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ABSTRACT: In this work, we present a simplified two-layer model of Savage-Hutter type to simulate tsunamis
generated by landslides (see (Fernández et al. 2008)). A layer composed of fluidized granular material is
assumed to flow within an upper layer composed of an inviscid fluid (e.g. water). The sediment layer is modelled
by a Savage-Hutter type model where buoyancy effects have been considered. The system is discretized using
IFCP finite volume scheme. The first order IFCP scheme was introduced in (Fernández et al. 2011) and it is
constructed by using a suitable decomposition of a Roe matrix by means of a parabolic viscosity matrix, that
captures information of the intermediate fields (Intermediate Field Capturing Parabola). Its extension to high
order and two-dimensional domains is straightforward. To conclude, some numerical examples are presented.

1 INTRODUCTION

Let us consider a simplified two-layer Savage-Hutter
type system that can be use to model tsunamis gener-
ated by landslides. This model is a simplified version
of the one introduced in (Fernández et al. 2008): a
layer composed of fluidized granular material is as-
sumed to flow within an upper layer composed of an
inviscid fluid (e.g. water). The sediment layer is mod-
elled by a Savage-Hutter type model where buoyancy
effects have been considered:
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In these equations, index 1 makes reference to the up-
per layer (water) and index 2 to the lower one (gran-
ular material). The coordinatex refers to the axis of
the channel,t is time, andg is the acceleration due
to gravity.b(x) represents the bathymetry. Each layer
is assumed to have a constant density,ρi, i = 1,2
(ρ1 < ρ2), andr = ρ1/ρ2. The unknownsqi(x, t) and
hi(x, t) represent respectively the mass-flow and the
thickness of thei-th layer.τi is the friction term be-
tween the two layers and here it is written as

τi = ci
h1h2

rh1 + h2

|u1 − u2|(u2 − u1),

andτb denotes the Coulomb friction term. This term
must be understood as:

If |τb| ≥ σc ⇒ τb = g(1− r)h2

u2

|u2|
tan(δ0), (2)

If |τb| < σc ⇒ u2 = 0. (3)

whereσc = g(1− r)h2tan(δ0), beingδ0 the Coulomb
friction angle.
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Observe that the presence of the term(1− r) in the
definition of the Coulomb friction term is due to the
buoyancy effects, that must be taken into account only
in the case that the sediment layer is submerged in the
fluid, otherwise this term must be replaced by1.

Notice that system (1) can be written in the follow-
ing form:

wt + F (w)x +B(w) ·wx = S(w)bx + τ , (4)

where
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τ = [0, τi, 0, −rτi − τb ]
T .

The vectorw takes values in the set:

O = {[h1, q1, h2, q2]
T ∈ R

4, h1 ≥ 0, h2 ≥ 0},

as the thickness of the layers may vanish in practical
applications when one or the two layers disappear in
part of the domain. Let us also define the matrixA(w)
given by

A(w) = J(w) +B(w), beingJ(w) =
∂F

∂w
(w).

The characteristic equation ofA(w) is:

(

λ2 − 2u1λ+ u2
1 − gh1

)(

λ2 − 2u2λ+ u2
2 − gh2

)

=

rg2h1h2.
(5)

It is easy to check that the condition under which one
of the eigenvalues vanishes is:

G2 = F 2
1 + F 2

2 − (1− r)F 2
1F

2
2 = 1, (6)

whereG is the so-calledcomposite Froude number,
andFi for i = 1,2 are the internal Froude numbers
(F 2

i =
u2
i

g′hi
, whereg′ is thereduced gravity, g′ = (1−

r)g). When this condition is achieved at a section of
coordinatex, the flow is said to becritical at this point
and the sectionx is called acontrol. WhenG2 < 1, the

flow is subcritical. Finally, whenG2 > 1, the flow is
supercritical.

Observe that, whenr = 0, the eigenvalues are those
corresponding to each layer separately. Therefore,
whenr ∼= 0, the coupling terms do not affect the na-
ture of the system in an essential manner. The eigen-
values ofA can be classified in two external and two
internal eigenvalues. The external eigenvalues,λ±

ext,
are related to the propagation speed of barotropic per-
turbations and the internal onesλ±

int, to the propaga-
tion of baroclinic perturbations. First order approxi-
mation of the eigenvalues can be found in (Schijf &
Schonfeld 1953).

In most applications to geophysical flows, one has
λ−

ext < 0 andλ+
ext > 0. Moreover, the internal eigen-

values depend on the reduced gravityg′. As a conse-
quence the absolute value of internal eigenvalues are
usually smaller than those of external ones, that is

|λ±

int| < |λ−

ext|, |λ±

int| < |λ+
ext|.

This fact implies that first order numerical schemes
that only use information concerning the external
eigenvalues are in general too diffusive when applied
to the simulation of internal waves. On the other hand,
methods that use explicitly the eigenstructure ofA,
as it is the case of Roe method, are computationally
expensive, as it does not exist any easy explicit ex-
pression of the eigenvalues and eigenvectors of this
system. IFCP scheme is a computationally fast and
precise method that uses information concerning the
internal eigenvalues. The definition of the method is
based on a suitable decomposition of a Roe matrix
(see (Toumi 1992)) by means of a parabolic viscosity
matrix (see (Degond et al. 1999)) that captures inter-
mediate field information.

2 NUMERICAL SCHEME
Here, only the description of the 1D first and high
order IFCP scheme is considered. Its extension to
two-dimensional problems is straightforward follow-
ing the procedure described in (Castro et al. 2009) and
(Gallardo et al. 2011).

Friction termsτ will be discretized semi-implicitly
as described in (Fernández et al. 2008), so they are
neglected at this point.

Solutions of (4) may develop discontinuities and,
due to the non-divergence form of the equations, the
notion of weak solution in the sense of distributions
cannot be used. The theory introduced by Dal Maso,
LeFloch, and Murat (Dal Maso et al. 1995) is fol-
lowed here to define weak solutions of (4). This the-
ory allows to define the nonconservative products as a
bounded measure provided a family of Lipschitz con-
tinuous pathsΦ : [0,1]× Ω × Ω → Ω is prescribed,
which must satisfy certain natural regularity condi-
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tions. Here, the family of straight segments is con-
sidered:

Φ(s;wL,wR) = wL + s(wR −wL).

In (Fernández et al. 2011) authors introduce a first
order numerical scheme, named IFCP. IFCP numeri-
cal scheme is constructed by using a suitable decom-
position of a Roe matrix of system (4) by means of a
parabolic viscosity matrix (see (Degond et al. 1999)),
that captures information of the intermediate fields.
IFCP is a path-conservative scheme in the sense de-
fined in (Parés 2006).

IFCP numerical scheme can be written as follows

wn+1
i = wn

i −
∆t

∆x

(

D+

i−1/2 +D−

i+1/2

)

, (7)

beingD±

i+1/2 = D±

i+1/2(wi,wi+1, bi, bi+1) defined by

D±

i+1/2 =
1

2

(

F (wn
i+1)− F (wn

i ) + Bi+1/2 −Si+1/2

±Qi+1/2(w
n
i+1 −wn

i −A−1

i+1/2Si+1/2)

(8)
whereBi+1/2 = Bi+1/2(wi+1 −wi) being

Bi+1/2 =

∫ 1

0

B(Φ(s;Wi,Wi+1))ds; (9)

Si+1/2 = Si+1/2(bi+1 − bi), where

Si+1/2 =

∫ 1

0

S(Φ(s;Wi,Wi+1))ds. (10)

Ai+1/2 = Ji+1/2 + Bi+1/2, being Ji+1/2 a Roe lin-
earization of the Jacobian of the fluxF in the usual
sense:

Ji+1/2 · (wi+1 −wi) = F (wi+1)− F (wi); (11)

andQi+1/2 is a viscosity matrix.

Remark 2.1 Note that the numerical scheme de-
pends on the choice of the family of pathΦ. This
scheme is a path-conservative numerical scheme in
the sense introduced by Parés in (Paŕes 2006). In
(Castro et al. 2008) and (Parés & Mũnoz 2009) it has
been proved that, in general, the numerical solutions
provided by a path-conservative numerical scheme
converge to functions which solve a perturbed system
in which an error source-term appears on the right-
hand side. The appearance of this source term, which
is a measure supported on the discontinuities, has
been first observed in (Hou & LeFloch 1994) when
a scalar conservation law is discretized by means of a
nonconservative numerical method. Nevertheless, in
certain special situations the convergence error van-
ishes for finite difference methods: this is the case

for systems of balance laws (see (Muñoz & Paŕes
2011)). Moreover for more general problems, even
when the convergence error is present, it may be only
noticeable for very fine meshes, for discontinuities of
large amplitude, and/or for large-time simulations:
see (Castro et al. 2008), (Parés & Mũnoz 2009) for
details.

The key point is the definition of the matrixQi+1/2,
that in the case of the IFCP is defined by:

Qi+1/2 = α0Id+ α1Ai+1/2 + α2A
2
i+1/2, (12)

whereαj , j = 0,1,2 are defined by:

α0 = δ1 λ4,i+1/2 χint + δ4,i+1/2 λ1,i+1/2χint

+δint λ1,i+1/2 λ4,i+1/2,

α1 = −λ1(δ4 + δint)− λ4,i+1/2(δ1 + δint)
−χint(δ1,i+1/2 + δ4,i+1/2),

α2 = δ1 + δ4 + δint,
(13)

being

δ1 =
|λ1,i+1/2|

(λ1,i+1/2 − λ4,i+1/2)(λ1,i+1/2 − χint)
,

δ4 =
|λ4,i+1/2|

(λ4,i+1/2 − λ1,i+1/2)(λ4,i+1/2 − χint)
,

δint =
|χint|

(χint − λ1,i+1/2)(χint − λ4,i+1/2)
,

whereλ1,i+1/2 < λ2,i+1/2 < λ3,i+1/2 < λ4,i+1/2 are the
eigenvalues of matrixAi+1/2 and

χint = Sextmax(|λ2,i+1/2|, |λ3,i+1/2|), (14)

with

Sext =

{

sgn(χext), if (χext) 6= 0,
1, otherwise, (15)

whereχext = λ1,i+1/2 + λ4+i+1/2.
It can be proved that IFCP scheme is linearlyL∞

stable under the usual CFL condition

max
{
∣

∣λl,i+1/2

∣

∣ ,1 ≤ l ≤ 4, i ∈ Z
} ∆t

∆x
= CFL ≤ 1.

(16)

Remark 2.2 Note that the coefficientsαi are defined
in terms of the eigenvalues of the matrixAi+1/2.
Here, we use the first order approximations defined in
(Schijf & Schonfeld 1953) to estimate the wave speeds
λl,i+1/2, l = 1, · · · ,4.
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Remark 2.3 Note that ifα0 = (1 − ω)∆x
∆t

, α1 = 0

andα2 = ω ∆t
∆x

, then the numerical scheme (7)-(8) co-
incides with the family introduced in (Castro et al.
2010). This family contains, as particular cases, a
well-balanced extension of the Lax-Friedrichs (ω =
0), Lax-Wendroff (ω = 1), FORCE (ω = 1

2
), and

GFORCE (ω = 1

1+CFL
) methods.

Remark 2.4 Notice that in the definition of (8) the
term

C = Qi+1/2A
−1

i+1/2Si+1/2,

that can be interpreted as the upwinding part of the
source term discretization, makes no sense if one of
the eigenvalues ofAi+1/2 vanishes. In this case the
problem is said to be resonant. Resonant problems ex-
hibit an additional difficulty, as weak solutions may
not be uniquely determined by their initial data, and
the limits of the numerical solutions may depend both
on the family of paths and the numerical scheme it-
self. The analysis of this difficulty is beyond the scope
of this work. Here, we follow the strategy described
in (Fernández et al. 2011) to get rid of this difficulty
and to obtain well-balanced numerical schemes for a
given set of stationary solutions.

2.1 Extension to high order
In order to define a high order numerical scheme
for system (4), we follow the procedure described in
(Castro et al. 2006). First, a high order reconstruc-
tion operator of the formP t

W (x) = (P t
w(x), Pb(x))

T

is considered, that is, an operator that associates,
to a given sequence

{

Wi(t) = (wi(t), bi)
T
}

, two

new sequences
{

W−

i+1/2(t) = (w−

i+1/2(t), b
−

i+1/2)
T
}

,
{

W+

i+1/2(t) = (w+

i+1/2(t), b
+

i+1/2)
T
}

in such a way

that, whenever

wi(t) =
1

∆x

∫

Ii

w(x, t)dx

bi =
1

∆x

∫

Ii

b(x)dx

for some regular functionW = (w, b)T , then

(w±

i+1/2, b
±

i+1/2) = (w(xi+1/2, t), b(xi+1/2))
T +O(∆xp),

∀i ∈ Z.

Here, we propose the following semi-discrete high
order numerical scheme for (4) (see (Castro et al.

2006)):

w
′

i(t) = −
1

∆x

(

D+

i−1/2 +D−

i+1/2

)

−
1

∆x

(

F (w−

i+1/2(t))− F (w+

i−1/2(t))
)

−
1

∆x

∫

Ii

B(P t
wi
(x))(P t

wi
(x))x dx

+
1

∆x

∫

Ii

S(P t
wi
(x))(Pbi(x))x dx,

(17)
with D±

i+1/2 = D(w−

i+1/2(t),w
+

i+1/2(t), b
−

i+1/2, b
+

i+1/2)

and wherew±

i+1/2(t) andb±i+1/2 are the reconstructed
values atxi+1/2 of w(x, t) and b(x), respectively.
P t
wi
(x) andPbi(x) are functions defined inIi such that

lim
x→x+

i−1/2

(P t
wi
(x), Pbi(x)) = (w+

i−1/2(t), b
+

i−1/2),

lim
x→x−

i+1/2

(P t
wi
(x), Pbi(x)) = (w−

i+1/2(t), b
−

i+1/2).

(18)
Fourth order Romberg quadrature formula is used to
compute the integrals
∫

Ii

B(P t
wi
(x))(P t

wi
(x))x and

∫

Ii

S(P t
wi
(x))(Pbi(x))x.

Remark 2.5 Note that high order schemes for con-
servative systems only depend onw±

i+1/2, where they
depend onP t

wi
andPbi for nonconservative systems

(see (Castro et al. 2006)).

Finally, a high order TVD-Runge-Kutta discretization
can be used for the time-stepping (see (Gottlieb & Shu
1998)). Concerning the high order reconstruction op-
erator, we usually use the PHM (piecewise hyperbolic
method) introduced in (Marquina 1994). The exten-
sion to 2D systems is straightforward following (Cas-
tro et al. 2009) and (Gallardo et al. 2011).

3 NUMERICAL TESTS
In this section we present some numerical tests. In
the first one, a battery of numerical tests is presented
to study the dependency of the sediment layer pro-
file and the generated tsunami with respect to the
friction angle δ0 and the ratio of densities,r. In
the second one, the generation and propagation of
tsunami on a real bathymetry is considered. In both
cases, a GPU implementation of the previous scheme
in two-dimensional domains has been used. Modern
Graphics Processing Units (GPUs) offer hundreds of
processing units optimized for massively performing
floating point operations in parallel and have shown to
be a cost-effective way to obtain a substantially higher
performance in the applications related to shallow wa-
ter flows due to the high exploitable parallelism which
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exhibits the finite volume schemes (see for example:
(Castro et al. 2011),(Brodtkorb et al. 2011) or (Gal-
lardo et al. 2011)). Here, a MPI-CUDA implementa-
tion like the one presented in (?) has been performed
to increase the speed-up of the computations up to
two-orders of magnitude using a cluster of NVIDIA
GTX-490 graphics cards with respect to a mono-core
implementation in a modern CPU (Intel Xeon E5430
(2.66 GHz 12MB L2 Cache)).

3.1 Test 1
A battery of numerical tests is presented here to study
numerically the dependency of the sediment layer
profile and the generated tsunami with respect to the
friction angleδ0 and the ratio of densities,r. The ef-
fective angle of repose of the sediment layer after an
avalanche is also measured at the stationary state. Let
us consider a square domain of10 m side, centered
at the origin, with a flat bottom topography, that is,
b = −2. As initial condition, we setu1 = u2 = 0 and

h2(x, y,0) =

{

1, if ‖(x, y)‖ < 1,
0, otherwise,

h1(x, y,0) = 2 − h2(x, y,0). Free boundary condi-
tions are imposed at both channels ends. The CFL pa-
rameter is set to0.8.

Table 1: Effective angle of repose (r = 0.4, δ0 = 20o)

∆x max mean ∆x max mean
0.1 18.03o 8.43o 0.05 19.16o 8.46o

0.02 19.69o 8.46o

In Figure 1 we compare the final stationary inter-
face that we obtain for three different meshes with
∆x=∆y ∈ {0.1,0.05,0.02} for r= 0.4 andδ0 = 20o.
Only some small differences near the ”wet/dry” fronts
can be observed. Table 1 shows the maximum and the
mean effective angle of repose of the sediment layer
after the landslide at the stationary state. As expected,
the maximum value is underδ0 = 20o, while the mean
value is close to8.5o.

Figure 2 shows the profiles of the sediment layer at
the stationary state forr = 0.4, ∆x = ∆y = 0.05 and
δ0 ∈ {10o,15o,20o,25o,30o} and Table 2 shows the
maximum and mean effective angle of repose of the
sediment layer after the landslide. As expected, the
maximum value is always underδ0. Figure 3 shows
the maximum of the free surface,η = h1 + h2 − 2.0,
vs. δ0. Figure 3 gives an idea of the amplitude of the
generated tsunami. Note that the amplitude decreases
for bigger values of the parameterδ0.

Now, the parameterδ0 is set to 20o and r ∈
{0.0,0.1,0.2,0.3,0.4}. Figure 4 shows the profiles of

!! !" !# !$ !% & % $ # " !
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&'#
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&'!
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Figure 1: Sediment layer at stationary state∆x =
∆y ∈ {0.1,0.05,0.02}, (δ0 = 20o, r = 0.4).

Table 2: Effective angle of repose (r = 0.4)
δ0 max mean δ0 max mean
10o 9.82o 2.84o 15o 14.51o 5.35o

20o 19.16o 8.46o 25o 23.90o 12.05o

30o 29.42o 16.13o

the sediment layer at the stationary state for∆x =
∆y = 0.05 and Table 3 shows the maximum and mean
effective angle of repose of the sediment layer after
the landslide. Again, the maximum value is always
under δ0. Note that the maximum value decreases
with r while the mean increases with respect tor.
Nevertheless, the variations are not relevant. More
differences can be observed in the stationary profile of
the second layer (see Figure 4), in particular the posi-
tion of the front decreases withr, as well as the maxi-
mum height of the sediment layer. Figure 5 shows the
maximum of the free surface,η = h1+h2−2.0, vs.r.
As expected, the amplitudes of the generated tsunami
are bigger for smaller values ofr.

Table 3: Effective angle of repose (δ0 = 20o)
r max mean r max mean
0.0 19.64o 8.07o 0.1 19.56o 8.22o

0.2 19.37o 8.30o 0.3 19.23o 8.41o

0.4 19.16o 8.46o
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Figure 2: Sediment layer depth at the stationary state
for r = 0.4 andδ0 ∈ {10o,15o,20o,25o,30o}.

3.2 A tsunami generated by submarine landslide
over real bathymetry

There are geological evidences about a tsunami gen-
erated by a submarine landslide located in the con-
tinental margin of Alboran island (western Mediter-
ranean). The initial landslide area is located at south-
west of Alboran island and covers an area about 9.5
km2 where water depth range varies from 100 to 1000
m. Deposit covers an area of about 30 km2. In this sec-
tion we show an advanced numerical experiment that
consist on starting from the current bathymetry, re-
construct the pre-tsunami paleo-bathymetry and then,
simulate the landslide and the generated tsunami.

A rectangular 180 km× 190 km with∆x = ∆y =
25 m grid has been considered (54720000 cells). The
simulated time covers 3600 s after the tsunami is trig-
gered. We set, CFL= 0.9, r = 0.55, ci = 10−5, and
δ0 = 10◦.

Figures 6 and 7 show the current bathymetry and
the reconstructed pre-tsunami original bathymetry.

Figures 8 and 9 show two different stages of the
propagated tsunami. It can be observed how the shape
of the tsunami varies according to the bathymetry;
while the bathymetry is smoother southwards from
the Alborani canyon, the shape of the tsunami wave
is almost symmetric, while northwards, the sharper
bathymetry effects are quite more visible.

Finally in Figure 10 it is shown a wave height time
series extracted from a point near to Málaga (located
in the north-west of the domain). We can observe that
the tsunami wave arrives to this point about 32 mins
after the tsunami is triggered. The first wave height is
very small, just about 7-8 cm, then, two minutes later,
a larger negative wave (about -40 cm height) arrives
followed, 4 minutes later, by a larger wave of about 50

5 10 15 20 25 30
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0.095
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0.105
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Friction angle

M
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e
 s
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Figure 3: Maximal height of the free surface forr =
0.4 andδ0 ∈ {10o,15o,20o,25o,30o}.

cm height. After this wave, other waves appear with
lower height. We can remark than due to the geometry
of the Málaga bay, some of these waves are reflected
producing resonant effects.

4 CONCLUSIONS
In this work, a high order extension of the IFCP
scheme has been introduced to solve a two-layer
Savage-Hutter type model to simulate tsunamis gen-
erated by landslides. IFCP is a method constructed
by a suitable decomposition of a Roe matrixAi+1/2,
whose viscosity matrix is computed by a linear com-
bination of the identity matrix,Ai+1/2 andA2

i+1/2 and
whose coefficients are given in terms of the eigen-
values ofAi+1/2. The resulting numerical scheme is
linearlyL∞-stable and well-balanced for the water at
rest solution. A GPU implementation has been per-
formed to speed up the computations. Two numeri-
cal tests have been presented: in the first one, a study
the dependency of the sediment layer profile and the
generated tsunami with respect to the friction angle
δ0 and the ratio of densities,r has been performed.
In the second one, the generation and propagation of
tsunami in the Alboran See using a real bathymetry
have been performed.
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