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RESUMEN 
 
En los análisis de eficiencia mediante modelos de frontera estocástica, la variable de error compuesto 
incluye el componente de ineficiencia, lo cual hace que las predicciones individuales no puedan ser 
hechas directamente por medio del error estimado por estos modelos. Para resolver este problema, 
Jondrow et al (1982), y Battese y Coelli (1988) desarrollaron, de forma separada, dos procedimientos 
diferentes, basados en la esperanza de la distribución condicional. Aunque los dos estimadores son 
diferentes, ambos manifiestan el problema de presentar una concentración con respecto a la distribución 
de eficiencia teórica. 
 
El estudio de las propiedades de ambos estimadores permiten concluir que el valor del parámetro 
gamma tiene una gran influencia en este efecto, produciendo un truncamiento de la distribución que 
puede ser mayor del  50%, de manera que los valores extremos de la eficiencia nunca serán 
pronosticados  por los estimadores considerados.   
 
En este trabajo se propone  un procedimiento  que extienda las eficiencias  con el fin de minimizar el 
efecto de la concentración. El estudio de MonteCarlo  desarrollado demuestra que los valores  corregidos 
con este procedimiento  tiene un  comportamiento mejor que los estimadores originales. 
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ABSTRACT 
In efficiency analysis by means of a stochastic frontier production function, the composite error variable 
includes the inefficiency component. For this reason, individual prediction cannot be made directly from 
an estimation of the error in the model. In order to solve this problem, Jondrow et al (1982), and 
Battese and Coelli (1988) separately developed two different procedures, based on the expectation 
operator of the conditional distributions. Although the two predictors are different, each suffers from a 
shrinkage effect with respect to the distribution of theoretical efficiency. 
  
Our study of the behaviour of these two predictors leads us to conclude that the value of the gamma 
parameter has a great influence on the above-mentioned effect, producing a truncation of the 
distribution that could be more than 50%, so that the extreme values of the efficiency can never be 
estimated by the predictors considered. 
 
We also propose a method that spreads out the predicted efficiencies in order to minimise the shrinkage 
effect. The Monte Carlo results demonstrate that the corrected predictions have a better behaviour than 
the original predictors.  
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1. Introduction 

 This paper presents the results of a study that aimed to evaluate an important 

problem that emerges in the framework of technical efficiency analysis that employs the 

stochastic frontier model. The Stochastic Frontier Production Function was proposed 

by Aigner, Lovell and Schmidt (1977) and independently by Meeusen and Van den 

Broeck (1977). The general model of an SFP function is as follows: 

 iii Xy εβ += *  (i=1,2,... N) ε i=vi-ui 

where yi denotes the output for observation i, Xi is the vector of inputs for observation i, 

β  is a vector of parameters, N is the sample size, and the variable error ε i collects the 

differences between the observed values and the systematic part of the model. 

 The composed error  assumes that the error variable ε  is generated as the 

difference between a stochastic variable v (not controllable, symmetric, and defined 

between – ∞ and ∞ ) and the inefficiency variable u, which will always be positive and 

asymmetric. The V variable is represented by a normal distribution with a mean of zero 

and variance 2
vσ , while the distributions usually employed to specify the u component 

are the half--normal and the truncated normal.  

Once a specification for the u component has been assumed, the production 

frontier model isestimated by assigning the corresponding distribution to ε  as the 

difference between v and u. The residues are obtained as an immediate result of the 

estimation.( iε =yi- β̂*iX ), and they can be regarded as estimates of the error terms. 

However, the problem of separating these estimates into separate estimates of the 

constituent parts persisted until 1982. 

The study of efficiency by means of the SFP model was significantly advanced 

by the contributions of Jondrow et al. (Henceforth, JLMS, 1982) and Battese and Coelli 

(BC, 1988) who produced expressions involving conditional distributions given iε , to 

draw inferences about individual efficiencies. These estimators were a cornerstone of 

this methodology since they allow matching and benchmarking of results. However, 

they are widely used regardless of their possible shortcomings. 

The JLMS formulation is as follows: 

The conditional distribution of iu , given iε , is N(µ *, σ*
2) variable truncated at zero.  

The distributions of iv  and iu  are: 

( )2,0 vi Nv σ≈    and    ( )2,0 ui Nu σ≈ , where 
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and “ ≈ “ means “distributed as” and ∗µ  and 2
∗σ  are the mean and the variance of the 

conditional distribution of u given ε , respectively. 
 
Hereafter, we drop the subscript (i) for the sake of simplicity.  

Jondrow et al. defined λ as
v

u
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where “” means “ conditioned to “ and f (.) and F (.) are the probability density and 
distribution functions, respectively, of a standard normal random variable. 
 

The results of recent Monte Carlo experiments in which the JLMS performance was 

analysed can be found in Coelli (1995), Kumbhakar and Löthgren (1998) and Dios-

Palomares et al. (2002). In these papers the bias and variance of the mean efficiency 

estimate were studied, considering the gamma parameter as a source of variation. The 

conclusion was that both the bias and the precision present their worst results when 

gamma assumes central values: i.e. near 0.5. 

Battese and Coelli (1988) proposed the alternative point estimator for individual 

estimated efficiency: 
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With regard to the BC predictor, we have previously performed comparative Monte 

Carlo experiments (Dios-Palomares et al, 2003) and observed its unbiased behaviour 

which enables it to perform better than JLMS estimator. 

Nevertheless, both predictors suffer from a severe problem of shrinkage, due to the 

nature of the procedure employed, which treats the expectation as the point estimate of 

the whole conditioned distribution (See Figure 1). Therefore, both the rank and the 
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variance of the empirical estimated efficiency will always be lower than those of the true 

efficiency. 

 

We regard this as an important deformation in the predicted distribution of 

individual efficiency. For this reason we have performed a Monte Carlo experiment in 

order to achieve two objectives. First, we evaluated the shrinkage effect, after which we 

proposed a spreading method that corrects the above-mentioned effect. The following 

section explains the methodology. Section 3 reports the results and section 4  presents 

our main conclusions. 

 

2.- Methodology 

 

Design of the Monte Carlo study 

The main parameters of the experiment are: 2σ ( the variance of ε ) and γ 

(variance ratio). The random terms iv , i =1,...,N, are drawn from a normal distribution 

( )2,0 vN σ  and the technical inefficiency terms ui, from the half normal distribution. iε  is 

obtained by means of the expression iε =vi-ui  (i =1,2,...,N). 

No regression is involved and we assume that the usually unobservable ε  and 

its two components are known beforehand. 

 Ten values of 2σ ( 2σ =0.1,0.2,...,1) and nine variance ratios γ (γ=0.1,0.2,...,0.9) 

are considered in the research. In each combination, 10000 Monte Carlo reiterations are 

involved. 

The subscript J denotes the JLMS method. The subscript B denotes the BC 

approach. 

In order to compare the performance of the estimators under study, true 

efficiency distributions were attained by raising e to –u. Efficiency estimated values 

were also obtained by means of the JLMS and BC expressions, taking the 

corresponding ε  values as if they had been known in advance. 

 

The evaluation measures 

In order to evaluate the shrinkage effect we calculated the following two 

measures: 

* The Rank is the difference between the 97.5 and 2.5 percentiles of each empirical 

distribution: 
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R j = Effj 97.5 – Effj 2.5   j = TE, J, and BC  

* The Coverage is the ratio between both the estimated index and the true efficiency 

ranks: 

 

RT
RJ

CJ =  ; 
RT
RB

CB =  

            

The spreading method  

We have based the spreading method on the establishment of a 

correspondence between the estimated and true efficiency distributions. We done this 

by standardising both distributions. 

We shall refer to the true and estimated efficiencies and their corresponding 

means and standard deviations (SD) by the designations given them in Table 1. 

Table 1:  Variables and Statistics Designations 

 
 

Name Mean Std. Deviation 

True efficiency TE TM TSD 

Estimated index EI EM ESD 

 
 

The standardised true efficiency is expressed by 
TSD

TMTE −  

and the standardised estimated index by       
ESD

EMEI −  

 

 

With the above-mentioned correspondence established, we can write the 

following expression: 

ESD
EMEI

TSD
TMTE −=−   

 

 

Furthermore , we may assume that the best predictor of efficiency would be the 

one most similar to the true efficiency. We therefore replace the latter in the formulated 

equation with the corrected efficiency and then isolate it as a function of the remainder 

of the known parameters, which gives us the following expressions: 
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This last expression enables us to spread the estimated index in order to correct 

the shrinkage effect. 

 

3 Results 

 In order to attain the first objective, we calculated and studied the empirical 

distributions of the three measures of efficiency that we are attempting to compare: the 

True Efficiency (ET), and the J and BC predictors.  

In order to analyse the results, we have represented the three empirical 

distributions in the same graph. We also present three different figures ( 2, 3 and 4) 

corresponding to different values of the parameters which we think may influence the 

shrinkage effect: i.e. 2σ  and  γ.  

With respect to the true efficiency, it is worth noting that parameters γ and 

2σ both have an influence on its distribution, the real effect having been produced by the 

σu
2 parameter, which is the result of multiplying the above-mentioned parameters. 

The graphs show that when σu
2 is low, the empirical density of the efficiency is found in 

the highest zone of the (0,1) interval, while no values occur in the zone next to zero. 

Nevertheless, from σu
2 about 0,1, the empirical density is spread over the entire (0,1) 

range. This implies that the mean efficiency is, in some way, related to the σu
2 

parameter; the lower this is, the higher the variance of u.                   

With respect to the behaviour of the distributions of the predictors, the graphs 

show that the above-mentioned distributions have suffered a considerable degree of 

shrinkage with respect to the true efficiency distribution. 

Looking at the histograms of both predictors, it is clear that there is no significant 

difference between their performances in terms of the shrinkage effect, although  it 

should be noted once again that the J predictor has a bias. As far as the shrinkage 

effect is concerned, the figures show that γ is the more influential parameter. Figure 5 

illustrates the ranks of the three distributions studied. 

The figure shows that the performances of the two predictors are certainly 

similar. We can also see that the differences between the ranks of the true efficiency 
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and that of the predicted one depend on the γ value, these differences being higher, the 

lower the value of γ.  

The coverage measure is also shown in Figure 6. Once again, it can be seen 

that the two predictors studied perform in a similar fashion. The evaluation of the 

shrinkage effect as a function of γ can also be observed. The graph shows that 

coverage may be only 35%  when γ is low  (0.1).  

This result can be rather dramatic, given that it means that only 35% of the true 

distribution is predicted, in other words, that the shrinkage effect is 65%. 

These results suggest that it might be of interest to devise a method of 

correcting this shrinkage effect.  

Turning our attention to the second objective, we employed a spreading method to 

correct the estimated indices obtained in our Monte Carlo experiment, using the 

calculated empirical distribution, and Tables 2 and 3 show the results for two particular 

experimental points. These two tables correspond to the experimental points σ2 = 0.1 ; 

γ=0.1 and σ2 = 1; γ=0.9, respectively. 

 

Table 2: Empirical distribution statistics for σ2 = 0.1 and γ=0.1 

σ2 = 0,1 

γ = 0,1 EJ EB CEJ CEB ET 

Mean 0,924 0,925 0,927 0,927 0,927 

Std dev 0,011 0,010 0,053 0,053 0,053 

Min 0,872 0,875 0,665 0,664 0,703 

Max 0,950 0,951 1,061 1,060 1,000 
 

 

Table 3: Empirical distribution statistics for σ2 = 0.9 and γ=1 

σ2 = 0,9 
γ= 1 EJ EB CEJ CEB ET 

Mean 0,523 0,538 0,539 0,539 0,539 

Std dev 0,211 0,212 0,245 0,245 0,245 

Min 0,035 0,037 0,006 0,000 0,036 

Max 0,896 0,900 0,972 0,957 0,999 
 

The figures in these tables show the main statistics for five different distributions 

that correspond to the two estimated efficiencies, the two corrected efficiencies and the 
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true efficiency. As we have pointed out, the less the value of γ, the greater the shrinking 

effect.. 

It is quite clear that the spreading method produces  corrected efficiencies with 

distributions very close to the true efficiency as we expected. As we can see, both the 

mean and the standard deviation of the corrected indices have changed. In particular, 

we note that the standard deviations have increased and that their values are similar to 

the SD of the true efficiency. 

Figure 7 presents a comparative representation of the five distributions. In order 

to illustrate the spreading method, we applied it to the data set used by Coelli in his 

Frontier 4.1User’s Manual (1996). We also calculated the J index by running the the 

same data set through the Limdep program (2000). 

The spreading method requires the same information about the statistics of true 

efficiency and the corresponding estimated index. The statistics of the estimated index 

have been calculated directly from their estimated values as these appeared in the 

output file of the relevant software.  

From the same output file we also took the estimated parameters σ2 and γ. We 

then used the empirical values of the statistics that we obtained as a result of our Monte 

Carlo experiment, given these particular values for σ2 and γ. In the case of the J index 

we had to calculate γ from the values of σ2 and σu
2 . 

Table 4 shows the values of the statistics used for the Coelli data set. 

 

Table 4: Statistics and parameters 

 Expectation S. Deviation σ2 σu
2    γ 

J et al 0.7324 0.1129 0.22 0.1789 0.8133 

B y C 0.7406 0.1284 0.22  0.8 

Empirical True 

Efficiency 

0.735 0.1652 0.20  0.8 

 

For the J index we extracted the values for the expectation, the SD, and the 

estimated parameters σ2 and σu
2 from the output file of the Limdep software and 

calculated: 

γ =(σu
2 /σ2) =0.8133 

In the case of the BC index the values for the expectation, the SD and the 

estimated parameters (σ2=0.2 and γ=0.8) were obtained directly from the Frontier 4.1 

output file. 
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Then, given γ=0.8 and σ2=0.2, our Monte Carlo results show that the expectation 

and SD of the empirical true efficiency distribution are 0.735 and 0.1652 respectively ( 

see Appendix ). 

 

Table 5 collects the main statistics of the two estimated indices and their 

corresponding corrected indices. As we can see, they have been spread in the direction 

of the true efficiency distribution.  

 

Table 5: Statistics of the original and corrected indices 

 EJ CEJ EB CEB 

Mean 0.732 0.735 0.7406 0.7352 

Std dev 0.129 0.1652 0.1284 0.1653 

Min 0.345 0.2419 0.3513 0.2343 

Max 0.935 0.9941 0.9374 0.9884 

Count 60 60 60 60 

 

This effect can also be seen in the Figures 8 and 9, where we have paired each 

index with its corrected equivalent. 

 

4. Conclusions 

In this study we have collected the results of research that was carried out with 

the aim of evaluating and correcting the shrinkage effect that appears when the 

Jondrow et al. and Battese and Coelli predictors are employed in a stochastic frontier 

framework. 

We regard this as an important deformation of the predicted distribution of 

individual efficiency. For this reason we performed a Monte Carlo experiment in order to 

achieve two objectives. First we evaluated the shrinkage effect after which we 

suggested a spreading method to correct this effect. 

We conclude that a marked shrinkage effect occurs in the estimated empirical 

distributions when the analysed predictors of individual efficiency are employed, and 

that both the BC and the JLMS predictors perform similarly with respect to the above-

mentioned effect. 

We also conclude that the shrinkage effect is primarily dependent on the γ 

parameter as follows: the lower the γ, the lower the coverage value. 
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With regard to the coverage measure, we point out that a 60% truncation in the 

data may occur when γ = 0.1. 

Applying the proposed spreading method to the Coelli data set clearly corrects 

the shrinkage effect.  
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Appendix .- Empirical  Statistics of the Theoretical Efficiency 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     ? 

s 2 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1,0 

 

Statistics 

0.927 0.899 0.878 0.860 0.844 0.833 0.823 0.819 0.804 0.793 Mean 
0.1 

0.053 0.070 0.084 0.099 0.108 0.114 0.117 0.127 0.132 0.138 Std dev 

0.898 0.861 0.834 0.812 0.792 0.777 0.761 0.748 0.736 0.727 Mean 
0.2 

0.073 0.092 0.113 0.127 0.139 0.149 0.156 0.161 0.167 0.173 Std dev 

0.878 0.837 0.800 0.775 0.747 0.738 0.708 0.709 0.694 0.676 Mean 
0.3 

0.085 0.113 0.138 0.145 0.162 0.169 0.177 0.180 0.190 0.193 Std dev 

0.858 0.810 0.782 0.749 0.728 0.708 0.690 0.668 0.658 0.641 Mean 
0.4 

0.098 0.129 0.143 0.159 0.170 0.182 0.191 0.193 0.211 0.215 Std dev 

0.847 0.795 0.755 0.721 0.713 0.680 0.659 0.654 0.633 0.620 Mean 
0.5 

0.107 0.136 0.162 0.169 0.182 0.195 0.202 0.202 0.215 0.223 Std dev 

0.835 0.779 0.737 0.698 0.674 0.657 0.635 0.617 0.606 0.591 Mean 
0.6 

0.116 0.149 0.171 0.187 0.191 0.206 0.210 0.216 0.222 0.229 Std dev 

0.818 0.760 0.727 0.693 0.666 0.631 0.622 0.606 0.594 0.572 Mean 
0.7 

0.121 0.154 0.178 0.187 0.198 0.212 0.220 0.226 0.229 0.235 Std dev 

0.816 0.735 0.700 0.668 0.634 0.622 0.592 0.588 0.571 0.553 Mean 
0.8 

0.127 0.165 0.183 0.196 0.207 0.217 0.232 0.232 0.238 0.238 Std dev 

0.802 0.730 0.693 0.643 0.622 0.612 0.589 0.570 0.558 0.539 Mean 
0.9 

0.133 0.167 0.188 0.204 0.220 0.224 0.228 0.231 0.241 0.245 Std dev 
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Figure 1:  The shrinkage effect 
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Figure 2.- Histogram of efficiency         σ2= 0.1 ; γ= 0.1; σu
2=0.01 
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Figure  3.-Histogram of efficiency         σ2= 1 ; γ= 0.1; σu
2=0.1 
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Figure 4.-Histogram of efficiency         σ2= 1 ; γ= 0.9; σu
2=0.9 
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Figure 5: Rank   σ2= 0.1 
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Figure 6: Coverage   σ2= 0.1  
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Figure 7: Comparative representation of the five distributions  
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Figure 8:  Original and corrected Jondrow et al. indices 
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Figure  9: Original and corrected Battese and Coelli indices 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

10 20 30 40 50 60 

CEB EB 




