signals in precipitation measurements caused by irrigation systems.  

The different methodologies to identify and flag erroneous data can be classified into 

range, step, internal consistency, persistence, and spatial consistency tests [31], for the 

different meteorological variables and the sampling rate. The range tests assess the 

sensor value considering the technical specifications and the climate limits (sensitive to 

the AWS site and the season). For example, temperature records outside the sensor range, 

or solar radiation measures above Rso, must be flagged as erroneous data.  The step tests 

evaluate changes in values of the different variables at different frequencies, evaluating 

the excessive change rates of consecutive records. For example, in hourly solar radiation 

records, Meek and Hatfield [32] proposed that the difference between two consecutive 

records must be between [0, 555] Wm-2. Internal consistency tests determine the quality 

of measures assessing variables recorded at the same location and time; two variables 

measured at the same site and time must be consistent, being flagged as erroneous 

otherwise. For example, TX must be higher than Tm and Tn on any frequency basis. The 

persistence tests evaluated the variability of records, since the sensor state a constant 

value when failing. Among other statistics, the standard deviation is observed not to be 

below an acceptable minimum, since constant values have a zero standard deviation 

value. For example, temperature values (TX, Tm, and Tn) cannot be the same for three 

consecutive days. Finally, spatial consistency tests compare data between the 

surrounding weather stations and flag suspects records whose difference exceeds a limit. 

It is worth noting that the observations are weighted regarding the distance between them, 

although, due to the weather variability, these tests are commonly used in temperature 

records only. 

5. Feature engineering and selection 

Feature engineering corresponds to the process of studying the raw data (time series 

datasets from an AWS, in this case) and transforming it into different and/or novel 

features to outperform estimations and predictions’ modelings. The main goal during this 

process is to extract meaningful information from the given dataset so that models using 

these new features outperform those using only the raw data. 

Several techniques can be used for feature engineering, and the chosen technique 

depends on the nature of the data and the problem being solved. One common technique 

is to use domain knowledge to engineer features that are known to be relevant to the 

problem. For example, instead of using the coordinates, a better alternative is to calculate 

extraterrestrial solar radiation, which gives more valuable information. In these terms, 
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temperature-based features had been determined such as the time when TX occurs, the 

time when Tn occurs, and EnergyT (the integral of semi-hourly temperature records in a 

day), among others. Figure 1. 5 shows the temperature records of 24th May 2015 at the 

AWS from RIA located in Cordoba  

 

Figure 1. 5. Semi-hourly temperature and relative humidity records on 24th May 2015 at the AWS from 

RIA located in Cordoba. The Tx time and Tn time represent the time at which TX and Tn occur, 

respectively 

Another technique is the use of statistical methods to find the features or new ones 

that are more correlated with the target variable, for example, the use of Principal 

Component Analysis (PCA). PCA is commonly utilized to identify patterns and extract 

information from the original dataset, which is usually used for dimensionality reduction 

purposes [33]. Its main goal is to transform the original dataset into a new coordinate 

system, using new features calculated as a linear combination of the originals (known as 

principal components). 

The feature selection process refers to the selection of the best feature subset that 

obtains the most accurate modeling. It is a crucial phase in data analysis and machine 

learning applications because getting irrelevant variables leads to a decrease in 

performance, using too many features significantly increase the computation time and 

may leads to overfitting, and modeling with very few input variables can result in 

underfitting performance. Usually, two main approaches are considered, the trial and 

error technique, where different and even all the possibilities are tested, and two main 

statistical filtering methods, the Pearson Correlation (PC) and the Mutual Information 

(MI) coefficients. Pearson Correlation measures the linear relationship between two 

variables, ranging from -1 to +1, where values close to 0 indicate the absence of 

correlation, and values close to +1 and -1 refer to a high positive and negative linear 

correlation, respectively. On the other hand, MI measures the information contained in 

one variable about the other, ranging from 0 to + infinity. Values close to 0 indicate the 
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absence of information while higher values refer to stronger relationships. Both PC and 

MI have been evaluated for agrometeorological works [34–36] 

6. Machine learning models 

6.1.Linear Regression 

Linear regression is one of the most basic and widely chosen models in supervised 

learning as a baseline due to both its simplicity and low computational cost. It is a 

statistical technique used to find a linear relationship between an input variable 

(independent) and an output variable (dependent) in a dataset. In other words, linear 

regression predicts the output value from linear combinations of the inputs. The goal of 

linear regression is to find a straight line that best fits the data so that it can be used to 

predict future values. Depending on whether the model has one or more inputs it can be 

classified into simple linear regression (one single input predicts one single output) and 

multiple linear regression (multiple inputs predict a single output). 

 

(a) 

 

(b) 

Figure 1. 6. Example of linear regression models: a) simple linear regression and b) multiple linear 

regression 

The weights of linear regression models are calculated using the least square method, 

which consists of finding the weights and bias values that minimize the sum of squared 

differences between the inputs and output. The process is carried out iteratively during 

the training stage until the fittest set is found (obtaining the minimum error). 

6.2.Multilayer Perceptron (MLP) 

Multilayer Perceptron (MLP)  models are inspired by the complex structure and 

functionality of neurons in the human brain, where a net of interconnected neurons 

process the information given by the senses (input features) and determine the most 

appropriate stimuli (output estimation/prediction). They were first introduced by 

Rosenblatt back in 1958 [37], although the actual capabilities required the development 

of higher computational power that came in the later decades. 

Its structure is composed of multiple layers of interconnected nodes (also known as 

neurons) that works very similarly to multiple linear regression in a low-level view and 

can capture complex patterns between the inputs and outputs variables, in a high-level 

view. The different layers can be classified as input, hidden, and output layers, referring 

to the inputs, the neurons architecture, and the outputs of the model, respectively. Figure 

1. 7 shows an example of an MLP model having 4 inputs, 1 output, and 3 hidden layers 

with 5, 4, and 3 neurons, respectively. Besides, Figure 1. 8 shows the architecture of a 

single neuron architecture. 
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Figure 1. 7. Multilayer Perceptron architecture example for a model having 4 input features, 1 output, 

and 3 hidden layers with 5, 4, and 3 neurons, respectively 

 

Figure 1. 8. Architecture of a single neuron of an MLP model 

The activation function is a mathematical function that introduces non-linearity 

behaviors at the output of each neuron, allowing MLP to learn and deploy more complex 

relationships than linear regression. There are different types of activation functions, the 

sigmoid function, the hyperbolic tangent (tanh), and the rectified linear unit function 

(ReLU). Figure 1. 9 shows the mathematical equation and its plot. 

a) Sigmoid 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

 

b) Tanh 𝑓(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
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c) ReLU 𝑓(𝑥) = {
0 𝑖𝑓 𝑥 < 0

𝑥 
 

 
Figure 1. 9. Activation function: a) sigmoid, b) ReLU, and c) tanh 

Another important aspect of MLP is the process of training, where all the weights and 

biases are automatically adjusted, known as backpropagation. This algorithm is carried 

out iteratively using an optimization function that calculates the gradient of the error 

according to each weight and bias, telling the algorithm how much to adjust in order to 

minimize the modeling error. This calculation is repeated in many iterations, known as 

an epoch, whose value depends on the complexity of both the architecture and the process 

to model; the higher the complexity, the higher the number of epochs. A bad choice in 

this aspect may result in overfitting or underfitting. 

MLP models have been proven to successfully work in agrometeorological 

applications, being one of the most chosen algorithms due to both, their good general 

efficiency and their conceptual simplicity. For example, for estimating/predicting solar 

radiation [38–40], precipitation [11,41–44], and reference evapotranspiration [45–51], 

among others. On the other hand, the computational cost of deep architecture (also when 

a very large dataset is studied) during the training is very high. 

6.3.Extreme Learning Machine (ELM) 

Extreme Learning Machine (ELM) models correspond to a single hidden layer 

feedforward neural network (SLFN) architecture with the main difference that the input 

weights are automatically set with a value ranging from 0 to 1, and the output weights are 

analytically calculated minimizing the minimum norm least squares solution (like in a 

general linear system). The absence of a backpropagation training process makes these 

models very fast to adjust, although a very high RAM is required for very long datasets. 

They were first introduced by Huang [52], inspired by the promising learning 

capabilities of SLFN using almost any non-linear activation function [53]. Research 

indicates that ELM can estimate and predict agrometeorological variables with high 

precision [54–64]. 

6.4.Support Vector Machine (SVM) 

Support Vector Machine (SVM) for regression tasks, also known by some researchers 

as Support Vector Regression (SVR) has a similar conceptual basis to linear regression, 

where the fittest hyperplane is determined in order to model a system, but introducing an 

extra complexity layer where the acceptable error can be defined (slack variables). The 

idea behind slack variables is to allow some data points not to be contained in the defined 
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hyperplane but to penalize them in the cost function. During the training stage, the 

algorithm must minimize the sum of the slack variables.  

The introduction of slack variables benefits in determining hyperplanes that 

generalize better in real-world applications with unseen data, minimizing the possibility 

to overfit.  Figure 1. 10 shows an illustrative example of slack variables in SVR models. 

Besides, the optimization algorithm is mathematically expressed as Eq 1.5 constrained by 

Eq 1.6. 

 

Figure 1. 10. Illustrative example of slack variables in SVR models 

 

𝑀𝐼𝑁 (
1

2
 ‖𝑤‖2 + 𝐶 ∑|𝜉𝑖| 

𝑚𝑇𝑅

𝑖=1

)  ≥ 0 Eq. 1. 5 

|𝑦𝑖 − 𝑤𝑖𝑥𝑖| ≤ 𝜀 + |𝜉𝑖| Eq. 1. 6 

where wi corresponds to the weight vector, xi to the input vector, yi to the output vector, 

𝜀 represents the margins, ξ represents the deviation of values to the margins, C is a 

coefficient to penalize deviation to the margins, and mTR the length of the training dataset.  

An important characteristic of SVM is the use of kernel functions, which enable the 

models to operate in a high-dimensional feature space. The definition of kernel functions 

is given by Vapnik [65]: “Given a mapping function ∅:X→V, we call the function K:X→R 

defined by K(x, x′) = (∅(x), ∅(x′) )v, where (∙, ∙)v denotes an inner product in V, a kernel 

function”. The primary benefit of using kernel functions in SVM is that they allow them 

to effectively find complex and non-linear relationships between input features and the 

output, by transforming the data into a higher dimensional space. Besides, kernel 

functions easy SVM to work with large datasets without compromising the computing 

cost. The most typical kernel functions are the linear, polynomial, and radial basis 

function (RBF) kernels. 
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SVM models have been assessed at different sectors [66–69], and agrometeorological 

variables [70–77] obtaining accurate results even with default hyperparameter 

configurations [78]. 

6.5.Random Forest (RF) 

Random Forests (RF) are based on Decision Tree (DT) models. DT models work by 

iteratively making decision rules that help to minimize the uncertainty in the output 

prediction. During the training stage, the model finds which feature and value range must 

be consulted in each decision. A useful analogy to describe this model is the classic game 

"Guess Who?" In this game, players ask yes-or-no questions to identify the opponent's 

selected character, such as "Is it male or female?" or "Does the character wear glasses?" 

Each of these questions is equivalent to a decision rule. Thus, finding the right question 

and its order is crucial, which is the main goal of DT models during the training phase. 

The main advantages of these kinds of models are: (1) that they are easy to interpret since 

all decision rules can be graphically plotted; (2) they can handle missing data during the 

training set; (3) they can work with different data types with no preprocessing 

requirements (normalization and/or standardization); (4) decision trees can perform 

automatic feature selection, eliminating the less important features to enhance the model 

accuracy and reduce its training time; and (V) these models are non-parametric, meaning 

they make no assumptions about the underlying data distribution or the relationship 

between the input and output data (unlike models such as linear regression, based on the 

assumption of a linear relationship). This makes the model more flexible and capable of 

adjusting to a wide variety of applications. 

In these terms, RF is a type of machine learning model that is based on creating a 

large number of independent decision trees, known as random decision trees, in addition 

to combining their results. In this model, each tree is trained with a random sample of the 

dataset, giving each of it a different perspective on the problem in order to obtain a better 

performance. These types of models that rely on predicting a value using the combination 

of different models’ predictions are known as ensemble modeling. 

RF models have similar advantages to DT models, such as the ability to handle large 

and complex datasets, and the ability to handle a large number of features. In addition, 

because the final prediction is the result of the combination of different models, they are 

less prone to making specific errors under specific conditions, since an erroneous value 

is corrected by the rest of the predictions. On the other hand, the computational cost is 

higher because several models have to be trained, although this computational load can 

be distributed in different computers, greatly reducing the computational time. 

The process of building a random forest consists of two main phases: the creation of 

decision trees and the combination of their results: 

1. Creation of random decision trees: Each tree is built from a random subset of 

training data and a random subset of features, greatly increasing diversity in 

modeling. Just as for tackling a project or business, the vision of different types 
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of professionals and viewpoints is beneficial, using multiple models trained on 

different features and subsets of data minimizes the final prediction error [79–82]. 

2. Combination of results: Once all trees are created, their results are combined to 

form a final prediction. Different methodologies are used in this phase, depending 

on the system to be modeled. In general, for classification, the majority vote result 

is used, where each tree votes for a class, and the class with the most votes is 

selected as the final prediction. In regression, the mean or median of the 

predictions is commonly applied. Additionally, for more complex modeling, it is 

common to find machine learning models that generate a final prediction from 

these individual predictions [83]. 

7. Hyperparameter selection 

Hyperparameter selection is crucial in the process of building machine learning 

models. It consists of selecting the optimal hyperparameter set that makes the model yield 

the best performance for a given dataset. Choosing the correct hyperparameter set can 

modify the performance from bad to outstanding. 

Various methodologies can be used to achieve this goal. One of the most common, 

albeit the least reliable, is the trial-and-error technique [77,84], which involves evaluating 

a set of values for each hyperparameter and selecting the best set based on performance. 

However, it should be noted that this approach does not provide any guarantee that the 

selected hyperparameter set is the most appropriate one for the given problem. A better 

solution would be to automatically carry out this methodology in a loop, such as Grid and 

Random search. The main difference is that Grid search evaluates all the possible values 

from the hyperparameter space (similar to a brute force algorithm), whereas Random 

search assesses random values. Some authors have evaluated that Random search 

performed the same as Grid search but with a lower computational cost [85,86]. Finally, 

the best solution is to carry out an optimization algorithm to solve this problem, for 

example, Bayesian Optimization (BO), Particle Swarm Optimization (PSO), Grey Wolf 

Optimizer (GWO), Whale Optimization Algorithm (WOA), and Genetic Algorithms 

(GA), among others. There are several algorithms inspired by different animal behaviors: 

(1) PSO is inspired by the behavior of bird flocking or fish schooling, where all the 

particles move through the search space according to the best positions of other particles 

in the swarm; (2) GWO is inspired by the hunting behavior of grey wolves, where the 

population is divided into alpha, beta and delta wolves representing the best, second-best 

and third-best solutions; (3) WOA is inspired by the hunting behavior of humpback 

whales, where the whales move through the search space considering different strategies 

such as encircling the prey, bubble-net attacking and searching for prey. Additionally, 

BO has gained popularity recently due to its similarity to human behavior while carrying 

out this task [87,88] and its use in popular automated machine learning such as Auto-

Keras, Auto-Sklearn, and Auto-Weka 2.0 [89] This algorithm is based on the Bayes 

theorem where a new set of hyperparameters is chosen and evaluated regarding previous 

results, alternating between two main strategies/functions (acquisition function), focusing 
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on those areas with high uncertainty or those hyperparameter values believed to bring 

promising results. 

8. AgroML 

During this thesis, an easy Python tool for developing models for agrometeorological 

estimations and forecasts has been developed. It provides an abstraction layer to different 

machine learning libraries such as Tensorflow, Scikit-Learn, and Hpelm in order to make 

machine learning applications easier to develop and compare. Besides, different utils can 

be found, like data normalization/standardization, hyperparameter tuning, machine 

learning models like MLP, SVM, RF, ELM, XGBoost, and others, and 

agrometeorological calculations such as ET0 and solar radiation using different 

methodologies. 

The library can be freely found and used at https://github.com/Smarity/AgroML 

(Accessed 19th March 2023), previously used in recent works [46,47].  

9. Hypothesis 

The different hypotheses evaluated are: 

A) Agrometeorological variables derived from temperature-based features can be 

accurately estimated/predicted using machine learning models, such as 

precipitation (works 1 and 4), solar radiation (work 3), and reference 

evapotranspiration (works 2, 5, and 6). 

B) The use of better algorithms to improve hyperparameter selection such as BO can 

outperform the efficiency of models (work 2). 

C) Clustering weather stations based on DTR can improve the accuracy of 

temperature-based agrometeorological variable predictions (work 6). 

D) Multifractal properties of DTR can be used as a basis for developing a regional 

machine learning method for agrometeorological variable predictions (work 6). 

E) The creation of regional models to deploy agrometeorological modeling only 

using temperature records in the whole process (works 3 and 6). 

F) The incorporation of new temperature-based features such as EnergyT, 

HourminTx, and HourminTn can improve the accuracy of agrometeorological 

variable predictions (works 2, 3, and 5) 

G) Machine learning models such as MLP, SVM, and RF can outperform traditional 

temperature-based methods in predicting agrometeorological variables (work 2 

and 3). 

H) The accuracy of agrometeorological variable predictions varies depending on the 

geo-climatic conditions of the location being studied (work 6) 

I) The aridity index and distance to the sea are factors that can affect the accuracy 

of agrometeorological variable predictions (works 2, 3, and 6) 

J) Agrometeorological variables can be accurately predicted using temperature-

based features even in areas with low rainfall or limited water resources (work 4). 

https://github.com/Smarity/AgroML
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10.   Objectives 

The main aim of this Ph.D. thesis is to research smart models to improve 

agrometeorological estimations and predictions considering two main statements: (1) the 

use of fewer measurements as input features, mainly focused on temperature-based 

datasets, and (2) to enhance the efficiency of models. Several secondary objectives have 

been proposed to achieve this purpose: 

A) To develop accurate machine learning models for agrometeorological forecasting 

using temperature-based features and time series data (work 1 and 5). 

B) To develop accurate machine learning models for agrometeorological estimations 

using temperature-based features and time series data (work 2, 3, 4, and 6). 

C) To compare the performance of different machine learning models for 

agrometeorological forecasting in different geo-climatic conditions (work 5). 

D) To evaluate the impact of new temperature-based features, such as EnergyT, 

hourminTx, and hourminTn, on the accuracy of agrometeorological forecasting 

models (works 2, 3, and 5). 

E) To develop a clustering method based on multifractal properties of DTR for 

accurate weather station grouping and agrometeorological forecasting (work 6). 

F) To assess the accuracy of temperature-based reference evapotranspiration (ET0) 

estimations using machine learning models and compare them with the 

performance of the HS method (work 2, 5, and 6). 

G) To investigate the seasonal variation in the accuracy of agrometeorological 

forecasting models and identify the most accurate models for each season. (works 

2, 3, and 5). 

H) To develop an open-source repository for agrometeorological forecasting models, 

which can be used in different geographic locations and climatic conditions (work 

5). 

I) To assess the impact of aridity index and distance to the sea on the accuracy of 

agrometeorological forecasting models in different regions (works 2, 3 and 5). 
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Abstract 

Accurate forecast of hydrological data such as precipitation is critical in order to 

provide useful information for water resources management and play a key role in 

different sectors. Traditional forecasting methods present many limitations due to the 

high-stochastic property of precipitation and its strong variability in time and space: not 

identifying non-linear dynamics or not solving the instability of local weather situations. 

In this work, several alternative models based on the combination of wavelet analysis 

(multiscalar decomposition) with artificial neural networks have been developed and 

evaluated at sixteen locations in Southern Spain (semiarid region of Andalusia), 

representative of different climatic and geographical conditions. Based on the capability 

of wavelets to describe non-linear signals, ten wavelet neural network models (WNN) 

have been applied to predict monthly precipitation by using short-term thermo-

pluviometric time series. Overall, the forecasting results show differences between the 

ten models, although an effective performance (i.e., correlation coefficients ranged from 

0.76 to 0.90 and Root Mean Square Error values ranged from 6.79 to 29.82 mm) was 

obtained at each of the locations assessed. The most appropriate input variables to obtain 

the best forecasts are analyzed, according to the geo-climatic characteristics of the sixteen 

sites studied. 
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1. Introduction 

Precipitation, besides being one of the most important variables in hydrological 

models (infiltration, soil loss, droughts, overland flow production, floods, etc.), is crucial 

in sectors such as agriculture, tourism or even in the energy sector [1], where the absence 

of water can lead to the closure of nuclear plants, such as the recent case in July 2019 in 

France. Therefore, the improvement of precipitation predictions is one of the greatest 

current challenges of the scientific community. Likewise, accurate precipitation 

forecasting is a very difficult and relevant mechanism of the hydrologic cycle due to its 

high spatial-temporal variability. Because of the large number of interconnected variables 

that are involved in the physical modeling of precipitation, forecasting rainfall is 

exceptionally complicated [2]. Due to the nonlinear and dynamic characteristics of 

precipitation, methods like numerical weather prediction (NWP) models or even 

statistical models still have difficulties to provide satisfactory precipitation forecasts [3]. 

This is mainly due to the fact that they are subject to many uncertainties [4–9] such as not 

solving the local weather situations or not identifying non-linear dynamics in time series, 

among others [10–12]. 

In this sense, the mathematical models called Artificial Neural Networks (ANN), 

which are inspired by how the human nervous system works, have many strengths. One 

of them, which is highly important, is their ability to learn from experience. ANN models 

are based on a set of processing elements called neurons and they can accumulate a large 

number of behaviors, allowing users to forecast previously nonexistent patterns. Another 

advantage is that neurons in ANNs work in a parallel processing mechanism, being able 

to process—as singular or multi-layered information—big data efficiently. Lastly, they 

can extract complex nonlinear relationships between variables, which can be very useful 

for precipitation modeling. The concept of artificial neurons was introduced by the 

authors in [13] but the ANN applications have increased since the back-propagation 

learning method was developed [14]. Since then, the use of ANN in the field of research 

has turned into a multitude of satisfactory solutions to problems that are not easily solved 

with traditional techniques, especially when the quality is doubtful and the quantity is 

scarce [15]. One of the most used ANN architectures is the so-called feed-forward 

multilayer perceptron (FFMLP), where all the information propagates in one direction 

toward the output layer with no feedback. This architecture is explained in detail in 

Section 2.2. In addition, their use is very advantageous, of great versatility and easy 

handling because these models do not need to formulate the mathematical description of 

the complex mechanisms involved in the process. 

In hydrological modeling, Artificial Neural Network techniques were applied for the 

first time by [16]. Since then, numerous works successfully address improvements in 

models of rainfall-runoff [17–19], stream-flow [20–22], water quality [15,23,24], 

groundwater [25,26], and even for data validation as a quality assurance procedure 

[27,28]. In 2000, the American Society of Civil Engineering published two technical 

works related to Hydrology and ANNs [29,30] whose results have been discussed in depth 

and compared to other modeling techniques. Recently, a work summarizing a review of 

neural network techniques applied to hydrological systems has been reported [31]. 
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Concerning works that exclusively deal with the forecast of precipitation time series 

using ANN, several studies can be found in the scientific literature. An ANN model for 

precipitation forecasting in Thailand was developed by [32] using various meteorological 

parameters measured at surrounding stations. In some regions of Greece, researchers [33] 

obtained precipitation predictions using ANNs and 115-year datasets. Other works such 

as [34] and [35], used various climate indices (North Atlantic Oscillation -NAO-, 

Southern Oscillation -SOI-, etc.) as input variables in Korea and Australia, respectively. 

In China, several works based on ANNs have been developed using long-term historical 

datasets [3,36,37]. Moreover, similar models have been applied in different Indian 

regions [38–41]. Some of the main problems of this kind of model are the non-availability 

of historical records at many locations, the non-existence of neighboring stations, and the 

impossibility of arranging the previously mentioned climate indices (NAO, SOI, etc.) in 

near-real time in order to forecast one-step ahead. 

1.1. Wavelet Multiscale Analysis 

The multiscalar characterization of precipitation has been studied for several years in 

different regions of the world using various approaches and for different purposes [42–

47]. Especially in the current context of climate variability and change, all the techniques 

that are capable of deepening the stochastic behavior of precipitation time series are of 

great interest for use in many applications [48]. One of the most effective is the wavelet 

analysis [49], because it can provide an exact location of any changes in the dynamic 

patterns of the time series, being widely applied in hydrological topics such as forecasting 

[50–52], rainfall trends [53] or water quality modeling [54], among others. Wavelets are 

a class of functions that cut up data into different frequency components and they are used 

to localize a given function in both position and scaling. A wavelet transformation is a 

powerful mathematical signal processing tool, able to produce both time and frequency 

information and provide multiresolution analysis. There are two main types of wavelet 

transforms: continuous and discrete, being the most extensively used. The main 

advantage of wavelets versus Fourier analysis is its power to process non-stationarity 

signals, determining the temporal variation of the frequency content and allowing users 

to track the evolution of processes at different timescales in data sequences 

Different wavelet families have been studied for different purposes depending on the 

time series to be analyzed: Coiflets, Symlets, Daubechies, Feyer-Korovkin, and 

BiorSplines, among others. In hydrologic modeling, Daubechies wavelet [55] is one of 

the most employed due to its orthonormality properties and its good trade-off between 

parsimony and information plenitude [56–58]. This kind of wavelet has associated 

subclasses (db1 or haar, db2, db3, …, dbN) depending on the number of vanishing 

moments and there is a scaling function generating an orthogonal multi-resolution 

analysis. This multiple-level decomposition process estimates the discrete wavelet 

transform coefficients, breaking down the original time series into several lower-

resolution components as a set of sub-signals: approximation (cAN) and details (cDN). 

For example, for the level of decomposition = 2 this iterative process will lead to cA2, 

cD1, cD2 sub-series. The approximation coefficients were produced by a low-pass filter 

and the details coefficients by a high-pass filter, representing the low and high-frequency 
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components, respectively. Figure 2. 1 shows the multiresolution analysis based on this 

wavelet decomposition. Thus, these meteorological sub-series generated by wavelet 

transformation can be used as input variables in ANN approaches, giving rise to a type of 

so-called hybrid models: Wavelet Neural Networks (WNN). 

 

Figure 2. 1. Wavelet multiresolution analysis of original time series. 

1.2.Availability of Short-Term Meteorological Series 

Precipitation, and also temperature, are meteorological variables widely measured 

worldwide in comparison to solar radiation, humidity, or wind speed, among others [59–

62]. Besides, their behavior within the climate system is being studied all over the world 

[63], as both variables represent the key controlling factors in the spatial variation of 

terrestrial ecosystem carbon exchange [64]. However, long-term series are not easily 

available and often contain many gaps, and have undergone homogenization or filling-

gap processes usually due to changes in location, sensor replacement, variations in the 

mechanisms of data collection and measurements, etc 

In order to improve the weather monitoring systems among other aims, the installation 

of automated weather stations networks able to collect at least temperature and 

precipitation data has been increasing since the end of the past century practically 

worldwide [65] and more recently with the combination of low-cost sensors and Internet 

of Things devices [66]. Therefore, there is currently a large availability of thermo-

precipitation records from numerous spatially distributed locations with almost entirely 

no gaps and more than a decade in length. Thus, and due to many recent works reporting 
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the improvement of ANN-based hydrological models combining them with wavelet 

analysis [3,67–70], the main goal of this work is the development and assessment of 

different hybrid WNN models to accurately forecast monthly precipitation in the semiarid 

and heterogeneous region of Andalusia (Southern Spain) using only short-term thermo-

precipitation validated datasets. Due to the importance of precipitation forecasts and since 

the availability of these data will increase in the coming years, the present work may be 

extensible to many other climatic areas of the world where these records are collected. 

Moreover, this work evaluates the use of new input thermal variables, in addition to 

precipitation, to deepen the knowledge and analyze the effectiveness of these hybrid 

models to forecast monthly precipitation in a geo-climatic variety of locations that have 

very different precipitation patterns. 

For these purposes, different stations in the semiarid region of Andalusia (Southern 

Spain) were selected. Wavelet decompositions were applied to initial datasets in order to 

generate the input variables of the neural network models. The performance of all the 

WNN approaches has been evaluated using different statistics at each location. 

2. Materials and methods 

2.1.Source of data 

Datasets used in this work were obtained from the Agroclimatic Information Network 

of Andalusia and they are easily downloadable on a daily basis from 

http://www.juntadeandalucia.es/ agriculturaypesca/ifapa/ria/ (access on 2 August 2019), 

where there are some automated weather stations recently installed and others not 

operational. Andalusia is a semiarid region located in the South of the Iberian Peninsula 

(South-western Europe) covering almost 88,000 km2 and is divided into eight provinces: 

Almería, Cádiz, Córdoba, Granada, Huelva, Jaén, Málaga, and Sevilla. According to its 

relief, it is a very heterogeneous region: from the extensive coastal plains of the 

Guadalquivir River (at sea level) to the highest areas of the Iberian Peninsula (‘Sierra 

Nevada’ in the province of Granada). In terms of dryness, high contrasts are found from 

the Tabernas desert (province of Almería) to the rainiest areas of Spain in the ‘Sierra de 

Grazalema’ Natural Park (province of Cádiz). Another singularity is that it is surrounded 

by the Mediterranean Sea and the Atlantic Ocean at its Southeast and Southwest sides, 

respectively. The geographical distribution of the stations used in this work is shown in 

Figure 2. 2 and Table 2. 1 reports some of their characteristics, with latitudes ranging 

from 36.3372◦ to 38.0806◦ N, longitudes from 1.8831◦ to 7.2469◦ W and site elevations 

from 26 to 822 m above mean sea level. In general, the aridity increases from East (Huelva 

province) to West (Almería province) across the Andalusia region [71]. These sites were 

selected in order to represent this climatic variability of the region, including coastal 

(‘Málaga’ and ‘Conil de la Frontera’ stations) and inland locations, ensuring that the 

available time series are complete and gap-free. 

http://www.juntadeandalucia.es/
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Figure 2. 2. Geographical distribution of the automated weather stations used in this work (Andalusia 

region - Southern Spain). 

Time periods of monthly precipitation, maximum and minimum temperature datasets 

from each station are summarized in Table 2. 1. All of them end in July 2019 and start in 

2000/2001, ranging from 213 months at ‘IFAPA las Torres-Tomejil’ station to 234 

months at ‘Huércal-Overa’ station. In order to assess model performances and follow the 

method previously described [54], the first 85% of datasets were used to calibrate the 

models and the remaining 15% of the records were used for validation (at least two and a 

half years at all locations). Table 2. 2 shows the statistical values of these datasets for 

monthly precipitation, the maximum and minimum temperature for each location 

In order to ensure the reliability of datasets, a set of checking quality procedures has 

been applied to precipitation and temperature daily data following the guidelines 

proposed by [72]. In addition, a specific algorithm for detecting spurious precipitation 

signals [73] and the spatial regression test [74] were also carried out. The application of 

these quality assurance techniques to hydro-meteorological data has been successfully 

carried out under different climatic conditions worldwide as a pre-requisite before their 

use [75–78] 
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Table 2. 1. Name of the station, province, coordinates, elevation and data time-period of the weather stations used in this study (Southern Spain) 

Station 

Name 
Province 

Latitude (º) Longitude (º) Elevation (m) Time Period (Calibration) 

Time Period (Validation) 

Tabernas  

(ALM04) 
Almería 37.0925 N 2.3011 W 435 

March 2000–August 2016 

September 2016–July 2019 

Huércal Overa 

(ALM07) 
Almería 37.4133 N 1.8831 W 317 

February 2000–August 2016 

September 2016–July 2019 

Conil Frontera 

(CAD05) 
Cádiz 36.3372 N 6.1306 W 26 

November 2000–November 2016 

December 2016–July 2019 

Jimena Frontera 

(CAD07) 
Cádiz 36.4136 N 5.3844 W 53 

January 2001–September 2016 

October 2016–July 2019 

El Carpio  

(COR05) 
Córdoba 37.9150 N 4.5025 W 165 

December 2000–September 2016 

November 2016–July 2019 

Santaella  

(COR07) 
Córdoba 37.5236 N 4.8842 W 207 

November 2000–November 2016 

December 2016–July 2019 

Loja  

(GRA03) 
Granada 37.1706 N 4.1369 W 487 

October 2000–September 2016 

October 2016–July 2019 

Cádiar  

(GRA07) 
Granada 36.9242 N 3.1825 W 950 

October 2000–September 2016 

October 2016–July 2019 

Puebla Guzmán 

(HUE07) 
Huelva 37.5533 N 7.2469 W 288 

December 2000–September 2016 

November 2016–July 2019 

El Campillo  

(HUE08) 
Huelva 37.6622 N 6.5981 W 406 

December 2000–September 2016 

November 2016–July 2019 

Mancha Real  

(JAE04) 
Jaén 37.9175 N 3.5950 W 436 

October 2000–September 2016 

October 2016–July 2019 
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Sabiote  

(JAE07) 
Jaén 38.0806 N 3.2342 W 822 

October 2000–September 2016 

October 2016–July 2019 

Málaga  

(MAG01) 
Málaga 36.7575 N 4.5364 W 68 

November 2000–November 2016 

December 2016–July 2019 

Cártama  

(MAG09) 
Málaga 36.7181 N 4.6769 W 95 

August 2001–October 2016 

November 2016–July 2019 

Écija  

(SEV07) 
Sevilla 37.5942 N 5.0756 W 125 

December 2000–September 2016 

November 2016–July 2019 

IFAPA Las Torres-

Tomejil (SEV101) 
Sevilla 37.4008 N 5.5875 W 75 

November 2001–November 2016 

December 2016–July 2019 
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2.2.Development of Wavelet Neural Network (WNN) Models 

Several hybrid models (WNN) were developed based on the use of the sub-series 

resulting from the wavelet decomposition of the original series, as input variables of a 

feed-forward multilayer perceptron neural network (FFMLP). This architecture (Figure 

2. 3) is the most widely used in water resources modeling [79] and consists of an input 

layer, one or more hidden layers containing network computation nodes (neurons), and 

the output layer that contains the target variable (predicted precipitation). The number of 

input nodes is equal to the number of input variables (details and approximations of sub-

time series and month of year) and the number of hidden nodes is determined by trial and 

error procedure. One of the main keys to the good behavior of these approaches is the 

ability to learn from experience using the well-known backpropagation method in the 

training process and optimized by applying the Levenberg–Marquardt algorithm. 

Eventually, logarithmic sigmoidal and pure linear transfer activation functions were used 

for the hidden and output layers, respectively, converting input signals into output signals. 

Thus, the process that takes place in the neurons is the following. Firstly, the inputs are 

multiplied by their corresponding initial weights; these products with a bias term are 

summed. Afterward, this result passes as the input of an activation function which 

determines whether the neuron is activated or not. Then, the result advances to the next 

neurons and the process is repeated until the output is obtained (it is mathematically 

expressed as Eq. 2.1). Finally, the backpropagation training method consists of modifying 

the weights of the nodes based on the minimization of the bias errors (difference between 

target and output value) and all the process is repeated from the beginning. 
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Table 2. 2. Statistics of monthly precipitation, maximum and minimum temperature (Std: Standard Deviation; Max: Maximum; Min: Minimum). 

Sites Datasets 
Precipitation (mm) Maximum Temperature (°) Minimum Temperature (°) 

Mean Std Max Min Mean Std Max Min Mean Std Max Min 

Tabernas 

(ALM04) 

All 19.95 25.56 141.40 0.00 29.85 6.59 42.55 15.53 4.69 6.40 17.18 −8.20 

Validation 18.77 27.25 141.40 0.00 29.13 6.49 41.70 17.68 4.44 6.09 15.10 −5.30 

Calibration 20.17 25.30 128.40 0.00 29.98 6.62 42.55 15.53 4.74 6.47 17.18 −8.20 

Huércal-

Overa 

(ALM07) 

All 22.49 31.94 247.80 0.00 29.89 6.02 43.58 17.03 4.54 6.46 17.18 −8.85 

Validation 19.57 34.37 186.80 0.00 29.90 5.87 40.76 18.57 4.37 6.12 15.19 −6.00 

Calibration 23.02 31.55 247.80 0.00 29.88 6.06 43.58 17.03 4.58 6.53 17.18 −8.85 

Conil de 

la 

Frontera 

(CAD05) 

All 42.71 54.32 287.60 0.00 28.72 6.45 41.37 16.04 6.53 5.02 15.80 −5.38 

Validation 37.95 55.09 208.60 0.00 28.00 6.80 40.30 18.96 5.91 4.72 15.80 −1.03 

Calibration 43.58 54.28 287.60 0.00 28.86 6.39 41.37 16.04 6.65 5.07 15.37 −5.38 

Jimena de 

la 

Frontera 

(CAD07) 

All 61.05 75.03 441.00 0.00 30.18 6.74 46.57 18.64 5.99 5.26 16.02 −3.88 

Validation 63.22 86.12 371.40 0.00 29.86 5.90 42.28 19.62 5.73 5.05 14.70 −1.51 

Calibration 60.66 73.11 441.00 0.00 30.23 6.89 46.57 18.64 6.04 5.31 16.02 −3.88 

El Carpio 

(COR05) 

All 41.23 48.84 317.60 0.00 31.38 8.59 47.10 15.42 4.89 6.58 17.93 −9.54 

Validation 38.12 48.55 260.20 0.00 31.54 8.56 47.10 19.61 4.32 6.50 15.40 −6.15 

Calibration 41.78 48.99 317.60 0.00 31.35 8.61 46.94 15.42 4.99 6.60 17.93 −9.54 

Santaella 

(COR07) 

All 44.27 50.85 310.80 0.00 30.64 8.15 45.69 17.36 6.08 6.05 17.27 −8.25 

Validation 42.47 54.85 277.80 0.00 29.96 7.94 44.91 18.69 6.21 5.64 16.10 −3.05 

Calibration 44.60 50.25 310.80 0.00 30.76 8.20 45.69 17.36 6.06 6.14 17.27 −8.25 

Loja 

(GRA03) 

All 36.96 39.12 230.60 0.00 29.87 7.53 45.94 16.92 4.05 6.01 15.37 −9.45 

Validation 35.66 44.21 225.40 0.00 29.97 7.90 45.94 16.92 4.08 5.94 14.70 −5.80 

Calibration 37.20 38.25 230.60 0.00 29.86 7.48 42.85 17.08 4.05 6.04 15.37 −9.45 

Cádiar 

(GRA07) 

All 43.46 56.88 423.60 0.00 27.11 7.02 42.63 14.17 5.03 6.06 18.38 −13.30 

Validation 42.55 61.55 317.00 0.00 26.26 7.03 41.20 16.11 4.43 6.37 15.90 −13.30 
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Calibration 43.62 56.18 423.60 0.00 27.26 7.03 42.63 14.17 5.14 6.02 18.38 −8.13 

Puebla 

Guzmán 

(HUE07) 

All 46.69 53.29 296.80 0.00 29.21 7.84 43.63 15.42 6.60 5.09 16.38 −4.02 

Validation 43.36 50.38 197.80 0.00 29.24 7.62 42.18 18.65 6.82 4.68 15.50 −0.73 

Calibration 47.29 53.90 296.80 0.00 29.21 7.89 43.63 15.42 6.56 5.17 16.38 −4.02 

El 

Campillo 

(HUE08) 

All 60.51 69.67 389.80 0.00 29.51 7.63 43.07 15.41 6.95 4.81 16.39 −2.39 

Validation 56.16 66.43 351.00 0.00 29.48 7.61 42.74 18.92 6.78 4.58 15.40 −1.37 

Calibration 61.28 70.38 389.80 0.00 29.51 7.65 43.07 15.41 6.98 4.86 16.39 −2.39 
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y = ∅ (∑ 𝑤𝑥 + 𝑏) Eq. 2. 1 

where y = output value of the hidden/output node, I = input or hidden node value, ∅ = 

the transfer function, w = weights connecting nodes, and b = bias for each node. 

 

Figure 2. 3. Multilayer Perceptron Neural Network architecture used in this work 

The selection of the Daubechies wavelet of order 5 (db5) was performed after a trial 

and error procedure checking Daubechies wavelet from order 1 to 10 [68,80,81], although 

similar results were found with db9. The wavelet decomposition process was carried out 

according to the procedure in [82] at level 3, based on the size of validation datasets for 

testing the model performances [69]. Finally, the optimal number of neurons in the hidden 

layer [2,68,83] was set to eight, after testing from two to ten in steps of one and checking 

the FFMLP performance. 

Thus, each dataset was decomposed by wavelet transformation into sub-series 

containing approximation coefficients (cA3) and details coefficients (cD1, cD2, and 

cD3). They were used as input variables for the WNN models as well as the month of the 

year (MOY: 1 = January, 2 = February…12 = December), and monthly precipitation 

original series was used as the target output values. An example of the sub-series of 

precipitation (details and approximations) after the wavelet decomposition as well as the 

original signal is represented in Figure 2. 4 for Málaga station. 
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Figure 2. 4. Original values and decomposed sub-series of monthly precipitation by wavelet 

transformation at Málaga station (MAG01) (2001–2019) 

The input variables used in each model are summarized in Table 2. 3. Inputs and the 

number of variables of each of the wavelet neural network models (WNN) models 

evaluated in this work (i = month; MOY = month of the year; P = precipitation; DTRM 

= mean diurnal temperature range; DTRX = maximum diurnal temperature range; DTRN 

= minimum diurnal temperature range; MTR=monthly temperature range; TX=maximum 

temperature; Tn = minimum temperature). All the models used Month of the year (MOY) 

and precipitation signal decomposed by wavelets transformation. The proposed models 

used a different combination of variables. For instance, the input variables of the Model 

I were MOY and monthly precipitation signal (decomposed into D1, D2, D3, and A3 

coefficients). In contrast, the Model IX used MOY, precipitation signal (decomposed into 

D1, D2, D3, and A3 coefficients), and monthly minimum temperature signal 

(decomposed into D1, D2, D3, and A3 coefficients). 

Table 2. 3. Inputs and the number of variables of each of the wavelet neural network models (WNN) 

models evaluated in this work (i = month; MOY = month of the year; P = precipitation; DTRM = mean 

diurnal temperature range; DTRX = maximum diurnal temperature range; DTRN = minimum diurnal 

temperature range; MTR=monthly temperature range; TX=maximum temperature; Tn = minimum 

temperature). 

Models Output Input Variables 
Nº 

Variables 

I P (i + 1) MOY, P{decomposed} (m) 5 

II P (i + 1) MOY, P{decomposed} (m), P{decomposed} (i−1) 9 

III P (i + 1) MOY, P{decomposed} (m), DTRM {decomposed} (i) 9 

IV P (i + 1) MOY, P{decomposed} (m), DTRX {decomposed} (i) 9 

V P (i + 1) MOY, P{decomposed} (m), DTRN {decomposed} (i) 9 
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VI P (i + 1) 
MOY, P{decomposed} (m), DTRX {decomposed} (mi DTRN 

{decomposed} (mi 
13 

VII P (i + 1) MOY, P{decomposed} (m), MTR {decomposed} (i) 9 

VIII P (i + 1) MOY, P{decomposed} (m), Tx{decomposed} (i) 9 

IX P (m + 1) MOY, P{decomposed} (m), Tn{decomposed} (m) 9 

X P (m + 1) MOY, P{decomposed} (m), Tx{decomposed}, Tn{decomposed} (m) 13 

 

2.3. Statistical Analysis and Performance Criteria 

In order to evaluate the performance of different models developed in this work, 

forecasted and measured precipitation values were compared by using simple error 

analysis. Thus, common statistical indices widely used to assess hydro-meteorological 

prediction models [26,61,68] were estimated: RMSE (root mean square error), R 

(Correlation Coefficient), MAPE (mean absolute percentage error) and NSE (Nash–

Sutcliffe model efficiency coefficient, also known as the coefficient of efficiency). These 

statistics are summarized from Equations 2.2 to 2.5: 

𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑(𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)2

𝑚

𝑖=1

 Eq. 2. 2 

𝑅 =  
∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)(𝑝𝑟𝑒𝑑𝑖 − 𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)𝑚

𝑖=1

√∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)𝑚
𝑖=1

2 ∑ (𝑝𝑟𝑒𝑑𝑖 − 𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)𝑛
𝑖=1

2
 

Eq. 2. 3 

𝑀𝐴𝑃𝐸 =  
100%

𝑚
∑ |

𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖

𝑚𝑒𝑎𝑠𝑖
|

𝑚

𝑖=1

 Eq. 2. 4 

𝑁𝑆𝐸 = 1 −
∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)

2𝑛
𝑖=1

∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)2𝑛
𝑖=1

 Eq. 2. 5 

where the m is the number of months and measi, predi, 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅, 𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅ are the precipitation 

measured at month i, precipitation forecasted at month I, the mean of measured monthly 

precipitation and the mean of forecasted monthly precipitation, respectively 

In addition, two performance measures were also carried out: Akaike Information 

Criteria (AIC) and Bayesian Information Criteria (BIC). These indices have the 

singularity of considering the number of trained parameters and they are based on the 

parsimony. AIC and BIC were initially reported by [84] and [85], respectively, and they 

have been frequently used for assessing hydrological models [86–88]. Both expressions 

are described in Equations 2.6 and 2.7: 

𝐴𝐼𝐶 = 𝑚 ln(𝑅𝑀𝑆𝐸) + 2𝑝 Eq. 2. 6 
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𝐵𝐼𝐶 = 𝑚 ln(𝑅𝑀𝑆𝐸) + 𝑝 ln (𝑚) Eq. 2. 7 

where p is the number of free parameters in each model (the total amount of weights and 

biases), being the best model performance the one with lowest AIC and BIC values. These 

indices deal with the trade-off between the prediction error (RMSE) and the complexity 

of the model, combining a term reflecting how well the forecasts fit the data with a term 

penalizing the model in proportion to its number of estimated parameters [89]. 

3. Results and Discussion 

3.1. Pre-Processing Input Datasets 

Validated daily records (precipitation, maximum and minimum temperature) obtained 

after the application of quality control procedures were used to create different monthly 

datasets. Monthly precipitation (P) values were used as an input in all the models 

assessed. Apart from max/min monthly temperature records (Tx and Tn, respectively), 

various temperature-based monthly time series were also created from daily values: mean 

daily temperature range (DTRm), maximum daily temperature range (DTRX), minimum 

daily temperature range (DTRn) and monthly temperature range (MTR). Daily 

temperature range (DTR) is the difference between daily maximum temperature and daily 

minimum temperature, with DTRm, DTRx, DTRn, being the mean, maximum, and 

minimum DTR measured in a month, respectively. MTR is obtained as the difference 

between the maximum and minimum temperature measured on a monthly basis. 

3.2. Performance of the Models 

In general, regarding forecasted validation datasets and the common statistics, Model 

X was one of the best performers in most of the locations studied, although Model I 

showed the best results, on average, of BIC and AIC indices (Figure 2. 5), followed by 

Models II, IX, VIII, V, IV, III, VII, X, and VI. The minimum values obtained for both 

indices by using Models I, II, IX, and X were registered in the driest location (Tabernas 

station), in Conil de la Frontera by using Model III and Model VII, in Mancha Real by 

using Model IV, in IFAPA-Las Torres station by using Model VI and in Huércal-Overa 

station by using Model V and Model VIII. As in the results reported by [87], both indices 

produced the same model selection, with the exception of Model VII which showed the 

best AIC and BIC performances in Sabiote and Conil de la Frontera stations, respectively. 

Overall, the results from BIC and AIC values indicated a worse performance of the 

approaches that use more variables (Model VI and Model X) than the rest, with Model I 

being the one with the lowest indices. Thus, the number of estimated parameters (weights 

and biases) in each of the models played a determining role in these indices. 
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Figure 2. 5. Box-plot of the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) 

values obtained by using the ten models (validation datasets) for all the sites studied. On each box: the red 

central mark=median; bottom and top edges of the box 

In terms of the statistics R, RMSE, MAPE, and NSE, the mean, maximum, and 

minimum values obtained in the sixteen locations are summarized in Table 2. 4 for each 

model and dataset studied. Regarding validation forecasts, Model I obtained the best R 

(0.78) and NSE (0.62) values in Cártama station, and the lowest RMSE and MAPE values 

in Tabernas (9.39 mm) and El Campillo (9.82%) stations, respectively. On average, 

Model I had a generally better performance than other related models carried out in 

Greece [33] or in Jordan [83], but with R and NSE values lower than those reported by 

[68] in one station in India. However, Model II was the one that showed the worst results 

in almost all sites and for all the statistics studied, although with some exceptions. These 

results indicated that for the goal of this work, the information contained in the ‘two 

months before’ precipitation signal is not as relevant as the one contained in the ‘one 

month before’ signal. Model III had, on average, a slightly better performance, registering 

the lowest MAPE and RMSE values in Tabernas station (11.39% and 13.75 mm, 

respectively) and the best R (0.84) and NSE (0.73) values in El Carpio station. However, 

Model IV obtained good statistical indices in Cádiar, Mancha Real, and Almería stations, 

while Model V gave the lowest RMSE (10.20 mm) in the Huércal-Overa station. In 

general, the mean results obtained by using the variables DTRm (Model III), DTRx (Model 

IV), and DTRn (Model V) were similar and better than those reported by [33] and [83], 

although in terms of MAPE, Model IV gave the best values in the most arid sites 

(Tabernas and Huércal-Overa stations). The next model assessed (VI) had a good 

performance in the two coastal locations: Conil de la Frontera station (highest R = 0.89 

and NSE = 0.82 values) and Málaga station (best MAPE value = 9.80%), which may 

indicate that the joint use of DTRx and DTRn variables in areas near the sea could be 

recommended. Model VII gave the best MAPE values of all the models and sites in 

Cártama (0.40%) and IFAPA-Las Torres Tomejil (9.44%) stations and the best R (0.90), 

RMSE (16.95 mm) and NSE (0.84) values in Sabiote station, indicating that the new input 

variable MTR can be very useful in some locations. Finally, Model VIII (using Tx) 



 

 

78 

 

obtained the lowest RMSE value in Huércal-Overa (11.16 mm), the best MAPE value in 

Sabiote (4.96%), and the highest R (0.88), and NSE (0.79) values in El Campillo station, 

where Model IX (using Tn) also obtained the lowest MAPE value (3.45%). In addition, 

this model (IX) had a very good behavior also in Sabiote (MAPE = 3.51%), Conil de la 

Frontera (R = 0.90 and NSE = 0.84), El Carpio (R = 0.85 and NSE = 0.75) and Tabernas 

(RMSE = 6.79 mm) stations. Regarding these last two models, no clear improvement was 

observed to recommend Model VII or Model IX based on the geo-climatic conditions. 

On average, the highest values of R (0.82) and NSE (0.69) were obtained by Model X 

(using Tx and Tn) for the validation dataset and for all the sites, ranging from R = 0.90 

and NSE = 0.83 (Conil de la Frontera station) to R = 0.64 and NSE = 0.44 (Húercal Overa 

station). In general, using Model II the lowest average values of R (0.69) and NSE (0.50) 

were given, and also the minimum values obtained for all the sites (R = 0.55 and NSE = 

0.32 in Tabernas station). Regarding RMSE average values, they ranged from 21.49 

(Model X) to 31.55 mm (Model II), while the highest value (44.03 mm) was registered in 

Jimena de la Frontera station by using also Model II, with this station being the one with 

the rainiest month (371.40 mm). Attending to MAPE average values, Model X was able 

to forecast with the lowest error (23.61%) followed by Model VII (28.02 %), ranging 

from 4.57% (Mancha Real station) to 40.04% (Écija station) and from 0.40% (Cártama 

station) to 47.94% (Santaella station), respectively. Instead, Model II gave the highest 

MAPE average value (39.93%) as well as the greatest percentage registered from all the 

stations (62.02%) in Cádiar (the highest location). As in other related works [3,32,34,68], 

a better general performance in calibration datasets can be observed. 
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Table 2. 4. Summary of correlation coefficient (R), root mean square error (RMSE), mean absolute percentage error (MAPE) and Nash–Sutcliffe model efficiency coefficient 

(NSE) values for all the models assessed. 

Models Datasets 
R RMSE(mm) MAPE(%) NSE 

Max/Mean/Min Max/Mean/Min Max/Mean/Min Max/Mean/Min 

I 
Validation 0.78/0.70/0.62 9.39/21.69/37.74 9.82/33.94/52.52 0.62/0.51/0.40 

Calibration 0.83/0.74/0.65 11.75/20.67/29.60 9.86/16.07/22.57 0.81/0.72/0.63 

II 
Validation 0.80/0.69/0.55 10.73/31.55/44.03 25.34/39.93/62.02 0.67/0.50/0.32 

Calibration 0.98/0.92/0.79 11.89/16.18/29.21 1.86/7.84/22.99 0.96/0.85/0.63 

III 
Validation 0.84/0.71/0.56 13.75/24.17/39.53 11.39/31.57/49.86 0.73/0.54/0.33 

Calibration 0.95/0.92/0.87 11.33/17.59/26.97 4.92/8.63/15.91 0.91/0.84/0.75 

IV 
Validation 0.83/0.71/0.58 13.61/23.25/40.12 2.50/34.84/57.58 0.71/0.52/0.36 

Calibration 0.92/0.85/0.74 11.12/16.84/24.50 4.11/8.21/17.00 0.91/0.85/0.73 

V 
Validation 0.85/0.71/0.57 10.20/23.68/41.00 15.73/33.04/56.89 0.74/0.53/0.34 

Calibration 0.97/0.93/0.85 11.54/15.66/24.80 1.58/6.50/16.68 0.94/0.87/0.73 

VI 
Validation 0.89/0.73/0.59 12.64/22.48/38.51 9.80/31.19/48.17 0.82/0.55/0.37 

Calibration 0.97/0.95/0.91 7.79/13.96/18.28 0.12/5.05/11.89 0.95/0.90/0.82 

VII 
Validation 0.90/0.72/0.58 16.95/24.44/37.55 0.40/28.02/47.94 0.84/0.55/0.36 

Calibration 0.97/0.95/0.92 8.48/14.65/23.19 1.67/4.46/9.58 0.95/0.90/0.85 

VIII 
Validation 0.88/0.75/0.57 11.16/22.86/42.04 4.96/32.37/62.61 0.79/0.58/0.34 

Calibration 0.98/0.94/0.91 7.67/15.34/25.52 0.02/4.23/9.05 0.96/0.89/0.83 

IX 
Validation 0.90/0.74/0.57 6.79/22.84/38.17 3.45/28.05/41.50 0.84/0.58/0.35 

Calibration 0.97/0.94/0.88 8.02/15.03/21.22 1.67/5.09/11.15 0.94/0.89/0.77 

X 
Validation 0.90/0.82/0.64 8.49/21.49/38.39 4.57/23.61/40.04 0.83/0.69/0.44 

Calibration 0.98/0.94/0.90 9.61/14.61/20.88 2.45/5.71/11.40 0.96/0.89/0.81 
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In order to evaluate the results obtained by using the ten models at each location, the 

statistical indices R, NSE, RMSE, and MAPE are shown in Figure 2. 6 (a, b, c, and d, 

respectively) for validation datasets. In Figure 2. 6a, it can be observed that in the most 

humid site (Puebla-Guzmán station = HUE07), located in the western region of 

Andalusia, the highest R (0.88) and NSE (0.79) values were obtained by Model VIII, 

followed by IX, X, and VII. The other station situated in Huelva province (El Campillo 

station = HUE08) registered very homogeneous values of R and NSE by using all the 

models, with Model VI being the best one with values of 0.79 and 0.64, respectively. One 

of the best correlation coefficients and NSE values were obtained in Conil de la Frontera 

(CAD05) by using Model VI (R = 0.89 and NSE = 0.82), Model IX (R = 0.90 and NSE 

= 0.84) and Model X (R = 0.90 and NSE = 0.83). In this coastal location, Models IV and 

I gave the worst values. However, Model X was the best one for the following stations: 

IFAPA-Las Torres (SEV101), Jimena de la Frontera (CAD07), Écija (SEV09), Santaella 

(COR07), Cártama (MAG09), Málaga (MAG01), El Carpio (COR05), Loja (GRA03), 

Mancha Real (JAE07) and Cádiar (GRA07) stations (from West to East). Finally, for the 

driest locations (ALM04 = Tabernas and ALM07 = Huércal-Overa), situated in the 

eastern part of Andalusia, the model that derived the best R and NSE indices was the 

Model III, the one using DTRm as an input variable. Therefore, these results indicate that 

the use of the DTRm signal could be recommended for precipitation forecasting in arid 

stations. Considering Figure 2. 6c, for the stations located in Huelva province (western 

part of Andalusia), the lowest RMSE values were obtained by Model VIII in HUE07 

(17.60 mm) and HUE08 (23.62 mm), which could indicate the suitability of using this 

model in the less arid areas of Southern Spain. The location with the highest RMSE value 

was the rainiest site: Jimena de la Frontera (CAD07), while the lowest ones (6.79 and 

10.20 mm) were obtained at the most arid stations by using Models IX (ALM04) and V 

(ALM07), respectively. Finally, MAPE values (Figure 2. 6d) showed high variability 

between stations and also for the different models evaluated. The highest range between 

the best and the worst models was obtained in Mancha Real (JAE07), while the most 

homogeneous values occurred in Loja (GRA03). On average, the worst MAPE values 

were obtained in the highest location (Cádiar = GRA07), but no relationship was found 

between elevation and MAPE. For all the locations studied, several models were able to 

obtain MAPE values lower than 25%, including excellent performances such as those 

given by Model IX in Puebla Guzmán (HUE07), Model VII in Cártama (MAG09) or 

Model IV in Tabernas (ALM04), with the exception of Model X in Loja station (GRA03) 

obtaining 27.61%. 
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Figure 2. 6. Results of the statistical performance obtained at each of the 16 locations studied: (a) R; (b) 

NSE; (c) RMSE; (d) MAPE. 

Finally, measured and forecasted values of monthly precipitation at four stations 

(Conil de la Frontera, Tabernas, Loja, and Sabiote) during calibration and validation 

periods are represented in Figure 2. 7. When attending to the validation datasets, a very 

good performance of Model VI can be observed in a coastal location such as Conil de la 

Frontera (CAD05), using MOY, precipitation, DTRx, and DTRn as input variables and 

obtaining R = 0.89 and MAPE = 11.29%. In addition, this model also gave the lowest 

percentages of error at Málaga (MAG01) coastal station (MAPE = 9.80%). Thus, the 

input variables used in this model were more efficient at coastal locations than other 

variable combinations in terms of predictability performance. Slightly worse was the 

behavior of Model III (MOY, precipitation, and DTRm as input variables) in Tabernas 

(the driest station), with R=0.81, and MAPE = 11.39%, but being able to properly forecast 

the peak of 141.40 mm. Likewise, the validation period results obtained in Loja station 

(GRA03) by applying Model X indicated, in general, a satisfactory performance in terms 

of R (0.86), RMSE (17.81 mm), and NSE (0.72), although the peak of 225.40 mm was 

not predicted so accurately. Finally, the modeled datasets using Model VII in Sabiote 

station (JAE04) are represented. Regarding the validation period, the values of NSE, R, 

and RMSE obtained with this model showed the best model performance in this site (0.84, 

0.90, and 16.95 mm, respectively) and also gave an acceptable MAPE of 11.18%. 

Furthermore, this model that used MOY, precipitation, and MTR as input variables, 

forecasted with lowest MAPE values in another two interior stations: Cártama (MAG09) 

and IFAPA-Las Torres Tomejil (SEV101), although its performance was not so good in 

other inland locations. 
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Figure 2. 7. Plot of measured and forecasted monthly precipitation at four stations: Conil de la Frontera 

(a), Tabernas (b), Loja (c), and Sabiote (d) using Models VI, III, X and VIII, respectively. 

From these results, it has been verified that the introduction of easily estimated input 

variables such as DTRx, DTRn, DTRm, MTR or MOY into WNN models is very useful 

for improving precipitation predictions one month ahead, especially when there is no 

availability of long-term datasets. In general, the results obtained by applying the 

proposed models in all stations in Southern Spain provided better RMSE values than the 

best of several WNN monthly precipitation models assessed by [68] at one station located 

in the east of India and also better than those reported by [3] at 24 locations in China, with 

both works needing the use of long-term historical series. Moreover, RMSE values were 

also lower in this work than the reported by [2] in ten stations in Guilin (China) using 

evolutionary models. In terms of efficiency, mean NSE values indicated a good degree of 

efficiency for all the models, being much higher than the values reported by [90] in Iran 

using ANN to predict monthly precipitation using 30-year series. RMSE values obtained 

with ANN models by [90] were worse than those given with the ten approaches assessed 

in this work. In addition, the correlation coefficients obtained in this work in all locations 

except at Huércal-Overa and Santaella sites were better than those reported by [33] in 

four stations in Greece for cumulative four-month precipitation predictions using ANN 

models. Regarding this statistic, the best result reported by [83] for the monthly 

precipitation in one of the three stations studied in Jordan was similar to the best values 

obtained in Santaella and Huércal-Overa stations but lower than those given in the rest of 

the locations. However, the correlation coefficient obtained by [90] with ANN and 

singular spectrum analysis model was better than the average performance of all the 

models, although models from V to X gave higher R values at least in one location of the 

sixteen sites evaluated. 
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4. Conclusions 

Different configurations of a hybrid model combining wavelet analysis and artificial 

neural network for time series forecasting of monthly precipitation have been developed 

and assessed at sixteen locations in Southern Spain (semiarid region). The main novelty 

of this work is the use of thermal variables, besides precipitation, never used before, such 

as the daily and monthly thermal range, as well as the month of the year, the use of short-

term time series, and the application to datasets from sixteen sites having very different 

climatic and geographical conditions. Firstly, a set of sub-signals were obtained from 

original validated datasets carrying out a multilevel decomposition process by wavelet 

transformation. Then, these new time series and months of the year were used as input 

variables of the ten models evaluated, with the original monthly precipitation being the 

output variable. The models were calibrated using the first 85% of the datasets and the 

rest of the data were used for model validation (at least two and a half years at all 

locations). The results indicated that nonlinear dynamics of the different thermal variables 

used and also precipitation were properly characterized by wavelet decomposition in 

order to satisfactorily forecast precipitation one month ahead, although the performance 

of the models was not the same for the different locations evaluated. For each location, it 

was found that there were at least one or more models with acceptable statistical 

performance (R > 0.76; NSE > 0.60; RMSE < 29.82 mm and MAPE < 27.62%). 

In general, the model that used precipitation, maximum and minimum temperature (X) 

had the best statistical performance in most of the locations studied. However, the model 

using precipitation and the mean diurnal temperature range (III) gave the best results at 

the most arid sites. Regarding coastal locations, the lowest mean absolute percentage of 

errors was obtained by the model using precipitation, maximum, and minimum diurnal 

temperature range (VI). By contrast, the model using only precipitation signal (I) obtained 

the best BIC at all locations and the lowest AIC values at twelve sites due to the reduced 

number of input variables but did not get the best results in any other statistical indices 

except in El Campillo station, the second rainiest site of this study. Although no 

relationship between model performance and site elevation was found, the worst mean 

absolute percentage error was obtained in the highest site studied (Cádiar station). Finally, 

the model using precipitation and monthly temperature range (VII) gave satisfactory 

results in terms of predictability error in three interior locations. Therefore, an overall 

analysis of the general results obtained in this work indicates the suitability of the type of 

input variables used in WNN models that accurately describe precipitation processes 

according to geo-climatic characteristics. 

Since most of the thermo-pluviometric sensors installed on automatic weather stations 

networks worldwide do not have long-term time series and considering that precipitation 

is a meteorological variable with high spatial variability, these types of models are of 

great interest to the monthly precipitation forecast in locations where only short length 

records are available. Further works using different artificial intelligence approaches such 

as support vector machines or extreme learning machines may be carried out to compare 

the performance of these kinds of models once they are joined to wavelet analysis. 
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Chapter 3 

New machine learning approaches to improve reference 

evapotranspiration estimates using intra-daily temperature-

based variables in a semi-arid region of Spain  

Juan Antonio Bellido-Jiménez1, Javier Estévez1, Amanda P. García-Marín1 

1 Projects Engineering Area, Department of Rural Engineering, University of Córdoba, 

Spain 

Abstract:  

The estimation of Reference Evapotranspiration (ET0) is crucial to estimate crop 

water requirements, especially in developing countries and areas with scarce water 

resources. In these regions, the impossibility of collecting all the required data to compute 

FAO56 Penman-Monteith equation (FAO PM) makes scientists search for new 

methodologies to accurately estimate ET0 with the minimum number of climatic 

parameters. In this work, several neural network approaches have been evaluated for 

estimating ET0 using datasets from five weather stations located in Southern Spain (the 

semiarid region of Andalusia). The assessment of statistical performance (Root Mean 

Square Error -RMSE-, Mean Bias Error -MBE-, coefficient of determination -R2- and 

Nash-Sutcliffe model efficiency coefficient -NSE-) of models namely Multilayer 

perceptron (MLP), Generalized Regression Neural Network (GRNN), Extreme Learning 

Machine (ELM), Support Vector Machines (SVM), Random Forest (RF) and XGBoost 

were carried out using different input variables configurations. Only temperature-based 

data were used as inputs; the calculation of new variables called EnergyT (the integral of 

the half-hourly temperature values of a day) and Hourmin (the difference in hours 

between time sunset and the time when the maximum temperature occurs) had promising 

results for the most humid stations. The good results obtained with EnergyT when it is 

used as an input of the system demonstrated that the information contained in it gives a 

detailed characterization of the daily thermic behavior at each location, resulting in a more 

efficient model than those using only daily maximum, minimum temperature, and 

extraterrestrial radiation values. In general, the modeling results showed that no model 

firmly outperformed the others, although MLP and ELM were commonly the models that 

gave the best performances for all sites: mean values of R2 >0.89, mean values of NSE 
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>0.88, mean values of RMSE <0.67 mm/day and mean values of MBE ranging from -

0.17 to 0.30 mm/day. Therefore, EnergyT and Hourmin can be used to estimate ET0 more 

accurately in stations where data acquisition is limited, like in developing countries or at 

low-cost weather stations that cannot collect all the required meteorological variables 

used in FAO56 PM. Overall, the use of ELM is recommended due to its high performance 

in terms of efficiency (NSE) for all configurations and all locations, especially using 

EnergyT as an input variable. 

1. Introduction 

Food supply guarantee for an exponential growth population under climate change is 

one of the major challenges to our current society. Besides, this fact is accentuated under 

pandemic conditions as we have suffered worldwide during a great part of 2020 due to 

COVID-19. For the hydrological cycle and agronomic process, Reference 

Evapotranspiration (ET0) is one of the most important. Accurate calculation of ET0 is 

crucial to water resource management and irrigation scheduling, especially in semiarid 

areas such as the Andalusia region (Southern Spain). It determines the evaporative 

demand of the atmosphere in a hypothetical grass reference crop with specific 

characteristics, which makes this parameter affected only by climatic conditions [1]. 

Several statistical methodologies have been studied over the world, although the 

FAO-56 Penman-Monteith (FAO PM) equation is considered by The Food and 

Agricultural Organization of the United Nations (FAO) as the sole reference 

mathematical method [2]. It is proven to be a high accuracy globally method in different 

climatic conditions [3–7]. Another well-accepted method in both practical and research 

applications is the ASCE-PM [8], being identical to FAO56-PM on a daily basis.  

These methods are physics-based, and the required parameters are the air temperature, 

the relative humidity of the air, the solar radiation, the wind speed, the atmospheric 

pressure, and the soil heat flux. Unfortunately, the implementation and maintenance of 

weather stations that collect these meteorological data are very expensive, even for 

developed countries. Therefore, it is not always possible to find locations where all these 

parameters are recorded, especially true for developing countries, where reliable data on 

wind speed and solar radiation are missing [9–12]. Due to these restrictions, simplified 

statistical equations with fewer input climatic parameters can be used to estimate ET0. 

Allen et al. [1] proposed that when not enough data are available to solve FAO PM 

equation, it could be considered using the Hargreaves-Samani (HS) equation [13], which 

only requires maximum and minimum daily temperature (Tx and Tn) and extraterrestrial 

solar radiation (Ra) (that can be approximated using latitude and the day of the year). 

Several articles have studied the performance of the HS model in different countries and 

the improvement of its accuracy with local calibration [14–20]. For example, Martı́nez-

Cob and Tejero-Juste [16] analyzed this method for semi-arid climates in the north of 

Spain; Vanderlinden et al. [20] compared different approaches between inland and coastal 

weather stations in the south of Spain; Trajkovic [19] studied seven weather stations 

located in Serbia; Gavilán et al. [14] carried out a regional calibration of HS method in 

Andalusia region; Todorovic et al. [21] analyzed the efficiency of HS in 577 weather 
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stations in 16 Mediterranean countries. One of the compelling reasons for using this 

equation extensively is that there are so many weather stations that record temperature 

data, and their installation and maintenance are the cheapest. 

Even though HS method is the most common worldwide, there are several 

methodologies to calculate ET0 using limited climatic data: Blaney [22] and Thornthwaite 

and Mather [23], among other equations, use temperature as the only input Brisdata to 

obtain ET0. Even FAO-56 [2] contemplates a temperature-based approach using 

approximations to the actual vapor pressure (ea), the solar radiation (Rs), and a local long-

term average of the wind speed (u2). Schendel [24] made a contribution using temperature 

and relative humidity, whereas Priestley and Taylor [25,26] and Bristow and Campbell 

[26] introduced solar radiation and temperature in their solutions. Numerous articles 

studied and compared these methods at different locations and climatic conditions as 

Germany [27], Ghana [28], Switzerland [29], North America Great Plains [30], and Spain 

[31]. 

In the last decade, advances in computation have led to the introduction of Machine 

Learning (ML) methodologies in reference to evapotranspiration calculation, proving its 

high accuracy results by using different approaches. Several ML models have been 

studied such as Multilayer Perceptron (MLP) [32–35], Support Vector Machine (SVM) 

[35–41], Decision Tree (DT), and ensemble learning models [35,42–45], Extreme 

Learning Machine (ELM) [35,46–48], Generalized Regression Neural Network (GRNN) 

[42,47,49], Convolutional Neural Networks (CNN[50], and another technique such as 

Gene Expression Programming (GEP) [51,52] and Adaptive Neuro-Fuzzy Inference 

System (ANFIS) [40,51–54]. 

The use of limited climatic data is a common practice among scientists when 

analyzing different ML architectures and models. In this sense, Tabari et al. [40] studied 

and compared daily ET0 with ANFIS, SVMs, and Regression Analysis versus empirical 

models (Hargreaves-Samani, Ritchie, Jensen-Haise, Turc, Blaney-Criddle) in a semi-arid 

highland environment of Iran. These different models were tested with temperature-based 

parameters. However, to improve each model's accuracy, new climatological parameters 

such as solar radiation, relative humidity, and wind speed were introduced. The best 

results were obtained with ANFIS, and the use of mean temperature, solar radiation, 

relative humidity, and wind speed. Wen et al [41] used SVM and MLP to model ET0 with 

limited climatic data in extremely arid regions in China (one of the most arid zones in the 

world), comparing results to empirical models such as Priestley-Taylor and Hargreaves. 

The most accurate model was SVM using temperature, solar radiation, and wind speed. 

Feng et al [47] analyzed the performance of the ELM and GRNN models in 6 

meteorological stations of the Sichuan basin, southwest China, using only temperature 

data; ELM outperformed GRNN. Adamala [55] studied the performance of Wavelet 

Neural Networks (WNN) in different climatological regions of India using only 

maximum and minimum temperature and contrasted it with MLP, Linear regression(LR), 

and Wavelet Regression (WR); even though WNN yielded good results, MLP gave a 

better performance. Ferreira and da Cunha [50] compared ANN, RF, XGBoost, and CNN 
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using different approaches of hourly temperature, relative humidity, and extraterrestrial 

solar radiation values, being the CNN model the most precise solution.  

In general, the introduction of new climatic parameters such as relative humidity, 

solar radiation, and/or wind speed is a common practice to improve the accuracy in all 

different models and regions. These introductions are constraint to the installation of new 

sensors, which is very expensive in both installation and maintenance. For example, the 

installation of 10 new Automated Weather Stations (AWS) in Ghana in 2019 cost around 

450 000 € [56]. Moreover, the technological improvements in The Internet of Things 

(IoT), the huge number of devices connected to the internet, and its availability with new 

technologies like 5G connections led to a new important role of low-cost and non-

conventional devices in AWS. The data storage is cheaper nowadays, enabling AWS to 

increase the sampling rate from days to minutes, and the use of new available low-cost 

air temperature sensors with open-source hardware like Raspberry or Arduino is 

escalating worldwide with great results in terms of accuracy [57,58]. However, despite 

the existence of new sensors for other climatic parameters such as wind speed or relative 

humidity, their performances are not as good yet [57–59]. Therefore, due to the promising 

results obtained by Ferreira et al. [50] in Brazil with the use of sub-daily temperature data, 

the present work studies the performance of different ML models with new approaches 

and using novel daily parameters (EnergyT and Hourmin) exclusively obtained from air 

half-hourly temperature measurements. 

The main objectives of this work are I) the assessment of different temperature-based 

ML models (MLP, SVM, RF, XGBoost, GRNN, and ELM) to estimate ET0 in different 

sites located in the heterogeneous climatic region of Andalusia (Southern Spain), II) the 

comparative analysis of the different configurations (combinations of several input 

variables) for each location, and III) the performance evaluation in terms of seasonality 

for each model. For these purposes, five locations were selected based on their different 

geo-climatic characteristics in the Andalusia region. Eleven configurations for each 

neural network model were evaluated in order to analyze their performance at each 

location. Finally, the temporal assessment (seasonality) of the models’ performance was 

also studied. 

It is important to note that no similar works have been carried out using this kind of 

method in Southern Spain. Moreover, the Bayesian optimization to determine the fittest 

machine learning hyperparameters/architecture has been applied as a novel and efficient 

method instead of the traditional trial/error procedure widely used in ET0 modeling (i.e.: 

[36,47,50]). 

2. Materials and methods 

2.1.Source of data 

This study is carried out in the region of Andalusia, located in the south-west of 

Europe and the south of the Iberian peninsula, ranging the meridians from 1º to 7ºW, the 

parallels from 37º to 39ºN and an elevation from 26 to 822 meters above mean sea level 

in a total area of 87.268 Km2 (Figure 3. 1). The climate is semiarid, where inland locations 
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have torrid summers and harsh winters, whereas, on the coast, the temperature is slightly 

more temperate. On the other hand, mountainous locations are rainy and quite cold during 

the winter [60]. The datasets used in this work belong to the Agroclimatic Information 

Network of Andalusia (RIAA) which can be downloaded at 

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController. 

Five stations were selected to represent the different variability of climatic conditions of 

the region in terms of the UNEP aridity index [61], ranging from 0.178 in Tabernas to 

0.555 in Aroche stations, including coastal and inland locations. The coordinates and 

other characteristics of the automated weather stations used in this work are reported in 

Table 3. 1, while Figure 3. 2 shows the monthly variation of mean daily temperature, 

relative humidity, wind speed, and solar radiation of these weather stations. 

 

Figure 3. 1. Spatial distribution of the five weather stations used in this work (Aroche, Conil de la 

Frontera, Córdoba, Málaga, and Tabernas). 

Table 3. 1. Summary of weather stations sites used in this paper (Lat: Latitude; Lon: Longitude; Altitude: 

elevation above mean sea level, mean annual precipitation, and Aridity Index as the relation 

Precipitation/ET0 as the annual mean of the whole dataset period) 

Name Lat (ºN) 
Lon 

(ºW) 

Altitude 

(m) 

Mean 

annual 

precipitation 

(mm) 

Aridity 

Index 

Time period 

(avail. days) 

Córdoba 37.8569 4.8027 94.0 589.52 0.4616 
2000 – 2018 

(6397) 

Málaga 36.7564 4.5375 55.0 434.39 0.3666 
2000 – 2018 

(6438) 

Tabernas 37.0911 2.3022 502.0 237.80 0.1780 
2000 – 2018 

(6694) 

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController
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Conil de la 

Frontera 
36.3327 6.1325 22.0 470.74 0.4790 

2000 – 2018 

(5868) 

Aroche 37.9580 6.9450 293.0 632.26 0.5550 
2000 – 2018 

(6399) 

 

 

Figure 3. 2. Monthly values of temperature, relative humidity, wind speed, and solar radiation for all the 

weather stations (COR – Córdoba, MAG – Málaga, TAB – Tabernas, CON – Conil and ARO – Aroche). 

Available datasets are divided into two main groups according to their sampling time, 

semi-hourly and daily sampling data. On semi-hourly datasets, also called intraday 

datasets, the temperature, relative humidity, wind speed, and radiation are recorded every 

30 minutes. On daily data, we find the maximum, mean, and minimum temperature (Tx, 

Tm, Tn, respectively), the maximum, mean, and minimum relative humidity (RHx, RHm, 

RHn respectively), the maximum and mean wind speed (ux, u respectively), the total solar 

radiation (Rs), the total precipitation (Preci) and the time of day when maximum 

temperature and minimum temperature occurs (HourminTx and HourminTn). Table 3. 2 

shows the statistics values of these datasets.  
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Table 3. 2. Statistics of maximum and minimum temperature, and ET0 (Max: Maximum, Min: Minimum, Std: Standard Deviation. 

  Maximum temperature (ºC) Minimum temperature (ºC) ET0 (mm/day) 

Sites Datasets Max Mean Min Std Max Mean Min std Max Mean Min Std 

Córdoba 

All 45.720 24.611 3.348 8.509 27.610 11.034 -8.300 6.270 9.693 3.672 0.355 2.350 

Train 45.720 24.417 3.348 8.541 25.160 11.031 -8.300 6.264 9.671 3.642 0.366 2.339 

Test 44.850 25.168 6.650 8.392 27.610 11.042 -3.431 6.289 9.693 3.758 0.364 2.377 

 

Málaga 

All 42.780 23.946 6.212 6.380 26.810 12.596 -4.270 5.565 10.309 3.439 0.453 1.954 

Train 42.780 23.851 6.212 6.411 25.200 12.546 -4.270 5.553 8.738 3.376 0.453 1.942 

Test 41.400 24.219 8.480 6.280 26.810 12.739 -1.185 5.596 10.309 3.620 0.501 1.977 

 

Tabernas 

All 42.550 23.244 4.282 7.275 26.020 9.794 -8.200 6.175 10.637 3.790 0.439 2.043 

Train 42.550 23.209 4.282 7.352 26.020 9.846 -8.200 6.173 10.637 3.760 0.439 2.048 

Test 41.700 23.349 5.274 7.034 23.660 9.639 -6.673 6.177 9.482 3.882 0.504 2.024 

 

Conil de 

la 

Frontera 

All 41.370 23.006 6.451 5.761 26.900 12.134 -5.383 5.375 9.353 3.213 0.434 1.876 

Train 41.370 23.100 6.451 5.770 25.970 12.080 -5.383 5.395 9.353 3.158 0.434 1.893 

Test 40.300 22.741 9.12 5.722 26.900 12.285 -1.298 5.316 9.189 3.369 0.436 1.820 

 

Aroche 

All 44.000 23.271 2.569 8.180 24.980 8.916 -8.000 5.655 8.751 3.267 0.311 2.086 

Train 44.000 23.206 4.430 8.143 24.980 9.100 -8.000 5.692 8.751 3.318 0.465 2.125 

Test 43.470 23.455 2.569 8.283 22.020 8.391 -5.113 5.516 7.324 3.121 0.311 1.963 
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The period of the datasets ranges from April 2000 to July 2018 for daily and semi-

hourly data. The datasets were split into training and testing; the period from 2000 to 2014 

was selected as training data, whereas the period from 2014 to 2018 was chosen as testing 

[50,60]. The reason why a hold-out technique is applied instead of cross-validation is that 

the dataset of this work is large, and composed of 18 years, so the risk of overfitting due 

to short datasets is low [62,63]. Apart from this split, a validation dataset was needed to 

check the performance of different hyperparameter sets in the process of searching the 

fittest tuning for each model - a random 15% from the training data was used for this 

purpose. The reason for taking a random period was to validate the performance in 

random years and days of the year; additionally, the seed of the random function was 

always the same, making all the validation dataset periods identical to one another. Once 

the fittest tuning (the most promising architecture and set of hyperparameter values on 

the training and validation datasets) was found, the whole training data was applied to 

train the model and, eventually, the testing dataset was used to obtain the performances. 

2.2.Quality assurance procedures 

In order to guarantee reliable results, the application of several quality control 

procedures to raw datasets was carried out. All this process is focused on identifying 

erroneous and questionable sensor measurements following the guidelines proposed by 

Estévez et al. [64] as a set of quality procedure checking tests (range test, internal 

consistency, step test, and persistence test) and the spatial consistency test (Estévez et al., 

2018). The application of these quality assurance techniques has been successfully carried 

out under different climatic conditions worldwide (Estévez et al., 2016; Islam et al., 2019; 

Yi et al., 2018). 

2.3.FAO56 – PM equation 

Despite the differences between lysimeters measures and FAO-PM ET0 estimates 

[65], the use FAO-PM ET0 method is a common and accepted practice by numerous 

previous works under different climatic conditions [31,50,66–68]. Computations of 𝐸𝑇0 

were carried out according to the standardized ASCE-FAO56-PM equation[1] and they 

were used as target values (Eq. 3.1): 

ET0 =
0.408∆(Rn − G) + γ

900
Tm + 273 u2(𝑒𝑠 − e𝑎)

∆ + γ(1 + 0.34𝑢2)
 

Eq. 3.1 

 

where 𝐸𝑇0 is the standardized grass reference evapotranspiration (𝑚𝑚 ∙ 𝑑𝑎𝑦−1), ∆ is the 

slope of the saturation vapor pressure versus temperature curve (𝑘𝑃𝑎 ∙ °𝐶−1), Rn is the 

net radiation calculated at the crop surface (𝑀𝐽 ∙ 𝑚−2 ∙ 𝑑𝑎𝑦−1), G is the soil heat flux 

density at the soil surface (𝑀𝐽 ∙ 𝑚−2 ∙ 𝑑𝑎𝑦−1) which is assumed to be zero for daily 

values, Tm is the mean daily air temperature (°𝐶), 𝑢2 is the mean daily wind speed at 2m 

height (𝑚 ∙ 𝑠−1), 𝑒𝑠 and 𝑒𝑎 are the saturation vapor pressure and the mean actual vapor 

pressure respectively (𝑘𝑃𝑎), 𝛾 is the psychrometric constant (𝑘𝑃𝑎 ∙ °𝐶−1) and 0.408 is a 

coefficient (𝑀𝐽−1 ∙ 𝑚2 ∙ 𝑚𝑚). The specification of the sensor used to calculate reference 

evapotranspiration in the assessed stations from RIA is shown in Table 3. 3. 
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Table 3. 3. RIA automated weather stations sensor specifications 

Sensor device Parameter Accuracy Range 

Young 05103 
Wind 

direction 
±3% From 0 to 360º 

 Wind speed ±0.3 m/s From 0 to 60 m/s 

Pt1000 Temperature ±0.3 ºC From -39.2 to 60ºC 

Skye SP1110 
Solar 

radiation 
±5% From 350 to 1100 nm 

ARG 100 Precipitation 0.2 nm/tip  

Humicap 18’ 
Relative 

humidity 
2% (from 0 to 90%) From 0.8 to 100% 

  3% (from 90 to 100%)  

 

2.4.Temperature-based methods 

The main disadvantage of FAO PM, as previously mentioned, is that the required 

weather data are normally unavailable or of low quality on many sites worldwide. In this 

sense, Allen et al. [1] in the guidelines for FAO PM recommended two different methods: 

Hargreaves- Samani (HS) and the FAO56 computation using only temperature data 

(FAO5 PMT). HS is calculated according to equation 3.2,  

𝐸𝑇0 𝐻𝑆 = 0.0023 (𝑇𝑀 + 17.8)√𝑇𝑋 − 𝑇𝑁 ∙ 𝑅𝑎 Eq 3.2. 

where ET0 HS is the ET0 calculated through this method in 𝑚𝑚 ∙ 𝑑𝑎𝑦−1; 0.0023 is an 

empirical coefficient; TX, Tm, and Tn are the maximum, mean, and minimum air 

temperature (°C), respectively and Ra is the extraterrestrial radiation (MJ∙m-2∙day-1) 

calculated from the day of the year and the latitude.  

In addition, this method can be locally calibrated to improve its performance. 

𝐸𝑇0 𝐻𝑆𝑀𝑂𝐷 is mathematically expressed as equation 3,  

𝐸𝑇0 𝐻𝑆𝑀𝑂𝐷 = 𝑚 (𝑇𝑀 + 𝑛)√𝑇𝑋 − 𝑇𝑁 ∙ 𝑅𝑎 Eq. 3.3 

where m and n are the calibration coefficients from Hargreaves and Samani [13], which 

need to be adjusted for site-specific conditions of the different stations using FAO PM as 

a reference, instead of using the general values of 0.0023 and 17.8, respectively. 

Although other methods, such as the one proposed by Shiri et al. [69], could be useful 

to locally calibrate the coefficients of HS, the conventional procedure is adequate in cases 

where enough years are available on the dataset. On the other way, FAO PMT is the 

application of FAO56 PM using only temperature data and approximations to relative 

humidity (RH) and solar radiation by using air temperature, wind speed (𝑢2) is usually 

set to 2 (m∙s-1) or regional mean values, the mean saturation vapor pressure (es), actual 

vapor pressure (ea), and vapor pressure deficit (𝑉𝑃𝐷) are estimated with equations 3.4, 

3.5, and 3.6, respectively; dew temperature (𝑇𝑑𝑒𝑤) is estimated according to Todorovic et 

al. [21] where different approaches from Tn are carried out depending on the aridity 

(Table 3. 4).  



 

 

101 

 

𝑒𝑠 =
0.6108

2
(exp (

17.27𝑇𝑥

𝑇𝑥+237.3
) + exp (

17.27𝑇𝑛

𝑇𝑛+237.3
)) (kPa) Eq. 3.4 

𝑒𝑎 = 0.6108 exp (
17.27𝑇𝑑𝑒𝑤

𝑇𝑑𝑒𝑤+237.3
) (kPa) Eq. 3.5 

𝑉𝑃𝐷 = 𝑒𝑠 − 𝑒𝑎 (kPa) Eq. 3.6 

 

Table 3. 4. Correction of dew temperature (Tdew) estimation from minimum temperature (Tn) proposed 

by Todorovic et al. (2013). 

Climate zones 

Annual 

Precipitation/ET0 Corrected Tdew (ºC) 

Hyper arid <0.005 Tdew = Tn – 4 

Arid 0.05 – 0.20 Tdew = Tn – 2 

Semi-arid 0.20 – 0.50 Tdew = Tn – 1 

Dry sub-humid 0.50 – 0.65 Tdew = Tn – 1 

Moist sub-humid 0.65 – 1.00 Tdew = Tn 

Humid >1.-0 Tdew = Tn 

Finally, new parameters are introduced: HourminSunset is the time of day in hours 

when the sunset occurs (calculated with longitude, latitude, and date), HourminSunset-

HourminTx (𝐻𝑜𝑢𝑟𝑚𝑖𝑛) is the difference in hours between sunset and the time where Tx 

occurred (equation 3.7) and EnergyT is considered as the area below the temperature of a 

whole day (as it can be seen in Figure 3. 3) which is determined by equation 3.8, where 

Ti is the temperature every half hour in a day, from 00:00 to 23:30 (for example, T0 is the 

temperature at 00:00, and T1 is the temperature at 00:30). 

𝐻𝑜𝑢𝑟𝑚𝑖𝑛 = 𝐻𝑜𝑢𝑟𝑚𝑖𝑛𝑠𝑢𝑛𝑠𝑒𝑡 −  𝐻𝑜𝑢𝑟𝑚𝑖𝑛𝑇𝑥
 (hours) Eq. 3.7 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇 = ∑(𝑇𝑖+1 − 𝑇𝑖) ∙ 0.5 (°𝐶 ∙ ℎ𝑜𝑢𝑟𝑠)

48

𝑖=1

 
Eq. 3.8 
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Figure 3. 3. Semihourly evolution of relative humidity and temperature, as well as dew point 

temperature, time Tx and time sunset in Córdoba on 7th July of 2015. The colored area below the 

temperature is the variable called EnergyT. 

2.5.Machine learning models 

All machine learning models were implemented on Python using the following 

libraries: Keras (Chollet et al,2015), Scikit-learn (Pedregosa et al, 2011), Scikit-optimize 

(Head et al., 2020, TensorFlow (Martín et al. 2015), XGBoost (Chen and Guestrin, 2016), 

NeuPy and hpelm (Akusok et al., 2015). All computations were running in a server 

workstation over Anaconda 3.7 with the following features: 2x Intel® Xeon® CPU E5-

2650 v3 @ 2.30GHz and 128 GB of RAM. The models (ANN, SVM, RF, XGBoost, 

GRNN, and ELM) used in this study are detailed below, as well as the hyperparameters 

optimization in section 2.5.7. 

2.5.1. Multilayer Perceptron (MLP) 

A Neural Network (NN) model is a data processing system inspired by the biological 

nervous system of the human brain. It is composed of a large number of interconnected 

neurons working on the purpose of solving a specific problem; in our case, for estimating 

reference evapotranspiration using only temperature parameters as inputs.  

All NN models have three different layers: the input, the hidden, and the output layer. 

The input layer corresponds to the data our system can use to resolve a problem, whereas 

the output represents the results. The hidden layer is usually called as a black box because 

its processes are not controlled, and its functionality is modified by an auto-training 

method. A single hidden layer and a single neuron model is called perceptron (Figure 3. 

4). Equation 3.9 represents the mathematical expression of a general perceptron with 

different inputs, where xi represents the different inputs (i) of our system, wi are the 

weights that multiply each input to a corresponding neuron, b is a bias value, f is an 

activation function and y is the output. 
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y =  f (∑ wi ∗ xi

𝑚

i=1

+ b) Eq. 3.9 
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w*x
+
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Neuron

 

Figure 3. 4. One neuron structure 

Besides, multiple hidden layers with one or more neurons each are called Multilayer 

Perceptron (MLP) and their architecture is represented in the appendix (Figure 3. 5). The 

f is responsible for whether a neuron should be activated or not. The activation functions 

used in this work have been: sigmoid, tanh, and ReLU (Figure 3. 6). 

Input layer Hidden layer Output layer

 

Figure 3. 5. Multilayer Perceptron (MLP) architecture 
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Figure 3. 6. Activation functions. a) sigmoid, b) tanh, c) ReLU. 
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The most important part of MLP is the learning process, which is called back-

propagation, where the results given by the model are introduced in a cost function and 

the weights are updated every epoch to minimize it. This updating process can be carried 

out by several optimizers. In this study, the optimizers SGD (Stochastic Gradient 

Descent), RMSprop (Root Mean Square prop), and Adam (Adaptive Moment Estimation) 

have been used. The SGD optimizer is the most used due to its simplicity and good results. 

RMSprop optimizer is like gradient descent with momentum; the difference lies in how 

the gradients are calculated. Eventually, the Adam is a combination of RMSprop and 

SGD Descent with momentum, using the squared gradients to scale the learning rate like 

RMSprop, and taking the momentum by using the moving average of the gradient. For 

more detailed information about these optimizers, [70–72] can be consulted. 

Finally, the hyperparameters introduced into optimization are the number of neurons 

of the first hidden layer (from 1 to 20 neurons), the number of neurons of the other hidden 

layers (from 1 to 20), the number of hidden layers (from 1 to 4), the activation (sigmoid, 

tanh, and ReLU), the optimizer function (SGD, RMSprop, and Adam) and the number of 

epochs (from 1 to 100). 

2.5.2. Extreme Learning Machine (ELM) 

Despite the good results given by MLP in reference to evapotranspiration, the high 

computational cost of the learning process made scientists study new approaches. Huang 

et al. [73] proposed a single hidden layer feedforward neural network (SLFNNs), where 

the weights and biases of the hidden layer are randomly generated and not tuned, and the 

output weights and bias are analytically calculated. As a result, the model obtained has a 

very low computational cost because no iteration learning process is required.  

Even if the number of neurons is less than the number of inputs, the hidden node 

parameters of ELM should not be tuned throughout training, being able to learn distinct 

samples with good results [42,46,48] 

The hyperparameters introduced into optimization are the number of neurons of the 

hidden layer from 1 to 1000 and its activation function. 

2.5.3. Generalized Regression Neural Network (GRNN) 

Generalized Regression Neural Networks (GRNN) were first proposed by Specht 

[74], as a modification of a Radial Basis Function Network (RBFN). GRNN models are 

based on nonlinear regression estimation functions and their structure is composed of four 

layers: the input layer, the pattern layer, the summation layer, and the output layer (Figure 

3. 7). Each neuron of the pattern layer represents a training input pattern and its output is 

a measure of the distance of the input from the stored patterns. The summation layer is 

composed of two different kinds of nodes, the S-nodes, and the D-node, represented by S 

and D in Figure 3. 7. The number of S-nodes is the same as the number of outputs and it 

computes the sum of the weighted outputs of the pattern layer; each node is connected to 

its correspondent output. On the contrary, the D-node is connected to all outputs and it 

calculates the unweighted outputs of the pattern layer. The calculation of each output is 
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the division between the output of each S-node by the D-node output, yielding the 

estimated value (Figure 3. 7). The mathematical expression of the output is represented 

in Equations 3.10 and 3.11: 

𝑦𝑖 =
∑ 𝑤𝑖 ∗ exp (−𝐺(𝑥, 𝑥𝑖))𝑁

𝑖=1

∑ exp (−𝐺(𝑥, 𝑥𝑖
′))𝑁

𝑖=1

 Eq. 3.10 

𝐺(𝑥,  𝑥𝑖
′) = ∑ (

𝑥 − 𝑥𝑗

𝜎
)

2
𝑀

𝑗=1

 Eq. 3.11 

where 𝑦𝑖 is the predicted value to an unknown input vector 𝑥, xi is the input training 

vector, 𝑤𝑖 is the weight connection between the ith neuron, N and M are the numbers of 

training patterns and the number of elements of an input vector respectively, G is the 

Gaussian function, and 𝜎 is a hyperparameter that modifies the width of the Gaussian 

function [75]. 

Input 
layer

Pattern 
layer

Output 
layer

S

D

Summation 
layer

 

Figure 3. 7. GRNN architecture for two inputs and two outputs. 

The special feature of GRNNs is that it does not require an iterate training procedure 

because the local minima problem was not faced during development [74], making this 

model the fastest and with a low error performance [42,43,47]. This algorithm is designed 

by ‘NeuPy’ python library, where the only hyperparameter to modify is 𝜎 with a range of 

[0.0001-5.0]. 

2.5.4. Support Vector Machine (SVM) 

Support Vector Machine is a machine learning technique that covers classification 

(SVM) and regression (SVR) alike. The main idea of SVM, which is extrapolated to SVR, 

is to linearly separate two or more classes with a hyperplane, where the margins are 

maximized. In Figure 3. 8 there is a graphical summary of Support Vectors for 

classification (a) and regression (b). 
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b) 

Figure 3. 8. Support vector machines for classification tasks (SVM) and regression (SVR). a) SVM, b) 

SVR. 

The optimization problem is mathematically expressed as equation 3.12 or by Lagrange 

function as equations 3.13 and 3.14. 

𝑚𝑖𝑛
1

2
‖𝑤‖2          𝑠. 𝑡.           𝑦𝑖(𝒙𝒊 ∙ 𝒘 + 𝑏) − 1 ≥ 0          ∀𝑖 Eq. 3.12 

𝐿(𝒘, 𝑏, 𝛼) =
1

2
‖𝑤‖2 − ∑ 𝛼𝑖[ 𝑦𝑖(𝒙𝒊 ∙ 𝒘 + 𝑏) − 1 ]

𝑚

𝑖=1

 Eq. 3.13 

min
𝒘,𝑏

max
𝛼

 𝐿(𝒘, 𝑏, 𝛼)      s.t.      𝛼𝑖 ≥ 0, 𝑖 = 1, … , 𝑚 Eq. 3.14 

 

where 𝒘 is the weight vector, 𝒙𝒊 is the input vector, 𝑏 is the bias,  𝑦𝑖 is the actual 

class/value of the input and 𝛼 is the Lagrange multiplier. 

An important aspect is the use of Kernel functions to enable support vectors to 

operate in a high-dimensional feature (x) space. The definition is: “Given a mapping 

function ∅: 𝑋 → 𝑉, we call the function 𝐾: 𝑋 →  ℝ defined by 𝐾(𝒙, 𝒙′) = (∅(𝒙), ∅(𝒙′))𝑣, 

where (∙,∙)𝑣 denotes an inner product in 𝑉, a kernel function”(Vapnik, 2000). The 

different kernels we can find in Scikit-learn are linear kernel 𝐾(𝒙, 𝒙′) = 𝒙 ∙ 𝒙′, 

polynomial kernel 𝐾(𝒙, 𝒙′) = (𝒙 ∙ 𝒙′ + 𝑐)𝑑, sigmoid kernel 𝐾(𝒙, 𝒙′) = 𝑡𝑎𝑛ℎ(𝒙 ∙ 𝒙′ + 𝑐) 

and RBF or gaussian kernel 𝐾(𝒙, 𝒙′) = exp(−𝛾‖𝒙 ∙ 𝒙′‖𝟐). Figure 3. 9 shows an example 

for each kernel. For further SVR explanations, see Smola and Schölkopf [76]. 

 
a) 

 
b)  
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y

 
c)  

 
d)  

Figure 3. 9. Kernel application types. a) Linear kernel, b) Polynomial kernel, c) Sigmoid kernel and d) 

RBF kernel. 

The hyperparameter used in optimization is the kernel function (polynomial, 

sigmoid, and RBF), 𝑐 (from 0.0001 to 1000), and 𝜀 (from 0.0001 to 1000). The parameters 

𝑐 and 𝜀 correspond to the regularization parameter and the margin within no penalty is 

associated, respectively. 

2.5.5. Random Forest (RF) 

Random Forest network is an ensemble tree-based method proposed by Breiman [77] 

where trees are trained in a random subset and it can be used with bagging or pasting, 

although is more common to use the first technique. It also introduces extra randomness 

when the number of trees starts growing. Instead of searching for the best feature to split 

a node, it searches for the best feature among a random subset of features, resulting in 

greater tree diversity. For further information, Feng et al. [42] can be consulted. 

The hyperparameters tested in this work are the number of trees in the forest (from 1 

to 1000), the splitting criteria (the mean square error o mean absolute error), the maximum 

number of features considered to split a node of a tree (one third, one half, three fourth, 

the square root and the logarithm in base two of the number of features) and the use of 

bagging or pasting. The rest of the parameters are in default mode. 

2.5.6. XGBoost 

It is a new machine learning model proposed by Chen et al. [78], based on Gradient 

Boosting Machines (GBM) and the Classification And Regression Trees (CART) where 

a subset of weak learners are combined to develop new stronger learners through the 

introduction of training strategies - the main idea of boosting methods is to train models 

sequentially, where each model try to reduce the error of the predecessor. The objective 

of XGBoost is to reduce the computational cost while preventing overfitting, thanks to 

the capacity of executing parallel calculations.  

The hyperparameters introduced in the optimization process are the number of trees 

in the forest (from 1 to 1000), the learning rate (from 0.0001 to 1), the maximum depth 

of a tree (from 1 to 30), the subsample ratio of the training instances, setting it to 0.5 

means that XGBoost would randomly sample half of the training data before growing 

trees, and this will prevent overfitting (from 0.01 to 0.999), the subsample ratio of 
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columns when constructing each tree (1/3, 1/2, 3/4 and 1) and the objective function 

(regression with squared loss and regression with squared log loss). 

2.5.7. Bayesian hyperparameter optimization 

The aim of hyperparameter optimization inside machine learning consists of finding 

a hyperparameter set for a given machine learning model that returns the most accurate 

performance on the validation dataset, and likely, it will outperform in the testing dataset. 

For example, for a typical multilayer perceptron (MLP) model, it is very common to 

search for the number of hidden layers, the number of neurons in those layers, the learning 

rate, or the optimizer function, among others.  

Hyperparameter optimization is mathematically represented as follows (Equation 

3.15): 

𝑥∗ = arg min 𝑓(𝑥),   𝑥 ∈ 𝑋 Eq. 3.15 

where 𝑓(𝑥) represents the objective function we want to minimize (for example, the mean 

absolute error between predicted values and measured values), 𝑥∗ is the optimized set of 

hyperparameters and X represents the whole hyperparameter space.  

The first approach is to manually change parameters based on experience and 

previous results until a good set is found, known as manual tuning. Sometimes it could 

yield good results, although not the best, but in many other cases, it could lead to a local 

minimum which could be far from the global. As a second solution, automatic methods 

such as grid or random search could be used, having slightly better results than manual 

tuning because all this process is automatically carried out in a loop. However, they are 

completely blind to past evaluations, and as a result, they often spend a significant amount 

of time evaluating bad parameters. Bayesian optimization emerged as an efficient solution 

to these problems [79]. It is an algorithm that uses the Bayes theorem to search the 

minimum of an objective function. The procedure is: 1) a defined number of points from 

the hyperparameter space are tested; 2) the algorithm considers past evaluations when 

selecting the next hyperparameters to evaluate (acquisition function), enabling itself to 

focus on those areas of the parameter space that are believed to bring promising validation 

scores; 3) this new hyperparameter set is evaluated and 4) if the optimization has not 

finished, it goes to the second point. 
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Figure 3. 10. An example of Bayesian optimization. 

Roughly, in terms of machine learning, it could be defined as the automatic method 

of manual tuning due to its similarity to human behavior while tuning [80,81]. Three 

major choices must be made to select a prior over functions that will express assumptions 

about the function being optimized (in our case, the Gaussian Process (GP) prior due to 

its flexibility): the acquisition function, determining the posterior model, and allowing us 

to determine the next point to evaluate [82]. Figure 3. 10 shows an example of the 

Bayesian optimization process for GP. Finally, it is necessary to select which 

hyperparameters are used and their limits. In this aspect, several ranges of 

hyperparameters were chosen by trial and error [82]. It is important to realize that the 

bigger the limits, the bigger the number of epochs the algorithm needs to get the most 

accurate set of parameters, and the longer the computational cost – this is the reason why 

choosing a sensible range is very important to the efficiency of the optimization.  

Besides, this methodology should be carried out using the training dataset, whereas 

the final neural network architecture will be assessed by the testing dataset (these data 

cannot influence the training or tuning processes), which is in line with works like 

[36,42,47,50] However, using the testing dataset to tune the fittest architecture and a 

hyperparameter set is not recommended because it conducts the results to a bias on testing 

data, which alienates from the main goal of generalization. 

The specific limits and hyperparameters were previously defined for each model, 

whereas the number of epochs for the optimization was set to 500, being 50 epochs 
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randomly selected. For further information about Bayesian optimization and Gaussian 

processes, see Shahriari et al. [81]. 

2.6.Data standardization 

Standardization of input datasets is a common requirement among all neural network 

models, in the exception of tree-based models, and it can be expressed as equation 3.16: 

𝑥𝑠𝑡𝑎𝑛𝑑 =
𝑥 − �̅�

𝜎
 Eq. 3.16 

where 𝑥𝑠𝑡𝑎𝑛𝑑 is the data standardized, x is the input data, �̅� is the mean of the training 

input dataset and 𝜎 is the standard deviation of the training input dataset.  

2.7.Statistical analysis 

The model performances were evaluated by using the following parameters: Root Mean 

Square Error (𝑅𝑀𝑆𝐸), Mean Bias Error (𝑀𝐵𝐸), the coefficient of determination (𝑅2) and 

the Nash-Sutcliffe model efficiency coefficient (NSE). The RMSE, MBE, R2, and NSE 

are defined as equations 3.17, 3.18, 3.19, and 3.20: 

𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑(𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)2

𝑚

𝑖=1

 Eq. 3.17 

𝑀𝐵𝐸 =  
1

𝑚
∑ 𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖

𝑚

𝑖=1

  
Eq. 3.18 

𝑅2 =  
(∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)(𝑝𝑟𝑒𝑑𝑖 − 𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)𝑚

𝑖=1 )
2

∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)𝑚
𝑖=1

2 ∑ (𝑝𝑟𝑒𝑑𝑖 − 𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)𝑚
𝑖=1

2 
Eq. 3.19 

𝑁𝑆𝐸 = 1 −
∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)

2𝑚
𝑖=1

∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)2𝑚
𝑖=1

 
Eq. 3.20 

 

where m is the number of records, the bar denotes the mean, and pred and meas are the 

predicted and FAO56-PM 𝐸𝑇0 values, respectively. 

3. Results and Discussion 

In order to avoid not promising configurations, a previous evaluation was carried out 

in the weather station of Córdoba with different combinations of TX, Tn, Ra, EnergyT, 𝑒𝑠, 

𝑒𝑎, 𝑉𝑃𝐷, 𝑇𝑑𝑒𝑤 and Hourmin, where 11 configurations from 3 to 6 inputs were chosen 

(Tx, Tn, and Ra were always selected in all the configurations due to their high 

efficiency). The rest of the combinations were excluded because no significant 

improvements were shown. Finally, these selected 11 input configurations (Table 3. 5) 

were assessed at each location and for all models.  

Table 3. 5. Input climatic parameter configurations (Tx: Maximum temperature, Tn: Minimum temperature, 

Tdew: dew point temperature, Ra: Extraterrestrial radiation, es: mean saturation vapor pressure, ea: actual 
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vapor pressure, VPD: vapor pressure deficit, EnergyT: the integral of the daily thermal signal, Hourmin is 

the difference between the time when sunset occurs and the time the maximum temperature occurs). 

Configurations Climatic parameters 
Number of 

inputs 

1 TX, Tn, Ra 3 

2 TX, Tn, Ra, EnergyT 4 

3 TX, Tn, Ra, Hourmin 4 

4 TX, Tn, Ra, es 4 

5 TX, Tn, Ra, ea 4 

6 TX, Tn, Ra, VPD 4 

7 TX, Tn, Ra, Tdew 4 

8 TX, Tn, Ra, EnergyT, VPD 5 

9 TX, Tn, Ra, ea, es 5 

10 TX, Tn, Ra, ea, Tdew 5 

11 TX, Tn, Ra, EnergyT, VPD, Tdew 6 

 

3.1.Performance of models in the different locations 

In terms of the statistics MBE, RMSE, R2, and NSE, their minimum, mean and 

maximum values are summarized in Table 3. 6 for all the configurations of the different 

studied models at each station.  

In Cordoba (aridity index = 0.4616), in terms of RMSE, the mean values of all ML 

models (0.5249mm/day) improved the performance of HSMOD (0.6071 mm/day) and 

HS (0.6460 mm/day). The best RMSE performance (0.4983 mm/day) was carried out by 

SVM, whereas the worst among ML models was carried out by GRNN (0.5691 mm/day), 

so close to XGBoost (0.5620 mm/day). On average, the best model performance was 

SVM with the mean RMSE value of 0.5068 mm/day, very close to ELM (0.5145 

mm/day). Regarding NSE, its behavior was like RMSE, where all ML performances (the 

worst value was 0.9427, obtained by GRNN) outperformed HSMOD (0.9348). The most 

precise model was, again, SVM (0.9561) followed by MLP (0.9557) and ELM (0.9545); 

the ranking on mean values is almost identical, where SVM maintain the first place, but 

MLP and ELM switch their positions with the values 0.9546, 0.9532 and 0.9510, 

respectively. The minimum MBE value (-0.0006 mm/day) of all the models assessed was 

obtained with MLP (it also got the worst value among ML models, 0.1931 mm/day), 

although on average, the best performance was carried out by SVM with a mean of 0.0073 

mm/day. The R2 values were very satisfactory for all models, ranging from 0.9434 

(GRNN) to 0.9565 (MLP), even in HS (0.9366) and HSMOD (0.9358). 
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Table 3. 6. Minimum (Min), mean, and maximum (Max) values of MBE, RMSE, R2, and NSE for all the stations using different models: Hargreaves-Samani (HS), Calibrated 

Hargreaves-Samani (HSMOD), Multilayer Perceptron (MLP), Extreme Learning Machines (ELM), Support Vector Machines (SVM), Generalised Regression Neural Network 

(GRNN), XGBoost and Random Forest (RF). The symbol * means ‘no-value’. 

Station Model 

MBE (mm/day) RMSE (mm/day) R2 NSE 

Min/Mean/Max Min/Mean/Max Min/Mean/Max Min/Mean/Max 

Córdoba HS */0.2339/* */0.6460/* */0.9366/* */0.9261/* 

HSMOD */0.0690/* */0.6071/* */0.9358/* */0.9348/* 

MLP  -0.0006/0.0458/0.1931 0.5005/0.5261/0.5462 0.9534/0.9547/0.9565 0.9472/0.9510/0.9557 

ELM 0.0315/0.0409/0.0453 0.5069/0.5145/0.5250 0.9523/0.9541/0.9556 0.9512/0.9532/0.9545 

SVM 0.0044/0.0073/0.0135 0.4983/0.5068/0.5134 0.9536/0.9548/0.9564 0.9534/0.9546/0.9561 

GRNN 0.0444/0.0511/0.0547 0.5208/0.5351/0.5691 0.9434/0.9505/0.9531 0.9427/0.9493/0.9520 

XGBoost 0.0082/0.0156/0.0457 0.5178/0.5307/0.5620 0.9446/0.9508/0.9531 0.9441/0.9502/0.9526 

RF 0.0407/0.0466/0.0509 0.5217/0.5363/0.5466 0.9482/0.9502/0.9529 0.9472/0.9491/0.9519 

 

Málaga HS */-0.0630/* */0.6876/* */0.8844/* */0.8791/* 

HSMOD */-0.1337/* */0.6781/* */0.8874/* */0.8824/* 

MLP -0.0732/-0.1433/-0.2177 0.5952/0.6189/0.6410 0.9070/0.9081/0.9105 0.8949/0.9019/0.9091 

ELM -0.1142/-0.1230/-0.1291 0.6111/0.6173/0.6256 0.9038/0.9064/0.9076 0.8999/0.9025/0.9042 

SVM -0.1381/-0.1564/-0.1774 0.6189/0.6243/0.6349 0.9050/0.9067/0.9084 0.8969/0.9003/0.9017 

GRNN -0.1213/-0.1286/-0.1361 0.6186/0.6254/0.6417 0.8988/0.9042/0.9061 0.8947/0.8999/0.9019 

XGBoost -0.1264/-0.1603/-0.1760 0.6300/0.6438/0.6512 0.8987/0.9005/0.9034 0.8916/0.8939/0.8982 

RF -0.1238/-0.1333/-0.1395 0.6184/0.6295/0.6388 0.9004/0.9033/0.9062 0.8957/0.8986/0.9019 

 

Tabernas HS */-0.1836/* */0.7302/* */0.8782/* */0.8698/* 

HSMOD */-0.0728/* */0.7011/* */0.8817/* */0.8800/* 

MLP 0.0015/-0.0634/-0.2737 0.6273/0.6604/0.7109 0.8938/0.8987/0.9075 0.8767/0.8935/0.9040 
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ELM -0.0427/-0.0557/-0.0654 0.6210/0.6532/0.6722 0.8907/0.8967/0.9064 0.8897/0.8958/0.9059 

SVM -0.1010/-0.1271/-0.1387 0.6349/0.6744/0.6874 0.8908/0.8945/0.9046 0.8847/0.8889/0.9016 

GRNN -0.0644/-0.0680/-0.0750 0.6583/0.6690/0.6877 0.8857/0.8920/0.8956 0.8846/0.8908/0.8943 

XGBoost -0.0846/-0.1017/-0.1121 0.6595/0.6724/0.6901 0.8868/0.8926/0.8964 0.8838/0.8897/0.8939 

RF -0.0540/-0.0615/-0.0668 0.6518/0.6668/0.6794 0.8883/0.8924/0.8972 0.8874/0.8915/0.8963 

 

Conil HS */-0.0683 /* */0.8096/* */0.8064/* */0.8022/* 

HSMOD */-0.2830/* */0.8264/* */0.8182/* */0.7939/* 

MLP -0.0048/-0.1702/-0.3117 0.5853/0.6072/0.6619 0.8988/0.9005/0.9032 0.8679/0.8887/0.8967 

ELM -0.1668/-0.1786/-0.1967 0.5985/0.6204/0.6721 0.8745/0.8938/0.9005 0.8637/0.8838/0.8920 

SVM -0.2153/-0.2407/-0.2592 0.6208/0.6384/0.6444 0.8921/0.8948/0.8978 0.8748/0.8771/0.8838 

GRNN -0.1511/-0.1588/-0.1665 0.5884/0.5969/0.6137 0.8935/0.9002/0.9040 0.8864/0.8925/0.8956 

XGBoost -0.2202/-0.2256/-0.2333 0.6284/0.6382/0.6581 0.8862/0.8927/0.8964 0.8694/0.8771/0.8809 

RF -0.1560/-0.1600/-0.1673 0.5859/0.6069/0.6177 0.8927/0.8969/0.9039 0.8849/0.8889/0.8965 

 

Aroche HS */0.7430/* */0.9243/* */0.9472/* */0.7783/* 

HSMOD */0.3347/* */0.5832/* */0.9466/* */0.9117/* 

MLP 0.1789/0.3038/0.4185 0.4592/0.5323/0.6187 0.9561/0.9579/0.9599 0.9007/0.9259/0.9453 

ELM 0.2577/0.2845/0.2985 0.4800/0.5179/0.5362 0.9545/0.9574/0.9617 0.9254/0.9303/0.9402 

SVM 0.2469/0.2703/0.2857 0.4829/0.5134/0.5386 0.9562/0.9580/0.9609 0.9247/0.9315/0.9395 

GRNN 0.2826/0.2959/0.3053 0.5185/0.5402/0.5592 0.9497/0.9532/0.9568 0.9189/0.9243/0.9302 

XGBoost 0.2403/0.2616/0.2786 0.4924/0.5168/0.5457 0.9482/0.9545/0.9581 0.9227/0.9306/0.9371 

RF 0.2759/0.2880/0.2987 0.5170/0.5347/0.5468 0.9511/0.9528/0.9565 0.9224/0.9258/0.9307 
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In Málaga (aridity index = 0.3666), in terms of NSE, the efficiency performance 

obtained by all the studied models outperformed HS (0.8791) and HSMOD (0.8824). 

Their values ranged from 0.8916 (XGBoost) to 0.9091 (MLP), and the mean among all 

ML models was 0.8995. MLP, ELM, and SVM overpassed the 0.9 performance in mean, 

whereas all models, except for XGBoost, exceeded it with their best configuration. 

Besides, regarding RMSE, the values were also better than those obtained by Hargreaves 

methods, being the best mean values obtained by ELM (0.6173 mm/day), MLP (0.6189 

mm/day), and SVM (0.6243 mm/day), in this order. MLP outperformed the rest of the 

models with the best RMSE value (0.5952 mm/day). On the other hand, XGBoost got the 

worst performance with an RMSE value of 0.6512 mm/day, which keeps being better 

than those obtained by HS (0.6876 mm/day) or HSMOD (0.6781 mm/day). Regarding 

R2, the results of ML models outperformed HS and HSMOD. However, the MBE values 

were worse on average, with exception of ELM, GRNN, and RF. The best value was 

obtained, in both cases, by MLP (MBE=-0.0732 mm/day and R2= 0.9105). 

In Tabernas, which is the station with the lowest aridity index (0.178), the RMSE 

ranged from 0.6210 mm/day (ELM) to 0.7109 mm/day (MLP). This last model and 

configuration was the only one that did not outperform HSMOD (RMSE=0.7011 mm). 

From all the models assessed, ELM was the one with the smallest minimum, mean, and 

maximum RMSE values (0.6210, 0.6532, and 0.6722 mm/day respectively). Concerning 

NSE, its values ranged from 0.8767 (MLP) to 0.9059 (ELM), being 0.8767 the unique 

value that did not outperform HSMOD (0.8800). On average, the model performance 

raking in both, NSE and RMSE, is ELM, MLP, RF, GRNN, XGBoost, and SVM, in this 

order. In addition, the MBE value reached its minimum 0.0015 mm/day with MLP and 

configuration 9 and, on average, the value obtained using HSMOD (-0.0728 mm) was 

outperformed by all the models, except for SVM and XGBoost. Finally, the R2 obtained 

a very similar behavior to NSE, but in this case, all ML models outperformed HS and 

HSMOD. 

In Conil (aridity index = 0.4790), the best models regarding RMSE and NSE were 

MLP (RMSE=0.5853 mm/day and NSE=0.8967), RF (RMSE=0.5859 mm/day and 

NSE=0.8965) and GRNN (RMSE=0.5884 mm/day and NSE=0.8956). In contrast, the 

worst model performances were ELM (RMSE = 0.6721 mm/day and NSE=0.8637), MLP 

(RMSE=0.6619 mm/day and NSE 0.8679), and XGBoost (RMSE=0.6581 mm/day and 

NSE=0.8694) in this coastal location. Moreover, the ML models obtained the most 

significant improvements against HSMOD and HS over the other stations. The R2 

behavior was in line with NSE, but the MBE of ML models did not outperform HS (-

0.0683 mm/day), which was one of the best apart from MLP (-0.0048 mm/day). A main 

feature of MBE is that all results were negative, which means that all models 

overestimated ET0. 

Finally, in Aroche, which is the most humid location (aridity index=0.555) the values 

of R2 and NSE using HSMOD and all evaluated models were very satisfactory, being both 

statistics higher than 0.9 for all the cases. According to RMSE, the best results were 

obtained by MLP (0.4592 mm/day) followed by ELM (0.4800 mm/day). However, on 
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average, SVM had the highest accurate estimations (0.5134 mm/day), followed very close 

to XGBoost and ELM (0.5168 and 0.5179 mm/day, respectively); being all of them lower 

than the obtained by HSMOD. On the other hand, MBE denotes underestimations in all 

cases, ranging from 0.1789 mm/day with MLP to 0.4185 mm/day using MLP. 

Comparing the performance of the different models in the different stations it could 

be stated that there was a high-performance variability between models in the different 

stations. MLP was usually one of the best models in most of the statistics, however, it 

usually also had one of the worst values; there is a higher dependence on the chosen 

configuration, which could lead to overfitting in some cases. The ELM and SVM usually 

obtained very close or even better values than MLP, apart from having a less scattered 

performance variance. On the other hand, RF and XGBoost (tree-based models) were in 

general the worst models in the different statistics. The GRNN and ELM are the models 

with less computational requirements because they do not need any training process. It 

could be stated that ELM is the most adequate model to estimate ET0 in these weather 

stations 

Comparing results from different stations (with very close mean annual ET0 values – 

table 2), Córdoba and Tabernas (inland locations) had very accurate MBE results, while 

the coastal stations denoted an overestimation tendency in all models and configurations. 

The RMSE values obtained in Málaga, Tabernas, and Conil stations were quite similar 

on average, although Tabernas had slightly worse values in all the different models. On 

the other hand, Córdoba and Aroche had the best results. In terms of R2 and NSE, the 

results were in line with RMSE: Córdoba and Aroche had the best estimations with values 

around 0.95 in both locations, but the rest of the stations were closer to 0.9, which keep 

being considered as a good performance.  

3.2.Performance of the configurations 

In order to evaluate the results obtained between different configurations in each 

station and without any dependence on ML models, the mean of the statistical indices 

RMSE, MBE, R2, and NSE of the different models using a specific configuration are 

shown in Figure 3. 11. In general, the input configuration TX, Tn, and Ra (configuration 

1) performed RMSE as the worst value in all the stations. On the other hand, the statistics 

MBE, R2, and NSE went along with this line in inland locations (Córdoba, Tabernas, and 

Aroche), whereas in coastal stations (Málaga and Conil), not such bad performances were 

obtained using this configuration. In some cases, very satisfactory values were obtained 

in coastal locations, such as MBE in Conil and Málaga, and R2 and NSE in Conil. The 

introduction of the EnergyT parameter in the inputs (configurations 2, 8, and 11) improved 

the performances in all the stations, except for MBE in Conil. In Málaga, the lowest 

RMSE and the highest NSE values were obtained using configurations 11 followed by 2 

and 8. Moreover, in Conil, the results obtained using configurations 2, 7, and 6 were the 

best in terms of RMSE and NSE. Córdoba and Aroche had, on average, the best R2 

performance and the lowest variability using most configurations, which is in contrast to 

the rest of the stations. However, the NSE values obtained in Córdoba surpassed the 

values obtained in Aroche for all configurations. On the other hand, Aroche had the 
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highest MBE values, which is the indication of a dominant underestimation tendency for 

all the configurations assessed. 

 
  

 
Figure 3. 11. Statistical performances of mean values of RMSE, MBE, R2 and NSE for all the models 

evaluated using different configurations (colors) at each location (TAB=Tabernas; CON=Conil; 

COR=Córdoba; ARO=Aroche; MAG=Málaga). a) RMSE, b) MBE, c)R2 and d) NSE. 

In Table 3. 7, it is shown the best NSE and RMSE (mm/day) values for all the stations 

in the different configurations. In Córdoba, the best NSE and RMSE values were obtained 

using configuration 11 (NSE = 0.9560 and RMSE = 0.4982 mm/day) and very close to 

configurations 8 (NSE=0.9553 and RMSE = 0.5026 mm/day) , 3 (NSE = 0.9551 and 

RMSE = 0.5038 mm/day) and 9 (NSE = 0.9548 and RMSE = 0.5053 mm/day), in this 

order. The only configuration that did not outperform configuration 1 (using ELM) in 

terms of NSE was configuration 10 using ELM. In Málaga, the two best results were 

given using configurations 5 (RMSE = 0.6070 mm/day), 7 (0.6084 mm/day). and 10 

(RMSE = 0.6089 mm/day), having very close values one another; these configurations 

also obtained the best NSE performances (0.9057, 0.9053 and 0.9052, respectively). On 

the contrary, configurations 2, 3, 4, 8, 9, and 11 worsen configuration 1 in both NSE and 

RMSE. In Tabernas, the configurations with EnergyT as inputs (2, 8 and 11) gave the best 

statistics (RMSE = 0.6272 mm/day and NSE = 0.9034; RMSE = 0.6209 mm/day and NSE 

= 0.9058; RMSE = 0.6267 mm/day and NSE = 0.9012, respectively). The worst values 

were obtained by the configuration 10 (RMSE = 0.6610 mm/day and NSE = 0.8933) and 

1 (RMSE = 0.6607 mm/day and NSE = 0.8934). In Conil, the best configuration 

performances were 3, 7, 8, 2, and 10, in this order. The use of Hourmin made the model 

obtain the most efficient estimation in this location, and the use of EnergyT also 

outperformed configuration 1. Finally, in Aroche, all the configuration outperformed 

configuration 1, except for configuration 5 and 10. Configurations 4, 6, 8, 11, and 2 
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obtained the best RMSE and NSE values. This station had the highest improvements in 

RMSE  from HS and HSMOD, while in Conil, it is obtained the highest NSE 

outperforming. 



 

 

119 

 

Table 3. 7. Best NSE and RMSE (mm/day) values for all the stations (TAB=Tabernas; CON=Conil; COR=Córdoba; ARO=Aroche; MAG=Málaga) in the different input 

configurations (Table 4). The model in parenthesis is the model that obtained the best NSE and RMSE, respectively. 

Conf. 

Córdoba Málaga Tabernas Conil Aroche 

NSE 
RMSE 

(mm/day) 
NSE 

RMSE 

(mm/day) 
NSE 

RMSE 

(mm/day) 
NSE 

RMSE 

(mm/day) 
NSE 

RMSE 

(mm/day) 

1 

0,9537  

(ELM)  

0,5058 

(SVM) 

0.9036  

(MLP) 

0.6137 

(MLP) 

0.8934  

(MLP) 

0.6607 

(MLP) 

0.8928  

(GRNN) 

0.5959 

(GRNN) 

0.9297  

(SVM) 

0.5203  

(SVM) 

2 

0.9543 

 (SVM)  

0,5083 

(SVM) 

0.9015  

(ELM) 

0.6206 

(MLP) 

0.9039  

(MLP) 

0.6272 

(MLP) 

0.8953  

(MLP) 

0.5891  

(MLP) 

0.9386  

(MLP) 

0.4863  

(MLP) 

3 

0.9551  

(SVM) 

0.5038 

(SVM) 

0.9009  

(MLP) 

0.6223 

(MLP) 

0.8931  

(RF) 

0.6618 

(RF) 

0.8966  

(MLP) 

0.5853  

(MLP) 

0.9350  

(SVM) 

0.5003  

(SVM) 

4 

0.9543  

(SVM) 

0.5078 

(SVM) 

0.9023  

(ELM) 

0.6180 

(ELM) 

0.8952  

(ELM) 

0.6552 

(ELM) 

0.8940  

(GRNN) 

0.5927 

(GRNN) 

0.9452  

(MLP) 

0.4591  

(MLP) 

5 

0.9539 

 (SVM) 

0.5102 

(SVM) 

0.9057  

(MLP) 

0.6070 

(MLP) 

0.8924  

(ELM) 

0.6640 

(ELM) 

0.8937  

(GRNN) 

0.5935 

(GRNN) 

0.9296  

(SVM) 

0.5205  

(SVM) 

6 

0.9545 

 (SVM) 

0.5067 

(SVM) 

0.9033  

(ELM) 

0.6149 

(ELM) 

0.8955  

(MLP) 

0.6543 

(MLP) 

0.8929  

(GRNN) 

0.5956 

(GRNN) 

0.9444  

(MLP) 

0.4626  

(MLP) 

7 

0.9540  

(MLP) 

0.5096 

(MLP) 

0.9053  

(MLP) 

0.6084 

(MLP) 

0.8914  

(ELM) 

0.6670 

(ELM) 

0.8958  

(MLP) 

0.5875  

(MLP) 

0.9307  

(XGBoost) 

0.5168 

(XGBoost) 

8 

0.9553  

(SVM) 

0.5026 

(SVM) 

0.8998  

(GRNN) 

0.6259 

(GRNN) 

0.9058  

(ELM) 

0.6209 

(ELM) 

0.8955  

(GRNN) 

0.5883 

(GRNN) 

0.9402  

(ELM) 

0.4800  

(ELM) 

9 

0.9548  

(SVM) 

0.5053 

(SVM) 

0.9031  

(ELM) 

0.6156 

(ELM) 

0.8937  

(ELM) 

0.6598 

(ELM) 

0.8934  

(MLP) 

0.5943  

(MLP) 

0.9307  

(XGBoost) 

0.5165 

(XGBoost) 

10 

0.9535  

(ELM) 

0.5122 

(ELM) 

0.9052  

(MLP) 

0.6089 

(MLP) 

0.8933  

(MLP) 

0.6610 

(MLP) 

0.8951  

(MLP) 

0.5894  

(MLP) 

0.9282  

(MLP) 

0.5259  

(MLP) 

11 

0.9560  

(SVM) 

0.4982 

(SVM) 

0.9012  

(SVM) 

0.6214 

(SVM) 

0.9041  

(ELM) 

0.6267 

(ELM) 

0.8923  

(GRNN) 

0.5975 

(GRNN) 

0.9394  

(SVM) 

0.4828  

(SVM) 
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In general, it could be sum up that the use of temperature-based variables 

outperformed configuration 1; the use of EnergyT is highly recommended due to its 

efficiency improvements. On the other hand, the use of Hourmin did not have 

considerable gains in most of the assessed stations, although the results in the less arid 

stations (Córdoba, Conil, and Aroche) where the aridity index is above 0.45 outperform 

from the use of TX, Tn, and Ra (this value varies more in these stations due to a more 

frequent raining events) 

3.3.Seasonal performance behavior 

Regarding the performance of the models in different seasons, Figure 3.12 shows the 

statistical values of RMSE, MBE, R2, and NSE (a, b, c, and d, respectively). In terms of 

R2, winter had the worst results for all the studied models, not only on average but also 

as the highest interquartile range, whereas in autumn the highest precision was obtained. 

Regarding a ranking of general good performance, the best results were obtained in 

autumn, followed by spring and summer for both R2 and NSE values. On the other side, 

the lowest R2 value (0.0976) resulted in Málaga with ELM and using configuration 8 (also 

corresponding with the value NSE= -1.0066, RMSE=0.9246, and MBE=-0.1749). 

Moreover, MBE did not have any significant variability in the mean values due to 

seasons, but the interquartile range was more compact in summer for all the models except 

for MLP and some outliers in Aroche. Finally, concerning RMSE values, the best 

performance was obtained using the MLP model in Winter, followed by the same 

approach in Autumn. Regarding all the models and sites studied, in Spring and Summer 

RMSE values were lower than 0.9 mm. 

 

 
Figure 3. 12. Seasonal statistical performances of RMSE, MBE, R2, and NSE for all the configurations 

using different models (colors) in all stations. a) RMSE, b) MBE, c) R2 and d) NSE. 

In Table 3. 8, it is shown the different mean NSE and RMSE values along all models 

and stations to seasonally assess the performance of the different input configurations. 

Generally, asit was stated in figure 12, the NSE had better values in Autumn, whereas in 

winter, the performance was down to the worst. In winter, the best configurations were 
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configuration 6 (NSE=0.4142), 3 (NSE=0.4130) and 9 (NSE=0.4133), respectively. In 

spring, the best configurations were 2 (NSE=0.7603), 8 (NSE=0.7572) and 11 

(NSE=0.7538). In summer, the results are very similar to Spring, where the best 

configurations are 2 (NSE=0.5675), 3 (NSE=0.5658), 8 (NSE=0.5600), and 11 

(NSE=0.5550). Finally, in autumn, there is no significant outperforming among the 

configurations, is also the most accurate season in all cases. 

Table 3. 8. Seasonal mean NSE and RMSE values of all the models and stations in the different input 

configurations (table 4). 

 NSE RMSE (mm/day) 

Conf. Winter Spring Summer Autumn Winter Spring Summer Autumn 

1 0.4082 0.7470 0.5498 0.8654 0.4648 0.6606 0.6857 0.4788 

2 0.3880 0.7603 0.5675 0.8680 0.4662 0.6443 0.6736 0.4737 

3 0.4130 0.7487 0.5658 0.8661 0.4633 0.6576 0.6753 0.4774 

4 0.4061 0.7493 0.5385 0.8653 0.4662 0.6583 0.6934 0.4795 

5 0.4029 0.7480 0.5401 0.8643 0.4671 0.6595 0.6909 0.4811 

6 0.4142 0.7507 0.5466 0.8657 0.4627 0.6563 0.6875 0.4784 

7 0.4097 0.7469 0.5349 0.8625 0.4653 0.6611 0.6956 0.4834 

8 0.2281 0.7572 0.5600 0.8676 0.5005 0.6483 0.6783 0.4748 

9 0.4133 0.7480 0.5425 0.8658 0.4635 0.6591 0.6899 0.4786 

10 0.4054 0.7443 0.5403 0.8644 0.4662 0.6639 0.6923 0.4805 

11 0.3865 0.7538 0.5550 0.8655 0.4685 0.6514 0.6816 0.4771 

The use of configurations with EnergyT and Hourmin obtained significantly 

outperforms in winter, spring, and summer among all stations and models, so the use of 

these variables is highly recommended to outperform temperature-based models. It is of 

interest that Hourmin obtained significant gains in winter when the rains are more 

frequent in these stations 

3.4.Overall discussion 

In general, the results obtained by applying the proposed models outperformed the 

Hargreaves methods and gave slightly better values of NSE and R2 (NSE=0.82 and 

R2=0.83 for the local scenario and daily inputs, and NSE=0.89 and R2=0.90 for the local 

scenario and hourly inputs) than those reported by Ferreira and da Cunha [50] for ten 

weather stations in Brazil (3.93 mm/day of mean ET0), although slightly worse in terms 

of mean RMSE values (RMSE=0.53 for the local scenario and daily inputs, and 

RMSE=0.41 for the local scenario and hourly inputs). However, the RMSE values 

obtained for most models were better than the results for temperature-based models 

assessed by Fan et al. [35] in several locations in China (the ET0 in the studied stations 

was ranging from 2.5 to 3.4 mm/day in the different stations), with a mean RMSE 

performance of 0.7069 mm/day with the temperature-based models. What is more, the 

NSE performance in all the stations with different climate conditions (semi-arid, arid, 

sub-humid, and humid) of India by Adamala [55] using Wavelet Neural Networks 

(WNN) are lower than the mean NSE values obtained in the assessed stations of 

Andalusia. The results of Traore [83] in the Sudano-Sahelian zone gave similar mean R2 
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values in the temperature-based models, although the RMSE values were lower in this 

zone. Besides, the results of RF and GEP obtained by Karimi et al. [84] and Shiri [85] in 

Iran using temperature-based models were worst in terms of maximum and mean NSE 

values than those obtained in these 5 stations of Andalusia. Finally, in terms of RMSE 

and comparing the results with other studies carried out in Spain, the values were lower 

than those of Landeras et al. [86] with MLP in the Basque Country (Northern Spain) and 

worse than the results of Martí et al. [69] with calibrated HS in eastern Spain. 

In general, the computation cost of ELM and GRNN models were lower than using 

MLP, XGBoost, and RF; being the ELM approach had one of the best mean performances 

in all the stations assessed. On the other hand, RF and XGBoost, despite needing the most 

computational requirements and being slower, on average, it is not reflected that higher 

computational effort on training in the final results.  

The good results obtained when using EnergyT as an input variable in any of the 

configurations (2, 8, and 11) demonstrates that the information contained in it gives a 

detailed characterization of the thermic behavior at each location, resulting in more 

efficient models than using only daily maximum and minimum temperature. Its use in 

inland stations showed one of the best performances, while its use on coastal stations was 

not such substantial, which may be due to the effect of the sea (the temperature variability 

during a day is less affected by meteorological events). On the other hand, Hourmin was 

also assessed, with no such significant outperforming as EnegyT had, but improving the 

modeling from the use of only TX, Tn, and Ra in the less arid stations (aridity index above 

0.45) of Córdoba, Conil, and Aroche (see Table 3. 1). Another arising feature in this work 

is that the use of temperature-based approximations of ea, es, VPD, and Tdew, had 

improvements over the models using only configuration 1. Although it is usually 

considered to be learned by the ML model in the ‘training’ process, the introduction of 

these parameters as input variables may help the model learn, minimizing the possibility 

of overfitting occurrence.  

Therefore, configurations using the new parameters EnergyT and Hourmin can be 

used in this kind of model to estimate ET0 more accurately, being ELM model, the one 

that obtained, in general, the highest performances. This is crucial in stations where the 

data acquisition is limited, like developing countries or low-cost weather stations that 

cannot collect the rest of the meteorological variables required by FAO56-PM.  

4. Conclusions 

Different models using several meteorological temperature-based parameters as input 

variables have been developed and assessed at five locations in the Andalusia region 

(Southern Spain), covering different climatic conditions. The main novelty of this work 

is the use of new meteorological parameters based on intra-daily temperature variables 

(EnergyT and Hourmin), the evaluation of different configurations (the combination of 

other climatological parameters such as VPD, ea, es, and Tdew as inputs in the different 

approaches studied), as well as the use of Bayesian optimization to tune hyperparameters 

for each of them. The results indicated that the use of the novel's temperature-based 

parameters in these neural network approaches outperformed, in general, the estimations 
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of ET0 in all the assessed stations, comparing to Hargreaves methods and models using 

Tx, Tn, and Ra. In terms of RMSE and R2, the values were reduced from 0.8264 mm/day 

(HSMOD) to 0.5853 mm/day (MLP) and from 0.8182 (HSMOD) to 0.9039 (MLP), 

respectively. The improvement in the NSE values were slightly better than in R2, 

increasing from 0.7939 (HSMOD) to 0.8967 (MLP). Finally, the best improvement was 

obtained in the MBE statistic, gaining from -0.2830 mm/day (HSMOD) to -0.0048 

mm/day (MLP). 

As a rule, there is not a model that firmly outperforms the rest of the models in terms 

of mean statistics, although MLP was usually the model that gave the best performance 

in most locations, although its variability was high. Besides, GRNN and ELM were the 

models with the lowest computational cost, where ELM performed with one of the best 

NSE and RMSE in most stations and configurations. Additionally, based on the results 

obtained in this work it can be observed an improvement of the statistical performance 

by using EnergyT in any of the configurations assessed while using Hourmin had 

improvements in the most humid stations where the aridity index is above 0.45. 

Additionally, in terms of seasonal performances, the statistics obtained significantly 

outperforms in winter, spring, and summer among all stations and models. Therefore, the 

ELM model with EnergyT and Hourmin can be used to improve limited-climatic models 

to increase the accuracy of ET0 estimations.  

Further studies can deeply explore these parameters and models for regional scenarios 

and in locations with different climatic conditions from those studied in this work. Due 

to the rise of low-cost sensorization, especially for variables such as air temperature, and 

the possibility of collecting these records with a higher sampling frequency than the 

conventional daily scale, the approaches proposed in this work may result in greater 

efficiency in the use of water resources. 
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Abstract  

The measure of solar radiation is costly, as well as its maintenance and calibration 

needs; therefore, reliable datasets are scarce. In this work, several machine learning 

models to predict solar radiation have been developed and assessed at nine locations 

(Southern Spain and North Carolina in the USA), representing different geo-climatic 

conditions (aridity, sea distance, and elevation). As a novelty, due to the ease of providing 

air temperature measurements, different new input variables from intra-daily temperature 

datasets were used. According to the results, all the models highly outperformed self-

calibrated empirical methods such as Hargreaves-Samani and Bristow-Campbell, with 

improvements in RMSE ranging from 7.56% in arid climates to 45.65% in humid. 

Moreover, regarding mean NSE and R2 values, several inland locations obtained values 

above 0.9. In summer, the highest statistics for all sites (more than a 60% improvement 

in NSE and R2) were obtained, whereas the worst were given in winter (more than an 

18% improvement in NSE and R2). Besides, when assessing the models in different non-

used locations with similar climatic characteristics, the reduction in RMSE was from 

0.305 W m-2 to 0.252 W m-2 in a semiarid coastal climate and from 0.344 W m-2 to 0.233 

W m-2 in dry sub-humid climate, compared to Hargreaves-Samani method. Overall, the 

MLP obtained the highest performance using the new proposed variables in all locations 

with medium aridity values, whereas, in the aridest and most humid sites, SVM and RF 

models were preferred. Therefore, the temperature-based models developed in this work 

can predict solar radiation more accurately than the current ones. This is crucial in 

locations with no available datasets or missing/low quality and can be used to optimize 

the determination of the potential locations for solar power plants' construction.  
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1. Introduction 

Deepening and improving renewable energy sources' knowledge is crucial due to the 

increase in the world's energy demand and the evident anthropogenic impact on the 

climate system. In this sense, it is confirmed that climate change is already affecting 

natural ecosystems, people, and livelihoods worldwide, being the greenhouse gas 

emissions the highest in history [1,2]. Among a significant number of consequences, it 

can be stated that due to global warming, the ice is melting at the poles by leaps and 

bounds [2], there are changes in precipitation patterns [3,4], the sea level will rise around 

2.43 m by 2100 [2,5], and the hurricanes will become more frequent and more potent [6].  

Due to the vital role of conventional energy sources in the current warming world, 

governments invest in producing electricity as clean, sustainable, and with less global 

warming emissions as possible. Supplementarily, recent studies concluded that 

Guidelines [7]using alternative energy sources like solar energy (using photovoltaic and 

photovoltaic/thermal panels) highly reduces the energy-environmental impact indices of 

strawberry [8] and barley production [9]. Consequently, installing renewable energy 

plants is increasing worldwide, primarily solar plants, due to their easy and affordable 

installation on a high scale [10] and for self-consumption purposes [11]. Spain connected 

to the grid with almost 4GW of solar photovoltaic (PV) capacity in 2019 [12] . Africa had 

more than quadrupled its solar PV capacity from 1.5GW at the end of 2014 to 8 GW at 

the end of 2019, being Benban the largest solar project in Africa. North and South 

American countries added 21 GW of new solar PV capacity in 2019 [13]. In this way, a 

proper determination of optimal solar power plant locations is crucial, being involved in 

several issues such as climate, geomorphological, spatial, environmental [14,15], and 

socio-politic factors [16]. Temperature is one of the most critical parameters to be 

considered due to its impact on solar plants' efficiency [17,18], so a balance between 

irradiance and air temperature is needed. Furthermore, political decisions also have a 

powerful influence like the land price and the energy price, among others [16]. Thus, it is 

crucial to assess solar radiation predictions in different climates in order to estimate the 

economic and energetical profitability of potential locations. 

1.1.About the related work 

The evaluation of solar energy availability at specific locations needs an accurate 

estimation of solar radiation values and the analysis of its spatiotemporal variability [19] 

for different purposes and applications. However, measuring solar radiation is very 

expensive in terms of installation and maintenance, and it usually contains a high rate of 

erroneous and missing data due to the lack of regular maintenance and calibration issues 

[7,20]. In this sense, due to the high cost involved, there is a low geographical density of 

weather stations with this equipment [21,22]. Different methods for estimating and 

forecasting solar radiation have been studied and stated in numerous works worldwide. 

They can be classified into three main groups: the empirical or physics-based models, 

models based on meteorological satellite images, and the statistical or Machine Learning 

(ML) models [23]. 
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The physics-based models study the weather and use different meteorological 

parameters for this purpose. For example, Trnka et al. [24] assessed 7 empirical methods 

for estimating daily global radiation in several weather stations with other climatic 

conditions in Austria and the Czech Republic, reporting Ångström-Prescott as the best of 

all the tested models. Estévez et al. [22] evaluated different empirical models, such as 

Hargreaves-Samani (HS), Bristow and Campbell (BC), and the Mahmood-Hubbard 

equation in 56 weather stations in a semiarid environment. Chen et al. [25] analyzed 294 

versions of empirical models (classified into 37 groups according to the input variables 

requirements) in 3 meteorological stations located in a subtropical monsoon climate 

region in China. Naserpour et al.[26] assessed 21 sunshine-based empirical models for 

estimating daily solar radiation in 51 weather stations situated in different climate regions 

of Iran. Hassan et al. [27] studied the performance of new empirical temperature-based 

models in 10 other locations around Egypt. Furthermore, imaged-based methods use 

satellite images and sky cameras to track clouds in order to predict solar irradiance. In 

these lines, Azhari et al. [28] assessed the use of satellite images in predicting solar 

radiation in 9 stations in Malaysia's tropical environment. Fu and Chen [29] predicted 

irradiance at 5 min in advance by using features extracted from all-sky images and 

evaluated in a coastal site in Taiwan, achieving around 22% of Mean Absolute Error 

(MAE). Finally, ML methods use historical data to characterize trends and learn patterns, 

respectively. Liu et al. [30] evaluated Support Vector Machine (SVM) models using a 

Firefly algorithm (FFA) to tune hyperparameters, which is called SVM-FFA, and 

compared it with 10 empirical models for estimating daily diffuse solar radiation in 

different climatic zones of China. Yagli et al. [23] assessed 68 ML models in 7 weather 

stations at 5 different climate zones in the United States, showing that tree-based methods 

obtained better nRMSE performances in long-term averages and under all-sky conditions. 

However, under clear-sky conditions, Multilayer Perceptron (MLP) and SVM were found 

to be superior. Ghimire et al. [31] used the Moderate Resolution Imaging 

Spectroradiometer (MODIS) with SVM to estimate monthly solar radiation in three 

Australian locations. Srivastava and Lessman [32] studied the performance of Long-Short 

Term Memory (LSTM) models in forecasting a day-ahead global horizontal irradiance in 

16 weather stations from Europe and 5 from the US. Amiri et al. [33] introduced a multi-

task hybrid Evolutionary Neural Network (ENN) model to simultaneously estimate and 

forecast (1 h in advance) inclined solar irradiation and compared it with independently 

trained models. The results of multi-task models were promising due to their accurate 

results, the more straightforward architecture obtained, and the lower computational cost 

compared to single models. Guijo-Rubio et al. [34] also studied the performance of ENN 

for predicting solar radiation using data exclusively from satellite-based measurements 

(avoiding the use of ground station measurements) in Toledo, Spain. The results were 

compared with SVM and ELM, although ENN gave the most accurate predictions. Tao 

et al. [35] proposed the use of the Adaptive Neuro-Fuzzy Inference System (ANFIS) with 

two metaheuristic optimization algorithms, Salp Swarm Algorithm (SSA) and 

Grasshopper Optimization Algorithm (GOA), to outperform solar radiation prediction in 

North Dakota, the USA. These metaheuristic algorithms outperformed those obtained by 

others, such as Grey Wolf Optimizer (GWO) and Particle Swarm Optimization (PSO). 
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Pang et al. [36] assessed the use of Recurrent Neural Networks (RNN) in Alabama, 

improving the RMSE values up to 26% compared to MLP.  

The number of works assessing ML using limited climatic data (especially those using 

temperature-based datasets) is minimal compared to articles using empirical methods. In 

these terms, Feng et al. [37] evaluated the performance of ANN, RF, and Wavelet Neural 

Network (WNN) and compared the results with 4 empirical temperature-based models 

(Hargreaves-Samani, Campbell model, Jahani model, and Fan model) for estimating daily 

solar radiation in 4 weather stations in an arid region of China. The input data used in 

these models were maximum and minimum air temperature, extraterrestrial solar 

radiation, and the Day-Of-Year. Sharifi et al. [38] assessed ANN, Gene Expression 

Programming (GEP), and Wavelet Regression (WR) to estimate daily solar radiation 

using daily mean clearness index (KT), temperature range (DTR), theoretical sunshine 

duration (N), and extraterrestrial radiation (Ra) in humid and semi-humid weather stations 

in USA and Iran. Jiménez et al. [39] used a hybrid model between empirical and artificial 

neural networks using only the air temperature, the air relative humidity, and the 

atmospheric pressure as input variables in 5 weather stations from the province of 

Tucumán (Argentina), having good results but with the inconvenience of needing three 

meteorological sensors. It is worth noting that no work goes deeper using only air 

temperature variables in order to outperform solar radiation predictions. Instead, all of 

these previously mentioned approaches need several input variables such as relative 

humidity, daylight hours, or clearness index, among others, which causes the cost to 

increase due to the devices involved.   

1.2.Research gaps and scientific contribution 

This work is motivated by the new vital role of low-cost and non-conventional devices 

for Automated Weather Stations (AWS) due to the development of the Internet of Things 

(IoT) with new connectivity technology such as 5G and LoRaWAN [40], as well as the 

lower price for data storing and the higher hardware specifications of devices like 

Raspberry and Arduino [41]. The efficiency is not compromised, especially using 

temperature measurements [42–44], helping to obtain low-cost and worldwide 

interconnected datasets that could be appropriately used for energy applications, climate 

change studies, ecology, and agricultural sciences, among others. These motivations 

justify a comprehensive evaluation of novel approaches addressing the following research 

gaps: i) Even though the number of works assessing different machine and deep learning 

models to predict/forecast solar radiation is high, there are very few works using 

temperature as the only input variable; ii) a trial and error technique is widely used to tune 

hyperparameters, which is not of high efficiency unlike Bayesian optimization, Particle-

Swarm optimization or Genetic algorithms, iii) the use of short meteorological series for 

calibration/validation procedures may not be enough to characterize the climatic pattern 

of locations and iv) the assessment of the generated models in new non-trained locations, 

involving its international application performance. With these research gaps in mind, the 

purpose of this work is to find a novel approach to outperform the estimation of daily 

solar radiation estimates in different conditions only using temperature data, as well as 

the assessment of the trained models in new locations with similar geo-climatic 
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characteristics, providing the following contributions/novelties: i) the use of novel 

variables based on intra-daily temperature data (like EnergyT and Hourmin) to predict 

daily solar radiation, ii) an assessment of different ML models (including low-

computational cost models like ELM and GRNN) using Bayesian optimization to tune 

their hyperparameters, providing a more accurate evaluation among them, iii) a temporal 

assessment in terms of the seasonality of all the models studied and iv) an evaluation of 

some of the developed models in new sites (non-used datasets for training) with similar 

geo-climatic characteristics. 

The analysis was performed using nine real-world datasets representing different geo-

climatic conditions (aridity, sea distance, and elevation), including 18 years of datasets 

with daily and intra-daily temperature values. The results of this work can serve as an 

essential reference point in order to obtain more accurate solar radiation estimates: i) 

where there are no resources to install solar radiation sensors (developing countries or 

regions with lack of funding), ii) at similar climatic conditions in other regions/countries 

because the 31% of the Earth´s surface is characterized by arid, semiarid, dry sub-humid 

climates while the 67% is humid, iii) the same models and configurations, as well as the 

procedures used, could be easily extended and applied in new sites, and iv) to help 

determine the best places for future solar plant locations without installing high-cost 

devices and predicting measurement gaps. 

The rest of this work is organized as follows. In Section 2, the theoretical overview 

of empirical temperature-based and the different assessed ML models are described. The 

information about locations, details of the datasets used, quality assurance tests, 

hyperparameter tune, data pre-processing, and evaluation metrics are addressed in Section 

3. In Section 4, the results are reported and discussed using four points of view, the model, 

configuration, seasonality performance, and the application of some models in new non-

used locations. Finally, Section 5 describes the conclusions achieved in this work. 

2. Theoretical overview 

In this section, a brief overview of the models used in this work is provided. Firstly, 

the conceptual basis of empirical solar radiation estimation methods such as Hargreaves-

Samani [45,46] and Bristow-Campbell [15,47] is introduced. Moreover, Multilayer 

Perceptron (MLP)[36], Extreme Learning Machine (ELM) [48,49] , Generalized 

Regression Neural Network (GRNN) [50], Support Vector Machine (SVM) [51,52], 

Random Forest (RF) [53–55] and Extreme Gradient Boost (XGBoost) [55] are standard 

methodologies extensively used in this area and others. Thus, it is essential to define and 

clarify the theoretical background of these algorithms. 

In summary, Hargreaves-Samani and Bristow-Campbell equations are widely used 

parametric models for estimating solar radiation daily, using maximum and minimum 

temperature as the unique measurements. MLP, ELM, and GRNN are neural network 

models based on the interaction of a structured group of neurons. SVM models are 

different from the neural network because their primary function is to search for a 

hyperplane to contain/separate all the dataset points. Finally, two tree-based and ensemble 

models were tested, RF and XGBoost.  
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2.1.Empirical temperature-based models 

Numerous scientists have investigated the development of empirical methods to 

estimate solar radiation using limited climatic data. Some of the most used models 

worldwide are based on the difference between the maximum and minimum daily air 

temperature (Tx and Tn, respectively) and the solar radiation incident outside the Earth's 

atmosphere (Ra). For example, Prescott [56] modified the initial Angstrom model [57], 

known as the Angstrom-Prescott model (Eq. 1): 

𝑅𝑠

𝑅𝑎
= 𝑎 + 𝑏

𝑛

𝑁
 Eq 4.1 

Hargreaves and Samani (HS) [58] also introduced an empirical formula (Eq. 2) for 

estimating solar radiation using Ra, Tx, Tn, and KT as a calibration coefficient, being 

recommended the use of 0.16 and 0.19 in KT for inland and coastal locations, respectively 

[59]. 

𝑅𝑠 = 𝐾𝑇 𝑅𝑎 √𝑇𝑥 − 𝑇𝑛 Eq. 4.2 

Another important contribution to temperature-based modeling is the BC approach 

reported by Bristow and Campbell [60], where Rs is also related to Ra and a function of 

Tx and Tn (Eq. 3), while a, b, and c are empirical coefficients. 

𝑅𝑠 = 𝑎𝑅𝑎(1 − 𝑒𝑥𝑝(−𝑏(𝑇𝑥 − 𝑇𝑛)𝑐)) Eq. 4.3 

In this work, a self-calibration procedure was carried out for Hargreaves-Samani, and 

Bristow-Campbell approaches. Due to the wide use of these equations (México [61], India 

[62], or China [63]), both models' performance was assessed to be compared to the new 

machine learning approaches. 

2.2.Machine Learning models 

All the ML models were developed using python libraries (Keras, Scikit-learn, Scikit-

optimize, Tensorflow, XGBoost, Neupy, and Hpelm) under a server workstation with the 

following features: 2x Intel® Xeon® CPU E5-2650 v3 @ 2.30GHz and 128 GB of RAM. 

The models' algorithms are detailed below: 

2.2.1. Multilayer Perceptron (MLP) 

The Multilayer Perceptron (MLP) model is one of the most common predictors, 

especially in hydrology and meteorology. For example, gap-filling for river stage data 

[41], rainfall predictions and forecasts [64–66], temperature [67], and reference 

evapotranspiration [68,69], among others. The algorithm is based on the biological 

nervous system, composed of a large number of fully connected neurons, and structured 

in three kinds of layers: the input, the output, and the hidden layer (see Figure 4. 1). The 

input and output layers correspond to the inputs and outputs of the model, respectively. 

For example, in this work, the maximum and minimum temperatures, and the 

extraterrestrial solar radiation, among other temperature-based variables, were inputs, 

whereas the solar radiation estimates were the outputs. Moreover, the hidden layer is 

where the 'neurons' (also known as nodes) are located. 
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Figure 4. 1. Multilayer Perceptron structure 

A single neuron can be mathematically expressed as Eq. 4 

𝑦 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝐿

𝑖=1

) Eq. 4.4 

During the training process, every neuron's weight and bias in the hidden layer is 

automatically updated every epoch until the error was minimized, which is why it is called 

hidden. For further details, the work carried out by Ferreira et al. [68] can be read. 

2.2.2. Extreme Learning Machine (ELM) 

Huang et al. [70] introduced a new predictor as a single hidden layer feedforward 

neural network (SLFNN) with fewer computational requirements than MLP. This model's 

main feature is that the weights and biases are not updated during a training process. On 

the contrary, the input layer values are randomly generated, and the output values are 

analytically determined. This behavior makes ELM have a low computational cost 

because no training iteration is required. Besides, ELM obtains satisfactory results for 

hydrometeorology [71,72] and energy areas [73,74]. 

2.2.3. Generalized Regression Neural Network (GRNN) 

Generalized Regression Neural Network (GRNN) models are based on radial basis 

function networks (RBFN) and were first proposed by Specht [74]. Its structure comprises 

four layers (the input, the pattern, the summation, and the output layer); see Figure 4. 2. 

The input and output layers represent the inputs and outputs of the model, respectively. 

The pattern layer contains as many neurons as data in the training dataset; it calculates 

the distance between the training and the testing data, passing through a radial-based 

function. The summation layer has two neurons: the S-node and the D-node. The S-node 

computes the summation of the weighted outputs in the pattern layer, whereas the D-node 

computes the summation of the unweighted values. Finally, the output can be expressed 

as the ratio between the S-node output and D-node output. This process is mathematically 

described as follows (equations 5, 6, and 7) [75]: 
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𝑆 = ∑ 𝑤𝑖 𝑒𝑥𝑝 (
−(𝑋 − 𝑋𝑖

′)𝑇(𝑋 − 𝑋𝑖
′)

2𝜎2 )

𝑀

𝑖

 Eq. 4.5 

𝐷 = ∑  𝑒𝑥𝑝 (
−(𝑋 − 𝑋𝑖

′)𝑇(𝑋 − 𝑋𝑖
′)

2𝜎2 )

𝑀

𝑖

 Eq. 4.6 

𝑌(𝑋) =  
𝑆

𝐷
 Eq. 4.7 

One of this model's unique features is that it does not require an iterated training 

procedure, so the model is high-speed and gives satisfactory results [71,75]. 

 

Figure 4. 2. Generalized Regression Neural Network architecture 

2.2.4. Support Vector Machine (SVM) 

Support Vector Machine (SVM) models are based on a different principle than neural 

networks like MLP, ELM, and GRNN. In this case, the objective is to search a hyperplane 

that classifies or contains (for classification or regression tasks, respectively) the data 

points for an N-dimensional space (where N represents the number of features/inputs of 

the model). The training process is required for maximizing the margins of the defined 

hyperplane (see Figure 4. 3). 

 
a) 

 
b) 

Figure 4. 3. Example of SVM for a) classification and b) regression 
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The use of SVM in solar radiation predictions has been widely used with promising 

results in different climates and countries like China [30], the United States [23], Australia 

[31,76], and Iran [77]. For further details, the following work can be reviewed: [78]. 

2.2.5. Random Forest (RF) 

An ensemble learning algorithm is a kind of ML model where the outputs of a group 

of predictors are evaluated to obtain a better final performance. It could be seen as a 

combination of weak learners getting a stronger one. For example, a group of Decision 

Tree models can be trained on a different random subset of the training dataset, and the 

final output must consider the predictions of all individual trees. Such an ensemble model 

is called Random Forest, and it was first proposed by Breiman [79]. 

RF introduces an extra randomness characteristic when the number of trees starts to 

grow, in which the node of the tree splits with the best feature among a random subset of 

them. Therefore, greater tree diversity is obtained. For further details, the work Ibrahim 

and Khatib [54] can be consulted. 

2.2.6. Extreme Gradient Boosting (XGBoost) 

Like Random Forest, the Gradient Boosting Machines model (GBM) is classified as 

an ensemble model, although the main idea in the boosting technique is training to reduce 

the previous one's error sequentially. In this term, Chen et al. [80] introduced XGBoost 

as a model to reduce the computational cost for ensemble models and prevent them from 

overfitting, thanks to executing parallel calculations. 

3. Materials and methods 

3.1.Source of data 

This work was carried out in Andalusia, located in the south of the Iberian Peninsula 

and southwest of Europe, and in Asheville city from North Carolina, USA. Andalusia is 

an arid-semiarid region whose main features are: an elevation above mean sea level from 

26 to 822 m, the meridians range from 1º to 7º W, the parallels from 37º to 39º N, and a 

total area of 87,268 m2 while Asheville is located at 35.49º N, 82.61º W, with an elevation 

of 650 m. All the sites studied represent 98% of the terrestrial surface. It is important to 

note that the Andalusia region (Southern Spain) is a very heterogeneous climate area: 

from Continental climate to Mediterranean (sub-desert, tropical, oceanic, and 

mountainous). 

The datasets used for this work belong to the Agroclimatic Information Network of 

Andalusia (RIAA) and the National Centers for Environmental Information (NCEI), 

respectively, and they can be downloaded at 

https://www.juntadeandalucia.es/agriculturaypesca/i fapa/riaweb/web/ and ftp://ftp.ncei. 

noaa.gov/pub/data/uscrn/products/. Nine locations were chosen to represent different 

conditions, according to the United Nations Environment Programme (UNEP) aridity 

index [81] and corresponding to more than 30% of the Earth’s surface to arid, semiarid, 

and dry sub-humid climate and a 67% to humid [81]. Table 4. 1 shows the different geo-

climatic characteristics of the selected Automated Weather Stations (AWS) and the 

dataset’s available period. Figure 4. 4 displays the geographical distribution of all the 
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locations assessed in this work. Table 4. 2 reports the technical specifications of all the 

sensors used in all the AWS from RIAA measuring temperature and relative humidity of 

the air, solar radiation, wind speed, wind direction, and precipitation in both intra-daily 

and daily timescale. Besides, the information about NCEI measuring devices can be found 

at https://www.ncdc.noaa.gov/crn/instruments.html. Finally, Figure 4. 5 shows the 

monthly variation of mean daily temperature, wind speed, relative humidity, and solar 

radiation of all the stations. 

https://www/


 

 

142 

 

 

 
Figure 4. 4. Spatial distribution of the weather stations used in this work: a) Almuñécar, Bélmez, Cabra, 

Córdoba, Écija, El Campillo, Huércal-Overa, Jimena de la Frontera, Loja, Málaga, Mancha Real and 

Tabernas (Spain) and b) Asheville (USA). 
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Table 4. 1 Summary of automated weather station sites used in this paper (Lat: Latitude; Lon: Longitude; Altitude: elevation above mean sea level and Aridity Index as the 

relation Precipitation/ET0 as the annual mean of the whole dataset period). 

Station Aridity index Altitude (m) Latitude (ºN) 

Longitude 

(ºW) 

Mean annual 

precipitation (mm) Time period 

Trained/tested stations 

Tabernas  

(ALM04) 

0.1786  

(arid) 
502 37.091 2.302 243.66 

From February 2000 to 

July 2018 

Jimena de la 

Frontera  

(CAD07) 

0,5975  

(dry sub-humid) 

 

50 36.413 5.383 726.94 
From November 2000 to 

July 2018 

Córdoba  

(COR06) 

0.4616  

(semiarid) 
94 37.856 4.802 614.81 

From October 2000 to 

July 2018 

Loja  

(GRA03) 

0.3162  

(semiarid) 
463 37.169 4.138 433.07 

From August 2000 to July 

2018 

El Campillo 

(HUE08) 

0.5497  

(dry sub-humid) 
383 37.660 6.599 718.67 

From November 2000 to 

July 2018 

Mancha Real 

(JAE07) 

0.2808  

(semiarid) 
407 37.916 3.596 395.38 

From August 2000 to July 

2018 

Málaga  

(MAG01) 

0.3666  

(semi-arid) 
55 36.756 4.537 457.38 

From October 2000 to 

July 2018 

Écija  

(SEV09) 

0.3615  

(semi-arid) 
109 37.592 5.176 482.17 

From November 2000 to 

July 2018 

Asheville 

(ASH08) 

1.1494 

(humid) 
650 35.490 82.610 1185.67 

From November 2000 to 

December 2018 

New sites used to further assess developed models 

Bélmez 0.3681 503 38.254 5.209 496.51 From January 2014 to  
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(COR01) (semi-arid) July 2018 

Almuñécar 

(GRA11) 

0.4443 

(semi-arid) 
29 36,751 3,678 484.50 

From January 2014 to July 

2018 

Cabra 

(COR101) 

0.5641 

(dry sub-humid) 
543 37.498 4.431 619.76 

From January 2014 to July 

2018 

Huércal-Overa 

(ALM07) 

0.2284 

(arid) 
303 37.412 1.884 279.39 January 2014 to July 2018 
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Table 4. 2. Specifications of the RIAA sensors 

Sensor device 
Measured 

parameter 
Accuracy Range 

Humicap 18' 
Relative 

humidity 
2% (from 0 to 90%) From 0.8 to 100% 

  3% (from 90 to 100%)  

Skye SP1110 Solar radiation ±5% 
From 350 to 1100 

nm 

ARG100 Precipitation 0.2 mm/tip  

PT1000 Temperature ±0.3 ºC 
From -39.2 to 60 

ºC 

Young 05103 Wind direction ±3% From 0 to 360º 

 Wind speed ±0.3 m/s From 0 to 60 m/s 

In this work, only measured temperature-based variables were used as inputs, such as 

the maximum and minimum daily air temperature (Tx and Tn, respectively), the maximum 

and minimum daily air temperature from the previous day (Tx prev and Tn prev, respectively), 

the minimum air temperature of the following early morning (Tn next), the difference 

between Tx and Tn (deltaT), the time at Tx occurs (HourminTx ), the time at Tn occurs 

(HourminTn ), the integral of the half-hourly temperature values during each day (EnergyT) 

[82] and the value of EnergyT of the previous day (EnergyT prev), among others. Finally, 

the daily extraterrestrial solar radiation (Ra) was also calculated for each location and used 

as an input variable for all the models assessed. 
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Figure 4. 5. Monthly values of solar radiation, wind speed, relative humidity, and temperature for the 

weather stations assessed in this study (ASH08 = Asheville, ALM04 = Tabernas, CAD07 = Jimena de la 

Frontera, COR06 = Córdoba, GRA03 = Loja, HUE08 = El Campillo, JAE07 = Mancha Real, MAG01 = 

Málaga, SEV09 = Écija) 

3.2.Quality assurance procedures 

The application of validation procedures is an essential prerequisite to guarantee 

reliable results when using raw meteorological datasets for different purposes [7]. In this 

work, the guidelines proposed by Estévez et al. [7,83] were followed by applying a set of 

quality control procedures (persistence test, internal consistency, range test, and step test), 

as well as the spatial consistency test proposed by Estévez et al. [84]. 

3.3.Bayesian optimization 

One of the most critical aspects of machine learning is finding the best 

hyperparameters (architecture and configuration parameters) to obtain the most accurate 

estimations. There is no general rule to find them, making scientists use a trial and error 

technique [85]. A more accurate approach uses automatic methods such as Grid or 

random search [23,86] because all the sets are tested automatically. However, these 

methodologies are blind to past evaluation results, spending a significant time testing the 

wrong parameters. In these terms, Bayesian optimization is an efficient solution that 

addresses this problem. It was first introduced by Mockus [87] as an algorithm that uses 

the Bayes theorem to select the next set of hyperparameters to test, based on past results. 

In Python, the scikit-optimize library has been used to carry out this algorithm, where 

the hyperparameter hyperspace (the range of the different hyperparameters), as well as 

the acquisition function (the function that allows the algorithm to determine the next point 
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to evaluate), were defined following the works of Bellido et al. [88,89]. For further details, 

[90,91] can be revised. 

Furthermore, the following step was splitting the whole dataset into two groups: one 

for the training process (from 2000 to 2014) and the second one for testing (from 2014 to 

2018) [66,89]. All the calculations required to tune the different hyperparameters (using 

Bayesian optimization) were carried out on the training dataset, where 20% of it was used 

for validation tasks (assessing the performance of different hyperparameter sets). Finally, 

once optimized, the model was re-trained using the entire training dataset and assessed 

using the testing dataset. It is essential to highlight that the testing dataset cannot be used 

to tune hyperparameters because an unwanted bias would be introduced to the final 

results. 

3.4.Data standardization 

A common requirement among machine learning models is the standardization of the 

input dataset, being RF and XGBoost as the only exceptions to this requirement 

(enhancing the efficiency of models’ predictions). Eq. 8 is the mathematical formula 

followed for this purpose: 

𝑥* =  
𝑥 − x̅

𝜎𝑥
 Eq. 4.8 

3.5.Statistical analysis 

All the models and configurations were evaluated using the following statistics: Mean 

Bias Error (MBE), Root Mean Squared Error (RMSE), relative Root Mean Squared Error 

(RRMSE), the Nash-Sutcliffe model efficiency coefficient (NSE), and the coefficient of 

determination (R2). All of them are defined in the equations below (Equations. 4.9, 4.10, 

4.11, 4.12, and 4.13, respectively). 

𝑀𝐵𝐸 =  
1

𝑚
∑ 𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖

𝑚

𝑖=1

 Eq. 4.9 

𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑(𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)2

𝑚

𝑖=1

 Eq. 4.10 

𝑅𝑅𝑀𝑆𝐸 =  

√ 1
𝑚

∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)2𝑚
𝑖=1

𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅
 

Eq. 4.11 

𝑁𝑆𝐸 = 1 −
∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)

2𝑚
𝑖=1

∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)2𝑚
𝑖=1

 
Eq. 4.12 

𝑅2 =  
(∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)(𝑝𝑟𝑒𝑑𝑖 − 𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)𝑚

𝑖=1 )
2

∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)𝑚
𝑖=1

2 ∑ (𝑝𝑟𝑒𝑑𝑖 − 𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)𝑚
𝑖=1

2 
Eq. 4.13 
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To get a ranking of all the models assessed related to all the statistics parameters 

detailed above, a general performance indicator (GPI) was also calculated [92], following 

Eq. 4.14: 

𝐺𝑃𝐼𝑖 = ∑ 𝛼𝑗  (stats𝑖̅̅ ̅̅ ̅̅ ̅ − 𝑠𝑡𝑎𝑡𝑠𝑖𝑗)

5

𝑗=1

 
Eq. 4.13 

4. Results and Discussion 

In order to select the most efficient configurations of different combinations from all 

the input variables mentioned in section 3.1, a previous ranking was carried out using GPI 

values for all the stations and using the ELM approach, due to its very satisfactory 

performance in related works [45]. These numerous configurations always included Tx, 

Tn, and Ra. Table 4. 3 details the best 14 selected configurations in terms of GPI. These 

configurations were used for all the models developed in this work. Additionally, the best 

model from each location was uploaded to an open-access repository in GitHub 

(https://github.com/Smarity/solar-prediction-only-temp.git), in order to other researchers 

use them. 

Table 4. 3. Input configurations of all the models, where Tx is the maximum daily temperature, Tn is the 

minimum daily temperature, Ra is the extraterrestrial solar radiation, EnergyT is the integral of the daily 

thermal signal, HourminTx is the difference between the time when sunset and Tx occurs, and HourminTn 

is the difference between the time when sunrise and Tn occurs 

Conf. Parameters 

Number 

of inputs 

1 Tx, Tn, Ra, and HourminTx 4 

2 Tx, Tn, Ra, EnergyT, and HourminTx 5 

3 Tx, Tn, Ra, deltaT, EnergyT, and HourminTx 6 

4 Tx, Tn, Ra, EnergyT, HourminTx, and Tn prev 6 

5 Tx, Tn, Ra, EnergyT, HourminTx, and Tx prev 6 

6 Tx, Tn, Ra, EnergyT, Tx prev, and Tn next 6 

7 Tx, Tn, Ra, EnergyT, HourminTx, Tx prev, and Tn next 7 

8 Tx, Tn, Ra, deltaT, EnergyT, HourminTx, and Tn prev 7 

9 Tx, Tn, Ra, deltaT, EnergyT, HourminTx, and Tx prev 7 

10 Tx, Tn, Ra, deltaT, EnergyT, HourminTx, and HourminTx prev 7 

11 Tx, Tn, Ra, deltaT, EnergyT, Tn prev, and Tn next 7 

12 Tx, Tn, Ra, EnergyT, EnergyT prev, HourminTx, and Tx prev 7 

13 Tx, Tn, Ra, deltaT, EnergyT, HourminTx, Tx prev, and Tn next 8 

14 Tx, Tn, Ra, deltaT, EnergyT, EnergyT prev, HourminTx, and Tx prev 8 

 

4.1.Models performance in different locations 

Table 4. 4 summarizes the maximum, mean, and minimum values of the statistics 

MBE, RMSE, NSE, R2, and the mean GPI for the different models and locations. In 

general, the results obtained by empirical methods (BC and HS) were outperformed by 

https://github.com/Smarity/solar-prediction-only-temp.git
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all ML models for all the statistics and locations. GRNN obtained the worst performances 

regarding RMSE, NSE, and R2, contrary to MLP, ELM, and SVM, being the best in most 

cases. In terms of MBE values, RF and MLP were, on average, the most accurate models. 

In Tabernas station (ALM04), which is the aridest location (aridity index=0.178) and 

with an elevation above mean sea level of 502 m, SVM obtained the best GPI 

performance (GPI=0.197) followed by MLP (GPI=0.177). 

The mean NSE, R2, and RMSE values obtained by SVM and MLP were: NSE=0.867 

and 0.865, R2=0.869 and 0.868, RMSE=0.243 Wm-2, and 0.246 Wm-2, respectively. 

Besides, the lowest mean MBE value (0.001 Wm-2) was obtained by MLP. On the 

contrary, in the most humid station from Andalusia (aridity index = 0.5975), Jimena de 

la Frontera (CAD07), located at 50 m a.m.s.l., RF obtained the highest GPI value (0.312) 

and almost doubling the result of ELM (GPI=0.187). The best statistics were NSE=0.855 

(MLP and RF), R2=0.871 (SVM), RMSE=0.271 Wm-2 (MLP), and MBE=0.052 Wm-2 

(XGBoost). In Córdoba (COR06), an inland location with an aridity index of 0.461 and 

an elevation of 94 m, the results were one of the best among all the locations. The NSE 

and R2 statistics ranged from NSE=0.879 (XGBoost) and R2=0.881 (XGBoost) to 

NSE=0.924 (SVM) and R2=0.925 (SVM). On average, the best RMSE (0.206 Wm-2) and 

MBE (0.002 MJ m-2) values were obtained by SVM and XGBoost, respectively, while 

the best model in terms of GPI was MLP (GPI=0.431). However, in Loja station 

(GRA03), with an aridity index of 0.316 and 463 m a.m.s.l., the MBE values were, on 

average, the worst compared to the rest. The best GPI (0.677) was obtained by MLP and 

the RMSE, NSE, and R2 values ranged from RMSE=0.243 Wm-2 (MLP), NSE=0.855 

(MLP), R2=0.908 (SVM) to RMSE=0.339 Wm-2 (ELM), NSE=0.718 (ELM) and 

R2=0.824 (ELM). In El Campillo (HUE08), a humid location (aridity index = 0.549) with 

an elevation of 383 m, MLP was the best model in terms of GPI (0.711). Moreover, this 

model obtained the best NSE (0.921), R2 (0.927), RMSE (0.202 Wm-2), and MBE (0.030 

Wm-2) values, as well as on average. Similarly, in Mancha Real (JAE07), with an aridity 

index of 0.280 and an elevation of 407 m, the best GPI was obtained by MLP 

(GPI=0.644). The statistics obtained by the ML models ranged from NSE=0.888 

(GRNN), R2=0.891 (GRNN), RMSE=0.199 Wm-2 (MLP), and MBE=0.000 Wm-2 (MLP) 

to NSE=0.924 (MLP), R2=0.925 (MLP), RMSE=0.242 Wm-2 (GRNN) and MBE=0.042 

Wm-2 (MLP). In the coastal location of Málaga (MAG01), with an aridity index of 0.366, 

the best GPI value was also obtained by MLP (GPI=0.480). In addition, the best statistic 

mean values were obtained by MLP (NSE=0.850, R2=0.857, RMSE=0.262 Wm-2) and by 

RF (MBE=0.016 Wm-2). In Écija station (SEV09), with an aridity index of 0.3615 and an 

altitude of 109 m, MLP and ELM obtained the best GPI performances (GPI=0.367 and 

GPI=0.291, respectively). The statistics obtained by the ML models evaluated ranged 

from NSE=0.868 (GRNN), R2=0.894 (GRNN), RMSE=0.193 Wm-2 (MLP), and 

MBE=0.032 Wm-2 (MLP) to NSE=0.924 (MLP), R2=0.929 (SVM), RMSE=0.255 Wm-2 

(GRNN) and MBE=0.130 Wm-2 (MLP). Finally, in Asheville (ASH08), the most humid 

site studied in this work, the most accurate performances in terms of RMSE and NSE 

were carried out by XGBoost (RMSE=0.187 Wm-2 and NSE=0.897), followed very 

closely to RF (RMSE=0.194 Wm-2 and NSE=0.890). This site obtained the biggest 
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improvement compared to BC (RMSE=0.300 Wm-2, NSE=0.734) and HS (RMSE=0.344 

Wm-2 and NSE=0.654), as well as the lowest RMSE value. Regarding MBE, all models 

and configurations carried out very satisfactory results ranging from MBE=0.001 Wm-2 

using ELM to 0.026 Wm-2 using SVM. 

Analyzing the different stations, Córdoba, Écija, Mancha Real, El Campillo, and 

Asheville obtained the best results on average, in RMSE and NSE values among all 

models, with RMSE<0.25 Wm-2 and NSE>0.9 (with the exception of Asheville, with a 

mean NSE=0.821). On the contrary, Tabernas, Jimena de la Frontera, Loja, and Málaga 

obtained worse mean statistics, with RMSE>0.26 Wm-2 and 0.8<NSE<0.85. Generally, 

all ML models outperformed BC and HS in all stations with most of their configurations, 

obtaining the highest RMSE improvement percentages (as well as the minimum RMSE 

value) in the most humid site (Asheville) using XGBoost: 37.66 % and 45.64% regarding 

BC and HS, respectively. Instead, the lowest improvement in this statistic was obtained 

using ELM in the aridest station (Tabernas): 7.565% and 12.198% regarding BC and HS, 

respectively. If a more profound look is taken at this aspect, the results show a certain 

relationship between the best improvements obtained by ML and the aridity index. The 

higher the aridity index (humid and dry-subhumid climates), the better the results 

obtained by ML compared to empirical local-calibrated methods. Finally, another 

essential aspect to highlight is that MLP, SVM, and ELM performed better in arid and 

semiarid environments, whereas tree-based models like RF and XGBoost were more 

accurate in sub-humid and humid sites. 
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Table 4. 4. Maximum (max), arithmetic mean (mean), and minimum (min) values for MBE, RMSE, NSE, and R2, for all the locations and models (BC = Bristow and 

Campbell, HS = Hargreaves and Samani, ELM =Extreme Learning Machine, GRNN = Generalised Regression Neural Networks, MLP = Multilayer Perceptron, RF = 

Random Forest, SVM = Support Vector Machine and XGBoost = Extreme Gradient Boosting) evaluated in this work. For MBE, the minimum and maximum values are in 

terms of absolute values. The GPI values for each location and model were also reported, and the best mean values of all the statistics are in bold. 

Station Model 

MBE [W/m2] 

max / mean / min 

RMSE [W/m2] 

max / mean / min 

NSE 

max / mean / min 

R2 

max / mean / min GPI 

Tabernas 

(ALM04) 

BC   -0.011     0.256    0.853   0.853  -0.938 

HS  -0.010   0.270   0.837   0.837  -2.423 

ELM -0.011 -0.006 -0.002 0.251 0.246 0.237 0.874 0.864 0.859 0.874 0.865 0.860 0.109 

GRNN 0.015 0.007 0.002 0.274 0.263 0.256 0.853 0.845 0.832 0.853 0.846 0.834 -1.796 

MLP -0.061 0.001 0.003 0.254 0.246 0.239 0.872 0.865 0.855 0.874 0.868 0.858 0.177 

RF -0.014 -0.011 -0.008 0.255 0.248 0.242 0.869 0.863 0.855 0.869 0.863 0.855 0.015 

SVM 0.030 0.023 0.015 0.248 0.243 0.239 0.872 0.867 0.862 0.875 0.869 0.865 0.197 

XGBoost -0.011 -0.007 -0.003 0.267 0.250 0.239 0.872 0.861 0.840 0.872 0.861 0.842 -0.232 

Jimena de 

la 

Frontera 

 (CAD07) 

BC  0.093   0.331   0.784   0.802  -3.060 

HS  0.088   0.342   0.770   0.788  -3.585 

ELM 0.083 0.073 0.068 0.288 0.281 0.275 0.851 0.845 0.836 0.865 0.860 0.853 0.187 

GRNN 0.093 0.088 0.081 0.298 0.290 0.282 0.843 0.834 0.825 0.861 0.853 0.844 -0.572 

MLP 0.103 0.075 0.055 0.294 0.281 0.271 0.855 0.844 0.829 0.868 0.861 0.852 0.127 

RF 0.074 0.071 0.067 0.285 0.278 0.272 0.855 0.847 0.840 0.867 0.859 0.852 0.312 

SVM 0.104 0.095 0.078 0.298 0.286 0.278 0.847 0.838 0.825 0.871 0.863 0.853 -0.440 

XGBoost 0.079 0.066 0.052 0.321 0.293 0.277 0.849 0.830 0.797 0.864 0.845 0.815 -0.387 

Córdoba 

(COR06) 

BC  0.010   0.222   0.905   0.905  -0.786 

HS  0.016   0.246   0.884   0.885  -2.718 

ELM 0.009 0.003 0.000 0.232 0.211 0.202 0.921 0.914 0.897 0.921 0.915 0.898 0.156 

GRNN 0.027 0.020 0.015 0.239 0.228 0.219 0.908 0.900 0.890 0.908 0.901 0.891 -1.363 

MLP -0.043 0.003 0.003 0.218 0.208 0.201 0.922 0.917 0.909 0.923 0.919 0.915 0.431 

RF 0.008 0.004 0.000 0.223 0.213 0.205 0.919 0.913 0.904 0.920 0.913 0.904 -0.027 
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SVM 0.035 0.025 0.021 0.210 0.206 0.199 0.924 0.918 0.915 0.925 0.920 0.917 0.264 

XGBoost 0.009 0.002 0.002 0.251 0.222 0.211 0.914 0.905 0.879 0.914 0.905 0.881 -0.696 

Loja 

(GRA03) 

BC  0.189   0.295   0.786   0.886  -0.907 

HS  0.194   0.304   0.774   0.874  -1.387 

ELM 0.174 0.156 0.146 0.339 0.275 0.263 0.830 0.813 0.718 0.906 0.893 0.829 0.249 

GRNN 0.193 0.185 0.179 0.305 0.297 0.292 0.790 0.783 0.772 0.890 0.885 0.880 -0.927 

MLP 0.179 0.154 0.128 0.290 0.267 0.243 0.855 0.825 0.794 0.906 0.902 0.898 0.677 

RF 0.172 0.170 0.167 0.286 0.274 0.268 0.824 0.815 0.799 0.906 0.897 0.888 0.163 

SVM 0.201 0.183 0.170 0.305 0.287 0.279 0.808 0.797 0.771 0.908 0.903 0.900 -0.353 

XGBoost 0.181 0.161 0.145 0.294 0.280 0.271 0.819 0.808 0.788 0.903 0.890 0.880 0.018 

El 

Campillo 

(HUE08) 

BC  0.065   0.262   0.869   0.892  -1.139 

HS  0.086   0.291   0.839   0.859  -2.828 

ELM 0.093 0.083 0.077 0.236 0.227 0.220 0.907 0.902 0.894 0.922 0.917 0.908 0.203 

GRNN 0.114 0.107 0.102 0.293 0.258 0.242 0.887 0.873 0.836 0.911 0.896 0.864 -1.360 

MLP 0.129 0.070 0.030 0.243 0.217 0.202 0.921 0.909 0.887 0.927 0.922 0.916 0.711 

RF 0.090 0.085 0.080 0.246 0.232 0.226 0.902 0.897 0.885 0.919 0.912 0.900 -0.062 

SVM 0.115 0.103 0.099 0.244 0.232 0.227 0.901 0.897 0.886 0.923 0.920 0.914 -0.123 

XGBoost 0.091 0.078 0.061 0.256 0.239 0.228 0.901 0.890 0.875 0.914 0.904 0.891 -0.334 

Mancha 

Real 

(JAE07) 

BC  0.007   0.228   0.900   0.901  -0.976 

HS  0.019   0.249   0.882   0.882  -2.858 

ELM 0.013 0.008 0.005 0.217 0.209 0.202 0.922 0.916 0.910 0.922 0.917 0.910 0.538 

GRNN 0.034 0.027 0.020 0.242 0.231 0.223 0.905 0.898 0.888 0.907 0.900 0.891 -1.422 

MLP 0.043 0.005 0.000 0.218 0.209 0.199 0.924 0.917 0.909 0.925 0.918 0.910 0.644 

RF 0.013 0.009 0.006 0.232 0.220 0.211 0.915 0.907 0.897 0.915 0.907 0.897 -0.367 

SVM 0.040 0.030 0.027 0.222 0.209 0.201 0.923 0.917 0.906 0.924 0.918 0.909 0.288 

XGBoost 0.017 0.010 0.003 0.231 0.220 0.211 0.915 0.907 0.898 0.915 0.907 0.898 -0.387 

Málaga 

(MAG01) 

BC  0.030   0.283   0.826   0.828  -1.284 

HS  0.028   0.301   0.803   0.804  -2.790 

ELM 0.030 0.023 0.015 0.291 0.268 0.256 0.857 0.843 0.815 0.860 0.847 0.823 0.010 
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GRNN 0.044 0.037 0.030 0.289 0.276 0.268 0.843 0.833 0.818 0.846 0.837 0.823 -0.801 

MLP 0.087 0.029 0.004 0.278 0.262 0.252 0.862 0.850 0.831 0.864 0.857 0.851 0.480 

RF 0.018 0.016 0.012 0.274 0.265 0.258 0.854 0.847 0.836 0.855 0.848 0.838 0.266 

SVM 0.065 0.054 0.048 0.273 0.267 0.261 0.851 0.844 0.837 0.864 0.855 0.848 -0.081 

XGBoost 0.028 0.021 0.007 0.277 0.271 0.264 0.848 0.839 0.833 0.851 0.842 0.836 -0.287 

Écija 

(SEV09) 

BC  0.085   0.225   0.897   0.915  -0.350 

HS  0.095   0.248   0.875   0.894  -2.186 

ELM 0.090 0.085 0.080 0.221 0.216 0.210 0.910 0.905 0.901 0.925 0.922 0.918 0.291 

GRNN 0.111 0.104 0.097 0.255 0.240 0.224 0.897 0.882 0.868 0.917 0.906 0.894 -1.555 

MLP 0.130 0.084 0.032 0.237 0.216 0.193 0.924 0.905 0.885 0.927 0.924 0.920 0.367 

RF 0.090 0.085 0.081 0.226 0.219 0.211 0.909 0.902 0.896 0.925 0.917 0.913 0.009 

SVM 0.105 0.101 0.098 0.225 0.220 0.214 0.907 0.901 0.896 0.929 0.925 0.922 0.004 

XGBoost 0.095 0.084 0.069 0.242 0.225 0.216 0.905 0.897 0.880 0.921 0.913 0.898 -0.392 

Asheville 

(Ash08) 

BC  0.010   0.300   0.741   0.738  -1.139 

HS  0.036   0.344   0.680   0.654  -2.566 

ELM 0.005 0.002 0.001 0.292 0.267 0.255 0.810 0.792 0.752 0.810 0.792 0.752 -0.204 

GRNN 0.022 0.014 0.003 0.266 0.249 0.236 0.838 0.821 0.799 0.837 0.819 0.794 0.175 

MLP -0.067 -0.013 0.004 0.286 0.264 0.252 0.815 0.800 0.763 0.814 0.796 0.761 0.006 

RF 0.008 0.006 0.003 0.212 0.199 0.194 0.894 0.887 0.870 0.890 0.884 0.869 1.442 

SVM 0.026 0.016 0.013 0.287 0.266 0.257 0.808 0.794 0.761 0.807 0.793 0.760 -0.310 

XGBoost 0.006 0.003 0.000 0.279 0.230 0.187 0.897 0.844 0.774 0.897 0.844 0.773 0.706 
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4.2.Performance of the configurations  

In order to assess the performance of the different configurations, Figure 4. 6 shows 

the mean values of RRMSE (a), NSE (b), MBE (c), and R2 (d) for the different stations 

and models. Generally, on average, all configurations in Córdoba, Mancha Real, and Écija 

obtained the best performances, whereas, in Loja and Asheville, they had the worst results 

in most statistics (with the exceptions of Tabernas, Jimena de la Frontera, and Málaga in 

R2). In terms of RRMSE, configuration 13 (light blue line) outperformed the rest in most 

locations (Tabernas, Córdoba, El Campillo, Mancha Real, and Málaga). However, some 

of them carried out better results using others, such as in Jimena de la Frontera using 

configurations 7 (pink circle) and 8 (black line), in Loja using configurations 8 (very close 

to 13), in Écija, using configuration 11 (blue line), and in Asheville with configurations 

9 (red line), 7 (pink circle) and 14 (pink line). On the other hand, the less accurate results 

were obtained using configurations 6 and 11 in Asheville, configuration 10 (green line) 

in Tabernas, configuration 11 in Jimena de la Frontera, configuration 1 (black circle) in 

Córdoba, El Campillo, and Málaga, configuration 7 in Loja, and configuration 6 (light 

blue circle) in Mancha Real. Regarding NSE, the general performance was in line with 

RMSE, in which configurations 13, 8, and 11 had the highest values, while configurations 

10 (Tabernas), 11 (Jimena de la Frontera and Asheville), 7 (Loja), 6 -light blue circle- 

(Mancha Real and Asheville), and 1 (Córdoba, El Campillo, Málaga, and Écija) were the 

worst. According to MBE, configurations 11 (Tabernas, El Campillo, Écija), 10 (Jimena 

de la Frontera, Mancha Real, and Málaga),9 (Asheville), 8 (Córdoba), and 5 -yellow 

circle- (Loja) outperformed the rest of the models, but on the other side, configurations 1 

(Tabernas and Loja), 2 -red circle- (Mancha Real and Écija), 5 (Asheville), 6 (Jimena de 

la Frontera), 9 -red line- (Córdoba and Málaga) and 14 -pink line- (El Campillo) obtained 

the lowest improvements. Finally, in terms of R2, configuration 13 outperformed in 

Tabernas, Córdoba, Loja, El Campillo, Mancha Real, and Málaga, and the results of 

configurations 9, 7 and 11 were the best ones for Asheville, Jimena de la Frontera and 

Écija, respectively. 
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Figure 4. 6.  Statistical performances for mean RRMSE (a), NSE (b), MBE (c) and R2 (d) in all the 

stations assessed (ASH08 = Asheville, ALM04 = Tabernas, CAD07 = Jimena de la Frontera, COR06 = 

Córdoba, GRA03 = Loja, HUE08 = El Campillo, JAE07 = Mancha Real, MAG01 = Málaga, SEV09 = 

Écija) and using the different configuration 

     Table 4. 5 shows the best RMSE and NSE statistics, as well as the model used for each 

configuration and location, being the best values represented in bold. In Tabernas, 

configurations 13 (using ELM) and 5 (using MLP) obtained RMSE values below 0.24 

Wm-2. The NSE values ranged from NSE=0.862 (using configuration 1 and SVM) to 

NSE=0.874 (using configuration 13 and ELM). In Jimena de la Frontera, the three best 

configurations for both NSE and RMSE were configurations 8 (NSE=0.855 and 

RMSE=0.271 Wm-2 using MLP), 13 (NSE=0.855 and RMSE=0.272 Wm-2), and 7 

(NSE=0.853 and RMSE=0.273 Wm-2 using MLP), whereas configurations 6 (NSE=0.840 

and RMSE=0.285 MJ m-2 using RF), 9 (NSE=0.844 and RMSE=0.282 Wm-2) and 11 
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(NSE=0.844 and RMSE=0.281 Wm-2) got the worst results. In Córdoba, the ranking for 

the 5 best configurations in terms of RMSE and NSE was: configuration 13 (NSE=0.924 

and RMSE=0.199 Wm-2 using SVM), 7 (NSE=0.922 and RMSE=0.201 Wm-2 using 

MLP), 12 (NSE=0.921 and RMSE=0.202 Wm-2 using SVM), 9 (NSE=0.920 and 

RMSE=0.203 Wm-2 using SVM), 8 (NSE=0.920 and RMSE=0.204 Wm-2 using SVM). 

In Loja, MLP was the model used for the three best configurations: 8 (NSE=0.855 and 

RMSE=0.243 Wm-2), 5 (NSE=0.842 and RMSE=0.253 Wm-2), and 9 (NSE=0.840 and 

RMSE=0.255 Wm-2), while the less promising configurations were 2 (NSE=0.814 and 

RMSE=0.275 Wm-2 using RF) and 12 (NSE=0.821 and RMSE=0.270 Wm-2 using ELM). 

In El Campillo, the NSE and RMSE ranged from NSE=0.921 and RMSE=0.202 Wm-2 

using configuration 7, followed by configuration 13 (NSE=0.921 and RMSE=0.203 Wm-

2), to NSE=0.898 and RMSE=0.231 Wm-2 using configuration 4. In Mancha Real, the 

three configurations that outperformed the rest were 7 (NSE=0.924 and RMSE=0.199 

Wm-2 using MLP), 13 (NSE=0.923 and RMSE=0.201 Wm-2 using MLP), and 12 

(NSE=0.920 and RMSE=0.205 Wm-2 using SVM), whereas configurations 11 

(NSE=0.910 and RMSE=0.217 Wm-2 using ELM) and 6 (NSE=0.910 and RMSE=0.217 

Wm-2 using ELM) obtained the less promising results in this station. In Málaga, the NSE 

and RMSE values ranged from NSE=0.862 and RMSE=0.252 Wm-2 using configuration 

13 and MLP, to NSE=0.846 and RMSE=0.266 MJ m-2 using configuration 1 and ELM. 

In Écija, the three best performances were carried out by configurations 13 (NSE=0.924 

and RMSE=0.193 Wm-2), 5 (NSE=0.914 and RMSE=0.205 Wm-2), and 11 (NSE=0.913 

and RMSE=0.207 Wm-2) using MLP. In Asheville, the best statistics were obtained using 

configurations 9 (NSE=0.897 and RMSE=0.187Wm-2), 2 (NSE=0.892 and RMSE=0.193 

Wm-2) and 5 (NSE=0.889 and RMSE=0.195 Wm-2). Finally, attending to the global 

results for all the stations, the best configuration in terms of both statistics was 13, 

followed by 7 and 8. 
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Table 4. 5. Best NSE and RMSE (W/m2) performances for the different configurations and stations assessed (ASH08 = Asheville, ALM04 = Tabernas. CAD07 = Jimena de la 

Frontera. COR06 = Córdoba. GRA03 = Loja. HUE08 = El Campillo. JAE07 = Mancha Real. MAG01 = Málaga. SEV09 = Écija) and the mean performance of all the stations. 

In parenthesis, it is shown the model used, while the best values are in bold. 

 

ALM04 CAD07 COR06 GRA03 HUE08 JAE07 MAG01 SEV09 ASH08 

All stations 

(mean) 

Conf NSE RMSE NSE RMSE NSE RMSE NSE RMSE NSE RMSE NSE RMSE NSE RMSE NSE RMSE NSE RMSE NSE RMSE 

1 
0.862 0.248 0.847 0.279 0.916 0.209 0.835 0.259 0.908 0.219 0.917 0.208 0.846 0.266 0.907 0.213 0.882 0,201 

0.880 0.234 
(SVM) (SVM) (MLP) (MLP) (SVM) (SVM) (MLP) (MLP) (MLP) (MLP) (ELM) (ELM) (ELM) (ELM) (MLP) (MLP) (RF) (RF) 

2 
0.867 0.244 0.850 0.275 0.918 0.207 0.814 0.275 0.914 0.212 0.916 0.209 0.850 0.262 0.904 0.217 0.892 0,193 

0.881 0.233 
(MLP) (MLP) (RF) (RF) (MLP) (MLP) (RF) (RF) (MLP) (MLP) (ELM) (ELM) (MLP) (MLP) (ELM) (ELM) (XGB) (XGB) 

3 
0.868 0.242 0.850 0.276 0.919 0.205 0.838 0.256 0.907 0.220 0.919 0.206 0.850 0.262 0.906 0.214 0.887 0,197 

0.883 0.231 
(SVM) (SVM) (RF) (RF) (MLP) (MLP) (MLP) (MLP) (ELM) (ELM) (ELM) (ELM) (MLP) (MLP) (MLP) (MLP) (RF) (RF) 

4 
0.866 0.245 0.846 0.279 0.917 0.207 0.832 0.262 0.898 0.231 0.918 0.207 0.849 0.263 0.907 0.213 0.890 0,194 

0.880 0.233 
(SVM) (SVM) (RF) (RF) (MLP) (MLP) (MLP) (MLP) (SVM) (SVM) (MLP) (MLP) (MLP) (MLP) (ELM) (ELM) (RF) (RF) 

5 
0.872 0.239 0.851 0.275 0.917 0.208 0.842 0.253 0.912 0.215 0.917 0.208 0.849 0.263 0.914 0.205 0.889 0,195 

0.885 0.233 
(MLP) (MLP) (MLP) (MLP) (SVM) (SVM) (MLP) (MLP) (MLP) (MLP) (MLP) (MLP) (MLP) (MLP) (MLP) (MLP) (RF) (RF) 

6 
0.867 0.244 0.840 0.285 0.917 0.208 0.825 0.267 0.915 0.210 0.910 0.217 0.852 0.261 0.903 0.218 0.877 0,205 

0.878 0.235 
(MLP) (MLP) (RF) (RF) (MLP) (MLP) (ELM) (ELM) (MLP) (MLP) (ELM) (ELM) (MLP) (MLP) (ELM) (ELM) (XGB) (XGB) 

7 
0.870 0.241 0.853 0.273 0.922 0.201 0.824 0.268 0.921 0.202 0.924 0.199 0.858 0.255 0.915 0.203 0.885 0,198 

0.886 0.227 
(SVM) (SVM) (MLP) (MLP) (MLP) (MLP) (RF) (RF) (MLP) (MLP) (MLP) (MLP) (MLP) (MLP) (MLP) (MLP) (RF) (RF) 

8 
0.869 0.242 0.855 0.271 0.920 0.204 0.855 0.243 0.919 0.206 0.919 0.205 0.852 0.260 0.906 0.215 0.884 0,199 

0.887 0.227 
(SVM) (SVM) (MLP) (MLP) (SVM) (SVM) (MLP) (MLP) (MLP) (MLP) (ELM) (ELM) (MLP) (MLP) (RF) (RF) (RF) (RF) 

9 
0.870 0.241 0.844 0.282 0.920 0.203 0.840 0.255 0.906 0.221 0.918 0.207 0.847 0.264 0.904 0.217 0.897 0,187 

0.883 0.231 
(SVM) (SVM) (RF) (RF) (SVM) (SVM) (MLP) (MLP) (ELM) (ELM) (SVM) (SVM) (ELM) (ELM) (ELM) (ELM) (XGB) (XGB) 

10 
0.865 0.245 0.848 0.278 0.917 0.207 0.822 0.269 0.905 0.222 0.918 0.207 0.855 0.258 0.909 0.211 0.888 0,196 

0.881 0.233 
(SVM) (SVM) (RF) (RF) (SVM) (SVM) (ELM) (ELM) (MLP) (MLP) (SVM) (SVM) (MLP) (MLP) (MLP) (MLP) (RF) (RF) 

11 
0.865 0.245 0.844 0.281 0.917 0.208 0.837 0.258 0.909 0.218 0.910 0.217 0.851 0.261 0.913 0.207 0.871 0,210 

0.880 0.234 
(ELM) (ELM) (RF) (RF) (ELM) (ELM) (MLP) (MLP) (MLP) (MLP) (ELM) (ELM) (ELM) (ELM) (MLP) (MLP) (RF) (RF) 

12 
0.870 0.241 0.851 0.275 0.921 0.202 0.821 0.270 0.912 0.215 0.920 0.205 0.856 0.257 0.906 0.214 0.888 0,196 

0.883 0.231 
(MLP) (MLP) (ELM) (ELM) (SVM) (SVM) (ELM) (ELM) (MLP) (MLP) (SVM) (SVM) (MLP) (MLP) (ELM) (ELM) (RF) (RF) 

13 
0.874 0.237 0.855 0.272 0.924 0.199 0.830 0.263 0.921 0.203 0.923 0.201 0.862 0.252 0.924 0.193 0.884 0,200 

0.889 0.224 
(ELM) (ELM) (RF) (RF) (SVM) (SVM) (ELM) (ELM) (MLP) (MLP) (MLP) (MLP) (MLP) (MLP) (MLP) (MLP) (RF) (RF) 

14 
0.866 0.244 0.848 0.277 0.918 0.207 0.836 0.258 0.905 0.223 0.919 0.206 0.848 0.264 0.901 0.221 0.887 0,196 

0.881 0.233 
(SVM) (SVM) (MLP) (MLP) (SVM) (SVM) (MLP) (MLP) (MLP) (MLP) (MLP) (MLP) (MLP) (MLP) (ELM) (ELM) (RF) 0,201 
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In order to assess all the different configurations, Table 4. 6 shows a GPI evaluation 

for MBE, RMSE, RRMSE, R2, and NSE. In general, the worst configurations (lowest GPI 

values) were number 1 and 6, with a GPI below -0.3. On the other hand, the best ones 

were 13 and 8. In this sense, it is important to highlight the valuable information contained 

when using EnergyT and HourminTx in the same configuration because the worst results 

were performed by those which do not contain both. Moreover, the best configurations 

also incorporate deltaT and temperature information about consecutive days (Tn prev, Tx 

prev, and Tn next). In particular, the use of deltaT is of high importance, despite being 

considered to be automatically learned by the model through Tx and Tn data. In addition, 

MLP, SVM, and ELM carried out the most accurate performances in most inland and 

medium aridity index locations and configurations for RMSE and NSE statistics (having 

ELM the lowest computational cost). However, in sub-humid and humid sites, the use of 

RF and XGBoost was better. Regarding the GPI evaluation for the different models, using 

MLP with configuration 13 was, in general, the most accurate model to estimate daily 

solar radiation. 

Table 4. 6. GPI values for the different models (BC – Bristow and Campbell. HS – Hargreaves Samani. 

MLP – Multilayer Perceptron. ELM – Extreme Learning Machine. RF – Random Forest. SVM – Support 

Vector Machine. XGBoost – Extreme Gradient Boost. and GRNN – Generalized Regression Neural 

Network) and configurations (see table 39). The best values are in bold. 

GPI for models GPI for configurations 

Model GPI Conf. GPI Conf. GPI 

BC -1.175 1 -0.371 9 0.007 

HS -2.593 2 -0.204 10 -0.165 

MLP 0.402 3 0.048 11 -0.122 

ELM 0.171 4 -0.220 12 0.030 

RF 0.195 5 -0.128 13 0.299 

SVM -0.062 6 -0.355 14 -0.227 

XGBoost -0.221 7 -0.079   

GRNN -1.069 8 0.075   

 

4.3.Seasonal performance 

In order to evaluate the seasonal performance of the different models for all locations 

and configurations, Figure 4. 7 shows a boxplot of the statistics RRMSE (a), NSE (b), 

MBE (c), and R2 (d) for winter, autumn, spring, and summer. In terms of RRMSE, the 

best mean performance was carried out in summer, while in winter and autumn, the results 

were worse. Regarding MBE, the highest variability performance was detected in spring 

and summer, ranging from around 0.3 MJ m-2 to -0.13 MJ m-2, whereas winter performed 

consistently (all values are very close to the median). Moreover, all seasonal medians are 

positive in all models, which denoted a general underestimation trend. According to NSE 

and R2, the highest and the lowest values, on average, were obtained in summer and 

autumn, respectively, being the seasonal performance quite similar in winter and spring.  
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Figure 4. 7. Seasonal performance (RRMSE, NSE, MBE, and R2) of the different models assessed (ELM 

– Extreme Learning Machine, RF – Random Forest, SVM – Support Vector Machine, XGB – Extreme 

Gradient Boost, MLP – Multilayer Perceptron, and GRNN – Generalized Regression Neural Network) in 

all the stations and configurations (Table 4. 3). 

Table 4. 7 displays the mean seasonal NSE and RRMSE values of the different 

configurations for all the assessed stations and models, as well as the performance carried 

out by HS and BC. Configuration 13 (marked in bold) obtained the lowest RRMSE and 

the highest NSE in all seasons, with an improvement of 22.5% in summer against BC and 

66.06% against HS. Generally, in terms of NSE, the most significant improvement was 

carried out in summer, although RRMSE had a general 8% improvement in all seasons, 

with slight variability in performance between different configurations. 

Table 4. 7. Mean NSE and RRMSE seasonal values for the different configurations assessed (table 4), as 

well as HS (Hargreaves Samani) and BC (Bristow Campbell). The best values are in bold. 

 NSE RRMSE 

Conf. Winter Spring Summer Autumn Winter Spring Summer Autumn 

HS 0.605 0.564 0.343 0.692 0.271 0.180 0.146 0.211 

BC 0.643 0.621 0.462 0.723 0.255 0.167 0.131 0.198 

1 0.690 0.658 0.541 0.759 0.239 0.157 0.122 0.186 

2 0.693 0.674 0.541 0.757 0.237 0.154 0.121 0.187 

3 0.702 0.682 0.558 0.760 0.234 0.152 0.119 0.186 

4 0.694 0.673 0.541 0.758 0.238 0.154 0.122 0.187 

5 0.696 0.675 0.548 0.762 0.235 0.153 0.118 0.184 

6 0.689 0.660 0.537 0.754 0.238 0.156 0.121 0.188 

7 0.695 0.675 0.535 0.766 0.231 0.151 0.117 0.180 

8 0.705 0.682 0.551 0.763 0.232 0.151 0.119 0.184 
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9 0.704 0.684 0.552 0.761 0.232 0.150 0.118 0.185 

10 0.697 0.675 0.543 0.752 0.235 0.153 0.120 0.188 

11 0.700 0.669 0.548 0.758 0.234 0.154 0.120 0.186 

12 0.702 0.680 0.547 0.764 0.233 0.152 0.120 0.183 

13 0.716 0.688 0.565 0.771 0.228 0.149 0.117 0.181 

14 0.696 0.672 0.536 0.760 0.235 0.154 0.121 0.185 

To sum up, it could be stated that in autumn (followed by the results in winter), the 

best NSE values were obtained, whereas, in summer, the error was the highest for all 

configurations. However, in terms of RRMSE, the minimum error was given in summer, 

while the predictions in winter were the worst. This behavior is the consequence of the 

much higher solar radiation values in summer than in winter.  

4.4. Models’ application to new sites 

To further assess the practical utility of these self-calibrated models for real 

applications, an evaluation during the same test period was carried out using non-used 

datasets from new sites with similar geo-climatic conditions (aridity index and 

coastal/inland locations). In these terms, Bélmez was tested with the best model and 

configuration from Córdoba (SVM using configuration 13), Almuñécar was assessed 

using the trained model from Málaga (MLP using configuration 7), Cabra was tested with 

El Campillo (using MLP and configuration 7), and finally, Huércal-Overa was evaluated 

with Tabernas (SVM using configuration 13). Eventually, these results were compared 

with those obtained using a non-calibrated HS daily prediction.  

Table 4. 8. Statistical results of the models from Córdoba, El Campillo, Málaga and Tabernas for new 

non-trained sites with similar climatic conditions (Bélmez, Cabra, Almuñécar and Huércal-Overa). as 

well as the non-calibrated Hargreaves-Samani results. 

  Non-calibrated Hargreaves-Samani Machine learning model 

Model from 

Test 

Station 

RMSE 

[Wm2] 

MBE 

[Wm2] R2 NSE 

RMSE 

[Wm2] 

MBE 

[Wm2] R2 NSE 

Córdoba Bélmez 0.273 -0.057 0.880 0.871 0.217 0.037 0.915 0.912 

El Campillo Cabra 0.344 -0.163 0.849 0.786 0.233 -0.036 0.903 0.900 

Málaga Almuñécar 0.305 0.134 0.853 0.818 0.252 0.078 0.8756 0.862 

Tabernas 
Huércal-

Overa 
0.311 -0.097 0.836 0.802 0.249 0.013 0.873 0.872 

Table 4. 8 shows the statistical performance of both HS and ML for these new sites. 

In general, all ML models highly outperformed non-calibrated HS. In Bélmez, with an 

aridity index of 0.3681 (semiarid location), the RMSE values were reduced from 0.273 

Wm-2 to 0.217 Wm-2 and improved NSE from 0.871 to 0.912. In Cabra, with an aridity 

index of 0.5641, the R2 was outperformed from 0.849 using HS to 0.903 using ML and 

reducing RMSE and MBE values from RMSE=0.344 Wm-2 MBE=-0.163 Wm-2 to 

RMSE=0.233 Wm-2 and MBE=-0.036Wm-2 for HS and ML, respectively. In Huércal-

Overa, with an aridity index of 0.2284, the NSE was outperformed from 0.802 to 0.872 

for HS and ML, respectively. The RMSE was reduced from RMSE=0.311 Wm-2 to RMSE 

0.249 Wm-2. Finally, in the coastal location of Almuñécar, the RMSE and NSE values 

carried out by HS were RMSE=0.305 Wm-2 and NSE= 0.818 Wm-2, against the 

performance of ML of RMSE=0.252 Wm-2 and NSE=0.862. Another substantial 
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reduction was seen in MBE, from MBE=0.134 Wm-2 to MBE=0.078 Wm-2. In all cases, 

the percentage of improvement in the evaluated statistics ranged from 17.3% to 32.2% 

for RMSE, from 41.7% to 164.9% for MBE, from 2.5% to 6.3% for R2, and from 4.7% 

to 14.5% for NSE. Thus, the results obtained corroborate the extrapolation ability of the 

proposed models using these novel configurations when applying them to new sites. 

4.5.Overall discussion 

The results obtained by these ML models outperformed those given by Estévez et al. 

[22] for inland locations (RMSE=0.283 Wm-2) and also for coastal sites (RMSE=0.312 

Wm-2) in this same region. In terms of R2 and RRMSE, these models got better results 

than those reported by Feng et al. [37] in four arid stations assessed in China (Turpan, 

Yinchuan, Dunhuang, and Xilingol) using ANN (Artificial Neural Network), MEA-ANN 

(Mind Evolutionary Algorithm Artificial Neural Network), RF and WNN (Wavelet 

Neural Network) with an R2 range from 0.707 in Yinchuan using RF, to 0.885 in Turpan 

using MEA-ANN and an RRMSE range from 0.191 in Dunhuang using WNN, to 0.251 

in Yinchuan using WNN. Furthermore, it also improved the results of Fan et al. [93] in 

three humid subtropical climate stations (Wuhan, Kunming, and Guangzhou) using SVM 

and XGBoost in terms of R2 and RMSE, where the best R2 were carried out by SVM in 

Wuhan (R2=0.776) and the best RMSE in Guangzhou also using SVM (RMSE= 0,243 W 

m-2). In terms of R2, this study's results also improved the performances of Sharifi et al. 

[38] for the six studied stations in Iran and the United States using ANN, GEP, and WR, 

ranging from R2=0.733 in Lincoln with GEP to R2=0.875 in Urmia with ANN. Comparing 

the results with the work of Jiménez et al. [94], Neural Network's performance also using 

the relative humidity the pressure is slightly better in terms of RRMSE, ranging from 

RRMSE=0.0811 in El Colmenar to RRMSE=0.1006 in Santa Ana. Finally, comparing 

the results with the work of Bellido et al. [89], predicting solar radiation using CNN and 

LSTM with hourly temperature in Almuñecar, the results are highly outperformed with 

the approach followed in this work. 

In general, no model predominantly outperformed the rest, although MLP, SVM, and 

ELM were usually among the best approaches for semiarid and arid sites, whereas RF 

and XGBoost obtained better performances in sub-humid and humid locations. In order 

to obtain the best model (using all the configurations) and the best configuration (for all 

the models studied), the corresponding GPI values were calculated (Table 4. 6). As it can 

be seen marked in bold, the use of the MLP model and configuration 13 (TX, Tn, Ra, DTR, 

EnergyT, HourminTx, Tx prev, and Tn next) was preferred to generally estimate daily solar 

radiation values due to its better performance. Additionally, based on the results of this 

study, and despite deltaT is a piece of information that could be obtained from Tx and Tn 

during the iteratively training process, its use as an input variable helps ML models to 

estimate daily solar radiation more accurately, as well as the introduction of new variables 

based on intra-daily temperatures like EnergyT and HourminTx [82]. They help the models 

generalize better for their use in different locations from the trained. Likewise, this work 

also highlights the importance of the TX prev and the Tn next (as it was stated by Bristow and 

Campbell [60]) due to the effect of advection cold (or warm) air masses in deltaT. Thus, 

the contribution of the new temperature-based variables used is crucial for improving 
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daily solar radiation predictions using ML models, being a meaningful way to deepen 

future works worldwide, mainly due to its easy implementation and low-cost 

measurement. 

5. Conclusions and future work 

Several locations representing different geo-climatic conditions were studied in order 

to assess several machine learning models for daily solar radiation predictions using 

different intra-daily temperature-based variables. Firstly, the period from 2000 to 2014 

was used for training purposes and tuned the different hyperparameters. Afterward, its 

performance was evaluated using the period from 2014 to 2018. The main novelties of 

this study are the use of new air temperature variables to estimate solar radiation like 

EnergyT, HourminTx, HourminTx prev, and the application of Bayesian Optimization instead 

of the commonly used trial and error technique. The results arose a good behavior, 

especially with the general use of MLP and configuration 13 (TX, Tn, Ra, DTR, EnergyT, 

HourminTx, TX prev, and Tn next), outperforming the results of the empirical and widely used 

methods HS and BC in all the assessed stations. However, a more specific use of MLP 

and SVM for semiarid and arid sites and Rf and XGBoost for dry sub-humid and humid 

sites is preferred. Furthermore, on average, all configurations and all the models evaluated 

except GRNN improved the results from empirical models and their excellent 

performances in different geo-climatic conditions. For example, in terms of NSE: the 

most significant improvement was from 0.741 using BC to 0.897 using RF in the most 

humid location, and even in a semiarid inland site with adequate empirical performance 

(NSE=0.905 using BC), the use of  SVM was able to achieve a value of NSE=0.924;  in 

terms of RMSE: comparing the results to BC and HS, the improvement ranged from 

7.56% in the aridest station using ELM to 45.65% in a humid location using MLP and in 

terms of mean GPI values: the most accurate models were MLP for locations with 

medium aridity values (between 0.2808 and 0.5497), SVM for the aridest site and RF for 

the most humid site. Moreover, using MLP and configuration 13, there was a mean error 

reduction of around 8% per season in terms of RRMSE and up to 60% (for HS in summer) 

in terms of seasonal NSE.  

One of the common problems when using local-calibrated methods is the prerequisite 

of using enough datasets for training and testing processes at each site. Several models 

have been evaluated in new locations with similar geo-climatic characteristics to the 

trained sites in this work. The results highly outperformed HS in all conditions, with an 

improvement of up to 14.5% in terms of NSE and 47.6% in terms of RMSE in dry sub-

humid climate sites. Thus, using these models could improve solar radiation predictions 

at new sites only using air temperature measurements, although a previously trained 

model (with similar geo-climatic features) is required for this purpose. 

However, further studies can evaluate the efficiency of these models/configurations in 

other new areas, as well as the application on a regional scenario, due to the excellent 

performance of the models when applied to new datasets from different (but with similar 

geo-climatic conditions) sites. Finally, due to the increasing use of low-cost temperature 

sensors and the expansion of IoT devices, these new ML approaches may result in more 
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accurate solar radiation predictions at a great variety of locations where there is no 

possibility of installing solar radiation sensors (regions with lack of funding, developing 

countries, among others), as well as optimizing the determination of potential locations 

for solar power plants construction. Furthermore, the combination of the air temperature 

forecasts from climate change (or conventional numerical weather prediction) models, 

the developed approaches of this work could be of great interest for the potential 

efficiency of solar energy systems in the medium-large term. 
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Abstract  

The presence of missing data in hydrometeorological datasets is a common problem, 

usually due to sensor malfunction, deficiencies in records storage and transmission, or 

other recovery procedures issues. These missing values are the primary source of 

problems when analyzing and modeling their spatial and temporal variability. Thus, 

accurate gap-filling techniques for rainfall time series are necessary to have complete 

datasets, which is crucial in studying climate change evolution. In this work, several 

machine learning models have been assessed to gap-fill rainfall data, using different 

approaches and locations in the semiarid region of Andalusia (Southern Spain). Based on 

the obtained results, the use of neighbor data, located within a 50 km radius, highly 

outperformed the rest of the assessed approaches, with RMSE (root mean squared error) 

values up to 1.246 mm/day, MBE (mean bias error) values up to −0.001 mm/day, and R2 

values up to 0.898. Besides, inland area results outperformed coastal areas in most 

locations, arising the efficiency effects based on the distance to the sea (up to an 

improvement of 63.89% in terms of RMSE). Finally, machine learning (ML) models 

(especially MLP - Multilayer Perceptron) notably outperformed simple linear regression 

estimations in the coastal sites, whereas, in inland locations, the improvements were not 

significant. 

1. Introduction 

The spatial and temporal analysis of meteorological parameters, such as rainfall is 

crucial to numerous environmental, hydrological, and agroclimatic studies, as well as 

optimizing issues, such as water resource management or irrigation scheduling [1–4]. 

However, one of the most common problems in time series analyses, such as rainfall 

datasets, is the presence of gaps of different widths, making this task harder to carry out. 
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This usually results from malfunctioning sensors or data loggers, lack of maintenance, 

meteorological events, or power outages. Sometimes, the solution is not instantaneous 

and causes delays because it needs the interaction of qualified personnel. Therefore, 

before starting with analyses, a common practice is to fill these gaps using different 

methodologies and applying automatic detection algorithms to detect spurious signals in 

automated weather stations [5]. 

Due to its high spatiotemporal variability and the large number of interconnected 

variables involved, rainfall is one of the most challenging atmospheric variables to 

characterize, estimate, and forecast [6], especially on a daily basis, with higher volatility 

and chaotic patterns [7]. A variety of techniques have been developed on both a monthly 

and daily basis. One of the most frequent algorithms to estimate missing rainfall records 

is the inverse distance weighting method (IDWM), where the estimated values are 

calculated with a weighted average (it resorts to the inverse of the distance when assigning 

the weights) from neighbor stations [8,9]. Another simple method to apply is the gauge 

mean estimator, which uses an average value of observations from the nearby stations, 

which can be obtained by optimization, proximity metric, or correlation, among other 

techniques [10]. Ordinary kriging is a spatially-dependent variance, based on scalar 

measurements at different locations, where the weights are derived from the distance 

between the source and the target stations [11–13]. However, these three methods tend to 

overestimate the number of rainy days and underestimate their magnitudes, and even a 

negative correlation is found in several reports between close stations [13,14]. Xia et al. 

[15] evaluated six methodologies (simple arithmetic averaging, inverse distance 

interpolation, normal ratio method, single best estimator, multiple regression analysis 

(REG), and closest station method) for estimating missing data in two stations in 

Germany and concluded that REG consistently obtained the best performance. 

Teegavarapu and Chandramouli [8] highlighted that the use of the coefficient of 

correlation provided an improvement in estimating the missing data and recommended 

the coefficient of correlation weighing method, artificial neural network estimation 

method, and kriging estimation method for this purpose, due to their conceptually 

superior performance. Teegavarapu et al. [16] introduced the fixed functional set genetic 

algorithm method (FFSGAM), eliminating the use of rigid functional forms and 

weighting approaches for gap-filling. FFSGAM outperformed conventional IDWM. 

Adhikary et al. [12] developed genetic programming-based ordinary kriging (GPOK) as 

a new variant of the kriging method, using the genetic programming-derived variogram 

model and ordinary kriging. GPOK obtained the best results when compared to ANN-

based ordinary kriging and traditional ordinary kriging. Different au-thors [17–19] have 

evaluated the k-nearest-neighbor algorithm, in conjunction with machine learning 

models, such as multilayer perceptron (MLP), support vector machine (SVM), and 

random forest (RF), with promising results. Bagirov et al. [20] evaluated cluster-wise 

linear regression (CLR), using different combinations of maximum and minimum daily 

air temperature, evaporation, vapor pressure, and solar radiation to predict monthly 

rainfall in Victoria, Australia. Their results showed a higher performance of CLR against 

different methods, such as cluster regression-expectation maximization, multiple linear 
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regression, support vector regression (SVR), and MLP. Kajewska-Szkudlarek [21] 

assessed the use of cluster analysis with SVR to outperform daily rainfall prediction in 

urban areas. 

Additionally, other researchers study the performance of processing algorithms, such 

as wavelets [22,23], variational mode decomposition (VMD) [24], or singular spectrum 

analysis (SSA) [25,26]. Estévez et al. [22] evaluated different combinations of wavelet 

analysis with thermo-pluviometric variables, using MLP in sixteen locations in Spain to 

forecast monthly rainfall. The results indicated the suitability of the models using 

thermopluviometric variables without requiring long-term datasets. Partal and Kisis [23] 

assessed a wavelet analysis, in conjunction with neuro-fuzzy models, to forecast daily 

rainfall in Turkey. The developed models were significantly superior to traditional 

machine learning approaches, with a coefficient of determination (R2) around 0.8–0.9. Li 

et al. [24] studied the performance of VMD, coupled with an extreme learning machine 

(ELM) model, to improve monthly rainfall forecasts in the northwest of China. This 

hybrid model highly outperformed traditional algorithms, with a meager computational 

cost, due to the non-training requirement of ELM. Filho and Lima [25] evaluated the 

singular spectrum analysis (SSA) forecasting monthly rainfall in Brazil. Based on the 

results, it could be concluded that the SSA caterpillar algorithm can deal with the inherent 

non-stationary nature of rainfall records, extracting its long varying trends and periodic 

components. Sun et al. [26] assessed SSA in Korea with linear recurrent formulas (LRF) 

and MLP. MLP obtained the best performance when forecasting monthly rainfall. 

Finally, due to the significant advances in computation, deep learning algorithms are 

gaining very high popularity. In this sense, Kim et al. [27] evaluated the convolutional 

neural network (CNN), in conjunction with long short-term memory (LSTM), named 

convLSTM, to nowcast 1 and 2 h in advance, using two years dataset periods. ConvLSTM 

was able to reduce RMSE by 23% when compared to linear regression. Ha et al. [28] 

developed a deep belief network model to forecast rainfall one day ahead in Seoul, 

performing better than MLP. Chen et al. [29] studied the performance of convLSTM with 

group normalization (GN) to improve the optimization process and employ a multi-

sigmoid loss, inspired by the critical success index (CSI) and compared it to the COTREC 

model. COTREC obtained better performance, in terms of intensity in some areas, 

whereas con-vLSTM got a generally more reliable forecast. 

This study aims to create a daily rainfall estimation model using only precipitation 

data, with different approaches in semiarid regions, such as Andalusia, to fill possible 

gaps in precipitation datasets. Additionally, a new approach is tested in daily rainfall 

estimations, which uses future precipitation values for this purpose. Thus, in this work, 

several machine learning models (MLP, SVM, and RF) and approaches for estimating 

missing rainfall data were tested and compared to empirical algorithms, such as linear 

interpolation (LI), in 14 locations from two different regions of Andalusia (coastal and 

inland areas) in Southern Spain. The first approach (A) uses neighbor stations’ rainfall 

data of the same gap day and its distance to the target station. All these neighbor stations 

are located within a radius of up to 50 km, following the recommendations of Barrios et 
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al. [9] on a monthly basis and Estévez et al. [31] on a daily basis. Secondly, a new 

approach is considered, using only rainfall data (past and future values) from the target 

station as the model’s inputs. Specifically, two different configurations were tested: (B) 

one day before and after the gap day and (C) two days before and after the gap day. 

The rest of the work is organized as follows. Section 2 shows the information about 

the locations, the dataset, the theoretical background of the different machine learning 

(ML) models assessed, the preprocessing algorithms, and the evaluation metrics. Then, 

in Section 3, the results are reported and discussed. Finally, Section 4 describes the 

conclusions achieved in this work. 

2. Materials and Methods 

2.1. Source of Data 

This study was carried out in Andalusia, Southern Spain, located in the southwest of 

Europe. Andalusia is a semiarid region with the following features: the meridians range 

from 1 to 7° W, the parallels from 37° to 39° N, an elevation above mean sea level from 

26 to 822 m, and a total area of 87 268 m2. 

The used datasets belong to the Agroclimatic Information Network of Andalusia 

(RIAA) and can be downloaded at the following link: 

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/riaweb/web (accessed on 

September 8th, 2021). A total of 14 stations, divided into two areas (coastal and inland 

locations), were evaluated. The first group of areas included Jaen, La Higuera de Arjona, 

Lina-res, Mancha Real, Marmolejo, Sabiote, and Torreblascopedro, and the second group 

included Málaga, Antequera, Archidona, Cártama, Churriana, Pizarra, and Vélez. Figure 

5. 1 shows their geographical locations, and Table 5. 1 shows their geo-climatic 

characteristics. 
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Figure 5. 1. Spatial distribution of the fourteen automated weather stations used in this work. 

Table 5. 1. Geo-climatic characteristics of the AWS assessed in this work (lat.: latitude; long.: longitude; 

alt.: elevation above mean sea level). 

Station 
Alt.  

[m] 

Lat. 

[ºN] 

Long. 

[ºW] 

Mean 

Annual 

Rainfall 

[mm] 

Time-Period (Number of Days) 

Area 1:      

Jaen (JAE) 299 37.89 3.77 446.54 
From April 2001  

to June 2021 (7361) 

La Higuera de Arjona 

(ARJ) 
257 37.95 4.00 477.68 

From January 2001  

to June 2021 (7456) 

Linares (LIN) 432 38.07 3.65 466.70 
From August 2000  

to June 2021 (7601) 

Mancha Real (MAN) 407 37.92 3.60 390.86 
From August 2000  

to June 2021 (7602) 

Marmolejo (MAR) 208 38.06 4.13 523.36 
From September 2000  

to June 2021 (7590) 

Sabiote (SAB) 791 38.08 3.24 446.98 
From August 2000  

to June 2021 (7615) 

TorreblascoPedro 

(TOR) 
275 37.99 3.69 434.37 

From August 2000  

to June 2021(7615) 
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Area 2:      

Antequera (ANT) 440 37.03 4.56 444.72 
From November 2000  

to June 2021 (7512) 

Archidona (ARC) 516 37.08 4.43 457.83 
From December 2000  

to June 2021 (7483) 

Cártama (CAR) 78 36.72 4.68 490.51 
From June 2001  

to June 2021 (7300) 

Churriana (CHU) 17 36.67 4.50 510.32 
From February 2001  

to June 2021 (7426) 

Málaga (MAL) 55 36.76 4.54 461.63 
From October 2000  

to June 2021 (7546) 

Pizarra (PIZ) 71 36.77 4.72 463.47 
From January 2001  

to June 2021 (7447) 

Vélez (VEL) 33 36.80 4.13 490.49 
From October 2000  

to June 2021 (7546) 

 

2.2. Methodology 

An essential prerequisite to guarantee reliable results using raw meteorological data is 

the application of quality assurance procedures. The quality control guidelines, reported 

by Estévez et al. [31], were followed, as well as the procedure to detect spurious 

precipitation signals from automated weather stations (AWS), also Estévez et al. [5].  

Afterward, data preprocessing was required for every approach, obtaining the 

corresponding input configuration, according to every strategy (see Table 5. 2). Three 

different methodologies were evaluated: approach (i)—the use of rainfall neighbor data 

and its distance data to estimate the precipitation values at a different site (all locations 

are located within a 50 km radius); approach (ii)—the use of one day before and ahead 

rainfall da-ta values from the target station; and approach (iii)—the use of two days before 

and ahead rainfall data values from the target station. 

Later, in order to tune all the different hyperparameters from the different models, train 

them, and evaluate their performance, the full dataset was split into training, validation, 

and testing. The train (to fit all the final weights and biases from the final model) and test 

dataset (never-seen data to assess the performance) were randomly split into 70% and 

30%, respectively. Prior to this stage, it is necessary to determine all the hyperparameters 

of the models (such as the number of hidden layers and neurons in a multilayer 

perceptron). For this purpose, the training dataset was divided into train_2 and validation 

(ran-dom 80% and 20%, respectively) to train and test the different hyperparameters until 

the fittest set is found. It is worth noting that the seed used in the random algorithm is the 

same in all cases, so all assessed models (from different approaches) have the same train, 

test, and validation dataset. Then, the Bayesian optimization algorithm took place, where 

different hyperparameters were tested, using the validation dataset, until the fittest set was 

found. Afterward, the entire train dataset from the initial split was used to adjust all the 

different weights and biases. Finally, the performance accuracy was assessed, using the 
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testing dataset, which was never seen during previous processes. All this methodology is 

shown in a flowchart in Figure 5. 2. 

Table 5. 2. . Inputs configurations of the different models and approaches assessed. DOY 

represents the day of year, P corresponds to precipitation, D corresponds to distance, and i 

represents an index to the dataset-specific day. 

Target Station Inputs Approach A Inputs Approach B Inputs Approach C 

Area 1:    

Jaen 

DOY(i) + PARJ(i) + DJAE-LIN  

+ PLIN(i) + DJAE-LIN + PMAN(i) 

+ DJAE-MAN + PMAR(i) +  

DJAE-MAR + PSAB(i) + DJAE-SAB 

+ PTOR(i) + DJAE-TOR 

DOY(i) + PJAE(i−1) + 

PJAE(i+1) 

DOY(i) + PJAE(i−1) + 

PJAE(i−2) + PJAE(i+1) + 

PJAE(i+2) 

La Higuera de Arjona 

DOY(i) + PJAE(i) + DARJ-JAE  

+ PLIN(i) + DARJ-LIN + PMAN(i) 

+ DARJ-MAN + PMAR(i) +  

DARJ-MAR + PSAB(i) +  

DARJ-SAB + PTOR(i) + DARJ-TOR 

DOY(i) + PARJ(i−1) + 

PARJ(i+1) 

DOY (i) + PARJ(i−1) + 

PARJ(i−2) + PARJ(i+1) + 

PARJ(i+2) 

Linares 

DOY(i) + PJAE(i) +  

DLIN-JAE + PARJ(i) +  

DLIN-ARJ + PMAN(i) + DLIN-MAN 

+ PMAR(i) + DLIN-MAR + 

PSAB(i) + DLIN-SAB + PTOR(i)  

+ DLIN-TOR 

DOY(i) + PLIN(i−1) + 

PLIN(i+1) 

DOY (i) + PLIN(i−1) + 

PLIN(i−2) + PLIN(i+1) + 

PLIN(i+2) 

Mancha Real 

DOY(i) + PJAE(i) + DMAN-JAE 

+ PARJ(i) + DMAN-ARJ + PLIN(i) 

+ DMAN-LIN + PMAR(i) +  

DMAN-MAR + PSAB(i) +  

DMAN-SAB + PTOR(i) +  

DMAN-TOR 

DOY(i) + PMAN(i−1) + 

PMAN(i+1) 

DOY (i) + PMAN(i−1) + 

PMAN(i−2) + PMAN(i+1) + 

PMAN(i+2) 

Marmolejo 

DOY(i) + PJAE(i) + DMAR-JAE 

+ PARJ(i) + DMAR-ARJ + PLIN(i) 

+ DMAR-LIN + PMAN(i) +  

DMAR-MAN + PSAB(i) +  

DMAR-SAB + PTOR(i) +  

DMAR-TOR 

DOY(i) + PMAR(i−1) + 

PMAR(i+1) 

DOY (i) + PMAR(i−1) + 

PMAR(i−2) + PMAR(i+1) + 

PMAR(i+2) 

Sabiote 

DOY(i) + PJAE(i) + DSAB-JAE + 

PARJ(i) + DSAB-ARJ + PLIN(i) + 

DSAB-LIN + PMAN(i) +  

DSAB-MAN + PMAR(i) +  

DSAB-MAR + PTOR(i) +  

DSAB-TOR 

DOY(i) + PSAB(i−1) + 

PSAB(i+1) 

DOY (i) + PSAB(i−1) + 

PSAB(i−2) + PSAB(i+1) + 

PSAB(i+2) 

TorreblascoPedro 

DOY(i) + PJAE(i) + DTOR-JAE  

+ PARJ(i) + DTOR-ARJ + PLIN(i) 

+ DTOR-LIN + PMAN(i) +  

DTOR-MAN + PMAR(i) +  

DTOR-MAR + PSAB(i) +  

DTOR-SAB 

DOY(i) + PTOR(i−1) + 

PTOR(i+1) 

DOY (i) + PTOR(i−1) + 

PTOR(i−2) + PTOR(i+1) + 

PTOR(i+2) 

 

Area 2:    
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Antequera  

DOY(i) + PARC(i) + DANT-ARC 

+ PCAR(i) + DANT-CAR + 

PCHU(i) + DANT-CHU +  

PMAL(i) + DANT-MAL + PPIZ(i) +  

DANT-PIZ + PVEL(i) + DANT-VEL 

DOY(i) + PANT(i−1) + 

PANT(i+1) 

DOY (i) + PANT(i−1) + 

PANT(i−2) + PANT(i+1) + 

PANT(i+2) 

Archidona 

DOY(i) + PANT(i) + DARC-ANT 

+ PCAR(i) + DARC-CAR + 

PCHU(i) + DARC-CHU +  

PMAL(i) + DARC-MAL + PPIZ(i) +  

DARC-PIZ + PVEL(i) + DARC-VEL 

DOY(i) + PARC(i−1) + 

PARC(i+1) 

DOY (i) + PARC(i−1) + 

PARC(i−2) + PARC(i+1) + 

PARC(i+2) 

Cártama  

DOY(i) + PANT(i) + DCAR-ANT 

+ PARC(i) + DCAR-ARC + 

PCHU(i) + DCAR-CHU +  

PMAL(i) + DCAR-MAL + PPIZ(i) +  

DCAR-PIZ + PVEL(i) + DCAR-VEL 

DOY(i) + PCAR(i−1) + 

PCAR(i+1) 

DOY (i) + PCAR(i−1) + 

PCAR(i−2) + PCAR(i+1) + 

PCAR(i+2) 

Churriana  

DOY(i) + PANT(i) + DCHU-ANT 

+ PARC(i) + DCHU-ARC + 

PCAR(i) + DCHU-CAR + PMAL(i) 

+ DCHU-MAL + PPIZ(i) +  

DCHU-PIZ + PVEL(i) + DCHU-VEL 

DOY(i) + PCHU(i−1) + 

PCHU(i+1) 

DOY (i) + PCHU(i−1) + 

PCHU(i−2) + PCHU(i+1) + 

PCHU(i+2) 

Málaga  

DOY(i) + PANT(i) + DMAL-ANT 

+ PARC(i) + DMAL-ARC + 

PCAR(i) + DMAL-CAR + PCHU(i) 

+ DMAL-CHU + PPIZ(i) +  

DMAL-PIZ + PVEL(i) + DMAL-VEL 

DOY(i) + PMAL(i−1) + 

PMAL(i+1) 

DOY (i) + PMAL(i−1) + 

PMAL(i−2) + PMAL(i+1) + 

PMAL(i+2) 

Pizarra  

DOY(i) + PANT(i) + DPIZ-ANT 

+ PARC(i) + DPIZ-ARC + PCAR(i) 

+ DPIZ-CAR + PCHU(i) +  

DPIZ-CHU + PMAL(i) +  

DPIZ-MAL + PVEL(i) + DPIZ-VEL 

DOY(i) + PPIZ(i−1) + 

PPIZ(i+1) 

DOY (i) + PPIZ(i−1) + 

PPIZ(i−2) + PPIZ(i+1) + 

PPIZ(i+2) 

Vélez  

DOY(i) + PANT(i) + DVE-ANT + 

PARC(i) + DVEL-ARC + PCAR(i) 

+ DVEL-CAR + PCHU(i) +  

DVEL-CHU + PMAL(i) +  

DVEL-MAL + PPIZ(i) + DVEL-PIZ 

DOY(i) + PVEL(i−1) + 

PVEL(i+1) 

DOY (i) + PVEL(i−1) + 

PVEL(i−2) + PVEL(i+1) + 

PVEL(i+2) 

Besides, after splitting the dataset into train and test, a standardization was carried out, 

which is highly recommended to outperform machine learning models, especially neural 

network-based models [32]. This can be expressed as Eq. 5.1: 

𝑥∗ =
𝑥 − �̅�

𝜎
 Eq. 5.1  

where x represents the input data and x ̅ and σ correspond to the mean and standard 

deviation of the training dataset, respectively, and x^* is the standardized data. 
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Figure 5. 2. Methodology flowchart. 

2.3. Multilayer Perceptron (MLP) 

Multilayer perceptron is one of the most used models in different sectors, especially 

in hydrology [22,33]. Its functionality is based on neurons in the biological nervous 

system, where many interconnected neurons work together to generate an interaction, 

based on different stimuli. It is structured in three types of layers, the input and output 

correspond to the input and output of the model, respectively, as well as the hidden layer, 

where neurons are located. The activation function determines the output of a node, given 

a set of inputs. For example, rectified linear output (ReLU) represents a ramp for positive 

input values. The process in which the neurons learn (value adjustment of weights and 

biases) is carried out automatically, which is why this layer is called hidden. ADAM, a 

very common algorithm for this purpose, uses squared gradients to scale the learning rate 

and a moving average of the gradients. 
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A single neuron mathematical logic is represented in Figure 5. 3, where w represents 

the weight and b is the bias factor. 

 

Figure 5. 3. One neuron control logic 

For further information, the following works can be reviewed [34,35] 

2.4. Support Vector Machine (SVM) 

Support vector machine (SVM) is a supervised machine learning model that analyzes 

data for classification and regression tasks (also known as support vector regression 

(SVR)). For classification tasks, its functionality is based on searching the fittest 

hyperplane to separate different data points’ classes (classification). On regression, it 

finds the hyperplane and margins that fit all of them (regression). Thus, an easy way to 

understand SVM for regression is similar to a linear regression, where a hyperplane (that 

includes the data) is searched while having the flexibility to define how much error is 

considered acceptable. Figure 5. 4 shows an example of SVM for classification (a) and 

regression (b). 

 

(a) (b) 

Figure 5. 4. Support Vector Machine for classification (a) and regression (b). 

The main feature of SVM models is the use of kernels (linear, sigmoid, or gaussian, 

among others) to enable operation in a high-dimensional feature map, where the number 

of features is greater than the number of observations.  

SVM models are often used in rainfall forecasts, with promising results [36–38]. For 

further details, the following work can be reviewed [36,37]. 

2.5. Random Forest (RF) 

Random Forest (RF) was first introduced by [39] as a supervised learning algorithm, 

where the “term” forest defines that it is built as an ensemble of decision tree models. The 

general idea is that the conjunction of multiple models increases the overall result. 

Additionally, RF introduces an extra-randomness when the number of trees starts to grow. 
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Instead of searching for the best feature when splitting nodes, it searches for the best 

features among a random subset of them. The maximum number of features can be 

defined in sci-kit-learn as auto, sqrt, log2, none, or the exact number of maximum features 

(where au-to and sqrt refer to the squared root of the initial number of features, log2 refers 

to the logarithm base 2 of the number of features, and none is to use all the features). This 

results in a broader diversity and, as a consequence, a better final performance. 

Other researchers have already assessed RF in rainfall with promising results [40–42]. 

For further details, the following work can be revised [42]. 

2.6. Bayesian Optimization 

One of the critical aspects of machine learning models’ efficiency is hyperparameter 

selection. Depending on whether the correct values have been set, the performance can 

dramatically change from outstanding to very poor results. A common practice in the 

scientific community uses a trial-and-error technique [22], where different values are 

evaluated, varying from dozens to thousands of possibilities. However, this method is far 

from efficient because if the hyperparameter space is ample, the algorithm (apart from 

being very slow) wastes significant time in non-promising configurations. On the other 

hand, when the hyperparameter space is tiny, an accurate hyperparameter configuration 

set may be missing, despite being quick. To solve this problem, several algorithms have 

been assessed in different works. In [43], the authors studied the effectiveness of particle 

swarm optimization (PSO) and genetic algorithm (GA) to predict the monthly rainfall 

with MLP in a subtropical monsoon climate in Guilin, China. Wang et al. [44] assessed 

an artificial bee colony (ABC) with MLP to forecast rainfall values in 17 stations in the 

Wujiang River Basin. Banadkooki et al. [35] evaluated the flow regime optimization 

algorithm (FRA) with MLP and SVM to forecast monthly rainfall values in Iran. 

In this study, Bayesian optimization was used, due to its high popularity in new 

automated machine learning (AML) models [45–48] and its good performance in [34,49]. 

It was first introduced by Wang et al. [44] as an algorithm, based on the Bayes theorem, 

to search the minimum/maximum function. Part of its popularity is due to its close relation 

to human behavior when tuning hyperparameters [50,51]. The prior results are taken into 

account to choose the following promising values to test, following the next four-step 

procedure: (1) the hyperparameter space is defined, which limits the values of the 

hyperparameter space; (2) the algorithm considers previous evaluations, in order to 

choose the following set of values to be assessed (acquisition function)—two kinds of 

possibilities can be handled, exploitation (consists of testing hyperparameters values that 

are assumed to be optimal) and exploration (the opposite of exploitation, to identify new 

best options); (3) to assess the new hyperparameter configuration using an objective 

function; and (4) if the optimization process has not finished yet, it goes to the second 

point. In this work, this algorithm was implemented using Python and the Scikit-Optimize 

library, following the instructions of Bellido-Jiménez et al. [34]. All the final 

hyperparameter sets, used for each model, approach, and location, can be seen in Table 

3. 
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Table 5. 3. Hyperparameter set for each model, approach, and location, after carrying out Bayesian 

optimi-zation, where activation represents the activation function, the optimizer represents the optimizer 

function, epochs represents the number of epochs, neurons 

   Approaches: 

Location Models Hyperparameters A B C 

La Higuera de 

Arjona 

MLP 

activation ReLU 

ADAM 

100 

(20, 20) 

ReLU 

ADAM 

87 

(9, 15, 10) 

ReLU 

ADAM 

53 

(6, 15, 9) 

optimizer 

epochs 

neurons 

SVM 

kernel RBF 

10.0 

0.01 

RBF 

10.0 

0.01 

poly 

1.855 

0.01 

c 

epsilon 

RF 
n_estimators 100 

sqrt 

100 

auto 

91 

log2 max_features 

Jaen 

MLP 

activation ReLU 

ADAM 

92 

(20, 20) 

ReLU 

ADAM 

61 

(2, 1, 12) 

ReLU 

ADAM 

98 

(1, 10, 8) 

optimizer 

epochs 

neurons 

SVM 

kernel linear 

1.758 

0.739 

linear 

9.730 

0.01 

RBF 

10.0 

0.01 

c 

epsilon 

RF 
n_estimators 94 

auto 

95 

log2 

100 

log2 max_features 

Linares 

MLP 

activation ReLU 

ADAM 

100 

(20, 20) 

ReLU 

ADAM 

100 

(1, 1, 1) 

ReLU 

ADAM 

100 

(1, 1, 1) 

optimizer 

epochs 

neurons 

SVM 

kernel linear 

10.0 

0.01 

RBF 

4.023 

0.018 

RBF 

10.0 

0.01 

c 

epsilon 

RF 
n_estimators 100 

auto 

97 

sqrt 

80 

log2 max_features 

Mancha Real 

MLP 

activation ReLU 

ADAM 

100 

(20, 20) 

ReLU 

ADAM 

99 

(5, 14) 

ReLU 

ADAM 

100 

(1, 1, 1) 

optimizer 

epochs 

neurons 

SVM 

kernel RBF 

10.0 

0.01 

RBF 

6.235 

0.010 

RBF 

9.211 

0.01 

c 

epsilon 

RF 
n_estimators 75 

auto 

41 

sqrt 

46 

log2 max_features 

Marmolejo 

MLP 

activation ReLU 

ADAM 

100 

(20, 6) 

ReLU 

ADAM 

96 

(5, 3, 11) 

ReLU 

ADAM 

10 

( 1, 11) 

optimizer 

epochs 

neurons 

SVM 

kernel linear 

10.0 

0.01 

RBF 

4.350 

0.01 

RBF 

9.970 

0.01 

c 

epsilon 

RF 
n_estimators 100 

auto 

31 

auto 

100 

sqrt max_features 

Sabiote MLP activation ReLU ReLU ReLU 
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optimizer ADAM 

100 

(20, 20) 

ADAM 

100 

(1, 1, 1) 

ADAM 

95 

(2, 11, 9) 

epochs 

neurons 

SVM 

kernel linear 

10.0 

0.01 

RBF 

10.0 

0.01 

RBF 

10.0 

0.01 

c 

epsilon 

RF 
n_estimators 72 

log2 

39 

log2 

57 

log2 max_features 

Torreblascopedro 

MLP 

activation ReLU 

ADAM 

100 

(20, 12) 

ReLU 

ADAM 

72 

(1, 4, 13) 

ReLU 

ADAM 

73 

(5, 1, 17) 

optimizer 

epochs 

neurons 

SVM 

kernel linear 

3.795 

0.01 

RBF 

3.108 

0.01 

poly 

6.205 

0.012 

c 

epsilon 

RF 
n_estimators 81 

log2 

64 

sqrt 

94 

sqrt max_features 

Antequera 

MLP 

activation ReLU 

ADAM 

200 

(13, 8) 

ReLU 

ADAM 

174 

(5, 2, 20) 

ReLU 

ADAM 

61 

(14, 11, 13) 

optimizer 

epochs 

neurons 

SVM 

kernel linear 

8.684 

0.225 

RBF 

7.627 

0.01 

RBF 

4.981 

0.014 

c 

epsilon 

RF 
n_estimators 55 

auto 

94 

auto 

41 

log2 max_features 

Archidona 

MLP 

activation ReLU 

ADAM 

94 

(13, 5, 18) 

ReLU 

ADAM 

40 

(11, 12, 1) 

ReLU 

ADAM 

11 

(16, 11, 19) 

optimizer 

epochs 

neurons 

SVM 

kernel linear 

7.246 

0.01 

poly 

4.531 

0.01 

RBF 

4.104 

0.013 

c 

epsilon 

RF 
n_estimators 81 

auto 

93 

auto 

100 

sqrt max_features 

Cártama 

MLP 

activation ReLU 

ADAM 

129 

(8, 13, 17) 

ReLU 

ADAM 

10 

(1, 1, 1) 

ReLU 

ADAM 

112 

(14, 17, 6) 

optimizer 

epochs 

neurons 

SVM 

kernel linear 

6.273 

0.01 

RBF 

7.830 

0.01 

poly 

3.862 

0.01 

c 

epsilon 

RF 
n_estimators 92 

auto 

10 

sqrt 

38 

log2 max_features 

Churriana 

MLP 

activation ReLU 

ADAM 

180 

(20, 20, 18) 

ReLU 

ADAM 

200 

(1, 1, 1) 

ReLU 

ADAM 

70 

(5, 15, 7) 

optimizer 

epochs 

neurons 

SVM 

kernel linear 

10.0 

0.01 

RBF 

10.0 

0.01 

RBF 

5.963 

0.01 

c 

epsilon 

RF n_estimators 100 40 36 
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max_features log2 log2 sqrt 

Málaga 

MLP 

activation ReLU 

ADAM 

158 

(20, 20, 20) 

ReLU 

ADAM 

97 

(17, 11, 10) 

ReLU 

ADAM 

127 

(13, 4, 16) 

optimizer 

epochs 

neurons 

SVM 

kernel linear 

8.784 

0.01 

RBF 

9.999 

0.01 

RBF 

6.952 

0.011 

c 

epsilon 

RF 
n_estimators 69 

log2 

14 

log2 

10 

log2 max_features 

Pizarra 

MLP 

activation ReLU 

ADAM 

192 

(13, 15, 8) 

ReLU 

ADAM 

94 

(3, 4, 6) 

ReLU 

ADAM 

171 

(14, 1, 6) 

optimizer 

epochs 

neurons 

SVM 

kernel linear 

7.642 

0.015 

RBF 

10.0 

0.01 

RBF 

4.031 

0.01 

c 

epsilon 

RF 
n_estimators 76 

auto 

45 

sqrt 

95 

sqrt max_features 

Vélez-Málaga 

MLP 

activation ReLU 

ADAM 

200 

(20, 20, 20) 

ReLU 

ADAM 

180 

(15, 13, 10) 

ReLU 

ADAM 

139 

(8, 2, 10) 

optimizer 

epochs 

neurons 

SVM 

kernel RBF 

10.0 

0.01 

RBF 

6.032 

0.01 

RBF 

10.0 

0.01 

c 

epsilon 

RF n_estimators 
72 

sqrt 

62 

log2 

78 

sqrt 

 

2.7. Evaluation Metrics 

To assess the efficiency of the developed models, the statistics root mean square error 

(RMSE), mean bias error (MBE), and coefficient of determination (R2) were used. All of 

them are mathematically expressed as Equations 5.2 to 5.4, respectively: 

𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑(𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)2

𝑚

𝑖=1

 Eq. 5.2 

𝑀𝐵𝐸 =  
1

𝑚
∑ 𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖

𝑚

𝑖=1

  
Eq. 5.3 

𝑅2 =  
(∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)(𝑝𝑟𝑒𝑑𝑖 − 𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)𝑚

𝑖=1 )
2

∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)𝑚
𝑖=1

2 ∑ (𝑝𝑟𝑒𝑑𝑖 − 𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)𝑚
𝑖=1

2 
Eq. 5.4 

where n represents the number of prediction days, measi corresponds to the measured 

value for a specific day, predi is the predicted value, i represents every single gap day, 

and μ corresponds to the mean. 
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3. Results and Discussion 

In order to help the reproducibility of this work, the best ML models were uploaded 

to an open-access repository in Github (https://github.com/Smarity/gap-filling-

precipitation-atmosphere-special-issue.git - accessed on September 8th, 2021). 

3.1. Using Neighbor Stations 

Table 5. 4 shows the RMSE, MBE, and R2 performances for all locations in Area 1 

(inland locations) using the first approach (A), information from other AWS located 

within 50 km. In Higuera de Arjona, MLP obtained the best RMSE and R2 values (RMSE 

= 1.363 mm/day and R2 = 0.894), very close to RF (RMSE = 1.384 mm/day and R2 = 

0.889). In terms of MBE, LI outperformed the rest of the ML models (MBE = −0.008 

mm/day), followed closely by MLP and RF (MBE = 0.016 mm/day and MBE = 0.026 

mm/day, respectively). In Jaen, all ML models outperformed LI in RMSE and R2, where 

MLP obtained the best values (RMSE = 1.767 mm/day and R2 = 0.827), whereas RF beat 

the rest, regarding MBE (MBE = 0.023 mm/day). In Linares, RF and LI obtained the best 

performance, in terms of MBE (MBE = 0.001 mm/day and MBE = −0.001 mm/day). 

Moreover, MLP outperformed the others, regarding RMSE and R2 (RMSE = 1.723 

mm/day and R2 = 0.817), followed closely by RF (RMSE = 1.730 mm/day and R2 = 

0.815). In Mancha Real, MLP outperformed the other models in all statistics (RMSE = 

1.662 mm/day, MBE = −0.072 mm/day, and R2 = 0.831), whereas SVM was the worst 

(RMSE = 1.948 mm/day, MBE = −0.195 mm/day, and R2 = 0.780). In Marmolejo, with 

the highest mean annual rainfall (523.36 mm/year), the performance, in terms of RMSE 

and R2, showed that RF obtained the best values (RMSE = 2.129 mm/day and R2 = 0.801), 

followed closely by SVM (RMSE = 2.154 mm/day and R2 = 0.795) and MLP (RMSE = 

2.176 mm/day and R2 = 0.791). In Sabiote, the location with the highest altitude, MLP 

obtained the best performance in RMSE and R2 (RMSE = 2.049 mm/day and R2 = 0.752), 

but LI beat ML in MBE (MBE = −0.006 mm/day). Finally, in Torreblascopedro, SVM 

outperformed the rest for all statistics (RMSE = 1.246 mm/day, MBE = −0.005, and R2 = 

0.894), being the most accurate from this first region. It is worth noting that MLP 

generally obtained the best results, regarding RMSE and R2, in most locations, whereas 

RF and LI obtained the best values for MBE. Additionally, even though ML outperformed 

LI in all locations, the average improvement was not very significant. 

Table 5. 5 shows the RMSE, MBE, and R2 values for all locations and models in the 

coastal locations (Area 2). In Antequera, MLP beat the other models for all statistics 

(RMSE = 1.596 mm/day, MBE = 0.035 mm/day, and R2 = 0.875), sharing the same R2 

performance with SVM (R2 = 0.875). All ML models highly outperformed LI, considering 

all statistics (especially RMSE and R2), except for MBE using SVM. In Archidona, MLP 

also obtained the most accurate modeling in RMSE and R2 (RMSE = 1.811 mm/day and 

R2 = 0.844), followed closely to SVM (RMSE = 1.817 mm/day and R2 = 0.844). 

Regarding MBE, RF outperformed the rest (MBE = −0.019 mm/day). In Cártama, RF 

obtained the best MBE value (MBE = 0.002 mm/day), whereas SVM got the best RMSE 

and R2 performance (RMSE = 2.502 mm/day and R2 = 0.778). In Churriana, MLP highly 

outperformed the rest, in terms of RMSE and R2 (RMSE = 2.192 mm/day and R2 = 0.876), 

whereas RF beat MLP in MBE (MBE = 0.019 mm/day and MBE = −0.052 mm/day, 

https://github.com/Smarity/gap-filling-precipitation-atmosphere-special-issue.git
https://github.com/Smarity/gap-filling-precipitation-atmosphere-special-issue.git
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respectively). In Málaga, RF obtained the best values for RMSE and MBE (RMSE = 

2.433 mm/day and MBE = 0.012 mm/day), whereas MLP got the most accurate values 

for R2 (R2 = 0.830). In Pizarra, all models obtained very similar performance (even LI). 

RMSE ranged from 2.032 mm/day (by MLP and SVM) to 2.108 mm/day (by LI), MBE 

ranged from 0.039 mm/day (by RF) to −0.112 mm/day (by SVM), and R2 ranged from 

0.842 (by LI) to 0.854 (by MLP). Finally, in Vélez, MLP outperformed the rest of the 

models, in terms of RMSE and R2 (RMSE = 3.219 mm/day and R2 = 0.742), while RF 

obtained the best MBE performance (MBE = −0.020 mm/day), followed closely to MLP 

(MBE = −0.074 mm/day). Generally, the results obtained by ML highly outperformed LI 

in most locations and statistics, except for MBE, in which LI obtained very accurate 

results. Thus, the use of ML models to gap-fill daily rainfall data is highly recommended 

for coastal sites, performing significantly better than LI, arising the effect of sea distance 

in rainfall modeling. Eventually, in Figure 5. 5, all these RMSE, MBE, and R2 values, 

from both areas and all models, are represented in a scatter plot. Due to the different 

performances between the ML models, it can be stated that MLP obtained the best results, 

or very close to them, in most locations. On the other hand, SVM had accurate 

performances in coastal sites, whereas the behavior was not so good in inland locations. 

Finally, RF behaved opposite to SVM, having an accurate performance on inland 

locations and a worse modeling on inland sites. 

Table 5. 4. RMSE, MBE, and R2 performance values from testing dataset for all locations and models in 

the first area (inland locations), using data from neighbor stations. The best values for each site are in 

bold 

Stations (Area 1) Model 
RMSE 

[mm/day] 

MBE 

[mm/day] 
R2 

La Higuera de Arjona 

MLP 1.363 0.016 0.894 

SVM 1.800 −0.106 0.818 

RF 1.384 0.026 0.889 

LI 1.502 −0.008 0.869 

Jaen 

MLP 1.767 −0.097 0.827 

SVM 1.822 −0.064 0.823 

RF 1.880 0.023 0.804 

LI 1.916 0.051 0.797 

Linares 

MLP 1.723 0.083 0.817 

SVM 1.808 −0.106 0.798 

RF 1.730 0.001 0.815 

LI 1.896 −0.001 0.784 

Mancha Real 

MLP 1.662 −0.072 0.831 

SVM 1.948 −0.195 0.780 

RF 1.730 −0.078 0.816 

LI 1.852 0.110 0.790 

Marmolejo 

MLP 2.176  −0.187 0.791 

SVM 2.154 −0.169 0.795 

RF 2.129 0.041 0.801 
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LI 2.392 −0.249 0.753 

Sabiote 

MLP 2.049 −0.101 0.752 

SVM 2.135 −0.224 0.739 

RF 2.105 −0.061 0.740 

LI 2.112 −0.006 0.742 

Torreblascopedro 

MLP 1.270 −0.035 0.894 

SVM 1.246 −0.005 0.898 

RF 1.359 0.019 0.878 

LI 1.277 0.047 0.894 

Mean values  1.792 −0.048 0.815 

Table 5. 5. RMSE, MBE, and R2 performance values from testing dataset for all locations and models in 

the second area (coastal locations), using data from neighbor stations. The best values for each site are in 

bold. 

Stations (Area 2) Model 
RMSE 

[mm/day] 

MBE 

[mm/day] 
R2 

Antequera 

MLP 1.595 0.035 0.875 

SVM 1.632 −0.104 0.875 

RF 2.009 0.042 0.799 

LI 2.839 0.100 0.684 

Archidona 

MLP 1.811 −0.043 0.844 

SVM 1.817 −0.168 0.844 

RF 2.002 −0.019 0.809 

LI 3.286 −0.041 0.594 

Cártama 

MLP 2.640 −0.075 0.756 

SVM 2.502 −0.106 0.778 

RF 2.820 0.002 0.737 

LI 2.630 0.061 0.756 

Churriana 

MLP 2.192 −0.052 0.876 

SVM 2.465 −0.147 0.860 

RF 2.315 0.019 0.862 

LI 2.973 −0.061 0.790 

Málaga 

MLP 2.485 0.099 0.830 

SVM 2.448 −0.170 0.825 

RF 2.433 0.012 0.816 

LI 2.610 0.04 0.785 

Pizarra 

MLP 2.032 0.043 0.854 

SVM 2.083 −0.112 0.853 

RF 2.032 0.039 0.854 

LI 2.108 0.079 0.842 

Vélez-Málaga 

MLP 3.219 −0.074 0.742 

SVM 3.531 −0.376 0.706 

RF 3.306 −0.020 0.719 



 

 

189 

 

LI 3.489 −0.157 0.692 

Mean values  2.475 −0.041 0.794 

 

 

Figure 5. 5. RMSE (a), MBE (b), and R2 (c) values from testing dataset for all stations and models (MLP, 

SVM, RF, and LI), using only precipitation data from neighbor stations. 

3.2. Using Data from the Target Station 

Tables 5. 6 and 5. 7 show the RMSE and MBE values for the inland and coastal 

locations, using two different approaches, one day after and before (approach B) and two 

days after and before (approach C), as inputs, respectively. Generally, all the results are 

much worse than in Tables 2 and 3, for all cases. Mancha Real obtained an RMSE value 

above 4.0 for all models, whereas Churriana got the worse values (RMSE > 6.0 mm/day). 

In terms of MBE, La Higuera de Arjona obtained the best performance (MBE = −0.021 
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mm/day) using MLP and approach B, whereas Marmolejo was the worst (MBE = −1.459 

mm/day), using MLP, and this same approach. Finally, in terms of R2, the values obtained 

are low, from R2 = 0.004 (by SVM in Archidona) to R2 = 0.079 (by MLP in Málaga), 

highlighting the non-autocorrelation between precipitation values from the previous and 

following days. Comparing the results between B and C, in terms of RMSE, on average, 

approach C (RMSE = 4.359 mm/day) obtained slightly better performance than approach 

B (RMSE = 4.323 mm/day). However, in area 2, the use of approach B (RMSE = 4.986 

mm/day) was significantly better than approach C (RMSE = 5.588 mm/day). 

Finally, in Figures 5. 5, and 5. 6, all the RMSE, MBE, and R2 values, from both areas 

and all models, are represented in a scatter plot. 

Table 5. 6. RMSE, MBE, and R2 performance values from testing dataset for all locations and models in 

the first area (inland locations), using data from the target station in two different approaches, with the use 

of the previous and following day and the use of the two previous and two following days. The best 

values from each station are in bold. 

  One Day (B) Two Days (C) 

Stations (Area 1) Model 
RMSE 

[mm/day] 

MBE 

[mm/day] 
R2 

RMSE 

[mm/day] 

MBE 

[mm/day] 
R2 

La Higuera de Arjona 

MLP 4.409 −0.021 0.023 4.079 0.061 0.051 

SVM 4.601 −1.218 0.008 4.348 −1.225 0.027 

RF 4.524 −0.880 0.020 4.224 −0.932 0.033 

Jaen 

MLP 3.875 −1.071 0.016 4.423 −0.016 0.022 

SVM 3.857 −1.039 0.018 4.613 −1.189 0.007 

RF 3.785 −0.771 0.019 4.583 −1.103 0.011 

Linares 

MLP 4.797 −1.378 0.015 4.455 −1.260 0.010 

SVM 4.754 −1.308 0.019 4.423 −1.202 0.010 

RF 4.719 −0.940 0.012 4.371 −0.911 0.014 

Mancha Real 

MLP 3.246 0.128 0.047 3.288 0.305 0.012 

SVM 3.450 −0.946 0.005 3.390 −0.842 0.002 

RF 3.386 −0.820 0.021 3.383 −0.788 0.003 

Marmolejo 

MLP 5.530 −1.459 0.012 5.396 −1.374 0.014 

SVM 5.501 −1.410 0.022 5.360 −1.307 0.015 

RF 5.474 −0.947 0.014 5.235 −0.761 0.028 

Sabiote 

MLP 3.992 −1.159 0.026 4.186 −1.114 0.008 

SVM 3.937 −1.091 0.030 4.155 −1.041 0.006 

RF 3.893 −0.797 0.016 4.119 −0.910 0.010 

Torreblascopedro 

MLP 4.658 −1.287 0.022 4.283 −1.204 0.011 

SVM 4.626 −1.236 0.027 4.263 −1.167 0.010 

RF 4.539 −0.900 0.021 4.202 −0.802 0.015 

Mean values  4.359 −0.978 0.034 4.322 −0.894 0.037 
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Table 5. 7. RMSE, MBE, and R2 performance values from testing dataset for all locations and models in 

the second area (coastal locations), using data from the target station in two different approaches, with the 

use of the previous and following day and the use of the two previous and two following days. The best 

values from each station are in bold. 

  One Day (B) Two Days (C) 

Stations (Area 2) Model 
RMSE 

[mm/day] 

MBE 

[mm/day] 
R2 

RMSE 

[mm/day] 

MBE 

[mm/day] 
R2 

Antequera 

MLP 5.035 −0.246 0.027 4.521 −1.246 0.048 

SVM 5.243 −1.296 0.021 4.480 −1.197 0.045 

RF 5.229 −1.221 0.005 4.467 −1.163 0.017 

Archidona 

MLP 4.108 −1.095 0.008 4.109 −0.059 0.041 

SVM 4.089 −1.012 0.004 4.328 −1.180 0.027 

RF 4.083 −0.480 0.023 4.252 −0.695 0.029 

Cártama 

MLP 5.479 −1.149 0.009 5.235 0.239 0.040 

SVM 5.550 −1.144 0.027 5.431 −1.132 0.021 

RF 5.631 −0.896 0.021 5.374 −1.054 0.024 

Churriana 

MLP 6.551 −1.314 0.051 6.849 −1.406 0.017 

SVM 6.449 −1.263 0.045 6.817 −1.367 0.009 

RF 6.448 −1.148 0.022 6.781 −1.263 0.012 

Málaga 

MLP 5.028 0.294 0.079 6.850 −1.324 0.044 

SVM 5.279 −1.028 0.023 6.765 −1.273 0.056 

RF 5.104 −0.884 0.079 6.693 −1.182 0.041 

Pizarra 

MLP 5.152 0.253 0.031 5.871 0.014 0.050 

SVM 5.266 −1.071 0.044 6.064 −1.205 0.081 

RF 5.267 −0.785 0.025 6.058 −1.074 0.021 

Vélez-Málaga 

MLP 5.295 0.191 0.076 5.360 0.149 0.061 

SVM 5.535 −1.198 0.047 5.544 −1.144 0.040 

RF 5.465 −1.046 0.052 5.489 −1.054 0.056 

Mean values  5.299 −0.835 0.019 5.587 −0.934 0.015 

 

3.3. Comparison of the Two Areas 

In order to compare the results in the two different areas, Figure 5. 7 shows the RMSE, 

MBE, and R2 performance values for these two kinds of locations (inland and coastal), 

using the best approach (data from neighbor stations). In terms of RMSE mean values, 

MLP outperformed RF and SVM. Besides, the models applied to the coastal locations 

under-performed, on average, in all cases and obtained higher variability across sites, 

rather than inland ones. In terms of MBE mean values, RF and LI obtained values very 

close to 0, whereas SVM was overestimated in most stations. Finally, in terms of R2, the 

results by ML models were quite similar in both inland and coastal locations. However, 

the results of LI were significantly worse than ML in coastal sites, whereas SVM 

performed worse on in-land sites than on coastal. 

Additionally, Table 5. 8 displays the maximum improvement, in terms of RMSE, R2, 

and MBE, comparing ML to LI (using the first approach). In inland sites, the RMSE 

improvement ranged from 0.031 mm/day in Torreblascopedro to 0.263 mm/day in Mar-

molejo, as well as from 0.004 (Torreblascopedro) to 0.048 (Marmolejo), in terms of R2. 

On the other hand, the upgrades in coastal sites ranged from RMSE = 0.076 mm/day and 

R2 = 0.012 (in Pizarra) to RMSE = 1.475 mm/day and R2 = 0.25 (in Archidona). Thus, 



 

 

192 

 

coastal lo-cations significantly differed between linear interpolation and ML models for 

gap-filling daily rainfall. In contrast, in inland areas, the improvement was not substantial. 

Thus, using empirical approaches (such as LI) to gap-fill daily rainfall data is not 

recommended, especially in coastal sites; the results are worse than ML, due to the effect 

of sea distance. 

 

Figure 5. 6. RMSE, MBE, and R2 values from testing dataset for all stations and models (MLP, SVM, 

and RF), using only precipitation data from the target station. A) RMSE using approach B, B) MBE using 

approach B, C) R² using approach B, D) RMSE using approach C, E) 
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Figure 5. 7. RMSE (a), MBE (b), and R2 (c) values of the different models (SVM, MLP, and RF) in the 

coastal and inland locations, using rainfall values from neighbor stations as inputs, where the minimum, 

the first interquartile (Q1), the median, the third interquartile (Q3), the maximum, and the outlier values 

are represented. 

Table 5. 8. Best improvements between simple arithmetic averaging and the best ML model from each 

site for R2 and RMSE. A positive value means that ML outperformed LI. 

Station RMSE (mm/day) R2 

La Higuera de Arjona 0.139 0.025 

Jaén 0.149 0.03 

Linares 0.173 0.033 

Mancha Real 0.19 0.041 

Marmolejo 0.263 0.048 

Sabiote 0.063 0.010 

Torreblascopedro 0.031 0.004 

Antequera 1.244 0.191 

Archidona 1.475 0.25 

Cártama 0.128 0.022 

Churriana 0.781 0.086 

Málaga 0.177 0.045 

Pizarra 0.076 0.012 

Vélez-Málaga 0.265 0.05 

3.4. Seasonality Performance 

In order to assess seasonal performance, the RMSE, MBE, and R2 of all the stations 

and approaches, for the different evaluated models (SVM, MLP, and RF), are represented 

in Figure 5. 8. Regarding RMSE, summer, autumn, and spring obtained very similar 

average performances, whereas, in winter, the mean results were the worst. Moreover, 

summer obtained the narrowest interquartile range, but spring and winter got the more 

extensive range, with LI being the model with the worst range (the less confident between 

different stations) among all seasons and models. MLP, MLP, RF, and LI always 

performed with very similar average results, although LI had the widest interquartile 

range for all seasons. Besides, SVM always performed the worst, in terms of MBE. In 

terms of R2, the highest mean values were carried out in winter, whereas the worst results 
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were achieved in summer and spring. Regarding mean, all models performed with similar 

values during the same season. 

 

 
Figure 5. 8. Seasonality performance of the different models (SVM, MLP, and RF) in all the stations and 

approaches 

Additionally, in Figures 5. 9, and 5. 10, the values predicted by the different ML 

models using the first approach are shown and compared to LI. In Figure 5. 9, the 

predictions from Torreblascopedro are plotted (the site that obtained the best 

performance, in terms of RMSE and R2). In winter, all predictions are close to the 1:1 

line, which denotes the excellent performance of this model during this season. The 

predictions were also close to the 1:1 line in spring and autumn, although the points were 

more dispersed than in winter. Finally, summer obtained the worst results, with the 

farthest points to the 1:1 line, especially with high rainfall values. 
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Figure 5. 9. . Scatter plot for predicted values in Torreblascopedro, using MLP, SVM, RF, and LI, during 

the different seasons 

Finally, Figure 5. 10 plots the prediction rainfall values in Archidona. Spring 

obtained the best general predictions among all models, followed by autumn, summer, 

and winter, in this order. The highest differences between ML and LI were found in winter 

and autumn, where most LI predictions were farther from the 1:1 line.  

Generally, summer obtained worse results than the rest of the seasons, due to the 

Mediterranean climate; during summers in Andalusia, precipitation is very occasional. 

They usually respond to local events, such as local torments. So, gap-filling rainfall data 

using neighbor stations with very different pluviometry makes models fail on those 

specific dates. Comparing the results between Torreblascopedro and Archidona, the most 

significant differences can be seen in winter, where LI performed much worse than ML 

approaches. 
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Figure 5. 10. Scatter plot for predicted values in Archidona, using MLP, SVM, RF, and LI, during the 

different seasons. 

3.5. General Discussion 

In terms of R2, the results obtained in this work outperformed those obtained by Kim 

and Ryu [52] (Idaho, USA) using IDWM, OK, and GME, in conjunction with cluster 

analysis, having the best R2 performance, with a value below 0.7 (R2 = 0.689 or R = 0.83). 

Besides, the models developed in this work highly improved the RMSE and R2 

performance of Wuthiwongyothin [53] in Northern Thailand, using the K-means 

technique with the inverse distance weighting (IDW) and correlation coefficient 

weighting (CCW), where the mean R2 values among all stations were below 0.6. 

Moreover, in terms of R2, the values obtained by Sehad et al. [54] in North Algeria using 

multispectral MSG SEVIRI imagery were slightly worse, on average, than the obtained 

in this work, with a mean R2 = 0.7241. However, in absolute terms, its developed model 

outperformed this work’s best results (R2 = 0.921 against R2 = 0.898 in Torreblascopedro 

using SVM). Thus, ML models with neighbor station data located within a 50 km radius 

are highly recommended to gap-fill rainfall values in coastal locations, due to their 
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accurate performance (among other approaches) in the different areas assessed along the 

Andalusia region, being the preferred use of neighbor stations, over the use of cluster 

analysis with stations located within a further radius distance. However, in inland sites, 

the performances carried out by ML against LI were not as significant as in coastal sites. 

Finally, in order to improve the state of the art of these approaches, future works could 

analyze the possibility of false alarms and missing rainfall cases using the models 

developed in this work. 

4. Conclusions 

Three different approaches were evaluated for gap-filling daily rainfall values: (A) 

the use of data from neighbor stations within 50km, (B) the use of one day before and 

ahead from the target station, and (C) the use of two days before and ahead from the target 

station. Fourteen different locations were evaluated from two areas, corresponding to 

inland and coastal sites. Additionally, three different ML models were assessed for this 

purpose: MLP, SVM, and RF. Daily large datasets of around 21 years were used (from 

2000 to 2021), where 70% was used for training and a random 30% for testing purposes. 

Besides, 20% from the training dataset was used to find the fittest hyperparameters. 

Finally, a seasonality analysis was carried out. Based on the arisen results, no ML model 

significantly outperformed the rest, although MLP obtained the best results, or very close 

to them, in most locations. On the other hand, SVM had accurate performances in coastal 

sites, whereas the behavior was not so good at inland locations. RF behaved the opposite 

to SVM, having an accurate performance at inland locations and worse modeling at inland 

sites. Moreover, the first approach (the use of neighbor data) was notably better than the 

other approaches, with RMSE values below 2.0 mm/day and R2 values above 0.85 in most 

stations. There were no significant seasonal differences in performance, in terms of 

RMSE and MBE values in winter, spring, and autumn, but the results obtained in summer 

were generally worse for all locations. Besides, coastal area location models performed 

slightly worse and with higher performance differences between ML and LI, in most sites 

and models, highlighting the differences in rainfall prediction efficiency, depending on 

the sea distance. In conclusion, it could be stated that the use of neighbor data with MLP 

is highly recommended as a rainfall gap-filling technique, rather than the use of data from 

the target station from the past and future. Moreover, when these works’ results are 

compared to different papers’ approaches using a cluster analysis from wider ranges, the 

use of closer stations (within a 50 km radius) obtained better results in terms of R2. 

Finally, due to the significant need to have a complete time series rainfall dataset on 

a daily basis and the increasing interest in installing low-cost wireless sensors (IoT), the 

models developed and assessed in this work can help with gap-filling datasets in this work 

near-real-time, thanks to the decreasing price of the low-cost automated weather stations 

using these new devices. 
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Abstract  

Accurately forecasting reference evapotranspiration (ET0) values is crucial to 

improve crop irrigation scheduling, allowing anticipated planning decisions and 

optimized water resources management and agricultural production. In this work, a recent 

state-of-the-art architecture has been adapted and deployed for multivariate input time 

series forecasting (Transformers) using past values of ET0 and temperature-based 

parameters (28 input configurations) to forecast daily ET0 up to a week (1 to 7 days). 

Additionally, it has been compared to standard machine learning models such as 

multilayer perceptron (MLP), random forest (RF), support vector machine (SVM), 

extreme learning machine (ELM), convolutional neural network (CNN), long short-term 

memory (LSTM) and two baselines (historical monthly mean value and a moving average 

of the previous seven days) in five locations with different geo-climatic characteristics in 

the Andalusian region, Southern Spain. In general, machine learning models significantly 

outperformed the baselines. Furthermore, the accuracy dramatically dropped when 

forecasting ET0 for and horizon higher than three days. SVM, ELM, and RF using 

configurations I, III, IV, and IX outperformed, on average, the rest of the configurations 

in most cases. The best NSE values ranged from 0.934 in Córdoba to 0.869 in Tabernas, 

using SVM. The best RMSE, on average, ranged from 0.704 mm/day for Málaga and 

0.883 mm/day for Conil using RF. In terms of MBE, most models and cases performed 

very accurately, with a total average performance of 0.011 mm/day. It was found a 

relationship in performance between the aridity index and the distance to the sea. The 

higher the aridity index at inland locations, the better results were obtained in forecasts. 

On the other hand, for coastal sites, the higher the aridity index, the higher the error. Due 
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to the good performances and the availability as an open-source repository of these 

models, they can be used to accurately forecast ET0 in different geo-climatic conditions, 

helping to increase efficiency in tasks of great agronomic importance, especially in areas 

with low rainfall or where water resources are limiting for the development of crops. 

 

1. Introduction 

The worldwide population is increasing to alarming values that will require almost 

50% more food to meet the demand in 2050 [1]. Therefore, research into new 

methodologies to outperform agroclimatic forecasts (solar radiation, precipitation, or 

evapotranspiration) is a relevant task that allows the optimization of water resources 

management, the improvement of irrigation scheduling, and, indeed, contributes to the 

great challenge of increasing food production. Furthermore, it is significantly impactful 

in arid and semiarid areas such as the Andalusian region (Southern Spain), where crop 

water uses are elevated and the scarce precipitation is limiting growth and agricultural 

yield. 

Crop evapotranspiration measures the crops’ water demand, being affected by 

atmospheric parameters (such as temperature, wind speed, or solar radiation), specific 

crop types, soil characteristics, as well as management and environmental conditions. The 

evapotranspiration rate from a reference surface with no shortage of water is named 

reference evapotranspiration (ET0), which studies the evaporative demand of the 

atmosphere independently of the surface, the crop type, its development stage, and the 

management practices. Its calculation can be accurately determined using physics-based 

methods like the FAO56-PM [2], which has been assessed globally in different climatic 

conditions and countries like Korea [3], Argentina [4], or Tunisia [5], among others. 

However, measuring all the required parameters (air temperature, relative humidity, wind 

speed, and solar radiation) is very costly in installation and maintenance. Moreover, 

Automated Weather Stations (AWS) usually contain non-reliable long-term datasets, 

mainly for wind speed and solar radiation, due to lack of maintenance or miscalibration 

[6]. These are the reasons why the geographical density of complete AWS is generally 

low, especially in rural areas and developing countries [7,8]. 

Therefore, developing new algorithms with fewer climatic input parameters is of high 

interest. In these terms, Hargreaves and Samani [9] introduced an empirical equation (HS) 

that uses maximum and minimum daily air temperature values (Tx and Tn, respectively) 

and extraterrestrial solar radiation (Ra). Different studies have assessed HS in different 

aridity conditions and countries, such as Iran [10], Italy [11], Bolivia [11], China [12], 

and others. Nevertheless, advances in computation during the last decades led to the 

application of new methodologies based on Artificial Intelligence (AI) with a very 

intensive computational cost. Thanks to the progress in CPU and GPU computation, the 

time spent training these models has dropped significantly, allowing scientists to apply 

them without needing a vast CPU/GPU farm and obtaining promising results in all 

sectors, especially agriculture. For example, Karimi et al. [13] evaluated the performance 

of Random Forest (RF) and other empirical methods to estimate ET0 when several 

meteorological data were missing. RF surpassed the other models for temperature-based 
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data availability when using Tx, Tn, Ra, and Relative Humidity (RH) as input features. 

Ferreira and da Cunha [14] assessed RF, Extreme Gradient Boosting (XGB), Multilayer 

Perceptron (MLP), and Convolutional Neural Network (CNN) to estimate daily ET0 

through different approaches using hourly temperature and relative humidity as features 

in different AWS in Brazil. CNN outperformed the rest of the models for most statistics 

and locations in both local and regional approaches. However, no optimization algorithm 

was used during hyperparameter tuning. Yan et al. [15] evaluated XGB to estimate daily 

ET0 in two different regions (an arid and humid region) from China and seven 

meteorological input combinations using maximum and minimum daily temperature (Tx 

and Tn, respectively), extraterrestrial solar radiation (Ra), relative humidity (RH), wind 

speed (U2) and sunshine hours (n). In order to tune the different hyperparameters, the 

Whale Optimization Algorithm (WOA) was used. Their results showed that using local 

and external (neighbor stations) datasets obtained even better performance than using 

only local data in some cases. Therefore, this strategy is very promising when there is a 

lack of long-term records. Wu et al. [16] studied the performance of Extreme Learning 

Machines (ELM) in different locations in China. They analyzed the use of the K-means 

clustering algorithm and the Firefly Algorithm (FFA) to estimate monthly mean daily ET0 

using Tx, Tn, Ra, and Tm (mean daily temperature). Nourani et al. [17] assessed Support 

Vector Regression (SVR), Adaptive Fuzzy Inference System (ANFIS), MLP, and 

Multiple Linear Regression (MLR) to forecast monthly ET0 in Turkey, North Cyprus, and 

Iraq. Moreover, three ensemble methods were applied (simple averaging, weighted 

averaging, and neural ensemble) to outperform the performance and reliability of single 

modeling. The use of neural ensemble models highly outperformed single modeling in all 

cases, although simple and weighted averaging did not significantly perform better. 

Ferreira and da Cunha [18][18] evaluated the performance of daily ET0 forecasts (up to 7 

days) using CNN, Long Short-Term Memory (LSTM), CNN-LSTM, RF, and MLP using 

hourly data from different weather stations with heterogeneous aridity index 

characteristics in Brazil. In all cases, the use of the machine learning (ML) models 

outperformed the baselines, where CNN-LSTM performed the best in both local and 

regional scenarios using Tx, Tn, maximum and minimum relative humidity (RHx and 

RHn, respectively), wind speed, solar radiation (Rs), Ra, the day of the year (DOY) and 

ET0 values from a lag window in the past (up to 30 days). In order to tune the different 

hyperparameters, a random search algorithm with 30 epochs was used. 

In addition to these well-known and standard ML models, new architectures have 

been recently developed to deal with Natural Language Programming (NLP) problems 

with outstanding results, called Transformers [19]. The Transformer model is an 

Encoded-Decoder architecture based on a self-attention mechanism that looks at an input 

sequence and decides which timesteps are valuable. The promising results of 

Transformers have fostered their use on time series problems due to its apparent 

relationship. In both types of problems, words/parameter values are more or less 

meaningful based on their position. Therefore, several scientists have evaluated attention-

based architectures in forecasting problems. For example, Wu et al. [20] proposed an 

Adversarial Sparse Transformer (AST) based on Generative Adversarial Networks 

(GAN). They assessed it to forecast five different public datasets: (I) an hourly time series 
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electricity consumption dataset, (II) an hourly traffic level from the San Francisco dataset, 

(III) an hourly solar power production dataset, and (IV) an hourly time series dataset from 

M4 competition. Furthermore, [21] analyzed a Transformed-based architecture to 

forecast influenza-like illness (ILI), obtaining promising results. Finally, Li et al. [22] 

evaluated the performance of Transformers in time series forecasting using the same 

public datasets as Wu et al. [20] and obtained more accurate modeling with long-term 

dependencies.  

This work is motivated by the need to minimize error in daily ET0 forecasts, which 

is one of the main drawbacks in the reviewed literature, as well as the outstanding and 

promising performance of Transformers and Transformer-based models in different 

fields. Thereby, this work is the first one using a multivariate input Transformer-based 

architecture in order to forecast daily ET0 (from one to seven days ahead). The 

development and assessment have been carried out using past values of ET0 and 

temperature-based measured variables as features in five sites of Andalusia (Córdoba, 

Málaga, Conil, Tabernas, and Aroche) with different geoclimatic characteristics. Besides, 

standard ML models such as RF, MLP, SVR, ELM, CNN, and LSTM have been also 

evaluated in conjunction with Bayesian optimization to tune all their different 

hyperparameters. Thus, the main objectives of this work are a) to assess the performance 

of the proposed transformer model to forecast ET0 and to compare it to standard ML 

models and two simple baselines (historical monthly mean value and mean of previous 

seven days); b) to evaluate different input feature configurations based on ET0 past values 

and several temperature-based features to forecast ET0 and c) to analyze the forecast 

efficiency depending on different geoclimatic characteristic sites. 

2. Materials and Methods 

2.1. Study area and dataset 

Andalusia is located in the southwest of Europe, ranging from 37⁰ to 39⁰ N, from 1⁰ 

to 7⁰ W, and occupying an extension of 87 268 km². This work was carried out with data 

from five locations of Andalusia (Figure 6. 1), with different geoclimatic characteristics 

and representing a great variability in terms of UNEP aridity index [23] in this region 

(ranging from 0.555 – dry subhumid – in Aroche, to 0.177 – arid – in Tabernas). The 

coordinates and other characteristics of the AWS are reported in Table 6. 1. In contrast, 

in Table 6. 2, the minimum, mean, maximum, and standard deviation values of minimum, 

mean, and maximum daily air temperature (Tn, Tm, and Tx, respectively), relative 

humidity (RHn, RHm, RHx, respectively), wind speed (u2), solar radiation (Rs) and 

reference evapotranspiration (ET0) data are shown. The dataset used in this study belongs 

to the Agroclimatic Information Network of Andalusia (RIA), which can be downloaded 

at https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController.  

 

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController
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Figure 6. 1. Spatial distribution of Aroche, Conil, Córdoba, Málaga, and Tabernas in the Andalusia 

region, south of Spain  

Table 6. 1. Geoclimatic characteristics of the locations assessed in this work (ARO – Aroche, CON – 

Conil de la Frontera, COR – Córdoba, MAG – Málaga and TAB – Tabernas). Time period from 2000 to 

2018. 

Site 

Lon. 

(⁰W) 

Lat. 

(⁰N) 

Alt. 

(m) 

Mean 

annual  

precipitation 

(mm) 

UNEP 

Aridity  

index 

Total  

available 

days 

Aroche 

(ARO) 
6.94 37.95 293 632 

0.555 (dry-

subhumid) 
6399 

Conil de la 

Frontera 

(CON) 

6.13 36.33 22 470 
0.479 

(semiarid) 
5868 

Córdoba 

(COR) 
4.80 37.85 94 589 

0.462 

(semiarid) 
6397 

Málaga 

(MAG) 
4.53 36.75 55 434 

0.366 

(semiarid) 
6438 

Tabernas 

(TAB) 
2.30 37.09 502 237 0.178 (arid) 6694 
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Table 6. 2. Minimum (Min), Mean, Maximum (Max), and Standard Deviation (Std) values of all the daily 

parameters measured: Maximum air temperature (Tx), Mean air temperature (Tm), Minimum air 

temperature (Tn), Maximum relative humidity (RHx), Mean relative humidity (RHm), Minimum relative 

humidity (RHn), Wind speed at 2m height (u2), Solar radiation (Rs), Reference evapotranspiration (ET0) at 

each location (Aroche -ARO-, Conil de la Frontera -CON-, Córdoba -COR-, Málaga  -MAG- and Tabernas 

-TAB-) and for the whole dataset (2000-2018). 

  Tx 

(ºC) 

Tm 

(ºC) 

Tn 

(ºC) 

RHx 

(%) 

RHm 

(%) 

RHn 

(%) 

u2 

(m/s) 

Rs 

(MJ/m²day) 

ET0 

(mm) 

ARO Min 2.5 -0.2 -8.0 32.5 17.2 5.0 0.3 1.0 0.3 

 Mean 23.2 16.1 8.9 89.5 65.9 39.0 1.2 17.8 3.2 

 Max 44.0 34.1 24.9 100.0 100.0 100.0 5.8 34.3 8.7 

 Std 8.1 6.8 5.6 11.2 17.7 19.4 0.5 8.8 2.0 

CON Min 6.4 0.7 -5.3 39.9 24.3 6.9 0.0 0.5 0.4 

 Mean 23.0 17.4 12.1 89.3 72.5 50.5 1.3 18.0 3.2 

 Max 41.3 31.9 26.9 100.0 99.6 97.1 7.9 31.7 9.3 

 Std 5.7 5.2 5.3 9.0 12.3 14.6 1.0 7.8 1.8 

COR Min 3.3 0.0 -8.3 38.9 21.8 4.3 0.0 0.5 0.3 

 Mean 24.6 17.4 11.0 86.8 64.1 37.3 1.6 17.7 3.6 

 Max 45.7 34.7 27.6 100.0 100.0 100.0 7.5 33.2 9.6 

 Std 8.5 7.3 6.2 12.0 18.1 19.3 0.7 8.5 2.3 

MAG Min 6.2 3.3 -4.2 36.0 19.4 4.6 0.0 0.3 0.4 

 Mean 23.9 18.2 12.6 85.1 63.4 39.1 1.3 18.2 3.4 

 Max 42.7 33.7 26.8 100.0 99.7 98.3 4.6 32.4 10.3 

 Std 6.3 5.8 5.5 10.5 14.2 15.1 0.5 8.2 1.9 

TAB Min 4.3 -1.2 -8.2 28.6 16.8 2.8 0.1 0.2 0.4 

 Mean 23.2 16.4 9.8 85.7 59.9 32.9 1.9 18.4 3.8 

 Max 42.5 32.1 26.0 100.0 97.5 95.0 9.9 32.8 10.6 

 Std 7.2 6.6 6.2 11.9 15.1 14.8 0.9 7.8 2.0 

 

In this work, because the accurate estimation of ET0 using limited meteorological 

data has been improved in recent years [14,24] and due to the high availability of 

temperature records, only temperature-based and ET0 values from the past have been used 

as input features to forecast ET0. Specifically, two different windows have been 

evaluated, the use of 15 and 30 days from the past. Moreover, several temperature-based 

variables have been calculated, such as EnergyT (the area below the intraday temperature 

in a whole day), HourminTx (the time when TX occurs), HourminTn (the time when Tn 

occurs), HourminSunset (the time when sunset occurs), HourminSunrise (the time when 

sunrise occurs), es (mean saturation vapor pressure), ea (actual vapor pressure) and VPD 

(vapor pressure deficit), TX-Tn, HourminSunset-HourminTx and HourminSunrise-HourminTn. 

All the configurations assessed in this work contained Tx, Tn, DTR, and Ra as features 

due to their very high Pearson correlation (Figure 6. 2), and the rest of the configurations 

are selected based on their Pearson correlation values and the previous results on these 

same locations regarding ET0 and solar radiation [24–26] estimations. The 27 different 

assessed configurations can be shown in Table 6. 3 
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Figure 6. 2. Pearson correlation values of the assessed features in all the stations 
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Table 6. 3. Configuration table with all configurations. HTX represents HourminTx, HTn represents HourminTn, HSs represents HourminSunset and HSr represents HourminSunrise 

Conf.         TX Tn DTR Ra EnergyT ea es VPD HTX HTn HSs – HTX HSr –HTn ET0 

I X X X X  X       X 

II X X X X X X       X 

III X X X X X  X      X 

IV X X X X X        X 

V X X X X X      X  X 

VI X X X X X       X X 

VII X X X X X     X   X 

VIII X X X X X X   X    X 

IX X X X X X  X  X    X 

X X X X X X    X    X 

XI X X X X X    X  X  X 

XII X X X X X    X   X X 

XIII X X X X X X X X X X X X X 

XIV X X X X X X   X X   X 

XV X X X X X  X  X X   X 

XVI X X X X X    X X   X 

XVII X X X X X    X X X  X 

XVIII X X X X X    X X  X X 

XIX X X X X X   X X X   X 

XX X X X X X   X X    X 

XXI X X X X X   X     X 

XXII X X X X   X      X 

XXIII X X X X         X 

XXIV X X X X       X  X 

XXV X X X X        X X 

XXVI X X X X      X   X 

XXVII X X X X     X    X 
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2.2. Preprocessing methodology 

In machine learning applications, a vital prerequisite to guarantee accurate modeling 

is the use of reliable datasets. In this work, the control guidelines reported by Estévez et 

al. [6] have been followed to identify erroneous and questionable data from sensor 

measurements by applying different tests (range, internal consistency, step, and 

persistence) and spatial consistency test [27]. These quality assurance procedures have 

been successfully employed in different countries [4,28,29]. Afterward, the input and 

output matrixes had to be built depending on the number of lag days from the past (15 or 

30), the features to use (up to 27 input configurations), and the number of days to forecast 

(up to 7 days). In Figure 6. 3, a mind map with all the possibilities is shown. It is worth 

noting that a MIMO (Multiple Input Multiple Output) approach was used in models that 

allowed it, whereas a Direct approach was considered in the others according to the results 

of Ferreira and da Cunha [18].  

Consequently, using configuration 1 and 15 lag days as an example (see Figure 6. 4), 

the values from day to day-14 of Tx, Tn, Tx-Tn, Ra, ea, and ET0 are used as input features 

(a total of 90 values) for all the ML models (except for Transformers – see section 2.5.7), 

where Tx and Tn are directly given by AWS, Ra, and ea can be calculated using Tx, Tn 

and the latitude, as it is stated by [2]. Finally, ET0 is calculated using the well-known 

FAO56 PM method. 

 

 

Figure 6. 3. Mind map of the matrix data structure 

 



 

 

212 

 

  
Figure 6. 4. Forecasting approaches using configuration 1 as an example 

Later, in order to train, tune all the hyperparameters, and assess the final performance 

of the model, for each location, the dataset was split into training (70% of the entire 

dataset length), validation (20% of the training dataset length), and testing (30% of the 

entire dataset length) using a holdout technique. Next, the Bayesian optimization 

algorithm was used to tune all the hyperparameters (the hyperparameter space can be seen 

in Table 1 from Supplementary data). Eventually, after the best hyperparameter set was 

found, the final model was trained using the entire training dataset (70% of the entire 

dataset length) and evaluated using the testing dataset. Figure 6. 5 shows an overview of 

this methodology. 
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Figure 6. 5. Methodology flowchart 

2.3. Reference evapotranspiration calculation 

In this work, the ET0 (FAO PM) values were used as input and target values. They 

were determined following the procedure of [2], and can be mathematically expressed as 

equation 6.1: 

ET0 =
0.408∆(Rn − 𝐺) + 𝛾

900
𝑇𝑚 + 273

𝑢2(es − ea)

∆ + 𝛾(1 + 0.34𝑢2)
 Eq 6.1 

 

where ET0 is the reference evapotranspiration (mm day-1), 0.408 correspond to a 

coefficient (MJ-1 m2 mm), ∆ is the slope of the saturation vapor pressure versus 
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temperature curve (kPa ⁰C-1), Rn is the net radiation calculated at the crop surface  

(MJ m-2 day-1), G is the soil heat flux density at the soil surface (MJ m-2 day-1), 𝛾 is the 

psychrometric constant (kPa ⁰C-1), Tm is the mean daily air temperature (⁰C), u2 is the 

mean daily wind speed at 2m height (m s-1), es and ea are the saturation vapor pressure 

and the mean actual vapor pressure, respectively (kPa). 

2.4. Baselines 

In order to compare the performance of the developed models and configurations, it 

is crucial to have a baseline performance as a starting point. In this sense, two empirical 

baselines have been proposed in this work, following the methodology proposed by 

Ferreira and da Cunha [18]. In the first place, a moving average from the last 7 days is 

used. Secondly, the historical average monthly values from the training dataset were used 

to the corresponding forecast day. 

 

2.5. Machine learning models 

2.5.1. Multilayer Perceptron 

The Multilayer Perceptron (MLP) is one of the most used agronomical and 

hydrological AI models [14,30,31]. Its popularity is based on its similarities to neurons 

in the biological nervous system, easy coding, and promising results in most cases. They 

are structured in three kinds of layers, the input and output layers, representing the inputs 

and outputs of the model, respectively, and the hidden layers, where all the neurons are 

located. The neurons work together to create stimuli (reference evapotranspiration 

forecast values) based on different inputs (the input matrix containing features from the 

past). A back-propagation algorithm makes the neurons learn (automatically update all 

weights and biases) and improve every mini-batch every epoch. A single neuron 

architecture can be seen in Figure 6. 6. 

I1

I2

I3

I4

B

I1W1 + I2W2 + I3W3 
+ I4W4 + B

Activation 
function

Neuron
W1

W2

W3

W4

O

 

Figure 6. 6. Single neuron architecture. I1, I2, I3, and I4 represent the inputs of the neuron, W1, W2, W3, 

and W4 correspond to the weights of every input, B is the bias, and O represents the output of the neuron 

after passing through an activation function  

2.5.2. Extreme Learning Machine 

Extreme Learning Machine models (ELM) were first introduced by Huang et al. [32] 

as a single hidden layer feed-forward neural network with the following main 

characteristics: I) the input weights and biases are randomly generated and II) the output 

weights and biases are analytically determined. As a result, these models do not require 

any training process and have a meager computational cost, with promising results in ET0 

[24,33,34]. However, on the other hand, when the model is working with massive 

datasets, the amount of Random Access Memory (RAM) required is enormous. 
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2.5.3. Support Vector Machine for regression 

Support Vector Machine (SVM) models for regression tasks, also known as Support 

Vector Regression (SVR) models, are supervised AI models based on a different 

functionality than neuron-based architectures such as MLP and ELM. They search for the 

best hyperplane (and its margins) that contains all data points. Thus, it could be easily 

related to linear regression with the flexibility of defining how much error can be 

considered acceptable. Moreover, one of their most important features is the use of 

kernels to allow the model to operate on a high-dimensional feature space. SVMs can be 

mathematically expressed as a minimization problem of equation 6.2 with the constraints 

in equation 6.3.  

𝑀𝐼𝑁 (
1

2
 ‖𝑤‖2 + 𝐶 ∑|𝜉𝑖| 

𝑛

𝑖=1

)  ≥ 0 Eq. 6.2 

|𝑦𝑖 − 𝑤𝑖𝑥𝑖| ≤ 𝜀 + |𝜉𝑖| 
Eq. 6.3 

where wi corresponds to the weight vector, xi to the input vector, yi to the output vector, 

𝜀 represents the margins, ξ represents the deviation of values to the margins, C is a 

coefficient to penalize deviation to the margins and n the length of the training dataset. 

For further details, the work of [35] can be consulted. 

2.5.4. Random Forest 

A Random Forest (RF) is composed of the conjunction of multiple tree-based models 

in order to improve the overall result (ensemble model). The general idea is that different 

models are trained on different data samples (bootstrap) and feature sets. Instead of 

searching for the best features when splitting nodes, it searches among a random subset 

of the features. Thus, it results in greater diversity and better final performance. 

2.5.5. Convolutional Neural Network 

Convolutional Neural Network (CNN) models were first developed for image 

classification problems, where the convolution algorithm captures local patterns to learn 

a representation of figures to classify them. Moreover, this process can be extrapolated to 

1D sequences of data such as time-series datasets. One of the advantages of using 

convolutions is that they can obtain local features relationships without the requirement 

of an extensive preprocessing method and obtaining outstanding results in ET0 [14,36,37] 

and in other agro-climatic parameters [25,38,39]. 

Typically, such CNNs are composed of three layers, the convolutional layer, the 

pooling layer, and a fully connected layer. The convolutional layer is used to extract local 

relationships between the different features and timesteps. The pooling layer is added 

after the convolutional layer, and it gradually reduces the feature map. Finally, a fully 

connected layer is used to forecast the seven days horizon ET0 values (in this work). For 

further details, the work of Aloysius et al. [40] can be reviewed. 

2.5.6. Long Short-Term Memory 

Long Short-Term Memory (LSTM) models were first introduced by Hochreiter et 

al. [41] as a Recurrent Neural Network (RNN) based model that could deal with long-

term dependencies and address the vanishing gradient problem. In order to control the 

information flow, the LSTM block contains an input gate, an output gate, a forget gate, a 

cell state, and a hidden state. The gates are in charge of deciding which information is 
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allowed on the cell state, so whether a piece of information is relevant to keep or forget 

during training. The cell and hidden state can be seen as the memory of the network, used 

to carry relevant information throughout the sequence. 

 

Figure 6. 7. Original Transformer architecture 

2.5.7. Transformers 

A new state-of-the-art architecture has been recently presented for NLP problems, 

the Transformers [19], see Figure 6. 7. One of the main motivations of Transformers is to 

deal with the vanishing gradient problem of LSTM when working with long sequences. 

Although LSTMs can theoretically propagate crucial information over infinitely long 
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sequences, due to the vanishing gradient problem, they pay more attention to recent 

tokens and eventually forget earlier tokens. In contrast, Transformers use an attention 

mechanism, which learns what are the relevant subset of the sequences to accomplish the 

specific task. For a single head, the operation can be expressed as equation 6.4, 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄 𝐾𝑇

√𝑑𝑘

)𝑉 Eq. 6.4 

where Q, K, and V represent the Query, Key and Value, respectively, as an analogy to a 

database, and dk corresponds to queries and keys' dimension. As stated by Yıldırım & 

Asgari-Chenaghlu( 2021), the attention mechanism can be defined as : “This can also be 

seen as a database where we use the query and keys in order to find out how much various 

items are related in terms of numeric evaluation. Multiplication of attention score and 

the V matrix produces the final result of this type of attention mechanism.”. Particularly, 

Transformers use a multi-head attention mechanism, that can be mathematically 

expressed as equation 6.5. 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = [𝐻𝑒𝑎𝑑1, … , 𝐻𝑒𝑎𝑑ℎ]𝑊0 Eq. 6.5 

where Headi is Attention(QWi, KWi, VWi) and W are all the learnable parameter 

matrices.  

Generally, the Transformer is an encoder-decoder architecture. Considering 

translation task from English to Spanish, the encoder takes an input sequence (‘I am from 

Spain’) and maps it into a higher dimensional space using a Multi-Headed attention, an 

adding, a normalization, and a fully connected feed-forward layer. That abstract vector 

obtained in the encoder module is fed into the decoder, which uses it to obtain the 

translated sentence (‘Soy de España’). It is worth noting that both encoder and decoder 

are composed of modules that can be stacked on top of each other multiple times. 

However, before carrying out any mathematical operation to the input data, it is required 

to convert words into numbers. The embedding layer is used for this purpose, 

transforming words into a vector of numbers that can be easily recognized by the model.  

Another vital aspect to consider is the need for Transformers to learn temporal 

dependencies of the different timestamps through positional encoding because they do 

not inherently carry it out. In this work, the positional encoding was achieved using 

equations 6.6 and 6.7 for monthly and daily values (Figure 6. 8). In this way, 31st January 

and 2nd February are close, but 5th May and 26th July are not. 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
) Eq. 6.6 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
) Eq. 6.7 

where pos represent the position, dmodel is the input dimension, and i represents the index 

in the vector. It is worth noting that this temporal dependency information is shared with 

the rest of the models as new features in this work to make the comparison between 

models as fair as possible. Thus, new features are included to all configurations. For 

example, in configuration 1, the input features 
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a) b) 

Figure 6. 8. Sine / Cosine positional encoding for 31 days in a month (a) and 12 months in a year (b) 

The architecture used in this work can be seen in Figure 6. 9. It is based on the 

original Transformer architecture from Vaswani et al. [42] and the attention-based 

architecture of Song et al. [43]. Several aspects were modified. First, since the input data 

already has numerical values, the embedding layer was omitted. Then, the Positional 

encoding include new features to the input matrix instead of adding their values to the 

“embedded vector”. Consequently, four more features were used in this model (sine and 

cosine positional encoding for days in a month, and sine and cosine positional encoding 

for months in a year). Finally, The SoftMax layer is also deleted because we are dealing 

with a regression problem (forecasting ET0). Thus, the process of data in the proposed 

Transformer-based model can be described as follows. Firstly, the input matrix passes 

through a positional encoding mechanism. Then, the positional encoding features are 

added to the input matrix. Later, the data goes to an attention-based block containing 

multi-head attention, dropout, normalization, addition and feed-forward layers. Two 

different variations have been tested depending on the model used in the feed-forward 

layer: TransformerCNN where a convolutional approach has been used and 

TransformerLSTM where a LSTM approach has been implemented. Eventually, the 

processed data goes to a MLP model to carry out the regression task. The following works 

provide further details [44–47] and the code can be checked at AgroML github repository. 
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Figure 6. 9. The architecture of the proposed multi attention-based model 

2.6. Bayesian optimization 

The most critical aspect to obtain accurate performances in machine learning models 

is choosing the fittest hyperparameter set. The results could dramatically change from 

outstanding to very poor. A prevalent practice among the scientific community in 

agronomy and hydrology is using a trial-and-error approach [14,18,48], evaluating from 

dozens to hundreds of sets. However, it is not an efficient approach because the process 

is too slow if the hyperparameter space is large, spending a significant amount of time on 

non-promising configurations. Otherwise, if the hyperparameter space made to be small, 

you may obtain a suboptimal model. Several optimization algorithms have been assessed 

to solve this problem. For example, Particle-Swarm Optimization (PSO), Grey Wolf 

Optimizer (GWO), Genetic Algorithms (GA), Bayesian Optimization (BO), and Whale 

Optimization Algorithm (WOA), among others [31,49–51].  

In this work, the BO algorithm has been proposed due to its high sample efficiency and 

popularity in Automated Machine Learning libraries such as Auto-Weka 2.0 [52], Auto-

Keras [53], and Auto-Sklearn [54] and they can be consulted in Hutter et al. [55]. Part of 

its popularity is related to the close relationship to human behavior when carrying out this 

same process [56,57], where prior results are considered to choose the following set. BO 

is based on Bayes’ theorem, and it can be explained using the following four steps: I) 

definition of the hyperparameter space; II) the algorithm first tries several random sets; 

III) the algorithm takes into account the previous assessed configuration sets when 

choosing the following one, a balancing between exploitation (it exploits regions that are 

known to have good performance) and exploration (choosing region with higher 

uncertainty) and evaluate it; IV) If the process has not finished yet, it goes to step 3. 

In this work, BO has been implemented using Scikit-Optimize (gp_minimize) and 

Python 3.8. In all cases, this process was configured using 50 Bayesian epochs (80% of 

them are randomly chosen), selected after a trial and error algorithm among 50, 100, 150, 

and 200 bayesian epochs, the Mean Absolute Error (MAE) as the objective function and 

the rest of parameters as default. The hyperparameter space can be found in Table 1 from 

the Supplementary material and their results in Table 2. 

 

Table 6. 4. Hyperparameter space for all the models assessed in this work. MLP – Multilayer Perceptron, 

RF – Random Forest, SVR – Support Vector Regression, ELM – Extreme Learning Machine, CNN – 
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Convolutional Neural Network, LSTM – Long Short-Term Memory, TransformerCNN – Transformer 

using CNN in the feed-forward layer, Transformer LSTM – Transformer using LSTM in the feed-forward 

layer, 

Model Hyperparameter Space 

MLP Number of hidden layers Up to 5 

 Number of neurons Up to 20 

 Activation function 
ReLU, Sigmoid 

and Tanh 

 Maximum number of epochs 150 

RF Number of trees in the forest From 10 to 1000 

 
Number of features to consider 

when looking for the best split 
Sqrt, Log2 

SVR Kernel 
Linear, Poly, Rbf, 

Sigmoid 

 c From 0.01 to 10 

 Epsilon From 0.01 to 10 

ELM Maximum number of neurons 150 

 Activation function 

Linear, Sigmoid, 

Tanh, Rbf_l1, 

Rbf_l2, Rbf_Linf 

CNN 
Number of convolutional block 

layers 
From 1 to 5 

 
Number of convolutional layers 

in the block 
From 1 to 5 

 Number of filters From 16 to 64 

 
Length of the convolutional 

window 
From 1 to 20 

 Length of the pooling window From 1 to 5 

 Type of pooling function 
Average and 

Maximum 

 Number of hidden layers From 1 to 3 

 Number of neurons From 1 to 20 

 Activation function ReLU 

 Optimizer function Adam 

 Maximum number of epochs 150 

LSTM Number of layers From 1 to 5 

 Number units From 16 to 64 

 Number of hidden layers From 1 to 3 

 Number of neurons From 1 to 20 

 Activation function ReLU 

 Optimizer function Adam 

 Maximum number of epochs 150 

TransformerCNN Number of attention heads From 1 to 5 
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 Size of the head From 1 to 5 

 Number of filters From 16 to 64 

 Number of transformers blocks From 1 to 3 

 
Length of the convolutional 

window 
From 1 to 20 

 Number of hidden layers  Up 1 to 3 

 Number of neurons  Up to 20 

 Maximum number of epochs 150 

TransformerLSTM Number of attention heads From 1 to 5 

 Size of the head From 1 to 5 

 Number of units Fro 16 to 64 

 Number of transformers blocks From 1 to 3 

 Number of hidden layers  Up 1 to 3 

 Number of neurons  Up to 20 

 Maximum number of epochs 150 

 

Table 6. 5. Fittest hyperparameters for the best model and configuration at every location (All the 

hyperparameters name are the same as the variables in AgroML) 

Model Station Conf Hyperparameters 

CNN ALM04 7 n_conv_layers = 1 

n_conv_base = 5 

n_filters = 38 

n_kernels = 20 

type_pool = Max,  

pool_size = 2 

n_hidden_layers = 1 

n_neurons = 20 

epochs = 150 

activation = relu 

optimizer = adam 

CNN CAD05 26 n_conv_layers = 1 

n_conv_base = 5 

n_filters = 64  

n_kernels = 20 

type_pool = Avg 

pool_size = 4 

n_hidden_layers = 3 

n_neurons = 20 

epochs = 149 

activation = relu 

optimizer = adam 

CNN COR06 4 n_conv_layers = 1  

n_conv_base = 3 
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n_filters = 37 

n_kernels = 18 

type_pool = Avg 

pool_size = 2 

n_hidden_layers = 2 

n_neurons = 9 

epochs = 145 

activation = relu 

optimizer = adam 

CNN HUE06 4 n_conv_layers = 1 

n_conv_base = 1 

n_filters = 42 

n_kernels = 20 

type_pool = Avg 

pool_size = 2 

n_hidden_layers = 1 

n_neurons = 20 

epochs = 150 

activation = relu 

optimizer = adam 

CNN MAG01 22 n_conv_layers = 1 

n_conv_base = 1 

n_filters = 32 

n_kernels = 10 

type_pool = Avg 

pool_size = 5 

n_hidden_layers = 1 

n_neurons = 19 

epochs = 149 

activation = relu 

optimizer = adam 

ELM ALM04 1 activation = rbf_l2 

neurons = 145 

ELM CAD05 2 activation = rbf_l2 

neurons = 150 

ELM COR06 1 activation = rbf_l2 

neurons = 150 

ELM HUE06 22 activation = rbf_l2 

neurons = 150 

ELM MAG01 4 activation = rbf_l2 

neurons = 150 

LSTM ALM04 6 n_layers = 1 

units = 64 
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n_hidden_layers = 1 

n_neurons = 20 

epochs = 150 

activation = relu 

optimizer = adam 

LSTM CAD05 14 n_layers = 1 

units = 59 

n_hidden_layers = 1 

n_neurons = 20 

epochs = 150 

activation = relu 

optimizer = adam 

LSTM COR06 16 n_layers = 1 

units = 64 

n_hidden_layers = 1 

n_neurons = 20 

epochs = 150 

activation = relu 

optimizer = adam 

LSTM HUE06 8 n_layers = 1 

units = 64 

n_hidden_layers = 1 

n_neurons = 15 

epochs = 150 

activation = relu 

optimizer = adam 

LSTM MAG01 22 n_layers = 1 

units = 47 

n_hidden_layers = 2 

n_neurons = 15 

epochs = 150 

activation = relu 

optimizer = adam 

MLP ALM04 13 activation = relu 

optimizer = adam 

epochs = 59 

neurons = [18, 16, 14, 9] 

MLP CAD05 14 activation = relu 

optimizer = adam 

epochs = 100 

neurons = [ 20, 20] 

MLP COR06 7 activation = relu 

optimizer = adam 
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epochs = 66 

neurons = [13, 15, 18, 9, 14] 

MLP HUE06 2 activation = relu 

optimizer = adam 

epochs = 100 

neurons = [20, 18, 13] 

MLP MAG01 25 activation = relu 

optimizer = adam 

epochs = 23 

neurons = [20, 12] 

RF ALM04 3 n_estimators = 70 

max_features = log2 

RF CAD05 16 n_estimators = 69 

max_features = log2 

RF COR06 13 n_estimators = 100 

max_features = sqrt 

RF HUE06 18 n_estimators = 75 

max_features = log2 

RF MAG01 5 n_estimators = 60 

max_features = log2 

SVM ALM04 21 kernel = rbf 

c = 5.680 

epsilon = 0.103 

SVM CAD05 26 kernel = poly 

c = 2.203 

epsilon = 0.077 

SVM COR06 13 kernel = linear 

c = 10.0 

epsilon = 0.111 

SVM HUE06 11 kernel = rbf 

c = 0.805 

epsilon = 0.052 

SVM MAG01 2 kernel = rbf 

c = 1.388 

epsilon = 0.287 

Transformer CNN ALM04 5 head_size = 4 

num_heads = 4 

ff_dim = 29 

num_transformer_blocks = 2 

n_hidden_layers = 2 

n_hidden_neurons = 17 

n_kernel = 4 

n_strides = 2 
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Transformer CNN CAD05 20 head_size = 3 

num_heads = 3 

ff_dim = 29 

num_transformer_blocks = 2 

n_hidden_layers = 2 

n_hidden_neurons = 16 

n_kernel = 2 

n_strides = 3 

Transformer CNN COR06 2 head_size = 3 

num_heads = 5 

ff_dim = 22 

num_transformer_blocks = 2 

n_hidden_layers = 1 

n_hidden_neurons = 19 

n_kernel = 4 

n_strides = 5 

Transformer CNN HUE06 13 head_size = 5 

num_heads = 3 

ff_dim = 29 

num_transformer_blocks = 3 

n_hidden_layers = 1 

n_hidden_neurons = 14 

n_kernel = 2 

n_strides = 1 

Transformer CNN MAG01 4 head_size = 5 

num_heads = 4 

ff_dim = 14 

num_transformer_blocks = 3 

n_hidden_layers = 1 

n_hidden_neurons = 5 

n_kernel = 5 

n_strides = 2 

Transformer LSTM ALM04 3 head_size = 1 

num_heads = 5 

lstm_units = 64 

num_transformer_blocks = 3 

n_hidden_layers = 1 

n_hidden_neurons = 20 

Transformer LSTM CAD05 18 head_size = 2 

num_heads = 3 

lstm_units = 56 

num_transformer_blocks = 2 

n_hidden_layers = 2 
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n_hidden_neurons = 10 

Transformer LSTM COR06 8 head_size = 3 

num_heads = 2 

lstm_units = 52 

num_transformer_blocks = 3 

n_hidden_layers = 1 

n_hidden_neurons = 12 

Transformer LSTM HUE06 10 head_size = 5 

num_heads = 1 

lstm_units = 64 

num_transformer_blocks = 3 

n_hidden_layers = 1 

n_hidden_neurons = 20 

Transformer LSTM MAG01 4 head_size = 5 

num_heads = 4 

lstm_units = 49 

num_transformer_blocks = 2 

n_hidden_layers = 2 

n_hidden_neurons = 16 

 

 

2.7. Evaluation metrics 

The model performances have been evaluated by using the following parameters: 

Mean Bias Error (MBE), Root Mean Square Error (RMSE), and the Nash-Sutcliffe model 

efficiency coefficient (NSE). The MBE, RMSE, and NSE are defined as equations 8, 9, 

and 10: 

𝑀𝐵𝐸 =  
1

𝑚
∑ 𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖

𝑚

𝑖=1

 Eq. 6.8 

𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑(𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)2

𝑚

𝑖=1

 
Eq. 6.9 

𝑁𝑆𝐸 = 1 −
∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)

2𝑚
𝑖=1

∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)
2𝑚

𝑖=1

 Eq. 6.10 

where meas and pred correspond to the observed and forecasted ET0 values, respectively, 

n represents the number of records in the testing dataset and the bar denotes the mean. 

3. Results and Discussion 

It is worth noting that the code developed in this work is available on GitHub in the 

public repository called agroML, which can be found at 

https://github.com/Smarity/agroML. This new library focuses on helping scientists 

https://github.com/Smarity/agroML


 

 

227 

 

research state-of-the-art machine learning models, mainly focused on agronomy 

estimations and forecasts but easily extrapolated to other sectors and problems. It lets new 

scientists test these models on their datasets, and experienced scientists commit new 

features and architectures. The code has been programmed in standard Python using 

Tensorflow, Scikit-Learn, Scikit-Optimize, Pandas, and Numpy.  

3.1. Baseline performance 

Table 6. 6. RMSE values for ET0 forecast during seven forecast horizons and the two 

empirical baselines (B1 – using the average value from the last seven days – and B2 – using the 

mean monthly value from the training dataset) and 6.7 show the RMSE and NSE 

performance for the baselines along the different forecast horizons (up to 1 week), where 

B1 refers to the moving average of last seven ET0 values and B2 the use of mean historical 

monthly ET0 values (mean ET0 values for each month of the year). Generally, B2 

outperformed B1 for all the forecast horizons except for one day ahead, where B1 

performed better in all sites. Besides, B1 obtained the most accurate forecasts on the one-

day ahead horizon, and it gradually dropped when the forecast horizon increased. In 

Aroche, the most humid site, the best performance in both RMSE and NSE values was 

obtained (NSE=0.9038 and RMSE=0.6390), followed by Córdoba, Málaga, Conil, and 

Tabernas (the aridest site), in this order. It suggests a relationship between the aridity 

index, distance to the sea, and the performance of models. In inland locations, the higher 

the aridity index, the fewer the forecasting errors. On the other hand, in coastal locations, 

it behaves right the opposite. The higher the aridity index and the far from the sea, the 

more precise the ET0 modeling. Finally, Table 6.8 shows the MBE values for the different 

stations and forecast horizons. In this case, B1 outperformed B2 in most of the cases. 

 

Table 6. 6. RMSE values for ET0 forecast during seven forecast horizons and the two empirical baselines 

(B1 – using the average value from the last seven days – and B2 – using the mean monthly value from the 

training dataset) 

Location Baseline 
Forecast Horizon 

1 2 3 4 5 6 7 

COR 
B1 0.7551 0.8733 0.9365 0.9926 1.0172 1.0363 1.0644 

B2 0.8374 0.8374 0.8374 0.8374 0.8374 0.8374 0.8374 

MAG 
B1 0.7665 0.9084 0.9439 0.9632 0.9902 1.0140 1.0188 

B2 0.8143 0.8143 0.8143 0.8143 0.8143 0.8143 0.8143 

TAB 
B1 0.8515 0.9961 1.0451 1.0938 1.1075 1.1568 1.1628 

B2 0.9176 0.9176 0.9176 0.9176 0.9176 0.9176 0.9176 

CON 
B1 0.7987 1.0675 1.1950 1.2474 1.2404 1.2444 1.2778 

B2 0.9567 0.9567 0.9567 0.9567 0.9567 0.9567 0.9567 

ARO 
B1 0.6390 0.7882 0.8840 0.9337 0.9820 0.9901 1.0032 

B2 0.8027 0.8027 0.8027 0.8027 0.8027 0.8027 0.8027 

Mean B1 0.7622 0.9277 1.0009 1.0461 1.0675 1.0883 1.1054 

 B2 0.8667 0.8667 0.8667 0.8667 0.8667 0.8667 0.8667 

 



 

 

228 

 

Table 6. 7. NSE values for ET0 forecast during seven forecast horizons and the two empirical baselines 

(B1 – using the average value from the last seven days – and B2 – using the mean daily monthly value 

from the training dataset) 

Location Model 
Forecast Horizon 

1 2 3 4 5 6 7 

COR 
B1 0.8926 0.8564 0.8349 0.8145 0.8052 0.7978 0.7868 

B2 0.8680 0.8680 0.8680 0.8680 0.8680 0.8680 0.8680 

MAG 
B1 0.8376 0.7719 0.7538 0.7436 0.7290 0.7157 0.7129 

B2 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 

TAB 
B1 0.8197 0.7531 0.7283 0.7023 0.6947 0.6671 0.6638 

B2 0.7906 0.7906 0.7906 0.7906 0.7906 0.7906 0.7906 

CON 
B1 0.8235 0.6844 0.6042 0.5684 0.5728 0.5695 0.5455 

B2 0.7465 0.7465 0.7465 0.7465 0.7465 0.7465 0.7465 

ARO 
B1 0.9038 0.8537 0.8160 0.7949 0.7732 0.7696 0.7636 

B2 0.8481 0.8481 0.8481 0.8481 0.8481 0.8481 0.8481 

Mean 
B1 0.8554 0.7849 0.7474 0.7247 0.7150 0.7039 0.6945 

B2 0.8140 0.8140 0.8140 0.8140 0.8140 0.8140 0.8140 

 

Table 6. 8. MBE values for ET0 forecast during seven forecast horizons and the two empirical baselines 

(B1 – using the average value from the last seven days – and B2 – using the mean daily monthly value 

from the training dataset) 

Location Model Forecast Horizon 

1 2 3 4 5 6 7 

COR 
B1 -0.0002 -0.0001 -0.0001 0.0000 -0.0002 -0.0001 0.0007 

B2 0.1033 0.1033 0.1033 0.1033 0.1033 0.1033 0.1033 

MAG 
B1 0.0000 0.0002 0.0000 0.0000 -0.0008 -0.0016 -0.0015 

B2 0.0710 0.0710 0.0710 0.0710 0.0710 0.0710 0.0710 

TAB 
B1 0.0003 0.0003 0.0000 -0.0018 -0.0034 -0.0041 -0.0046 

B2 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972 

CON 
B1 0.0014 0.0047 0.0084 0.0117 0.0157 0.0198 0.0236 

B2 -0.0113 -0.0113 -0.0113 -0.0113 -0.0113 -0.0113 -0.0113 

ARO 
B1 0.0006 0.0011 0.0012 0.0021 0.0029 0.0036 0.0052 

B2 0.1787 0.1787 0.1787 0.1787 0.1787 0.1787 0.1787 

Mean B1 0.0004 0.0012 0.0019 0.0024 0.0028 0.0035 0.0047 

 B2 0.0878 0.0878 0.0878 0.0878 0.0878 0.0878 0.0878 

 

3.2. Analysis of ML performance 

Table 6.9 shows the minimum, mean, and maximum NSE, RMSE, and MBE values 

for all the sites and models using two different lag intervals (15 and 30 days). Generally, 

in terms of NSE and RMSE, the use of 15 days slightly outperformed all the models using 

30 lag days for almost all the cases. On the other hand, the MBE performance for all 

models, locations, and lag days was very similar to one another. Additionally, ML 

approaches highly outperformed the baselines, although the CNN and the transformer-

based models gave the worst results in all sites. In Tabernas, the most arid site, in terms 

of NSE and RMSE, all the ML models surpassed the baselines performances. SVM 

obtained the best values (NSE=0.869 and RMSE=0.700 mm/day), followed very closely 
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by RF (NSE=0.867 and RMSE=0.706 mm/day), which outperformed, on average, the rest 

of the models. On the other hand, the CNN model obtained the worst modeling for 30 lag 

days (NSE=0.423 and RMSE=1.438 mm/day). All the models obtained high mean MBE 

metrics, obtaining the highest MBE value (-0.974 mm/day) using CNN and 30 lag days. 

In Conil, the best values were obtained by SVM (RMSE=0.684 mm/day), RF 

(RMSE=0.703 mm/day) and ELM (RMSE=0.717 mm/day), in this order and for 15 lag 

days. In terms of NSE, these three models also gave the best performance on mean values 

and for 15 lag days, whereas the worst were obtained by CNN (NSE=0.520) for 30 lag 

days. In Córdoba, SVM and ELM using 15 lag days outperformed the rest of the models 

in both RMSE (0.605 and 0.614 mm/day) and NSE (0.934 and 0.932), respectively. 

Moreover, on average, the best results were obtained in Córdoba compared to the rest of 

the sites (NSE>0.85, RMSE<0.80 mm/day and MBE»0.0 mm/day). In Aroche, the most 

humid site, the NSE values ranged from 0.737 (CNN model) to 0.922 (SVM model) and 

the RMSE values ranged from 0.597 mm/day (SVM model) to 1.097 mm/day (CNN 

model). Finally, in Málaga, the results using 30 lag days were slightly better for all 

models. SVM and RF outperformed the rest of the models in terms of NSE (0.894 and 

0.892, respectively) and RMSE (0.631 mm/day and 0.640 mm/day, respectively), 

whereas the worst results were obtained using CNN (NSE=0.409 and RMSE=1.499 

mm/day) and LSTM (NSE=0.202 and RMSE=1.739 mm/day). 

.
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Table 6. 9. Minimum (Min.), mean and maximum (Max.) of NSE, RMSE, and MBE values for all locations (TAB – Tabernas, CON – Conil, COR – Córdoba, ARO – 

Aroche, MAG - Málaga) and models using two different lag days window (15 days and 30 days). T_CNN refers to Transformer using CNN in the feed-forward layer, while 

T_LSTM refers to Transformers using LSTM in this same layer 

    Lag NSE RMSE MBE 

Station Model days Min Mean Max Min Mean Max Min Mean Max 

TAB 

CNN 
15 0.71 0.778 0.862 0.723 0.916 1.050 0.001 0.123 0.484 

30 0.423 0.752 0.848 0.734 0.939 1.438 0 -0.026 -0.974 

ELM 
15 0.794 0.82 0.86 0.727 0.825 0.885 0.043 0.082 0.126 

30 0.778 0.807 0.853 0.722 0.83 0.892 0 0.021 0.079 

LSTM 
15 0.749 0.797 0.845 0.766 0.877 0.976 -0.003 0.088 0.236 

30 0.73 0.771 0.828 0.783 0.905 0.984 0 -0.009 -0.209 

MLP 
15 0.769 0.81 0.854 0.743 0.848 0.936 0 0.046 0.265 

30 0.715 0.781 0.841 0.75 0.883 1.012 0 -0.029 -0.21 

RF 
15 0.802 0.821 0.867 0.71 0.823 0.866 0.057 0.094 0.117 

30 0.799 0.819 0.859 0.706 0.805 0.85 0 -0.011 -0.033 

SVM 
15 0.779 0.817 0.869 0.704 0.831 0.915 0 0.074 0.183 

30 0.746 0.812 0.862 0.7 0.818 0.955 0 -0.018 0.121 

T_CNN 
15 0.742 0.789 0.84 0.779 0.893 0.989 0 0.1 0.324 

30 0.705 0.77 0.841 0.75 0.905 1.029 0 -0.017 -0.297 

T_LSTM 
15 0.726 0.78 0.829 0.804 0.912 1.019 0.002 0.099 0.257 

30 0.699 0.765 0.831 0.775 0.916 1.040 0 -0.05 -0.312 

CON 

CNN 
15 0.58 0.674 0.817 0.759 1.017 1.154 0 -0.037 -0.56 

30 0.303 0.52 0.724 0.889 1.164 1.409 0.002 -0.151 -0.706 

ELM 
15 0.716 0.753 0.837 0.717 0.885 0.959 0 0 0.048 

30 0.635 0.697 0.779 0.796 0.927 1.021 -0.002 -0.057 -0.122 



 

 

231 

 

LSTM 
15 0.651 0.724 0.788 0.816 0.936 1.055 0 -0.029 -0.131 

30 0.378 0.552 0.706 0.919 1.126 1.326 0 -0.061 0.304 

MLP 
15 0.579 0.709 0.808 0.778 0.959 1.160 0 -0.059 -0.26 

30 0.368 0.573 0.738 0.866 1.099 1.338 0.003 -0.153 -0.371 

RF 
15 0.721 0.754 0.843 0.703 0.883 0.939 0.003 0.026 0.057 

30 0.667 0.704 0.799 0.759 0.915 0.967 -0.02 -0.054 -0.099 

SVM 
15 0.64 0.752 0.851 0.684 0.885 1.065 0 -0.146 -0.25 

30 0.547 0.672 0.804 0.749 0.961 1.146 0.015 -0.235 -0.393 

T_CNN 
15 0.561 0.679 0.8 0.794 1.008 1.184 0 -0.047 -0.225 

30 0.422 0.569 0.723 0.891 1.104 1.294 -0.001 -0.096 -0.451 

T_LSTM 
15 0.57 0.674 0.746 0.895 1.018 1.177 0 -0.035 -0.166 

30 0.389 0.588 0.707 0.917 1.080 1.310 0 -0.082 -0.259 

COR 

CNN 
15 0.818 0.882 0.929 0.63 0.808 1.011 0 0.056 -0.505 

30 0.522 0.853 0.913 0.67 0.873 1.592 0 0.035 1.003 

ELM 
15 0.879 0.9 0.932 0.614 0.745 0.824 0 0.015 0.084 

30 0.848 0.874 0.909 0.686 0.813 0.896 -0.001 0.046 0.128 

LSTM 
15 0.877 0.894 0.924 0.649 0.771 0.831 0 0.041 0.178 

30 0.835 0.865 0.902 0.713 0.841 0.932 0 0.027 0.193 

MLP 
15 0.858 0.893 0.927 0.639 0.773 0.891 0 0.038 0.211 

30 0.801 0.858 0.908 0.69 0.86 1.029 -0.001 0.011 0.172 

RF 
15 0.892 0.903 0.928 0.633 0.734 0.776 0.011 0.029 0.045 

30 0.87 0.883 0.912 0.674 0.783 0.826 0 0.015 0.033 

SVM 
15 0.869 0.9 0.934 0.605 0.744 0.855 0 0.053 0.13 

30 0.832 0.875 0.914 0.667 0.809 0.942 0 0.064 0.167 

T_CNN 15 0.857 0.885 0.906 0.725 0.802 0.896 0.003 0.052 0.207 
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30 0.815 0.855 0.892 0.749 0.87 0.988 0 0.023 -0.28 

T_LSTM 
15 0.842 0.88 0.906 0.724 0.818 0.939 0 0.048 0.204 

30 0.824 0.859 0.885 0.773 0.859 0.965 0 0.037 0.23 

ARO 

CNN 
15 0.799 0.851 0.913 0.624 0.816 0.951 0 0.106 0.436 

30 0.737 0.84 0.916 0.62 0.851 1.097 0.001 0.056 0.256 

ELM 
15 0.85 0.874 0.917 0.609 0.751 0.823 -0.001 0.056 0.113 

30 0.853 0.878 0.918 0.613 0.744 0.819 0.02 0.082 0.141 

LSTM 
15 0.823 0.86 0.912 0.627 0.792 0.892 0 0.068 0.196 

30 0.798 0.85 0.908 0.647 0.827 0.96 -0.002 0.038 0.22 

MLP 
15 0.803 0.861 0.911 0.632 0.789 0.943 -0.001 0.079 0.288 

30 0.793 0.853 0.913 0.63 0.815 0.972 0 0.02 0.164 

RF 
15 0.86 0.877 0.914 0.62 0.742 0.794 0.022 0.098 0.139 

30 0.855 0.883 0.92 0.606 0.73 0.814 0.009 0.047 0.07 

SVM 
15 0.817 0.869 0.918 0.607 0.764 0.908 -0.003 0.136 0.2 

30 0.81 0.868 0.922 0.597 0.772 0.931 0.006 0.091 0.201 

T_CNN 
15 0.802 0.845 0.902 0.664 0.834 0.945 0.002 0.099 0.281 

30 0.794 0.845 0.901 0.674 0.84 0.97 0 0.018 0.21 

T_LSTM 
15 0.8 0.843 0.885 0.719 0.84 0.95 0 0.089 0.278 

30 0.78 0.838 0.882 0.736 0.859 1.001 0 0.042 0.238 

MAG 

CNN 
15 0.734 0.8 0.871 0.681 0.847 0.98 0 0.046 0.311 

30 0.409 0.819 0.88 0.672 0.823 1.499 0 -0.003 1.113 

ELM 
15 0.821 0.841 0.878 0.662 0.756 0.804 0 0.031 0.071 

30 0.841 0.857 0.884 0.663 0.736 0.777 -0.001 -0.04 -0.084 

LSTM 
15 0.81 0.83 0.862 0.705 0.782 0.828 0 0.036 0.132 

30 0.202 0.84 0.872 0.695 0.773 1.739 0 -0.069 -1.052 
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MLP 
15 0.773 0.823 0.872 0.678 0.798 0.904 0 0.036 0.195 

30 0.763 0.835 0.88 0.672 0.788 0.948 0 -0.048 -0.261 

RF 
15 0.832 0.849 0.882 0.651 0.738 0.778 0 0.027 0.044 

30 0.859 0.869 0.892 0.64 0.704 0.732 -0.02 -0.039 -0.061 

SVM 
15 0.797 0.843 0.885 0.643 0.75 0.855 0 0.049 -0.138 

30 0.814 0.858 0.894 0.631 0.731 0.839 0 -0.006 -0.094 

T_CNN 
15 0.741 0.809 0.853 0.727 0.829 0.967 0.001 0.009 0.198 

30 0.773 0.825 0.864 0.716 0.812 0.928 0.002 -0.097 -0.371 

T_LSTM 
15 0.768 0.801 0.835 0.771 0.846 0.916 0 0.001 -0.13 

30 0.787 0.827 0.852 0.749 0.808 0.897 0 -0.063 -0.247 
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In Figure 6. 10 and Figure 6. 11, the RMSE and NSE values for all forecasting 

predictions in the different sites were shown in a boxplot, respectively. Firstly, no 

significant performance distinctions were observed from the two approaches depending 

on the number of lag days (15 and 30 days). However, the first approach (15 lag days) 

slightly outperformed the second (30 lag days) on mean values, and more precision was 

observed (a lower interquartile range). Besides, the number of outliers having non-

accurate modelings was much higher using the second approach. Then, as a general rule, 

using daily values from 15 days in the past is more recommended than using 30 days. 

Furthermore, regarding the efficiency of different models, SVM, RF and ELM were 

predominantly better than the rest of the models according to NSE and RMSE values, 

giving more precise results. In contrast, CNN and both Transformer models were at the 

bottom in the ranking. Finally, in Figure 6. 12 , the MBE results are plotted in a boxplot. 

The results were very accurate in both approaches and for all the models and sites, but 

CNN gave more outliers, especially using the 30 lag days approach. 

 

 

 

(a) 

 

(b) 

Figure 6. 10. Boxplot with RMSE values from all models and configurations in the different AWS, using 

15 lag days (a) and 30 lag days (b) 
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(a) 

 

(b) 

Figure 6. 11. Boxplot with NSE values from all models and configurations in the different AWS, using 15 

lag days (a) and 30 lag days (b) 

1 
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(a) 

 

(b) 

Figure 6. 12. Boxplot with MBE values from all models and configurations in the different AWS, using 15 

lag days (a) and 30 lag days (b) 

To further analyze these results, Figures 6.13, 6.14 and 6.15 show the best statistic 

values (NSE, RMSE and MBE, respectively) of all the models and sites for the different 

forecast horizons used. In terms of NSE (Figure 6.13), all ML models highly 

outperformed B1 and B2 in all the forecast horizons and locations, except for Conil. In 

Conil, only SVM, RF, and ELM outperformed both B1 and B2 in all cases. On the other 

hand, the Transformers, CNN and MLP models underperformed B1 and B2 for a horizon 

higher than 3 days. Regarding RMSE, the results were similar to Figure 6.14. However, 

a more significant improvement of ML models is appreciated for most models and 

horizons. In terms of MBE (Figure 6.15), B2 obtained significantly worse results in 

Aroche, Córdoba, Málaga and Tabernas, where ML performed very accurately in all 

cases. In Conil, there are no major differences in performance between all the models. 

Thereby, due to these results, it could be stated that the use of ML models to forecast ET0 

up to a week is highly recommended, especially SVM, RF, and ELM models. Generally, 

B1 highly outperformed B2 to forecast ET0 values one day ahead, but its performance 

profoundly decreased for higher horizons, obtaining even worse results than B2. It 

denotes a low autocorrelation of daily ET0 values but a higher relation with historical 

monthly values. Besides, SVM is generally on top of performance in terms of NSE and 
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RMSE, whereas regarding MBE, all models performed very accurately. Finally, it is 

worth noting that in Conil (a coastal site with an aridity index close to being a dry sub-

humid climate), the best ML models (SVM, RF, and ELM) could not highly outperform 

B2 as in the rest of the locations when forecasting more than two days ahead, due to the 

effect of a close distance to the sea and the higher aridity index. 

 

 

Figure 6. 13. Scatter plot with the best NSE value for each model and location. 

  

Figure 6. 14. Scatter plot with the best RMSE value for each model and location. 
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Figure 6. 15. Scatterplot with the best MBE value for each model and location. 

3.3. Assessing the different configurations 

In order to evaluate the performance of the different configurations at all locations, 

Table 6.10 shows the average and best RMSE values of each configuration in the different 

sites. In Tabernas, configurations III, XXII, IV, and IX obtained the most accurate results 

on mean, whereas configurations XVI, XII, and XXIV were the worst. In Conil, the best 

configurations in terms of mean RMSE were XXV, VI, and XX. Furthermore, 

configuration XXVI obtained the best value in absolute terms. On the other hand, 

configurations XIII, XI, and XII performed as the worst on average. In Córdoba, 

regarding mean values, configurations XVII, XXIV, and V were at the bottom, whereas 

configurations III, XXVII, and II were at the top of the ranking. In Aroche, configuration 

V obtained the lowest RMSE value (RMSE=0.598 mm/day). Besides, considering the 

mean values, all configurations obtained very similar performance, ranging from 

RMSE=0.764 mm/day (configuration I), followed closely by configurations IV 

(RMSE=0.764 mm/day), III (RMSE=0.767 mm/day), IX (RMSE=0.767 mm/day) and 

XXII (RMSE=0.768 mm/day), to RMSE=0.788 mm/day (configurations XIII and XVII). 

Thus, it could be stated that on mean, despite there being no significant differences in 

performances between the best and worse configuration, the use of configurations I, III, 

IV, and IX were more recommended. 

Table 6. 10. Mean and minimum RMSE values (mm/day) for the different configurations at each 

location. The format is: mean (minimum). The best values are in bold 

Conf. TAB CON COR ARO MAG Mean 

I 
0.806 

(0.704) 

0.886 

(0.695) 

0.720 

(0.614) 

0.686 

(0.605) 

0.724  

(0.648) 
0.764 

II 
0.801 

(0.709) 

0.909 

(0.697) 

0.718 

(0.618) 

0.703 

(0.615) 

0.732  

(0.631) 
0.772 

III 
0.786 

(0.701) 

0.920 

(0.694) 

0.710 

(0.633) 

0.693 

(0.603) 

0.730 

 (0.643) 
0.767 
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IV 
0.794 

(0.703) 

0.897 

(0.694) 

0.724 

(0.630) 

0.693 

(0.604) 

0.734  

(0.646) 
0.768 

V 
0.812 

(0.706) 

0.914 

(0.700) 

0.741 

(0.621) 

0.704 

(0.598) 

0.732  

(0.632) 
0.780 

VI 
0.812 

(0.709) 

0.870 

(0.687) 

0.720 

(0.622) 

0.725 

(0.602) 

0.743  

(0.645) 
0.774 

VII 
0.805 

(0.703) 

0.902 

(0.689) 

0.728 

(0.621) 

0.710 

(0.601) 

0.733  

(0.648) 
0.775 

VIII 
0.805 

(0.709) 

0.925 

(0.693) 

0.737 

(0.617) 

0.717 

(0.606) 

0.725  

(0.642) 
0.781 

IX 
0.799 

(0.708) 

0.883 

(0.694) 

0.735 

(0.642) 

0.693 

(0.613) 

0.726  

(0.639) 
0.767 

X 
0.803 

(0.704) 

0.897 

(0.699) 

0.734 

(0.620) 

0.687 

(0.613) 

0.730  

(0.641) 
0.770 

XI 
0.811 

(0.709) 

0.931 

(0.698) 

0.740 

(0.617) 

0.686 

(0.597) 

0.702  

(0.640) 
0.774 

XII 
0.823 

(0.712) 

0.926 

(0.697) 

0.732 

(0.640) 

0.706 

(0.605) 

0.722  

(0.641) 
0.781 

XIII 
0.814 

(0.708) 

0.933 

(0.691) 

0.734 

(0.605) 

0.726 

(0.615) 

0.737  

(0.642) 
0.788 

XIV 
0.809 

(0.714) 

0.892 

(0.688) 

0.737 

(0.643) 

0.721 

(0.615) 

0.741  

(0.643) 
0.780 

XV 
0.811 

(0.708) 

0.899 

(0.715) 

0.730 

(0.614) 

0.698 

(0.612) 

0.721  

(0.645) 
0.771 

XVI 
0.824 

(0.709) 

0.904 

(0.693) 

0.722 

(0.619) 

0.706 

(0.599) 

0.736  

(0.633) 
0.778 

XVII 
0.810 

(0.708) 

0.921 

(0.691) 

0.753 

(0.615) 

0.726 

(0.599) 

0.734  

(0.633) 
0.788 

XVIII 
0.805 

(0.707) 

0.904 

(0.718) 

0.729 

(0.622) 

0.719 

(0.606) 

0.735  

(0.647) 
0.778 

XIX 
0.803 

(0.707) 

0.905 

(0.688) 

0.736 

(0.616) 

0.711 

(0.605) 

0.722  

(0.633) 
0.775 

XX 
0.816 

(0.713) 

0.879 

(0.695) 

0.733 

(0.610) 

0.719 

(0.604) 

0.747  

(0.642) 
0.778 

XXI 
0.801 

(0.700) 

0.920 

(0.721) 

0.725 

(0.623) 

0.696 

(0.608) 

0.738  

(0.643) 
0.776 

XXII 
0.792 

(0.709) 

0.893 

(0.698) 

0.728 

(0.615) 

0.709 

(0.609) 

0.722  

(0.637) 
0.768 

XXIII 
0.803 

(0.713) 

0.904 

(0.696) 

0.719 

(0.627) 

0.705 

(0.604) 

0.786  

(0.643) 
0.783 

XXIV 
0.823 

(0.709) 

0.917 

(0.695) 

0.741 

(0.640) 

0.696 

(0.608) 

0.731  

(0.635) 
0.781 

XXV 
0.821 

(0.711) 

0.863 

(0.691) 

0.720 

(0.618) 

0.714 

(0.613) 

0.733  

(0.655) 
0.770 
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XXVI 
0.822 

(0.713) 

0.894 

(0.684) 

0.736 

(0.615) 

0.711 

(0.605) 

0.730  

(0.647) 
0.778 

XXVII 
0.803 

(0.710) 

0.917 

(0.699) 

0.714 

(0.627) 

0.718 

(0.612) 

0.734  

(0.636) 
0.777 

 

3.4. Overall discussion 

In this work, several aspects were evaluated in forecasting daily ET0 at five locations 

from the Andalusia region (Southern Spain) with different geo-climatic conditions. 

Firstly, a new state-of-the-art architecture for NLP problems was assessed to forecast 

daily ET0, the Transformers. Specifically, two different approaches were evaluated, 

TransformerCNN and TransformerLSTM, and they were compared to standard machine 

learning models like MLP, SVM, RF, or CNN, among others. In general, the results 

obtained using standard machine learning approaches such as RF, SVM, and ELM highly 

outperformed the rest of the models assessed in this work. Besides, Transformer-based 

models did not perform as expected in all cases when compared to standard ML models. 

However, their results were better than the baselines for most sites and cases (except for 

Conil). Secondly, another critical aspect to highlight in this work is that even using a self-

attention mechanism (Transformer-based models), the use of 30 lag days instead of 15 

lag days was not beneficial to forecasting daily ET0. On the contrary, slightly better results 

were carried out when 15 lag days were used, and fewer bad outliers. Moreover, when 

comparing the different feature input configurations proposed in this study, none of them 

predominantly outperformed the rest, although configurations XIII, XIV, XX, and XXI 

were better on average. Figures 6.16, 6.17, and 6.18 show a scatter plot of measured vs. 

predicted ET0 values using the best ML model and configuration for 1 and 7 days ahead. 
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(a) (b) 

  
(c) (d) 

Figure 6. 16. Scatter plot for measured vs. predicted values for (a) forecast horizon 1 in Tabernas, (b) forecast horizon 1 in Conil de la Frontera, (c) forecast horizon 7 in 

Tabernas and (d) forecast horizon 7 in Conil de la Frontera. 
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(a) (b) 

  
(c) (d) 

Figure 6. 17. Scatter plot for measured vs. predicted values for (a) forecast horizon 1 in Aroche, (b) forecast horizon 1 in Málaga, (c) forecast horizon 7 in Aroche and (d) 

forecast horizon 7 in Málaga. 
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(a) (b) 

Figure 6. 18. Scatter plot for measured vs. predicted values for for (a) forecast horizon 1 in Córdoba, (b) forecast horizon 7 in Córdoba 
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Furthermore, the results of the proposed models were significantly better than those 

reported by Ferreira and da Cunha [18] in terms of RMSE and NSE using different deep 

learning approaches in Brazil in AWS with an aridity index ranging from 0.3 to 1.6. The 

best NSE performances in Brazil ranged from 0.35 to 0.62 (approximately), whereas in 

this work, the best NSE values ranged from 0.60 to 0.95 (approximately). Besides, this 

work also obtained slightly better NSE values than those reported by Nourani et al. 

[17][17] using ensemble modeling in different weather stations from Iran, Turkey, and 

Cyprus. These previous works used temperature, relative humidity, solar radiation, and 

wind speed values as input features, whereas all the configurations of this work were 

temperature-based variables. Additionally, comparing the results to those obtained by de 

Oliveira e Lucas et al. [58][58], the assessed models in the present work outperformed 

their CNN and ensemble CNN results in Brazil. 

In all, the models developed in this work, especially SVM, ELM, and RF are able to 

accurately forecast ET0 for one week ahead using only temperature-based parameters and 

ET0 past values. This issue is vital for improving crop irrigation scheduling, allowing 

adequate and anticipated planning, and contributing to agricultural production. 

Furthermore, providing reliable ET0 future values positively impacts the current 

challenge of optimizing water resources management, especially in arid and semiarid 

locations.  

4. Conclusions 

In this work, several machine learning models have been developed and assessed for 

daily ET0 forecasting from 1 to 7 days ahead using different input configurations, as well 

as different lag days. In general, all the ML approaches outperformed the baselines for all 

the forecast horizons and most locations, but SVM, RF, and ELM highly outperformed 

the rest of the models evaluated for most sites except for Conil de la Frontera, with 

unusual low wind speed values in its region. On the other hand, the Transformers were, 

on average, at the bottom of the ranking. Besides, all configurations obtained very similar 

results in terms of RMSE, but configurations I, III, IV and IX slightly outperformed the 

rest. The NSE values were above 0.85 for Conil, Tabernas, and Málaga and above 0.9 for 

Córdoba and Aroche for their best modeling. In terms of RMSE, the average performance 

for Tabernas was 0.92 mm/day, 1.00 mm/day for Conil, 0.81 mm/day for Córdoba, 0.80 

mm/day for Aroche, and 0.78 mm/day for Málaga. It denotes a relationship in 

performance regarding the aridity index and the distance to the sea. For inland locations, 

the higher the aridity index, the less the error of forecasting ET0 will be. On the other 

hand, for coastal sites, the higher the aridity index, the higher the error. Regarding MBE, 

most stations and models obtained very accurate values on average for most cases, with 

a mean performance value of 0.011 mm/day.  

 

Further studies can deeply explore using these models in new regions with different 

geoclimatic conditions, different scenarios (a different time interval and a regional 

scenario), and for other parameters such as solar radiation or precipitation. Besides, an 

accurate feature selection or reduction could be researched because, as it could be stated 

based on the arose results, the configurations containing the worst related features based 
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on Pearson correlation (HTx, HTn, HSr-HTn) obtained very accurate minimum and mean 

RMSE (Table 6.10 and Figure 6. 2). The approaches proposed in this work may result in 

greater efficiency for optimizing water resources, improving irrigation scheduling and 

anticipating the decision-making for agricultural goals. Finally, the creation of an open-

source repository will allow novel scientists to apply these models using their own 

datasets, as well as experienced scientists to commit improvements with new features and 

architectures. Overall, the ultimate aim is to democratize the use of machine learning to 

more efficiently solve today’s agricultural problems.  
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Abstract  

Accurate estimations of reference evapotranspiration (ET0) are crucial for 

determining crop water requirements and designing an adequate irrigation scheduling to 

optimize the use of water. In this work, a new clustering method to outperform the 

accuracy of ET0 estimations only using temperature variables has been developed and 

assessed, based on the multifractal properties of the Diurnal Temperature Range (DTR). 

Thus, a more accurate weather stations’ grouping method has been evaluated, regardless 

of their geographic location. All the datasets were collected from 89 automated weather 

stations in the period 2000-2018 and pooled into two main regions (1 and 2). In each 

region, an iterative procedure has been carried out: 1) selection of all the stations except 

the candidate one for the training procedure and 2) test procedure using the candidate 

station. The results showed that Machine Learning models (ML) highly outperformed 

Hargreaves-Samani (HS) in most of the cases, being Multilayer Perceptron (MLP) the 

most accurate over Extreme Learning Machine models (ELM). On average, the results 

obtained by MLP using the best configuration in the first region were better than those 

obtained in the second region. Specifically, the first region got an Root Mean Square 

Error (RMSE) = 0.6572 mm/d, Nash–Sutcliffe Efficiency (NSE) = 0.8967, Coefficient of 

Determination (R2) = 0.9306 and Mean Bias Error (MBE) = |0.04|mm/d while the second 

region obtained an RMSE = 0.7034 mm/d, NSE = 0.8665, R2 = 0.8968 and MBE = 

|0.045|mm/d. Regarding the seasonal performance, spring and autumn obtained the best 

NSE and R2 results, whereas winter carried out the lowest RMSE values. This study 
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provides a new and more accurate methodology to improve ET0 estimations on a regional 

basis and only using temperature data in the whole process.  

1. Introduction 

Reference Evapotranspiration (ET0) quantifies the water needs of a reference surface, 

not short of water, only being affected by atmospheric conditions. Thereby, accurate ET0 

calculations are crucial to optimizing water resources management and developing a more 

precise irrigation scheduling. It is significantly impactful in semiarid and arid areas like 

Andalusia (Southern Spain), where precipitation is generally scarce [1], with very hot and 

dry summers and characterized by a structural water deficit [2]. The Food and Agriculture 

Organization of the United Nations (FAO) recommends the physic-based Penman-

Monteith formula (FAO PM) as the sole standard method for its computation [3]. 

However, the number of required measured variables to compute FAO PM is very high 

(air temperature -T-, relative humidity -RH-, wind speed - u2- and solar radiation -Rs-), 

which is translated into the costly installation and maintenance of the Automated Weather 

Stations (AWS). Besides, they usually contain non-reliable long-term datasets due to 

miscalibration and lack of maintenance issues [4,5]. Thus, the geographical density of 

complete AWS is generally low, mainly in developing countries and rural areas (Estévez 

et al., 2012; World Meteorological Organization, 2018). 

In these terms, several studies have analyzed new methodologies to determine ET0 

using a limited dataset such as the well-known Hargreaves-Samani equation [8]. It 

calculates ET0 using the daily maximum (Tx) and minimum air temperature (Tn), as well 

as the extraterrestrial solar radiation (Ra), which is calculated using the latitude of the site 

and the day of the year. Moreover, Machine Learning (ML) and Deep Learning (DL) 

models have gained extraordinary attention for achieving state-of-art performance to 

compute ET0 in different climatic and aridity conditions. For example, Bellido-Jiménez 

et al. [9] analyzed the performance of Multilayer Perceptron (MLP), Random Forest (RF), 

Support Vector Machine (SVM), Extreme Learning Machine (ELM), Generalized 

Regression Neural Network (GRNN) and Extreme Gradient Boosting (XGBoost) models 

using novel temperature-based variables such as EnergyT and HTx in different sites of 

Andalusia (South of Spain). Despite no model significantly outperformed the rest, ELM 

and MLP usually gave the best results, whereas GRNN was significantly the worst in all 

cases and statistics. Besides, the introduction of these novel variables improved the ET0 

estimations compared to only using Tx, Tn, and Ra. Zhou et al. [10] evaluated Deep 

Factorization Machine (DeepFM), Gradient Boosting Decision Tree (GBDT), Light 

Gradient Boosting Method (LightGBM), Gradient Boosting with Categorial Feature 

Support (CatBoost), XGBoost, RF and SVM to estimate daily ET0 in 12 sites in China. 

Muhammad et al. [11] studied the efficiency of Gene Expression Programming (GEP) to 

estimate daily ET0 in 10 sites in Malaysia. They assessed up to 9 different configurations 

using air T, RH, Rs, and U2 variables. In some cases, their GEP results could obtain 

similar results to FAO PM values. Adnan et al. [12] evaluated a new hybrid neuron fuzzy 

method based on Moth-flame optimization (MFO), Water Cycle optimization Algorithm 

(WCA), and Adaptive Neuro-Fuzzy Inference System (ANFIS). They tested up to 9 

configurations using variables derived from T, sunshine duration (N), RH, and U2. The 
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use of ANFIS-WCMFO (a hybrid of both WCA and MFO) outperformed ANFIS-WCA 

and ANFIS-MFO. Sattari et al. [13] evaluated Gaussian Process Regression (GPR), 

Broyden-Fletcher-Goldfarb-Shanno Artificial Neural Network (BFGS-ANN), and Long 

Short-Term Memory (LSTM) to estimate monthly ET0 using 10 different input features 

configurations (derived from Tm (mean air temperature), Tx, Tn and RH, U2, and N) in 

Turkey. Bedi [14] evaluated the concept of Transfer learning (using the knowledge 

acquired from one task to improve others) to outperform ET0 forecasts, addressing the 

problem of low efficiency due to small training datasets. Two approaches were 

considered: (1) training the models using datasets from the nearest cluster (different from 

the target) and eventually fine-tuning at the target cluster; (2) training the models using 

the nearest site to the target location within the same cluster and fine-tuning using 

information from the target site. Besides, Support Vector Regression (SVR), Deep-

multilayer perceptron (DNN), Recurrent Neural Network (RNN), and Long Short-Term 

Memory (LSTM) were assessed using historical data to predict current timestamp values. 

The results showed slightly less prediction error and improved reliability when compared 

to a local training methodology. Maroufpoor et al. [15] evaluated the potential of MLP 

and Grey Wolf Optimization (GWO) to estimate ET0 in Iran. Up to 7 input configurations 

were assessed, using Tx, Tn, RH, SSH, U2, and P (precipitation), being the configuration 

containing Tx, Tn, and U2 the most accurate model. Malik et al. [16] analyzed the 

performance of Multiple Model-Multilayer Perceptron (MM-MLP), Multivariate 

Adaptive Regression Spline (MARS), SVM, Multi-Gene Genetic Programming (MGGP), 

and M5Tree to estimate pan evapotranspiration (EPm) in two stations of India. MM-MLP 

and MGGP obtained the best results. Dimitriadou and Nikolakopoulos (2021) estimated 

annual Actual Evapotranspiration (Eta) using empirical methods such as Turc, modified 

Turc, and Coutagne and compared them to MODIS ET for the period 2016-2019 in 

Greece. The results arised that Turc could serve as an alternative to MODIS annual ET. 

Despite the promising results of the aforementioned models, most of the developed 

models were trained and tested using data from the same station (local calibration), which 

is impractical in real-life applications (except for gap-filling). Consequently, it is needed 

to build new regional models that can be deployed in new sites (not used for calibration 

or for training the model). In these terms, Gavilán et al [18] evaluated a regional 

calibration based on the Diurnal Temperature Range (DTR) and annual wind speed of HS 

equation using 88 AWS in Andalusia (Southern Spain), covering a diversity of climatic 

conditions from semi-desert to subtropical coastal areas. Dai et al. [19] analyzed MLP 

and Multi Linear Regression (MLR) to estimate monthly ET0 in three different regions of 

Mongolia according to its aridity index (arid, semi-arid, and sub-humid climate). Their 

models were trained using data from multiple stations within the same subregion (having 

similar climate conditions). Besides, they tested using daily T, RH, U2, and N as inputs, 

obtaining RMSE=0.130 mm d-1 and R2=0.986. Ramírez-Cuesta et al. [20] evaluated 

different approaches to estimate ET0 at a regional scale using remote sensing and AWS 

data. They assessed two main approaches in order to calculate ET0: using data from the 

closest station or the most similar weather station in Andalusia. Their results arose that 

the use of the most similar AWS resulted in an average error lower than 2.3%. However, 
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their results were not homogeneous throughout the entire region, having high differences 

between the lower section of the Guadalquivir Valley (registering the smallest errors) and 

the mountainous areas (with abrupt changes in ET0 values). Feng et al. [21] evaluated RF 

and GRNN to estimate ET0 in two locations with similar climate conditions in the Sichuan 

basin (Southwest China). They performed cross-validation using data from both sites. 

Their results for the temperature-based approaches (using Tx, Tn, and Ra) were slightly 

more accurate in RF than in GRNN, but both models underestimated ET0 since the actual 

values were greater at both stations. Ferreira et al. [22] assessed RF, MLP, and 

Convolutional Neural Networks (CNN) to estimate daily ET0 in the state of Minas Gerais, 

in Brazil. They first analyzed using hourly temperature and relative humidity data on a 

regional and local scenario. The CNN approach exhibited the best results in all cases, 

providing performance gains of up to 11.9% in terms of Root Mean Squared Error 

(RMSE) and 7.8% in terms of Nash-Sutcliffe Efficiency (NSE). Regarding the regional 

scenario, they used 43 AWS with different climate conditions as training data, while 10 

stations (representing the different climate variability from the training dataset) were used 

as testing data. Trajkovic et al. [23] provided an adjustment of the Thornthwaite equation 

for the Vojvodina region (Serbia)using data from 5 different AWS and introducing data 

from three meteorological stations outside the study area. This new approach (cTh) gave 

accurate estimates generally, being the best model in the site of Timisoara. Fang et al. 

[24] evaluated Partial Mutual Information (PMI), which captures the linear and nonlinear 

dependencies, to forecast ET0 using MLR, SVM, and RF for 15 sites divided into two 

different regions (the Jing River Basin and the Beilvo River Basin) of China. Based on 

their results it could be stated that PMI presented a better performance for excluding 

redundant information than Partial-Correlation -based Input Selection (PCIS). Besides, 

SVM and RF could not always outperform the forecast of MLR models.Wu et al. [25] 

compared the results of Kernel Extreme Learning Machine (KELM), ANFIS, and RF, 

among others, to estimate monthly ET0 on a regional scale using data from 26 stations in 

China. Finally, Ferreira et al. [26] evaluated different models (RF, MLP, LSTM, CNN, 

and LSTM-CNN) to forecast daily ET0 for up to a week in 53 weather stations in Brazil 

following the procedure described in Ferreira et al. [22].  

Generally, according to the aforementioned literature, several important 

methodological drawbacks need to be addressed in terms of developing, training, and 

deploying regional ET0 models. On the one hand, due to the lack of open reliable 

meteorological datasets, several authors have grouped AWS data that belong to the same 

country or region (geographical criteria), and even places with no apparent geoclimatic 

relationship among them (places from different countries, latitudes, and climatic 

conditions). It has been stated by several authors the existence of different performances 

in ET0 estimations according to the aridity index of the site, obtaining better modelings 

in humid zones and worse results in more arid and semi-arid locations [27,28]. Thus, 

developing a single model for sites with different geoclimatic conditions may arise in less 

efficient models. On the other hand, in order to deal with this issue, a possible solution 

could be making regions from sites that have similar aridity index values. Despite this 

last approach being convenient to obtain accurate models, the main problem is that it 
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requires not only the same variables that FAO PM equation needs, but also precipitation. 

Thus, the development of robust and accurate regional models able to estimate ET0 with 

limited-availability datasets has not been addressed yet. There is a great need to apply 

innovative approaches in non-used sites (training/calibration) with a very low budget but 

still having confident accuracy estimations. Thereby, in this work, a novel machine 

learning method has been assessed in order to outperform temperature-based regional ET0 

estimations. The stations’ grouping criterion is based on a multifractal characterization of 

the Diurnal Temperature Range (DTR), following the work of Herrera-Grimaldi et al. 

[29], where 197 AWS from the Spanish Meteorological Agency (AEMET) that had 

similar multifractal behavior were grouped as the same cluster. These geographical 

clusters were taken into account using new AWSs from a different AWS network in 

Andalusia. The use of this multifractal characterization regionalization technique allows 

more accurate stations grouping regardless of their geographical distribution, only using 

daily temperature values for this purpose. It is worth noting that no similar work has 

previously used a clustering method based on DTR multifractal properties to outperform 

ET0 estimations in a regional scenario. 

Besides, due to the promising results of MLP and ELM for estimating and predicting 

ET0 and solar radiation in this same region [9,30,31], outperforming the rest of the ML 

models significantly, both models are assessed in this work. Thus, the main objectives of 

this work are I) the evaluation of a clustering procedure based on the multifractal 

characterization of DTR, II) the assessment of MLP and ELM models to estimate ET0 

only using temperature-based features on a regional scenario, III) the analysis of different 

input feature configurations for each region and IV) the study the seasonal performance 

for each region. 

2. Materials and methods 

2.1. Source of data and data management 

The study area is the region of Andalusia, which is located in southwest Europe. This 

region occupies a total area of 87 268 km2 and ranges from 1 to 7 ºW longitude and from 

37 to 39ºN latitude. It has a very heterogeneous climate, from the Mediterranean to the 

Continental (mountainous, oceanic, tropical, and sub-desert). Moreover, the datasets used 

in this work belong to 89 AWS from the Agroclimatic Information Network of Andalusia 

(RIA). All these AWSs measure air temperature, relative humidity of the air, wind speed 

and direction at 2 m height, solar radiation, and precipitation (the sensors’ specifications 

are shown in Table 7.1) from April 2000 to July 2018 for a daily and sub-daily (every 30 

min) sampling rate. They can be freely downloaded at 

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/riaweb/web/ (Accessed 8th 

March 2022). 

Table 7. 1. Sensors' specifications (Estévez et al., 2011) 

Parameter Sensor Range Accuracy 

Wind speed 

Wind direction 

Young 05103 0 to 60 m s-1 

0 to 360○ 

±0.3 m s-1 

±3 ○ 
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Temperature PT1000 -39.2 to 60 ○C ±0.3 ○C 

Relative Humidity Humicap 180 0.8 to 100 % ±3 % (90-100%) 

±2 % (0.8-90%) 

Precipitation ARG 100  0.2 mm/tip 

Solar radiation Skye SP1110 350 to 1100 nm ±5 % 

One of the key aspects for obtaining accurate modeling to estimate ET0 on a 

regional basis is how we group the datasets of all the studied AWS. In this case, two main 

regions were considered based on the previous work of Herrera-Grimaldi et al [29], where 

a multifractal characterization of DTR values was carried out for 258 AWS from the 

Spanish AEMET (Meteorology Statal Agency) and grouped them based on their 

multifractal characteristics. In this work, the authors studied the scaling of the statistical 

moments to detect the multifractal behavior using the scaling exponent function K(q) that 

satisfies Eq. 7. 1 [32]: 

⟨ε𝜆
𝑞

⟩ ≈ 𝜆𝐾(𝑞) Eq. 7. 1 

where ⟨ε𝜆
𝑞⟩ corresponds to the average qth moment of the intensity of the process for a 𝜆 

resolution. The K(q) function becomes linear for q-values higher than the critical (qcritical), 

which is defined as 𝛾𝑥 (Eq. 7. 2). 

𝛾𝑥 = max (𝐾′(𝑞)) Eq. 7. 2 

where 𝛾 is the order of singularity and 𝛾𝑥 its maximum value [33]. The 𝛾𝑥 gives important 

information about the process analyzed. Lower values are related to extreme values, 

whereas higher gamma values are characteristic of the smoothest processes. For further 

information, the following works can be revised [29,34,35] 

The whole studied area was divided into two regions. Region 1 is composed of stations 

with low 𝛾𝑥 (𝛾𝑥 < 0.07216) while region 2 includes those stations with 𝛾𝑥 higher than 

0.07216. Figure 7. 1 shows the spatial distribution of the AWS and the considered regions, 

and Table 7. 2 the characteristics of all the AWS studied in this work as well as the 

geographical location of both regions. 
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Figure 7. 1. Automated Weather Stations (AWS) in the Andalusia region and which region does each 

AWS belongs to RIA 
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Table 7. 2. Location and some characteristics of all the automated weather stations used in this work (Prov: Province; Lat: Latitude, Lon: Longitude; ALM: Almeria; CAD: 

Cadiz; COR: Cordoba; GRA: Granada; JAE: Jaen; HUE: Huelva; MAG: Malaga; SEV: Seville, u2: Wind speed measured at two meters, Reg: Region). 

ID Name Prov 

Station 

code Lat (◦N) 

Lon  

(◦E) 

Alt  

(m) 

Mean u2  

(m/s) Reg 

Dataset length  

(available days) 

0 Adamuz Córdoba COR02 38.00 -4,45 145 1.03 1 1999 - 2018 (6737) 

1 Adra Almería ALM10 36.75 -2,99 2 1.55 2 2000 - 2018 (6447) 

2 Alcaudete Jaén JAE06 37.58 -4,08 640 1.05 1 2001 - 2018 (6325) 

3 Almería Almería ALM02 36.84 -2,40 5 1.43 2 2000 - 2018 (6525) 

4 Almuñécar Granada GRA11 36.75 -3,68 29 0.968 1 2007 - 2018 (3935) 

5 Antequera Málaga MAG03 37.06 -4,56 457 1.11 1 2000 - 2011 (3737) 

6 Archidona Málaga MAG05 37.08 -4,43 516 0.92 1 2000 - 2012 (4258) 

7 Aroche Huelva HUE06 37.96 -6,95 293 1.23 1 2000 - 2018 (6398) 

8 Aznalcázar Sevilla SEV05 37.15 -6,27 2 2.22 1 2000 - 2018 (6308) 

9 Baena Córdoba COR08 37.69 -4,31 310 1.19 1 2000 - 2018 (6411) 

10 Basurta-Jerez de la Frontera Cádiz CAD01 36.76 -6,02 39 1.82 2 2000 - 2018 (6377) 

11 Baza Granada GRA01 37.56 -2,77 718 1.82 1 2000 - 2018 (6531) 

12 Bélmez Córdoba COR01 38.25 -5,21 503 2.10 1 2000 - 2018 (6585) 

13 Chiclana de Segura Jaén JAE11 38.30 -3,00 571 1.41 1 2000 - 2018 (6387) 

14 Conil de la Frontera Cádiz CAD05 36.33 -6,13 22 1.38 2 2000 - 2018 (5867) 

15 Cuevas de Almanzora Almería ALM08 37.26 -1,80 28 1.00 1 1999 - 2018 (5972) 

16 Cádiar Granada GRA07 36.92 -3,18 928 1.39 2 2000 - 2018 (6402) 

17 Cártama Málaga MAG09 36.72 -4,68 78 0.85 2 2001 - 2018 (6172) 

18 Córdoba Córdoba COR06 37.86 -4,80 94 1.63 1 2000 - 2018 (6396) 

19 Ecija Sevilla SEV09 37.59 -5,08 109 1.55 1 2000 - 2018 (6352) 

20 El Campillo Huelva HUE08 37.66 -6,60 383 1.71 1 2000 - 2018 (6411) 

21 El Carpio Córdoba COR05 37.91 -4,50 171 1.70 1 2000 - 2018 (6305) 
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22 Estepona Málaga MAG04 36.44 -5,21 185 2.23 2 2000 - 2018 (6107) 

23 Fiñana Almería ALM05 37.16 -2,84 958 2.5 1 2000 - 2018 (6686) 

24 Guillena Sevilla SEV17 37.51 -6,06 48 1.52 1 2001 - 2018 (6148) 

25 Hornachuelos Córdoba COR04 37.72 -5,16 130 1.31 1 2000 - 2018 (6415) 

26 Huércal-Overa Almería ALM07 37.41 -1,88 303 1.35 1 1999 - 2018 (6572) 

27 IFAPA  Centro Las Torres-Tomejil Sevilla SEV19 37.51 -5,96 12 1.14 1 2005 - 2018 (4542) 

28 IFAPA Centro Camino del Purchil Granada GRA101 37.17 -3,64 630 1.03 1 2005 - 2018 (4712) 

29 IFAPA Centro Las Torres-Tomejil. Finca Tomejil Sevilla SEV101 37.40 -5,59 75 2.41 1 2001 - 2018 (6078) 

30 IFAPA Centro Mengibar Jaén JAE104 37.94 -3,79 293 0.70 1 2008 - 2018 (3712) 

31 IFAPA Centro de Cabra Córdoba COR101 37.50 -4,43 543 0.93 1 2003 - 2018 (5240) 

32 IFAPA Centro de Campanillas Málaga MAG101 36.73 -4,56 63 0.75 2 2007 - 2018 (3921) 

33 IFAPA Centro de Chipiona Cádiz CAD101 36.75 -6,40 7 1.99 2 2004 - 2018 (4940) 

34 IFAPA Centro de Hinojosa del Duque Córdoba COR102 38.50 -5,12 543 1.36 1 2006 - 2018 (4328) 

35 IFAPA Centro de Los Palacios Sevilla SEV21 37.19 -5,95 10 2.02 1 2007 - 2018 (3894) 

36 IFAPA Churriana Málaga MAG07 36.67 -4,50 17 1.90 2 2001 - 2018 (6295) 

37 Isla Mayor Sevilla SEV20 37.11 -6,12 2 2.33 1 2004 - 2018 (4972) 

38 Iznalloz Granada GRA05 37.42 -3,55 921 1.88 1 2000 - 2018 (6498) 

39 Jaén Jaén JAE15 37.89 -3,77 299 1.05 1 2001 - 2018 (6203) 

40 Jerez de la Frontera Cádiz CAD02 36.64 -6,01 17 1.45 2 2000 - 2018 (6444) 

41 Jerez del Marquesado Granada GRA06 37.19 -3,15 1,201 1.79 1 2000 - 2018 (6469) 

42 Jimena de la Frontera Cádiz CAD07 36.41 -5,38 50 1.73 2 2000 - 2018 (6402) 

43 Jódar Jaén JAE103 37.88 -3,33 486 0.75 1 2006 - 2018 (4431) 

44 La Higuera de Arjona Jaén JAE12 37.95 -4,01 257 1.03 1 2001 - 2018 (6181) 

45 La Luisiana Sevilla SEV10 37.53 -5,23 173 1.19 1 2000 - 2018 (6376) 

46 La Mojonera Almería ALM01 36.79 -2,70 137 1.80 1 2000 - 2018 (6696) 

47 La Palma del Condado Huelva HUE09 37.37 -6,54 171 1.56 1 2000 - 2018 (6367) 
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48 La Puebla de Guzmán Huelva HUE07 37.55 -7,25 248 1.91 1 2000 - 2018 (6306) 

49 La Puebla del Río I Sevilla SEV07 37.23 -6,13 3 1.72 1 2000 - 2018 (6396) 

50 La Puebla del Río II Sevilla SEV08 37.08 -6,05 2 1.89 1 2000 - 2018 (6316) 

51 La Rinconada Sevilla SEV12 37.46 -5,92 25 1.86 1 2000 - 2018 (6286) 

52 Las Cabezas de San Juan Sevilla SEV02 37.02 -5,88 13 2.12 1 2000 - 2018 (6412) 

53 Lebrija Sevilla SEV03 36.98 -6,13 1 2.17 2 2000 - 2018 (6379) 

54 Linares Jaén JAE09 38.06 -3,65 432 1.61 1 2000 - 2018 (6420) 

55 Loja Granada GRA03 37.17 -4,14 463 1.90 1 2000 - 2018 (6476) 

56 Lora del Río Sevilla SEV15 37.66 -5,54 44 1.38 1 2000 - 2018 (6430) 

57 Los Molares Sevilla SEV16 37.18 -5,67 77 2.31 1 2001 - 2018 (6292) 

58 Mancha Real Jaén JAE07 37.92 -3,60 407 1.92 1 2000 - 2018 (6477) 

59 Marmolejo Jaén JAE10 38.06 -4,13 208 1.39 1 2000 - 2009 (3328) 

60 Málaga Málaga MAG01 36.76 -4,54 55 1.33 2 2000 - 2018 (6422) 

61 Níjar Almería ALM11 36.95 -2,16 169 1.85 2 2001 - 2018 (6046) 

62 Osuna Sevilla SEV11 37.26 -5,13 198 2.18 1 2001 - 2018 (6046) 

63 Padul Granada GRA10 37.02 -3,60 747 1.10 1 2001 - 2018 (6298) 

64 Palma del Rio Córdoba COR09 37.73 -5,23 58 1.32 1 2007 - 2018 (4112) 

65 Pinos Puente Granada GRA04 37.26 -3,77 594 1.80 1 2000 - 2014 (5001) 

66 Pizarra Málaga MAG08 36.77 -4,72 71 1.54 2 2001 - 2018 (6278) 

67 Pozo Alcón Jaén JAE02 37.67 -2,93 881 1.44 1 2000 - 2018 (6488) 

68 Puebla Cazalla Sevilla SEV18 37.22 -5,35 193 1.33 1 2001 - 2018 (6239) 

69 Puebla de Don Fadrique Granada GRA02 37.88 -2,38 1017 2.70 1 2000 - 2018 (6395) 

70 Puerto de Santa María Cádiz CAD08 36.62 -6,15 20 2.55 2 2001 - 2010 (3486) 

71 Sabiote Jaén JAE04 38.08 -3,24 791 2.26 1 2000 - 2018 (6446) 

72 San José de los Propios Jaén JAE03 37.86 -3,23 494 2.05 1 2000 - 2018 (6478) 

73 Sanlúcar La Mayor Sevilla SEV13 37.42 -6,26 63 1.40 1 2000 - 2018 (6122) 
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74 Santaella Córdoba COR07 37.52 -4,89 196 1.75 1 2000 - 2018 (6442) 

75 Santo Tomé Jaén JAE14 38.03 -3,08 537 0.74 1 2001 - 2018 (6246) 

76 Sierra Yeguas Málaga MAG06 37.14 -4,84 467 2.30 2 2000 - 2018 (6292) 

77 Tabernas Almería ALM04 37.09 -2,30 502 1.91 2 2000 - 2018 (6693) 

78 Torreblascopedro Jaén JAE05 37.99 -3,69 275 0.91 1 2000 - 2018 (6493) 

79 Torreperogil Jaén JAE101 37.97 -3,24 535 1.97 1 2006 - 2018 (4166) 

80 Tíjola Almería ALM12 37.38 -2,46 776 1.76 1 2001 - 2018 (6022) 

81 Úbeda Jaén JAE08 37.94 -3,30 343 0.95 1 2000 - 2018 (6407) 

82 Vejer de la Frontera Cádiz CAD06 36.29 -5,84 13 2.70 2 2000 - 2018 (6392) 

83 Villacarrillo Jaén JAE102 38.06 -3,20 649 0.38 1 2006 - 2018 (4396) 

84 Villamartín Cádiz CAD04 36.84 -5,62 146 1.81 2 2000 - 2018 (6201) 

85 Villanueva del Río y Minas Sevilla SEV14 37.61 -5,68 38 1.08 1 2000 - 2010 (3312) 

86 Virgen de Fátima-Cuevas de Almanzora Almería ALM06 37.39 -1,77 173 2.14 1 1999 - 2018 (6745) 

87 Vélez-Málaga Málaga MAG02 36.80 -4,13 33 1.59 1 2001 - 2018 (6053) 

88 Zafarraya Granada GRA08 36.99 -4,15 892 1.18 1 2000 - 2018 (6379) 
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In order to guarantee reliable results, an essential prerequisite is the application of 

quality assurance tests, where erroneous values are flagged and further evaluated. The 

guidelines described by Estévez et al [4,36] have been followed, applying range (tests 

regarding the specifications for each sensor as well as physical and climate extremes for 

each location and variable), internal consistency (tests based on physics and 

climatological consistency for each location and variable), step (tests based on time 

consistency), persistence (checking the variability of the measurements), and spatial 

consistency (designed to detect gross errors for observations) tests to all meteorological 

data. Afterward, the daily ET0 was calculated using the FAO PM formula [3], which was 

used as the target variable, as well as the rest of the daily temperature-based features [9]: 

the maximum and minimum air temperature (Tx and Tn, respectively), DTR (Tx – Tn), 

the integral of the half-hourly temperature values of a day (EnergyT), the time of day in 

hours when the Tx and Tn occur (HTx and HTn, respectively). Besides, 70 different input 

configurations were previously assessed, where the following variables were considered: 

Tx (day-1), Tx (day), Tn (day-1), Tn (day), Tn (day+1), Ra (day), TD (day), HTx (day-

1), HTx (day), HTn (day-1), HTn (day), EnergyT (day-1) and EnergyT (day). However, 

only the ten best configurations have been further discussed in this work (see Table 7. 3). 

It is worth noting that Tn (day+1) was analyzed based on the work of Bristow and 

Campbell [37], where they use Tn (day+1) to calculate Tm (average temperature). 
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Table 7. 3. All configurations and the features assessed in this work for each one. Ra (day) corresponds to Extraterrestrial Solar radiation from the same day, Tx (day-1) 

corresponds to maximum daily air temperature from the previous day, Tx (day) corresponds to the maximum daily air temperature from the same day, Tn (day-1) corresponds 

to minimum daily air temperature from the previous day, Tn (day) corresponds to minimum daily air temperature from the same day, DTR (day-1) corresponds to the 

difference between Tx and Tn from the previous day, DTR (day) corresponds to the difference between Tx and Tn from the same day, EnergyT (day-1) represents the integral 

of the half-hourly temperature records from the previous day, EnergyT (day-1) represents the integral of the half-hourly temperature records from the same day, HTx (day) 

represents the time when Tx occurs from the same day and HTn (day) represents the time when Tn occurs from the same day 

Configuration 

Ra  

(day) 

Tx 

(day-1) 

Tx 

(day) 

Tn 

(day-1) 

Tn 

(day) 

Tn 

(day+1) 

DTR 

(day) 

EnergyT 

(day-1) 

EnergyT 

(day) 

HTx 

(day) 

HTn 

(day) 

I X X X  X X X  X X  

II X  X X X  X  X   

III X X X X X  X  X   

IV X X X  X   X X X  

V X  X  X    X  X 

VI X X X  X    X X  

VII X  X X X    X   

VIII X X X  X    X   

IX X X X  X X   X   

X X  X  X   X    
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In order to achieve the goals of this work, the following control loop was followed: 

1) All the available datasets from RIA were collected on a daily and intradaily (every half 

hour) basis; 2) several quality assurance tests (range, step, internal consistency, 

persistence, and spatial consistency tests) were applied following the procedures 

described in Estévez et al. (2016, 2011); 3) all the stations were grouped into two regions, 

based on the multifractal characterization carried out by Herrera-Grimaldi et al [29]; 4) 

then, to perform an exhaustive assessment in each region, one ML model was developed 

for each AWS (a form of cross-validation on a regional basis). At each site, the model 

was trained using the dataset from all AWS in the region except for the candidate station, 

while the dataset from the selected site was later used for testing purposes. For example, 

in the case of COR06 (Córdoba) which is part of the first region, the model to estimate 

ET0 at this site was trained using the whole dataset of region 1 except the data from 

COR06; 5) Then, for each AWS in the region, and in order to tune the different 

hyperparameters, a hold-out technique is used instead, due to the enough size of the 

training dataset (almost 400 000 registers for the first region and more than 100 000 

registers for the second) to avoid overfitting [38,39]. In these terms, the Bayesian 

optimization and validation dataset (30% of the training dataset) were used; 6) Finally, 

the final model was fully trained using the initial training dataset and assessed using the 

testing dataset (the data from the candidate AWS). Figure 2 shows a graphical summary 

of this methodology 

 

Figure 7. 2. Methodology 

2.2. Reference evapotranspiration 

In this work, the ET0 values, calculated using the ET0 equation [3], were used as the 

target values for the developed models. It can be mathematically expressed as Eq. 7. 3: 

ET0 =
0.408∆(Rn − 𝐺) + 𝛾

900
𝑇𝑚 + 273

𝑢2(es − ea)

∆ + 𝛾(1 + 0.34u2)
 

Eq. 7. 3 
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where ET0 is the reference evapotranspiration (mm day−1) calculated using this equation, 

0.408 corresponds to a coefficient (MJ−1 m2 mm), ∆ is the slope of the saturation vapor 

pressure versus temperature curve (kPa °C−1), Rn is the net radiation calculated at the 

crop surface (MJ m−2 day−1), G is the soil heat flux density at the soil surface (MJ m−2 

day−1), γ is the psychrometric constant (kPa °C−1), T is the mean daily air temperature 

(°C), u2 is the mean daily wind speed at 2 m height (m s−1), and es and ea are the saturation 

vapor pressure and the mean actual vapor pressure, respectively (kPa). 

However, it is not always possible to find AWS collecting all the required parameters 

by FAO PM due to the expensive implementation and maintenance of these devices, and 

the existence of missing and non-reliable wind speed and solar radiation data is high 

[6,40]. Thus, different temperature-based approaches have been developed to handle this 

problem, such as the Hargreaves-Samani (HS) equation, developed by Hargreaves and 

Samani (1985) as an empirical equation that only uses Tx (day), Tm (day), Tn (day) and 

Ra (day) to compute ET0 (Eq. 7. 4). HS has been widely applied to different climates and 

countries [27,41–43]. 

ET0 HS = 0.0135k(Tm + 17.8) √𝑇𝑥 − 𝑇𝑛 𝑅𝑎 Eq. 7. 4 

where ET0 HS is the reference evapotranspiration (mm day−1) calculated using HS equation 

and k is a coefficient (0.16 for inland and 0.19 for coastal locations). Additionally, even 

though HS is the most common worldwide temperature-based method there are other 

temperature-based methodologies, such as the Thornthwaite equation [44] or the 

approximation from FAO PM [3]. 

2.3. Machine learning models 

All the models were developed using the public repository from GitHub AgroML 

[30], which can be publicly accessed at https://github.com/Smarity/AgroML (Accessed 

March 16, 2022). Besides, all the computations were carried out in a server workstation 

with the following characteristics: 1 CPU AMD Ryzen Threadripper PRO 3955WX 16-

cores (3,9 GHz), 1 GPU Nvidia RTX 3090, and 128 GB of RAM. Based on the 

performance obtained in previous works [9], two kinds of models have been assessed: 

Multilayer Perceptron (MLP) and Extreme Learning Machine (ELM). 

2.3.1. Multilayer Perceptron 

The multilayer perceptron (MLP) is based on the neurons from the biological nervous 

systems, which is one of the reasons for its high reputation. Besides, it is characterized 

by easy coding and promising results within ET0 estimations in most cases [22,45–47]. 

They are structured into three different layers, the input layer that represents the inputs of 

the model, the hidden layer or layers where the neurons are located, and the output layer 

that represents the outputs of the model (ET0 in this case). For example, for an MLP 

architecture with two inputs, one single hidden layer containing three neurons, and one 

output, the structure is represented by figures and equations 7. 5, 7. 6, 7. 7, and 7. 8. 

https://github.com/Smarity/AgroML
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Figure 7. 3. Multilayer perceptron architecture for a model with two inputs (x(0)
1 and x(0)

2), one single 

hidden layer containing 3 neurons (x(1)
1 , x(1)

2 and x(1)
3) and one output (y1). W represents the weights for 

each connection. 

 

𝑥1
(1)

= 𝑓(𝑥1
(0)

𝑤11
(0)

+ 𝑥2
(0)

𝑤21
(0)

+ 𝑏1
(0)

) 
Eq. 7. 5 

𝑥2
(1)

= 𝑓(𝑥1
(0)

𝑤12
(0)

+ 𝑥2
(0)

𝑤22
(0)

+ 𝑏2
(0)

) Eq. 7. 6 

𝑥3
(1)

= 𝑓(𝑥1
(0)

𝑤12
(0)

+ 𝑥2
(0)

𝑤22
(0)

+ 𝑏3
(0)

) Eq. 7. 7 

𝑦1 = 𝑓(𝑥1
(1)

𝑤11
(1)

+ 𝑥2
(1)

𝑤21
(1)

+ 𝑥3
(1)

𝑤31
(1)

+ 𝑏1
(1)

) Eq. 7. 8 

where x(0)
1 and x(0)

2 represents the inputs of the model, x(1)
1 , x

(1)
2 and x(1)

3 represents the 

neurons of the hidden layer, y1 the output itself and w represents the weights of each 

connection. The weights of the model are automatically updated using a backpropagation 

algorithm during the training period. 

2.3.2. Extreme Learning Machine 

Extreme Learning Machine (ELM) models are a novel approach [48] composed of a 

single hidden layer feedforward neural network with much fewer computational 

requirements than MLPs. The main feature of this model is that the weights of the inputs 

are automatically generated, while the weights of the outputs are analytically calculated. 

Thereby, there is no need to carry out a backpropagation training process, which makes 

these models have a very low computational cost and high demand for RAM if the dataset 

is very large. Several works have assessed its use in ET0 estimation and prediction 

worldwide [25,49]. 

2.4. Bayesian optimization 

A critical aspect of obtaining accurate predictions in ML models is choosing a correct 

hyperparameter set. Depending on the chosen hyperparameters, the performance could 

dramatically change from accurate to very poor results. The hyperparameters of ML 

models modify their architecture and internal functional configuration, for example, the 

number of hidden layers, the hidden neurons within each layer, and the activation 
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function, among others, in MLP. One of the most common techniques to deal with 

hyperparameter selection is a trial and error technique, where different values are 

evaluated and the best one is chosen. However, using this technique there is no assurance 

of the accurate performance of our model. A more efficient approach is the use of 

Bayesian Optimization (BO), based on the Bayes theorem and with high relation to 

human behavior when addressing this problem [50,51] because it takes into account the 

previous results to select the next set of hyperparameters to test. Even though there exist 

other algorithms that deal with hyperparameter tuning such as Particle Swarm 

Optimization (PSO), Grey Wolf Optimizer (GWO), Genetic Algorithms (GA), Whale 

Optimization Algorithm (WOA), among others [52–54], the popularity of Bayesian 

Optimization is very high in automated machine learning libraries like Auto-Weka 2.0 

[55], Auto-Keras [56] and Auto-Sklearn [57] and they can be further consulted in Hutter 

et al. (2019). Besides, its popularity in ET0 models is high [59,60] 

The Bayesian optimization can be explained using four steps: (1) The 

hyperparameter space is set, defining the limit values of all the hyperparameters; (2) the 

algorithm asses several random values for all the hyperparameters; (3) the algorithm set 

the next hyperparameter values to be evaluated taking into account the previous 

experience, weighing up between exploitation (choosing values known to have 

outstanding results) or exploration (choosing values with higher uncertainty) behavior; 

(4) if it has not finished yet, it repeats step 3. 

In this work, the Bayesian Optimization algorithm from AgroML has been used, 

which had been implemented using the Scikit-Optimize library. Both models, ELM and 

MLP, were configured to carry out 50 Bayesian epochs (40 of them were randomly 

generated) and the Mean Absolute Error (MAE) as the objective function. Table 7. 4 

shows the hyperparameter space of the models and Figures 4 and 5 show the BO results 

from ELM and MLP, respectively.  

Table 7. 4. Hyperparameter space. MLP refers to Multilayer Perceptron, ELM refers to Extreme Learning 

Machine, relu refers to Rectified Linear Unit activation function, sigm to the sigmoid activation function, 

tanh to the hyperbolic tangent activation function, rbf_l2 a Radial Basis Function using L2 regularization 

Model Hyperparameter Space 

MLP Number of hidden layers Up to 5 

 Number of neurons Up to 20 

 Activation function relu, sigm and tanh 

 Optimization function Adam 

 
Maximum number of 

epochs 
150 

ELM 
Maximum number of 

neurons 
150 

 Activation function 
linear, sigm, tanh, rbf_l1, rbf_l2, 

rbf_Linf 
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                 a) 

 
              b) 

Figure 7. 4. BO results for the ELM hyperparameters, where a) represents the chosen activation function 

and b) the number of neurons in the hidden layer. Rbf_l2 represents a Radial Basis Function using L2 

regularization, sigm represents a sigmoid activation function and tanh represents a hyperbolic tangent 

activation function 

 

 
                a) 

 
                b) 

 
               c) 

 
                d) 

Figure 7. 5. BO results for the MLP hyperparameters, where a) represents the chosen activation function, 

b) the number of training epochs, c) the number of Hidden layers and d) the number of neurons on each 

hidden layer. Relu represents Rectified Linear Unit activation function 

2.5. Statistical analysis 

All the models were analyzed, in order to evaluate their performance, using the MBE, the 

RMSE, the R2, NSE, and the Global Performance Indicator (GPI). The MBE, RMSE, R2, 

NSE, and GPI can be defined as Equations 7. 9, 7.10, 7. 11, 7. 12, and 7. 13, respectively 

𝑀𝐵𝐸 =  
1

𝑚
∑ 𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖

𝑚

𝑖=1

 Eq. 7. 9 

𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑(𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)2

𝑚

𝑖=1

 
Eq. 7. 10 

𝑅2 =  
(∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)(𝑝𝑟𝑒𝑑𝑖 − 𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)𝑚

𝑖=1 )
2

∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)𝑚
𝑖=1

2 ∑ (𝑝𝑟𝑒𝑑𝑖 − 𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)𝑚
𝑖=1

2 
Eq. 7. 11 

𝑁𝑆𝐸 = 1 −
∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)

2𝑚
𝑖=1

∑ (𝑚𝑒𝑎𝑠𝑖 − 𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)2𝑚
𝑖=1

 
Eq. 7. 12 
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𝐺𝑃𝐼𝑗 = ∑ 𝛼𝑚(𝑠𝑡𝑎𝑡̅̅ ̅̅ ̅̅ 𝑚 − 𝑠𝑡𝑎𝑡𝑚𝑗)

4

𝑗=1

 
Eq. 7. 13 

where i represents each record, m represents the number of records, x represents the ET0 

values calculated using the FAO56 PM formula, y represents the estimations from 

models, α is a coefficient (being 1 for RMSE and -1 for R2 and NSE), j represents each 

statistical performance indicator (MBE, RMSE, R2 and NSE), j defines a specific 

configuration, statmj represents the performance indicator value normalized (it is worth 

noting that instead of using the original MBE values, their absolute values were 

calculated), and the bar denotes the mean value. Besides, in order to compare how ML 

models performed compared to HS, the difference in the different statistics is shown as 

STATBestML-HS = STATBestML – STATHS, where STAT represents any of the statistics 

(MBE, RMSE, R2, and NSE). 

3. Results and discussion 

To further evaluate the different results of this work, all the graphs can be 

interactively revised as an HTML file in the Additional files section. 

3.1.The evaluation of ML models in the different regions 

Figures 7. 6 and 7. 7 show the RMSE values for the best configuration at each site 

for regions 1 and 2, respectively. Generally, both ELM and MLP (ML) highly 

outperformed HS in most of the cases, obtaining the highest improvement in JAE08 - 

Úbeda (RMSEBestML-HS = -0.533 mm/d) and CAD07 - Jimena de la Frontera (RMSEBestML-

HS = -0.410 mm/d) for regions 1 and 2, respectively. The lowest RMSE values were 

obtained in the stations HUE09 - La Palma del Condado (RMSEBestML = 0.473 mm/d) for 

the first region and in MAG01 - Málaga for the second (RMSEBestML = 0.548 mm/d). On 

the one hand, most of the sites got RMSE values below 0.8 mm/d for both regions, even 

below 0.6 mm/d for a high percentage of AWSs. On the other hand, very few locations 

(JAE102 - Villacarrillo, ALM06 – Virgen de Fátima-Cuevas de Almanzora , and SEV11 

- Osuna) obtained RMSE values above 1.0 mm/d using ML models. Besides, only in 2 

locations from the first region (GRA02 – Puebla de Don Fabrique and SEV101 – IFAPA 

Centro las Torres-Tomejil. Finca Tomejil), the ML underperformed HS with an error of 

around 0.1 mm/d. It is also worth noting that in general, the average ML performance in 

the first region was better than in the second (RMSEreg1=0.665 ± 0.151 mm/d and 

RMSEreg2=0.712 ± 0.113 mm/d) although in this last region MLP and ELM significantly 

improve the results of HS (RMSEBestML-HS = -0.1571 mm/d and RMSEBestML-HS= -0.2123 

mm/d for region 1 and 2, respectively)  
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Figure 7. 6. RMSE values for the best configurations in region 1. See table 2 for further information 

about each location. 

 

Figure 7. 7. RMSE values for the best configurations in region 2. See table 2 for further information about 

each location 

Regarding the NSE values, Figures 7. 8 and 7. 9 show the NSE performances for the 

different models assessed in both regions 1 and 2, respectively. The results are similar to 

those obtained by analyzing the RMSE performance. In most of the cases, ML obtained 

an NSE value above 0.9. The best values were obtained in JAE11 – Mancha Real (NSE 

= 0.963) in the first region and CAD04 - Villamartín (NSE = 0.926) in the second region, 

using MLP in both cases, whereas the worst model was carried out in JAE102 – 

Villacarrillo (NSEMLP = 0.596, an NSEELM = 0.547 and NSEHS = 0.459). On the other 

hand, there was only one site where HS outperformed ML models with a NSE difference 

higher than 0.05 (NSEBestML-HS = -0.054), GRA02 - Puebla de Don Fabrique. Moreover, 

the average NSE values carried out by ML models in both regions were very similar to 

one another (NSEReg1 = 0.894 ± 0.064 and NSEReg2 = 0.863 ± 0.060). Finally, considering 

the performance difference between HS and ML models, the mean outperformance in the 

second region was higher than in the second (NSEBestML-HS = 0.056 and NSEBestML-HS = 

0.091 for regions 1 and 2, respectively). 
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Figure 7. 8. NSE values for the best configurations in region 1. 

 

Figure 7. 9. NSE values for the best configurations in region 2.  

Considering the R2 values, Figures 10 and 11 show the R2 values for the different 

models in the two assessed regions. The best ML value in the first region was performed 

in JAE05 - Torreblascopedro (R2 = 0.966) using MLP whereas the worst was carried out 

in MAG02 – Vélez Málaga (R2 = 0.835). In the second region, MAG05 - Archidona (R2 

= 0.958) got the best performance using MLP while ALM10 - Adra (R2 = 0.822) was the 

worst. Overall, most of the AWSs performed above 0.9 in both regions. On average, the 

results carried out by ML models in the first region was higher than in the second region 

(R2 = 0.930 ± 0.028 and R2 = 0.895 ± 0.038, respectively). 
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Figure 7. 10. R2 values for the best configurations in region 1. See table 2 for further information about 

each location. 

 

Figure 7. 11. R2 values for the best configurations in region 2. See table 2 for further information about 

each location. 

Finally, in terms of MBE, Figures 7. 12 and 7. 13 show the MBE values for the 

different models in the two analyzed regions. On average, the MBE performance in region 

1 is MBE=0.099 ±0.363 mm/d whereas in the second region is MBE = 0.0327 ±0.307 

mm/d. Besides, MLP generally outperformed the rest of the models in most of the cases, 

having the best value at 66 sites out of 89, whereas ELM outperformed HS and MLP only 

at 6 locations. The best value from the first region was carried out in SEV12 – La 

Rinconada (MBE=0.000 mm/d using ELM), JAE09 – Linares (MBE=0.002 mm/d using 

MLP) and GRA03 - Loja (MBE=0.011 mm/d using HS), while in the second region, 

CAD04 - Villamartín (MBE=-0.005 mm/d using ELM), ALM10 - Adra (MBE=0.0286 

mm/d using MLP) and CAD01 - Basurta-Jerez de la Frontera (MBE=0.035 mm/d using 

MLP) performed as the best. 
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Figure 7. 12. MBE values for the best configurations in region 1. See table 2 for further information 

about each location. 

 

Figure 7. 13. MBE values for the best configurations in region 2. See table 2 for further information 

about each location. 

All in all, the average RMSE, NSE, and R2 values of ML models in the first region 

(RMSE=0.665 mm/d, NSE=0.894, and R2= 0.930) were better than those obtained in the 

second (RMSE=0.712 mm/d, NSE=0.863, and R2= 0.894), whereas, in terms of average 

MBE, both regions got a similar performance (MBE=0.040 mm/d). A possible 

justification for this behavior may be related to the effect of smoother DTR values in ET0 

modeling. As it has already been stated by other works in this same region [6,9], there is 

a lower accuracy in coastal sites modeling temperature-based ET0 and Rs. Thus, modeling 

ET0 in coastal zones (or inland sites with similar DTR multifractal characteristics) has a 

negative effect on the final model performance. Moreover, the improvements of ML 

models against HS were less significant in region 1 than those carried out in region 2, 

regarding mean RMSE (RMSEBestML-HS = -0.157 mm/d and RMSEBestML-HS = -0.212, 

respectively) and NSE (NSEBestML-HS = 0.056 and NSE =0.091, respectively). It seems to 

be the result of two main issues, the better performance of machine learning models 

compared to empirical equations and the higher information extraction from the 
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temperature-based features EnergyT, HTx, and HTn, compared to only using Tx, Tn, and 

Ra (HS equation). Besides, MLP predominantly outperformed the rest of the models 

(ELM and HS) for the great majority of cases. However, the ML models underperformed 

in two sites from the first region (GRA02 – Puebla de Don Fadrique and SEV101 – 

IFAPA Centro de Las Torres-Tomejil-Finca Tomejil).  One of the possible reasons may 

be the high wind speed values over the years (Figure 7. 14), with average values of 2.696 

m/s and 2.408 m/s, respectively (Table 7. 2). As an example, wind speed data of two more 

stations have been included in this figure: JAE08 (Úbeda) and COR02 (Adamuz), with 

average values of 0.95 m/s and 1.03 m/s, respectively. 

 

Figure 7. 14. Mean monthly wind speed values for GRA02 (Puebla de Don Fadrique), SEV101 (IFAPA 

Centro de Las Torres.-Tomejil-Finca Tomejil), JAE08 (Úbeda) and COR02 (Adamuz). 

3.2.Assessment of configurations 

In order to evaluate the different configurations, Table 7. 5 shows the minimum, 

mean and maximum values of RMSE, NSE, R2 and MBE, as well as the GPI of the 

different configurations for all the AWS using MLP, due to its significant better results 

in the previous section. Generally, there were no big differences in performance between 

any of the ten configurations. In terms of RMSE, the configuration IV obtained the best 

performance (RMSEmin = 0.4733 mm/d and RMSEmean = 0.6686 mm/d), followed very 

closely by configuration VI (RMSEmin = 0.4756 mm/d and RMSEmean = 0.6731 mm/d). 

Regarding NSE, the configuration IV outperformed the rest of the configurations on 

average (NSE = 0.8892), while the configuration VIII carried out the highest value 

(NSEmax = 0.9534). Besides, in terms of R2, configurations I and VI obtained the best 

mean performance (R2 = 0.9224 and R2 = 0.9224, respectively) whereas configuration 4 

got the highest value (R2 = 0.9659). In terms of MBE, configuration X obtained the 

minimum value (MBE = -0.0001 mm/d), while configuration IV carried out the best 

performance on average (MBE = 0.0377 mm/d) Finally, to evaluate all these statistics, a 

global performance indicator (GPI) was calculated, ranking configurations IV (GPI = 

0.4290), I (GPI = 0.4236), V, VI and VII (GPI = 0.4190) as the best, in this order.



 

 

274 

 

 

Table 7. 5. Statistical analysis regarding the different configurations for all the stations using MLP. The best values are in bold. RMSE represents Root Mean Square Error, 

NSE represents Nash-Sutcliffe Efficiency model, R2 represents the Coefficient of Determination, MBE represents the Mean Bias Error and GPI represents the Global 

Performance Indicator. 

Conf 

RMSE NSE R2 MBE 

GPI  Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

I 0.4773 0.6721 1.1259 0.5507 0.8882 0.9532 0.8134 0.9224 0.9654 -0.0137 0.0479 0.9268 0.4236 

II 0.4776 0.6761 1.0679 0.5966 0.8874 0.9515 0.8218 0.9216 0.9652 -0.0062 0.0427 0.8671 0.4168 

III 0.4896 0.6790 1.2096 0.4814 0.8857 0.9533 0.8240 0.9216 0.9646 0.0082 0.0473 0.9900 0.4115 

IV 0.4733 0.6686 1.1247 0.5516 0.8892 0.9524 0.8097 0.9222 0.9659 0.0073 0.0377 0.9234 0.4290 

V 0.4791 0.6744 1.1902 0.4979 0.8869 0.9528 0.8200 0.9220 0.9641 0.0029 0.0456 0.9722 0.4190 

VI 0.4756 0.6731 1.0735 0.5915 0.8882 0.9515 0.8131 0.9224 0.9651 -0.0009 0.0380 0.8784 0.4190 

VII 0.4769 0.6784 1.1385 0.5405 0.8864 0.9528 0.8197 0.9215 0.9651 0.0074 0.0483 0.9272 0.4190 

VIII 0.4892 0.6765 1.1257 0.5508 0.8873 0.9534 0.8245 0.9215 0.9651 -0.0061 0.0445 0.9135 0.4162 

IX 0.4787 0.6819 1.2409 0.4542 0.8846 0.9527 0.8246 0.9217 0.9636 0.0030 0.0488 1.0101 0.4069 

X 0.4788 0.6774 1.2566 0.4403 0.8858 0.9514 0.8253 0.9219 0.9641 -0.0001 0.0452 1.0666 0.4139 
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Table 7. 6 shows the same information as Table 7. 5, although they were calculated 

using only the results from the first region. Regarding RMSE, configuration IV 

outperformed the rest of the configurations in absolute and average terms 

(RMSEmin=0.4733 mm/d and RMSEmean=0.6572 mm/d). In terms of NSE, configuration 

IV also carried out the best NSE performance on average (NSE=0.8967), whereas 

configuration VIII obtained the maximum value (NSE=0.9534). Regarding R2, on 

average, configuration VI (R2 = 0.9309) obtained the best performance, followed very 

closely by configurations IV and V (R2=0.9306), whereas on maximum values, 

configurations IV (R2 =0.9659), I (R2=0.9654) and II (R2=0.9652) were at the top of the 

ranking. In terms of MBE, all the minimum and mean performances were very accurate, 

obtaining values below 0.06 on average, being configuration IV the one that obtained the 

best average value (MBE=0.0379 mm/d). On the other hand, the best value was carried 

out by configuration VI (MBE=-0.0009 mm/d), closely followed by configuration VI 

(MBE=-0.0009 mm/d). Finally, regarding the GPI, configuration IV was at the top of the 

ranking (GPI=0.4330) and the configuration VI as the second (GPI=0.4250). 

Table 7. 7 show the same information as Table 6, although they were calculated using 

the results from the second region. Regarding the RMSE performance, the configuration 

IV obtained the lowest minimum and mean values (RMSEmin = 0.5481 mm/d and 

RMSEmean = 0.7034 mm/d). In terms of NSE, the maximum values were carried out by 

the configurations I (NSE = 0.9265) and IV (NSE = 0.9262), while on average 

configurations IV and X were the best (NSE = 0.8665). As regards the R2 performance, 

on average, the top configurations were configuration I (R2 = 0.8971), IV (R2 = 0.8968) 

and VI (R2 = 0.8964), whereas in absolute terms the configurations VI (R2 = 0.9588), I 

(R2 = 0.9584) and IV (R2 = 0.9579) were the best. In terms of MBE, configurations VI 

(MBE = 0.0254 mm/d), IV (MBE = 0.0369 mm/d), VII (MBE = 0.0387 mm/d) and IX 

(MBE = 0.0357 mm/d) obtained MBE<0.4, on average. Besides, the best value was 

carried out by the configuration X (MBE = -0.0001 mm/d). Finally, regarding the GPI 

performance, the top configurations were configurations IV (GPI = 0.2945), I (GPI = 

0.2885) and X (GPI = 0.2878), in this order.  

To sum up, the configuration IV obtained the best GPI performance in both regions, 

highlighting accurate generalization of this configuration, as well as the importance of 

introducing EnergyT (day), EnergyT (day-1), HTx (day) and Tx (day-1) as a complement 

to the HS inputs to outperform ET0 estimations. 
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Table 7. 6. Statistical analysis regarding the different configurations for AWSs from region 1 using MLP. RMSE represents Root Mean Square Error, NSE represents Nash-

Sutcliffe Efficiency model, R2 represents the Coefficient of Determination, MBE represents the Mean Bias Error and GPI represents the Global Performance Indicator. 

Conf 

RMSE NSE R2 MBE 

GPI  Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

I 0.4773 0.6611 1.1259 0.5507 0.8954 0.9532 0.8376 0.9308 0.9654 -0.0137 0.0497 0.9268 0.4139 

II 0.4776 0.6662 1.0679 0.5966 0.8944 0.9515 0.8339 0.9300 0.9652 -0.0062 0.0423 0.8671 0.4186 

III 0.4896 0.6683 1.2096 0.4814 0.8927 0.9533 0.8367 0.9300 0.9646 0.0101 0.0481 0.9900 0.4142 

IV 0.4733 0.6572 1.1247 0.5516 0.8967 0.9524 0.8351 0.9306 0.9659 0.0073 0.0379 0.9234 0.4330 

V 0.4791 0.6618 1.1902 0.4979 0.8946 0.9528 0.8417 0.9306 0.9641 0.0029 0.0453 0.9722 0.4250 

VI 0.4756 0.6611 1.0735 0.5915 0.8958 0.9515 0.8394 0.9309 0.9651 -0.0009 0.0421 0.8784 0.4274 

VII 0.4769 0.6672 1.1385 0.5405 0.8935 0.9528 0.8360 0.9299 0.9651 0.0074 0.0515 0.9272 0.4163 

VIII 0.4892 0.6652 1.1257 0.5508 0.8947 0.9534 0.8338 0.9299 0.9651 -0.0086 0.0450 0.9135 0.4201 

IX 0.4787 0.6730 1.2409 0.4542 0.8910 0.9527 0.8361 0.9302 0.9636 0.0030 0.0532 1.0101 0.4067 

X 0.4788 0.6681 1.2566 0.4403 0.8921 0.9514 0.8359 0.9302 0.9641 -0.0070 0.0452 1.0666 0.4141 
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Table 7. 7. Statistical analysis regarding the different configurations for AWSs from region 2 using MLP. RMSE represents Root Mean Square Error, NSE represents Nash-

Sutcliffe Efficiency model, R2 represents the Coefficient of Determination, MBE represents the Mean Bias Error and GPI represents the Global Performance Indicator 

Conf 

RMSE NSE R2 MBE 

GPI  Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

I 0.5635 0.7057 0.9148 0.7288 0.8662 0.9265 0.8134 0.8971 0.9584 0.0164 0.0425 0.6218 0.2885 

II 0.5560 0.7065 0.9157 0.7235 0.8661 0.9243 0.8218 0.8960 0.9570 -0.0166 0.0436 0.6381 0.2850 

III 0.5692 0.7116 0.8900 0.7191 0.8644 0.9239 0.8240 0.8961 0.8961 0.0082 0.0449 0.6303 0.2699 

IV 0.5481 0.7034 0.8986 0.7104 0.8665 0.9262 0.8097 0.8968 0.9579 -0.0220 0.0369 0.6531 0.2945 

V 0.5663 0.7128 0.9030 0.7112 0.8635 0.9251 0.8200 0.8958 0.9561 -0.0128 0.0466 0.6536 0.2655 

VI 0.5566 0.7098 0.8841 0.7275 0.8651 0.9241 0.8131 0.8964 0.9588 0.0087 0.0254 0.6158 0.2756 

VII 0.5723 0.7123 0.8918 0.7453 0.8646 0.9208 0.8197 0.8959 0.9575 0.0286 0.0387 0.5862 0.2679 

VIII 0.5591 0.7110 0.8968 0.7197 0.8645 0.9227 0.8245 0.8959 0.9573 -0.0061 0.0429 0.6276 0.2714 

IX 0.5592 0.7091 0.9214 0.7136 0.8652 0.9234 0.8246 0.8959 0.9574 0.0224 0.0357 0.6369 0.2771 

X 0.5567 0.7059 0.9087 0.7141 0.8665 0.9240 0.8253 0.8966 0.9573 -0.0001 0.0451 0.6449 0.2878 



 

 

278 

 

3.3.Seasonal performance 

Due to the good results of configuration IV for both regions, the following analysis 

has been carried out only using this configuration as well as the MLP model. The 

following figures show the RMSE (Figure 7. 15), NSE (Figure 7. 16), R2 (Figure 7. 17) 

and MBE (Figure 7. 18) for winter, summer, spring and autumn in both regions. 

Generally, the results obtained in region 1 outperformed those obtained in region 2. 

Besides, the estimations carried out in winter and autumn were better than those 

calculated in summer and spring.  

Moreover, specifically, regarding RMSE (Figure 7. 17), winter obtained the best 

performance (RMSE = 0.307 mm/d) in JAE06 (Alcaudete), whereas the worst value was 

obtained in summer (RMSE = 1.414 mm/d) in SEV11 (Osuna), both carried out in the 

first region. On average, the results of AWSs from the first region outperformed those 

obtained in the second region, having a mean difference of 0.075 mm/d between the 

different regions and seasons. In terms of NSE, the best results were carried out in autumn 

(NSE=0.878) in JAE101 (Torreperogil) whereas the worst value was also obtained in 

summer (NSE=-0.77) in MAG101 (IFAPA Centro de Campanillas). On average, spring 

and autumn obtained the most accurate performances, followed by winter and summer, 

in this order. Regarding the R2, autumn and winter carried out the best value in absolute 

terms (R2 = 0.937 and R2 = 0.922, respectively), whereas on average, autumn and spring 

were on top. Besides, as it is common in the aforementioned statistics (RMSE, NSE and 

R2), the results given by the first region outperformed those obtained in the second region. 

Eventually, regarding the MBE, the results obtained by both regions were very accurate 

on average (MBE values close to 0) with no significant differences from one another. 

However, the interquartile range of autumn and winter was lower than in spring and 

summer, denoting a more precise estimation of the first two seasons. 

 

Figure 7. 15. RMSE (Root Mean Square Error)  seasonal values for all the AWS using configuration 4. 
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Figure 7. 16. . NSE (Nash-Sutcliffe Efficiency model) seasonal values for all the AWS using 

configuration 4.  

 

Figure 7. 17. R2 (Coefficient of Determination) seasonal values for all the AWS using configuration 4.  

 

Figure 7. 18. MBE (Mean Bias Error) seasonal values for all the AWS using configuration 4.  

3.4 Overall discussion 

In the first place, comparing the regional approach developed in this work with the 

local-calibration carried out in this same region by Bellido-Jiménez et al. (2020), the 

results were promising. For example, in MAG01, the regional models outperformed local-

calibration in terms of RMSE, NSE and R2 (RMSEregional = 0.5481 mm/d, RMSElocal = 

0.5952 mm/d, NSEregional = 0.9216, NSElocal = 0.9091, R2
regional = 0.9239 and R2

local = 

0.9105), whereas in the rest of the sites, the results were very close one another in terms 

of accuracy. Besides, the results obtained in this work outperformed those carried out by 

Ferreira et al. [22], where ET0 was estimated using sub-daily temperature (24 hourly 

values as features) and the region was randomly generated across the whole study area, 

the state of Minas Gerais (Brazil). In terms of NSE an R2, on average, MLP using the 
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configuration 4 outperformed the results of CNN in Brazil (NSEBrazil = 0.83, R2
Brazil = 

0.87, NSERegion 1 = 0.89, R2
Region 1 = 0.93, NSERegion 2 = 0.87 and R2

Region 2 = 0.89). 

However, the mean RMSE performance was slightly better in Brazil, obtaining an RMSE 

= 0.52 mm/d, whereas in this work the mean values were RMSERegion 1 = 0.65 mm/d and 

RMSERegion 2 = 0.70 mm/d. Moreover, the results of this study also outperformed those 

obtained by Kazemi et al [61], where the training dataset was composed of 10 stations 

from Turkey using GEP and the models were assessed in 18 locations in Iran with 

different climate aridity conditions (6 arid locations, 6 semi-arid locations, and 6 humid 

locations). On average, the results from the arid, semi-arid, and humid locations were 

R2=0.823, R2=0.888, and R2=0.859, respectively. Finally, the results from this work were 

very similar to those carried out by Yan et al. [62] where meteorological data from 

adjacent stations were used for training. The results in terms of RMSE and NSE were, on 

average, RMSE =0.685 mm/d and NSE = 0.922 for the arid locations and RMSE = 0.6425 

mm/d and NSE = 0.849 for humid sites. 

In general, comparing the results from the two different regions, those carried out in 

sites from the first region were better in all statistics than those obtained in AWSs from 

the second, where the first region got an RMSE = 0.6572 mm/d, NSE = 0.8967, R2 = 

0.9306 and MBE = |0.05|mm/d and the second, RMSE = 0.72 mm/d, NSE = 0.85, R2 = 

0.89 and MBE = |0.04|mm/d. A possible justification may be related to the effect of 

smoother DTR values for ET0 modeling, the same as it happens in coastal sites for this 

same region [6,9]. Moreover, seasonally, regarding RMSE, NSE, and R2 the models 

deployed in region 1 also outperformed those carried out in the second in all the seasons, 

being spring and autumn the ones that obtained the best results in terms of NSE and R2. 

However, in terms of RMSE, winter outperformed the rest of the seasons, although it is 

related to the lower ET0 values during this period in this region. 

Besides, ML highly outperformed HS in most of the cases, especially MLP, which 

could be the result of two main issues, the better performance of machine learning models 

compared to empirical equations and the higher information extraction from the 

temperature-based features EnergyT, HTx, and HTn, compared to only using Tx, Tn, and 

Ra (HS equation). It is worth noting that configuration IV, which is composed of the 

variables Tx (day -1), Tx (day), Tn (day), Ra (day), EnergyT (day-1), EnergyT (day), and 

HTx (day), obtained the best performance in both regions, carrying out a GPI performance 

of GPI=0.4330 in the first region and a GPI=0.2945 in the second region. It states the 

valuable information of EnergyT and HTx for temperature-based ET0 estimations.  

Furthermore, the improvements of MLP against HS were more significant in the 

second region in terms of RMSE (RMSEBestML-HS = -0.157 mm/d and RMSEBestML-HS = -

0.212 mm/d for the first and second region respectively), NSE, and R2 (up to a 37.5% for 

the first region and up to 44.7% for the second region), whereas regarding MBE, there 

was no such significant difference between them. Nevertheless, there were 2 sites 

(GRA02 and SEV101) where ML underperformed HS in terms of RMSE and NSE by 

around 0.1 mm/d, whereas regarding R2, ML models were always superior. This weird 

low accuracy in ML models seems to be related to high wind speed values. Moreover, 
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regarding the Bayesian optimization, deeper MLP architectures (more than 3 hidden 

layers and more than 15 neurons per layer) were selected as the fittest for this task due to 

the higher number of inputs compared to other literature works addressing temperature-

based approaches (only using 3 or 4 inputs such as Ra, Tx, Tn, and Tm), which is the 

cause of the higher computational cost of MLP against ELM (more than 3 million weights 

to update during the backpropagation process in the worse scenario). A possible limitation 

in this work is the strong dependence on accurate and representative temperature records 

since the models exclusively depend on temperature values. Besides, despite Andalusia 

being a very geoclimatic heterogeneous region, it would be interesting to assess these two 

models in different regions with different characteristics such as extreme aridity index 

locations. Finally, the use of unsupervised machine learning approaches such as K-means 

cluster can be further evaluated, as well as the use of more variables such as RH, u2, and 

Rs.  

4. Conclusions 

In this work, the main objective was to come up with a novel approach to 

temperature-based ET0 models to deal with the problem of requiring in situ large datasets 

to build accurate ML models. In this sense, a new regionalization has been carried out 

based on multifractal characteristics of DTR values into two main regions. Thus, it allows 

a more accurate station grouping regardless of their geographical distribution, only using 

temperature values for this purpose.  

Up to 70 different configurations have been assessed using combinations of Tx, Tn, 

EnergyT, HTx, and HTn from the same and previous day as the target, but only the best 

10 input configurations were evaluated in this work. The configuration composed of the 

variables Tx (day -1), Tx (day), Tn (day), Ra (day), EnergyT (day-1), EnergyT (day), and 

HTx (day) was the one that obtained the best modeling in both regions. Moreover, MLP 

highly outperformed the rest of the models in terms of RMSE, NSE, and R2, whereas 

regarding MBE, no such significant differences were appreciated. The results of MLP 

Due to the results of this work it could be stated that ET0 models deployed in areas 

from the first region were more accurate than those carried out in the second. However, 

relatively, the outperformance of MLP against HS was more significant than AWS sites 

from the second region. Finally, the approaches proposed in this work may result in 

greater efficiency for optimizing water resources, allowing to accurately estimate ET0 

only using temperature records. 
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Chapter 8 

Conclusions 

 

The Ph.D. has developed several strategies to outperform agrometeorological 

estimations and predictions, focusing not only on enhancing accuracy but also on 

minimizing the number of required parameters. Thus, only temperature-based approaches 

have been assessed, as temperature is the most widely used metric in weather stations, as 

well as being the cheapest and most reliable measure, even when measured with low-cost 

devices. Due to their importance in sectors such as agronomy, hydrology or energy sector, 

among others, the modeled agrometeorological variables have been precipitation, solar 

radiation, and reference evapotranspiration.  

Firstly, novel temperature-based features have been evaluated such as DTR, EnergyT, 

HTx, HTn, HSr, and HSs, among others, calculated from hourly or intra-hourly 

temperature records. They have been assessed to outperform reference evapotranspiration 

and solar radiation predictions on both local and regional calibration approaches (papers 

2, 3, 5, and 6). These new parameters have been proven to highly outperform empirical 

methods and all baselines in most cases.  

Secondly, different machine learning models have been tested on different scenarios, 

such as MLP, ELM, SVM, RF, and XGBoost, among others. There exist differences in 

performance depending on the nature of the target variable (precipitation, solar radiation, 

and reference evapotranspiration) and other factors like the aridity index or the proximity 

to the sea. Roughly, it could be stated that MLP seems to obtain the most accurate results 

for precipitation estimations (papers 1 and 4), SVM generally outperforms MLP when 

estimating solar radiation (papers 3), and MLP and ELM are the fittest when predicting 

and forecasting ET0 (papers 2, 5 and 6). It is worth noting that models such as RF, 

XGBoost, and Transformed-based models, despite having a very high computational cost, 

do not improve the rest of the models, getting even worse performance in some cases. 

Thirdly, different approaches in terms of training have been evaluated. On the one 

hand, a local calibration algorithm obtains the best results generally (papers 1, 2, 3, and 

4) since the models are trained on the same climatic conditions and site. This may give 

rise to the problem of lack of generalization in models, as these models are designed to 
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be used in a specific location. However, deploying them in new and unseen locations with 

similar geoclimatic characteristics can still yield accurate estimations (paper 3). On the 

other hand, a regional approach was evaluated in the region of Andalusia, clustering the 

AWS according to the multifractals characteristics of DTR values (two main regions, 

inland sites - region 1 and coastal sites – region 2). The results highlight that the utilization 

of a regional approach highly enhances the performance of empirical methodologies and, 

despite being usually less efficient, it can outperform local calibration models in some 

cases. 

Finally, as a  significant milestone, an open-source repository (AgroML) has been 

developed. It provides researchers with a powerful tool to develop and compare various 

machine learning algorithms, including Random Forest, Extreme Learning Machine, 

Support Vector Machine, Multilayer Perceptron, Convolutional Neural Networks, Long 

Short-Term Memory, and Transformer-based models, for different regression 

applications. The repository has automated hyperparameters tuning using Bayesian 

optimization, ensuring a fair comparison between models and leading to more accurate 

and reliable results. Moreover, AgroML's functionality extends beyond standard 

machine learning applications, with the inclusion of specific functions such as the ET0 

empirical formula and splitting functions for AWS. These features enhance the 

repository's ability to tackle complex agricultural problems, making it a valuable 

resource for technicians, farmers, researchers and practitioners alike. Overall, AgroML's 

open-source nature, the wide range of machine learning algorithms, and additional 

functions make it a powerful and flexible tool for advancing the use of machine learning 

in agriculture and related sectors. 
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Chapter 9 

Future works 

 

In addition to the findings of this study, several new lines of research can be pursued 

to further reinforce and improve these results. Firstly, the use of new clustering techniques 

can be explored to improve the efficiency of models during training. Future research 

could focus on temperature-based features beyond the DTR records used in this study, as 

well as the application of automated clustering algorithms to streamline the process of 

data analysis and model development. 

Secondly, due to climatic aridity depends on precipitation, air temperature and 

reference evapotranspiration, the development of aridity index future maps could be a 

promising avenue for future research. One option could be using temperature and 

precipitation forecasts from the IPCC under different scenarios (such as AR5's RCP 4.5, 

RCP 6.0, and RCP 8.5). Thus, researchers could gain valuable insights into the future 

patterns of aridity, as well as the potential impact of climate change on these phenomena. 

Additionally, new developing scenarios like those presented in AR6 could be 

incorporated into this research to further enhance the accuracy and usefulness of future 

maps. 

Lastly, the inclusion of new features that do not require in site instrumentation, such 

as using reanalysis grid datasets from Copernicus, could be explored to improve the 

accuracy and effectiveness of models. This approach would be particularly valuable for 

developing countries and areas where installing automatic weather stations (AWS) is not 

affordable, but accurate estimations of important parameters like ET0, solar radiation, and 

aridity are crucial for agriculture and water resource management. 
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