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ABSTRACT: In this work, we present a simplified two-layer nebdf Savage-Hutter type to simulate tsunamis
generated by landslides (see (Fernandez et al. 2008)).yeék Bomposed of fluidized granular material is
assumed to flow within an upper layer composed of an invisgid te.g. water). The sedimentlayer is modelled
by a Savage-Hutter type model where buoyancy effects haete tensidered. The system is discretized using
IFCP finite volume scheme. The first order IFCP scheme wagduoted in (Fernandez et al. 2011) and it is
constructed by using a suitable decomposition of a Roe xlagrimeans of a parabolic viscosity matrix, that
captures information of the intermediate fields (InterraggliField Capturing Parabola). Its extension to high
order and two-dimensional domains is straightforward. dioctude, some numerical examples are presented.

1 INTRODUCTION In these equations, index 1 makes reference to the up-
: TS ) ) er layer (water) and index 2 to the lower one (gran-
Let us consider a simplified two-layer Savage I_“Jtteﬂl:_lar material). The coordinate refers to the axis of

type system that can be use to model tsunamis gene L . !
ated by landslides. This model is a simplified versionthe channely is time, andy is the acceleration due

of the one introduced in (Fernandez et al. 2008): 40 9ravity.b(x) represents the bathymetry. Each layer

layer composed of fluidized granular material is asiS @ssumed to have a constant density,i = 1,2

sumed to flow within an upper layer composed of an(P1 < p2), andr = p;/p,. The unknowns;;(z, t) and

inviscid fluid (e.g. water). The sediment layer is mod-hi(x’t) represent respectively the mass-flow and the

elled by a Savage-Hutter type model where buoyanct ickness of the-th layer.7; is t.“? fric'gion term be-
effects have been considered: ween the two layers and here it is written as

‘—c-ihlh2 |ur — ug|(us — uy)
(%+%:0 TZ—ZTh1+h2 1 2|(U2 1)
ot v 7 o _
o N 9 (a@ L9 — o Ohy . db andr, denotes the Coulomb friction term. This term
ot o \n ' 2't) T 79, TIMgr  mustbe understood as:
+Ti7 U
Ohy  O0q 0 If 7| >0, = 7 =g(1—r)ha—tan(dy), (2)
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L —TrT; — Tp whereo, = g(1 — r)hotan(dy ), beingd, the Coulomb

(1) friction angle.



Observe that the presence of the téim- ) inthe  flow is subcritical Finally, whenG? > 1, the flow is
definition of the Coulomb friction term is due to the supercritical
buoyancy effects, that must be taken into account only Observe that, when= 0, the eigenvalues are those
in the case that the sediment layer is submerged in theorresponding to each layer separately. Therefore,

fluid, otherwise this term must be replacediby whenr = 0, the coupling terms do not affect the na-
Notice that system (1) can be written in the follow- ture of the system in an essential manner. The eigen-
ing form: values ofA can be classified in two external and two

internal eigenvalues. The external eigenvalugs,,

are related to the propagation speed of barotropic per-
wy + F(w), + B(w) - w, = S(w)b, +7, (4)  turbations and the internal ongs,,, to the propaga-

tion of baroclinic perturbations. First order approxi-

where mation of the eigenvalues can be found in (Schijf &
_ - Schonfeld 1953).
9 « In most applications to geophysical flows, one has
ha(,1) G| Ip2 A < 0and\’, > 0. Moreover, the internal eigen-
w(z,t) = qi(z,1) . F(w) = hy 2 : values depend on the reduced gravjtyAs a conse-
ha(z,1) ) 72 guence the absolute value of internal eigenvalues are
q2(7,1) 2 + th usually smaller than those of external ones, that is
L hy 2 7
0 0 0 0 0 el < Gl [Nl < Gl
S(w) = _%hl , B(w) = 8 8 96“ 8 , This fact implies that first order numerical schemes
that only use information concerning the external
—gho grhy 0 0 0

eigenvalues are in general too diffusive when applied
to the simulation of internal waves. On the other hand,

=10 ) 0, — Iy = T el i
T=[07 I = 7] methods that use explicitly the eigenstructureof

The vectorw takes values in the set: as it is the case of Roe method, are computationally
. . expensive, as it does not exist any easy explicit ex-
O ={[h,q,h2,¢2]" €R*, hy >0, hy >0}, pression of the eigenvalues and eigenvectors of this

system. IFCP scheme is a computationally fast and
as the thickness of the layers may vanish in practicabrecise method that uses information concerning the
applications when one or the two layers disappear ifinternal eigenvalues. The definition of the method is
part of the domain. Let us also define the mattiw)  based on a suitable decomposition of a Roe matrix

given by (see (Toumi 1992)) by means of a parabolic viscosity
OF matr_ix (se_e (Degond et al. 1999)) that captures inter-
A(w) = J(w) + B(w), beingJ(w) = 6_w(w)' mediate field information.

2 NUMERICAL SCHEME

Here, only the description of the 1D first and high
2 2 2 2 o order IFCP scheme is considered. Its extension to
(W = 2mA+ uf = gh) (X = 2u0) + 13 = ghs) = two-dimensional problems is straightforward follow-
) ing the procedure described in (Castro et al. 2009) and
rg~hihs. (Gallardo et al. 2011).
(5) Friction termsr will be discretized semi-implicitly

_ . _ as described in (Fernandez et al. 2008), so they are
Itis easy to check that the condition under which ong,ggjected at this point.

of the eigenvalues vanishes is:

The characteristic equation df(w) is:

Solutions of (4) may develop discontinuities and,
due to the non-divergence form of the equations, the
notion of weak solution in the sense of distributions
cannot be used. The theory introduced by Dal Maso,
LeFloch, and Murat (Dal Maso et al. 1995) is fol-
2 . ' lowed here to define weak solutions of (4). This the-
(F? = ;- whereg' is thereduced gravityg’ = (1 = ory allows to define the nonconservative products as a
r)g). When this condition is achieved at a section ofbounded measure provided a family of Lipschitz con-
coordinater, the flow is said to beritical at this point  tinuous pathspb : [0, 1] x Q2 x Q — € is prescribed,
and the section is called acontrol. WhenG? < 1,the  which must satisfy certain natural regularity condi-

G*=F+F} —(1—-r)F?F? =1, (6)

where( is the so-callecomposite Froude number
and F; for ¢« = 1,2 are the internal Froude numbers



tions. Here, the family of straight segments is con-for systems of balance laws (see [z & Parés
sidered: 2011)). Moreover for more general problems, even
when the convergence error is present, it may be only
®(s;wr, wr) = wr, + s(wg — wr,). noticeable for very fine meshes, for discontinuities of
large amplitude, and/or for large-time simulations:

In (Fernandez et al. 2011) authors introduce a firskee (Castro et al. 2008), (Fes & Mufioz 2009) for
order numerical scheme, named IFCP. IFCP numerigetails. '

cal scheme is constructed by using a suitable decom-

position of a Roe matrix of system (4) by means of a The key point is the definition of the matrig, ;1 2,

parabolic viscqsity mat_rix (see (Dggond et .aI. 1999)),that in the case of the IFCP is defined by:
that captures information of the intermediate fields.

IFCP is a path-conservative scheme in the sense de- (), , = agld +ay A1 + aA? s, (12)
fined in (Parés 2006).
IFCP numerical scheme can be written as follows whereq;, j = 0, 1,2 are defined by:

At
w?H = w; — Ar (D;r—1/2 + D;H/Q)a (7) a = 0 )‘4,i+1/2 Xint + 54,z‘+1/2 )\1,i+1/2th
x
belngDiiH/z - Di1/2(wiawi+1abiabi+1) defined by EOLHL/2 A,iH1/2
a1 = —A1(0s 4 Gint) — Aaiv1/2(01 + Gine)

—Xint (01,i+1/2 + Oa,i+1/2)
Qo = (51 + 54 + 5@'nt7

1
D?«:H/Q = §(F(wzn+1) — F(w}") + Biy172 — Siy1/2

Qi1 2wl —wi — A;:1/25i+1/2) (13)

(8) -
whereB; 1/, = Biy1/2(wiy1 — w;) being being

5, |>\1,z’+1/2|
(>\1,i+1/2 - )\4,i+1/2)(>\1,i+1/2 - th)7

1
Bz‘+1/2:/ B(®(s; Wi, Wiy1)) ds; (9)
0

SZ'+1/2 = Si+1/2(bi+1 — bi), where 5 |)\47i+1/2‘
) ! (>\4,i+1/2 - )\1,i+1/2)(>\4,i+1/2 - th)’
Sit1/2 :/ S(P(s; Wi, Wigq))ds. (10) | \int|
0 in
5@'n - )
' (Xint - )\1,i+1/2)(Xint - )\4,i+1/2)

Ai+_1/2 = Jiv1y2 + Bz'+1/g, being Jz’+1/2_a Roe lin-
earization of the Jacobian of the flux in the usual
sense:

Jivrjz - (Wip1 —w;) = Fwis) — F(w;);  (11)

whereA iy12 < Asivi/2 < Aziv1/z < Agivry2 arethe
eigenvalues of matrix,, ; » and

Xint = Seat maX(|)\2,i+l/2|7 ‘)‘3,i+1/2‘)7 (14)
andQ; 1/ is a viscosity matrix. with
Remark 2.1 Note that the numerical scheme de- :
. . . ext)s If ex 07
pends on the choice of the family of path This Seat = { Lgr(x 2 ot%rvt/)is?; (15)

scheme is a path-conservative numerical scheme in
the sense introduced by Rex in (Paés 2006). In
(Castro et al. 2008) and (Péas & Muioz 2009) it has
been proved that, in general, the numerical solutions;
provided by a path-conservative numerical scheme
converge to functions which solve a perturbed system , At

in which an error source-term appears on the right- max {[Airyo| 1 <1< 4, i€ Z} Ar CFL<1.
hand side. The appearance of this source term, which (16)

is a measure supported on the discontinuities, has . ,

been first observed in (Hou & LeFloch 1994) whenRémark 2.2 Note that the coefficients; are defined

a scalar conservation law is discretized by means of 4" {€rms of the eigenvalues of the matuik /.
nonconservative numerical method. Nevertheless, ifi€'€, We use the first order approximations defined in
certain special situations the convergence error van{Schiif & Schonfeld 1953) to estimate the wave speeds

ishes for finite difference methods: this is the case‘.i+1/2:{=1,---,4.

Wherexe,: = Aiit1/2 + Ayiti/2. o
It can be proved that IFCP scheme is lineakhy
able under the usual CFL condition

3



Remark 2.3 Note that ifoy = (1 — w)32

a1 =0
anday = wﬁt , then the numerical scheme (7)-(8) co-

incides with the family introduced in (Castro et al.

2010). This family contains, as particular cases, a

2006)):

wi(t) Dz'tl/Q

i+1/2

+D., 1))

Al

well-balanced extension of the Lax-Friedrichs £ (Pl ) — F(wh . (¢
0), Lax-Wendroff ¢ = 1), FORCE ¢ = 1), and Ax( (Wi o (0) = F(wizy ))>
— 1
GFORCE @ = ﬁ) methods. = I B(Pil(l‘))(Pz;Z($))x dr
1 7
Remark 2.4 Notice that in the definition of (8) the Ay 1 (P (2)) (P ()2 dx,
term ' (17)
C= Qi+1/214i_+11/25¢+1/2, with D;:l/Q = D(w;Ll/Q(t),w;rl/Q(t),b;+1/2,b;1/2)
_ o and wherew;,, ,(t) andb;, , are the reconstructed
that can be interpreted as the upwinding part of the

source term discretization, makes no sense if one
the eigenvalues ofl; ./, vanishes. In this case the

problem is said to be resonant. Resonant problems ex-

hibit an additional difficulty, as weak solutions may
not be uniquely determined by their initial data, and

the limits of the numerical solutions may depend both
on the family of paths and the numerical scheme it-

a/}t)alues atzr; ;1o of w(z,t) and b(x), respectively.
t

(x) and P, (z) are functions defined ify such that

Wi

Jign (Pzii(x)vpbi (z)) = (w;r_1/2(t)>b;r_1/2)>
T=Ti /9
lim (P, (2), Py, (2)) = (w1 5(£), 071 o).

TT 4 s

(18)

self. The analysis of this difficulty is beyond the scopgqyrth order Romberg quadrature formula is used to
of this work. Here, we follow the strategy describedcompute the integrals

in (Fernandez et al. 2011) to get rid of this difficulty
and to obtain well-balanced numerical schemes for
given set of stationary solutions.

2.1 Extension to high order

a/I'B(

Pt

wi

(2))(Py,(x)). and /I 5Py, (@) (Fyy (7))

7

Remark 2.5 Note that high order schemes for con-

In order to define a high order numerical schemeServative systems only dependwf, ,, where they
for system (4), we follow the procedure described independ onP,, and P, for nonconservative systems
(Castro et al. 2006). First, a high order reconstruc{see (Castro et al. 2006)).

tion operator of the formP}, (z) = (P! (z), Py(z))”
is considered, that is, an operator that associate
to a given sequence W;(t) = (w;(t),b;)"}, two
Wiiaja(®) = (W3 s(0:550,2)7 |,

i+1/2 »Yit1/2
(t),biil/z)T} in such a way

new sequence

Wi s(t) = (w

i+1/2
that, whenever

Jr
i+1/2

1

b= —
A.CC I;

b(x) dx

for some regular functiofl’ = (w,b)”, then

+

(wil/Qa bz‘+1/2) = (w(xi-l-l/?? t)? b(xi+1/2))T + O(A:Ep),

Vi e Z.

Einally, a high order TVD-Runge-Kutta discretization
can be used for the time-stepping (see (Gottlieb & Shu
1998)). Concerning the high order reconstruction op-
erator, we usually use the PHM (piecewise hyperbolic
method) introduced in (Marquina 1994). The exten-
sion to 2D systems is straightforward following (Cas-
tro et al. 2009) and (Gallardo et al. 2011).

3 NUMERICAL TESTS

In this section we present some numerical tests. In
the first one, a battery of numerical tests is presented
to study the dependency of the sediment layer pro-
file and the generated tsunami with respect to the
friction angle §, and the ratio of densities;. In

the second one, the generation and propagation of
tsunami on a real bathymetry is considered. In both
cases, a GPU implementation of the previous scheme
in two-dimensional domains has been used. Modern
Graphics Processing Units (GPUs) offer hundreds of
processing units optimized for massively performing

floating point operations in parallel and have shown to

be a cost-effective way to obtain a substantially higher

Here, we propose the following semi-discrete highperformance in the applications related to shallow wa-
order numerical scheme for (4) (see (Castro et alter flows due to the high exploitable parallelism which
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exhibits the finite volume schemes (see for example: Sediment layer
(Castro et al. 2011),(Brodtkorb et al. 2011) or (Gal- *'[ = = " T T T S oxado

lardo et al. 2011)). Here, a MPI-CUDA implementa- _* Bx=.0

tion like the one presented if?)(has been performed

to increase the speed-up of the computations up to
two-orders of magnitude using a cluster of NVIDIA
GTX-490 graphics cards with respect to a mono-core
implementation in a modern CPU (Intel Xeon E5430
(2.66 GHz 12MB L2 Cache)).

3.1 Testl

A battery of numerical tests is presented here to study
numerically the dependency of the sediment layer
profile and the generated tsunami with respect to the
friction angled, and the ratio of densities, The ef-
fective angle of repose of the sediment layer after an
avalanche is also measured at the stationary state. Let
us consider a square domain éf m side, centered ) _
at the origin, with a flat bottom topography, that is, Figure 1: Sediment layer at stationary staie =
b= —2. As initial condition, we seti; — u, — 0and  AY € {0.1,0.05,0.02}, (do = 20°, r = 0.4).

o
IN
d
L
N
o
n
w
~
o

'Y, 0, otherwise, Table 2: Effective angle of repose £ 0.4)

[ 6o | max | mean| 6, | max | mean |
hi(z,y,0) = 2 — ha(z,y,0). Free boundary condi- [10° [ 9.82° | 2.84° [ 15° [ 14.51° | 5.35°
tions are imposed at both channels ends. The CFL pa-| 20° || 19.16° | 8.46° | 25° || 23.90° | 12.05°
rameter is set t0.8. 30° || 29.42¢° | 16.13°

Table 1: Effective angle of repose £ 0.4, 6, = 20°)

| Az | max | mean| Az | max | mean|

0.1 | 18.03° | 8.43° || 0.05 || 19.16° | 8.46°
0.02 || 19.69° | 8.46°

the sediment layer at the stationary state for =
Ay = 0.05 and Table 3 shows the maximum and mean
effective angle of repose of the sediment layer after
the landslide. Again, the maximum value is always
under §y. Note that the maximum value decreases
, ) . , with » while the mean increases with respectrto

In Figure 1 we compare the final stationary inter-Neyertheless, the variations are not relevant. More
face that we obtain for three different meshes withgifierences can be observed in the stationary profile of
Az = Ay €{0.1,0.05,0.02} forr = 0.4 anddy = 20°.  the second layer (see Figure 4), in particular the posi-

Only some small differences near the ”we_t/dry” frontStion of the front decreases with as well as the maxi-
can be observed. Table 1 shows the maximum and thgm height of the sediment layer. Figure 5 shows the

mean effective angle of repose of the sediment layegayimum of the free surface,= hy + hs — 2.0, Vs.r.

after the landslide at the stationary state. As expecteths expected, the amplitudes of the generated tsunami
the maximum value is undég = 20°, while the mean 46 pigger for smaller values of

value is close t®.5°.
Figure 2 shows the profiles of the sediment layer at
the stationary state for= 0.4, Ax = Ay = 0.05 and
do € {10°,15°,20°,25° 30°} and Table 2 shows the Table 3: Effective angle of repos& (= 20°)
maximum and mean effective angle of repose of the [+ T max [mean] r | max | mean]

sediment layer after the landslide. As expected, the 50T 1964° [3.07° 1 011 19.56° | 8.22°
maximum value is always undég. Figure 3 shows 021193701 830° | 0.3l 19.23° | 8.41°
the maximum of the free surface,= hy + hy — 2.0, 04 | 19.16° | 8 46°

vs. dy. Figure 3 gives an idea of the amplitude of the
generated tsunami. Note that the amplitude decreases
for bigger values of the parametgy.

Now, the parameter, is set to20° and r €
{0.0,0.1,0.2,0.3,0.4}. Figure 4 shows the profiles of
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Figure 2: Sediment layer depth at the stationary stat€igure 3: Maximal height of the free surface fore
for r = 0.4 andd, € {10°,15°,20°,25°,30°}. 0.4 anddy € {10°,15°,20°,25°,30°}.

3.2 A tsunami generated by submarine landslidem height. After this wave, other waves appear with
over real bathymetry lower height. We can remark than due to the geometry

There are geological evidences about a tsunami ge®f the Malaga bay, some of these waves are reflected
erated by a submarine landslide located in the conProducing resonant effects.
tinental margin of Alboran island (western Mediter-
ranean). The initial landslide area is located at south4 CONCLUSIONS
west of Alboran island and covers an area about 9.5, this work, a high order extension of the IFCP
km? where water depth range varies from 100 to 100G6cheme has been introduced to solve a two-layer
m. Deposit covers an area of about 30°kin this sec-  Savage-Hutter type model to simulate tsunamis gen-
tion we show an advanced numerical experiment thagrated by landslides. IFCP is a method constructed
consist on starting from the current bathymetry, re-by a suitable decomposition of a Roe matrix, , 5,
construct the pre-tsunami paleo-bathymetry and thernwhose viscosity matrix is computed by a linear com-
simulate the landslide and the generated tsunami. bination of the identity matrixd; ,, andAZ?H/2 and
A rectangular 180 knx 190 km withAz = Ay =  whose coefficients are given in terms of the eigen-
25 m grid has been considered (54720000 cells). Thealues ofA,.,/,. The resulting numerical scheme is
simulated time covers 3600 s after the tsunamiis triglinearly L..-stable and well-balanced for the water at
gered. We set, CFE= 0.9, r = 0.55, ¢; = 107°, and  rest solution. A GPU implementation has been per-
dp = 10°. formed to speed up the computations. Two numeri-
Figures 6 and 7 show the current bathymetry andtal tests have been presented: in the first one, a study
the reconstructed pre-tsunami original bathymetry. the dependency of the sediment layer profile and the
Figures 8 and 9 show two different stages of thegenerated tsunami with respect to the friction angle
propagated tsunami. It can be observed how the shape and the ratio of densities, has been performed.
of the tsunami varies according to the bathymetry]n the second one, the generation and propagation of
while the bathymetry is smoother southwards fromtsunami in the Alboran See using a real bathymetry
the Alborani canyon, the shape of the tsunami wavdave been performed.
is almost symmetric, while northwards, the sharper
bathymetry effects are quite more visible. Acknowledgements. This research has been par-
Finally in Figure 10 it is shown a wave height time tially supported by the Spanish Government Research
series extracted from a point near to Malaga (locate@rojects MTM2009-11923. The numerical computa-
in the north-west of the domain). We can observe thations have been performed at the Laboratory of Nu-
the tsunami wave arrives to this point about 32 mingnerical Methods of the University of Malaga.
after the tsunami is triggered. The first wave height is
very small, just about 7-8 cm, then, two minutes later REFERENCES
a larger negative wave (about -40 cm height) arrives Asuncion, M. de la & Mantas, J.M. & Castro, M.J.
followed, 4 minutes later, by a larger wave of about 50 & Fernandez, E.D. (2011). An MPI-CUDA
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