
MC64-ClustalWP2: A Highly-Parallel Hybrid Strategy to
Align Multiple Sequences in Many-Core Architectures
David Dı́az1, Francisco J. Esteban2, Pilar Hernández3, Juan Antonio Caballero4, Antonio Guevara1,

Gabriel Dorado5., Sergio Gálvez1*.

1 Dep. Lenguajes y Ciencias de la Computación, Universidad de Málaga, Málaga, Spain, 2 Servicio de Informática, Universidad de Córdoba, Córdoba, Spain, 3 Instituto de

Agricultura Sostenible (IAS-CSIC), Córdoba, Spain, 4 Dep. Estadı́stica, Universidad de Córdoba, Córdoba, Spain, 5 Dep. Bioquı́mica y Biologı́a Molecular, Universidad de

Córdoba (Campus de Excelencia Internacional Agroalimentario), Córdoba, Spain

Abstract

We have developed the MC64-ClustalWP2 as a new implementation of the Clustal W algorithm, integrating a novel
parallelization strategy and significantly increasing the performance when aligning long sequences in architectures with
many cores. It must be stressed that in such a process, the detailed analysis of both the software and hardware features and
peculiarities is of paramount importance to reveal key points to exploit and optimize the full potential of parallelism in
many-core CPU systems. The new parallelization approach has focused into the most time-consuming stages of this
algorithm. In particular, the so-called progressive alignment has drastically improved the performance, due to a fine-grained
approach where the forward and backward loops were unrolled and parallelized. Another key approach has been the
implementation of the new algorithm in a hybrid-computing system, integrating both an Intel Xeon multi-core CPU and a
Tilera Tile64 many-core card. A comparison with other Clustal W implementations reveals the high-performance of the new
algorithm and strategy in many-core CPU architectures, in a scenario where the sequences to align are relatively long (more
than 10 kb) and, hence, a many-core GPU hardware cannot be used. Thus, the MC64-ClustalWP2 runs multiple alignments
more than 18x than the original Clustal W algorithm, and more than 7x than the best x86 parallel implementation to date,
being publicly available through a web service. Besides, these developments have been deployed in cost-effective personal
computers and should be useful for life-science researchers, including the identification of identities and differences for
mutation/polymorphism analyses, biodiversity and evolutionary studies and for the development of molecular markers for
paternity testing, germplasm management and protection, to assist breeding, illegal traffic control, fraud prevention and for
the protection of the intellectual property (identification/traceability), including the protected designation of origin, among
other applications.

Citation: Dı́az D, Esteban FJ, Hernández P, Caballero JA, Guevara A, et al. (2014) MC64-ClustalWP2: A Highly-Parallel Hybrid Strategy to Align Multiple Sequences
in Many-Core Architectures. PLoS ONE 9(4): e94044. doi:10.1371/journal.pone.0094044

Editor: Charles Y. Chiu, University of California, San Francisco, United States of America

Received November 19, 2013; Accepted March 11, 2014; Published April 7, 2014

Copyright: � 2014 Dı́az et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by ‘‘Ministerio de Economı́a y Competitividad’’ (MINECO grants AGL2010-17316 and BIO2011-15237-E) and ‘‘Instituto Nacional
de Investigación y Tecnologı́a Agraria y Alimentaria’’ (MINECO and INIA RF2012-00002-C02-02); ‘‘Consejerı́a de Agricultura y Pesca’’ (041/C/2007, 75/C/2009 and
56/C/2010) and ‘‘Consejerı́a de Economı́a, Innovación y Ciencia’’ (AGR-7322 and AGR-482) of ‘‘Junta de Andalucı́a’’; ‘‘Grupo PAI’’ (AGR-248); and ‘‘Universidad de
Córdoba’’ (‘‘Ayuda a Grupos’’), Spain. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Pilar Hernandez is a PLOS ONE board member. This does not alter the authors’ adherence to PLOS ONE Editorial policies and criteria.

* E-mail: galvez@uma.es

. These authors contributed equally to this work.

Introduction

The amount of genomic data is growing exponentially, due to

the advances in technology and the evolution in the so-called

‘‘Next-Generation’’ Sequencing (NGS), including the latest

second- and third-generation equipment. Thus, the former

bioinformatics tools from the genic era are evolving to handle

the current genomic data. These include alignment algorithms for

sequence comparison like the Needleman-Wunsch [1] pairwise

global-alignment algorithm, which has evolved both from a

biological point of view, as the Smith-Waterman local aligners

[2] or Gotoh affine gaps [3], and also from a computational point

of view, as the Hirschberg linear space approach [4] or Driga

FastLSA [5].

Yet, these computational improvements in pairwise-alignment

algorithms cannot properly handle long or very long sequences,

like some partial or complete chromosomes and genomes. Thus,

some heuristic strategies have been developed to overcome the

large amount of memory and execution time required to align

such sequences. The Fast Alignment Sequence Tools (FAST)-All

(FASTA) [6] and Basic Local Alignment Search Tool (BLAST) [7]

are examples of this trend. The heuristics are able to obtain

approximate alignments with acceptable accurate results in much

less time, so they can be useful to compare long sequences.

Nonetheless, the quality of the alignment may be compromised in

some instances [8], and therefore non-heuristic aligners may be

needed to guarantee the optimal alignment from a computational

point of view.

Additionally, the ‘‘optimal’’ pairwise aligners can be ported to

new computing architectures to overcome the previous limitations.

Though an alternative to speedup algorithms is to use supercom-

puters, grid computing and clustering using several nodes [9],

more affordable options are available nowadays. That is the case

of the multi-core architectures, where several threads or processes

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e94044

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0094044&domain=pdf

run independent code in parallel, albeit requiring the program-

mers to develop new approaches when porting, adapting and

optimizing the existing alignment algorithms to the new parallel

architectures. In fact, the number of cores is increasing exponen-

tially, giving birth to the concept of ‘‘many-core’’ architectures,

where tens, thousands and even millions of them are available.

At this point it is important to distinguish between multi-core

and many-core microprocessors. Thus, in many-core architec-

tures, the execution cores are small Central Processing Units

(CPU) with fewer resources than a standard multi-core CPU; so in

order to extract the full potential of the former, specific parallelism

strategies for them should be developed. Besides, the many-core

microprocessors can be classified into two different groups: many-

core Graphical Processing Units (GPU), and many-core CPU. The

former ones have thousands of Stream Processors Units (SPU),

sometimes named cores, distributed in a hierarchical way: a GPU

has several Thread Processing Clusters (TPC), where each one

consists of an array of Stream Multiprocessor Units (SMU), having

each one eight SPU. The resources are shared between the SMU

in these models. On the contrary, the many-core CPU micropro-

cessors have a matrix of uniform CPU with their own resources,

usually interconnected via a high-throughput network. A graphical

comparison of both architectures can be seen in Figure 1.

Unfortunately, such architectural differences require also different

programming methodologies, being the Compute-Unified Device

Architecture (CUDA) a specific model to exploit the parallelism in

General-Purpose GPU (GPGPU) [10] and the standard C being

usually deployed in many-core CPU architectures. In the field of

cluster computing, the C language is sometimes complemented by

some kind of standard or proprietary Application Program

Interface (API), to extend some parallelism abilities like message

passing, shared memory or abstract channel communications.

There are experimental and commercial many-core CPU

models. They include the Adapteva Epiphany IV with 64 cores

[11], the Sun Microsystems UltraSPARC T2 Pro with eight cores

and eight threads per core [12], and the models from Intel, the

leader company in this research field with the Many-Integrated

Cores (MIC) architecture. At first, they created the Intel Terascale

microprocessor with 80 cores [13], and then experimental models

like the Single-chip Cloud Computing (SCC) [14] with 48 cores

and the Knights Ferry [15] with 32 cores. From the experience

obtained from this models and the Larrabee hybrid CPU-GPU

project, a new model codenamed Knights Corner and eventually

named Xeon Phi was developed with 61 cores and 22 nm 3-D tri-

gate process fabrication process. The second generation of Xeon

Phi products (Knights Landing) is expected in the near future as a

coprocessor or a host processor (CPU), manufactured with 14 nm

node technology and second-generation 3-D tri-gate transistors.

Following this trend, Tilera has developed a many-core CPU

architecture known as the Tile64 microprocessor, being a 90 nm

Reduced Instruction Set Computing (RISC) System-on-Chip

(SoC) microprocessor with 64 general-purpose CPU called tiles,

each one being able of running an independent operative system

(Linux). Each core runs at 500–866 MHz and can reach a global

0.166 Tera-Instructions Per Second (TIPS). The tiles are

interconnected through a high-throughput network called intelli-

gent Mesh (iMesh) with 31 Terabits per second (Tbps) bandwidth.

As seen in Figure 1, each tile contains its own Level 1 (8 KB for

data and 8 KB for instructions) and Level 2 (64 KB) caches.

Furthermore, all the Level 2 caches become a larger Level 3

common cache [16]. Lately, Tilera has announced a future branch

of microprocessors called Tile-Gx [17] with 16 to 100 cores using

a 40 nm fabrication process.

Thus, thanks to the emerging many-core technologies, new

approaches are available to address the increasing demand of

computational power. This allows to tackle the bioinformatics

analyses required for the exponentially increasing data generated

by the new sequencing methodologies. That is the case of the

Figure 1. Block diagram of many-core CPU and GPU architectures. The shown dies are boarded on nVidia GT 200 GPU series and Tilera Tile64
Peripheral Component Interconnect express (PCIe) cards. The cores in the many-core CPU architectures are interconnected through a high-
bandwidth mesh, whereas the ones in the many-core GPU are isolated.
doi:10.1371/journal.pone.0094044.g001

ClustalW Implementation on Many-Core Architectures

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e94044

previously mentioned Needleman-Wunsch (NW) [1] and Smith-

Waterman (SW) [2] pairwise aligners, where GPU parallel

approaches have been presented by Manavski [18] and Liu [19].

However, most of these implementations are designed to align a

single query sequence against a huge number of small sequences

like those from peptides (eg., proteins), yet cannot align sequences

longer than 59,000 residues. This is due to the intrinsic ‘‘Single

Instruction, Multiple Data’’ (SIMD) characteristics of the GPGPU,

where pipelining allows a great speedup factor, yet intense

memory usage may lead to bottlenecks.

Indeed, although some many-core CPU microprocessors with

tens of cores have recently arisen, there are only a few

bioinformatics developments deployed in such architectures, as

the ones that we have previously published for the Tile64

microprocessor [20–22]. Such developments were carried out

with TILExpress-20G cards including the Tile64 microprocessor

and 8 GB of RAM, for which we have empirically demonstrated

some limits: 7.8 GB for Solid State Disk (SSD), 2.8 GB for local

memory and 1.9 GB for shared memory. Such cards have high-

bandwidth communication ports and a very good performance per

watt [20]. Among others, we have developed a parallel version of

the NW/SW algorithm, named Multicore64-NeedlemanWunsch/

SmithWaterman (MC64-NW/SW), using a FastLSA strategy [5],

which we have thoroughly optimized taking into account the

hardware and algorithm features and peculiarities. This imple-

mentation achieved a gain of ,1,000% against the same

algorithm on a x86 multi-core architecture, allowing to align

sequences of one Megabase (Mb) length in 23 minutes approx-

imately [20,22].

In this report, we have extended our work to the popular

Multiple-Sequence Alignment (MSA) algorithm known as Clustal

W. The new parallel version of Clustal W exploits the high-

throughput parallelism in many-core CPU architectures, optimiz-

ing the most time-consuming stage of the original algorithm. This

has been accomplished taking into account both the existing

parallel versions of the Clustal W for multi-core and many-core

GPGPU architectures, as well as our previous experience when

developing the parallel MC64-NW/SW [20]. Thus, the new

algorithm, called MC64-ClustalWP2 for Many-Core64-Clustal W

Phase 2 (of parallelization), was implemented for the Tilera Tile64

microprocessor, as described below.

Different benchmarks were run to test the new algorithm

against the previous developments and to quantify its perfor-

mance. Since the MC64-ClustalWP2 algorithm was developed to

align relatively large sequences, for instance, from 10 kilobases (kb)

to 300 kb, it was tested with a family of organisms whose genome

lengths fall into such a range. It should be noted that this approach

would require an excessive execution time in a multi-core system

or would not even be allowed in a GPGPU architecture, due to the

length of the sequences. The MC64-ClustalWP2 source code is

available under the General Public License (GPL) license at the

,http://galactus.uma.es/manycore. web site [23], where the

algorithm can be also remotely invoked through web services.

Multiple-Sequence Alignments
The multiple-sequence alignments allows the comparison of two

or more sequences, in contrast to the pairwise aligners like Smith-

Waterman, which are limited to just a couple of them. Therefore,

the former are particularly useful to identify identities (similarities)

and divergences (differences) between many sources, allowing to

build evolutionary phylogenetic trees (dendrograms). Thus, the

identification of small and large variations, mutations or

polymorphisms like base changes and insertions/deletions (indels),

duplications or amplifications, recombinations and rearrange-

ments like translocations can be exploited to develop molecular

markers for identification, including germplasm management and

protection, paternity testing, marker-assisted selection and breed-

ing, illegal traffic control, fraud prevention and traceability. This

can be applied to the Protected Designation of Origin (PDO),

which is a label of food products from some geographical areas,

showing particular organoleptic or otherwise desirable character-

istics, conferring them a higher quality than similar products from

other sites.

However, generating a Dynamic-Program Matrix (DPM) in the

sense of ‘‘optimal’’ pairwise aligners, but for more than two

sequences, means a Nondeterministic Polynomial (NP) complete

complexity problem in computation, and therefore no fast solution

to it is known by definition. For this reason, several heuristic

strategies were developed to simulate the behavior of the n-

dimensional matrix, using a batch of pairwise alignments and

simpler DPM. That is the case of MULTAN [24], being a

Waterman [25] or Clustal [26] method. The latter has become

very popular, due to its original performance and further

developments and improvements. The Clustal algorithm is based

on a progressive-alignment strategy of all the sequences, aligned by

the order determined by a previously-calculated phylogenetic tree,

generated from the similarities and differences among the

sequences in an all-vs-all comparison matrix.

The first version of MULTAN was programmed in the

FORTRAN language, but later on it was re-programmed in the

C language, and a few new functionalities were added, like the

generation of a dendrogram in the final stage [27]. More notable

changes were introduced in the new Clustal W [28], which

received the ‘‘W’’ for ‘‘weighting’’, since in this version the

sequences were weighted in order to increase the sensibility of the

algorithm. Later on, the version 2 was ported into C++, including

two new minor-relevant features [29]. Besides the Clustal, there

are other multiple-sequence alignment algorithms, like the T-

Coffee [30] and MUSCLE [31], which may obtain accurate-

enough results for large sequences using heuristics, modifying the

progressive alignment method and adding new refinements.

Furthermore, as with pairwise aligners, quicker MSA heuristic

methods which do not rely on a DPM have been also developed,

as the Multi-LAGAN general anchoring-based method [32]. In

addition, new multiple-sequence alignment approaches have been

published, including the so-called genome MSA methods, capable

of dealing with very long similar sequences, like MGA [33] or

MAVID [34]. These methods are very fast, but they are usually

not accurate when the aligned sequences have highly polymorphic

regions (e.g., with high mutation-rates). Therefore, they can be

useful to align restricted or local similar regions, but not to globally

align any set of sequences [35]. More recent methods like the

progressive Mauve [36] are able to deal with some sequence

variations (like rearrangements), but not with all of them, as is the

case for duplications [37]. A further review of the most important

MSA algorithms can be found at [38].

On the other hand, the Clustal W design is divided into three

main stages: the distance matrix generation, the guide tree

generation and the progressive alignment. It can be easily

determined that the most time-consuming stages are the first

and the last ones [39]. Indeed, they require most of the

computation time as the number of sequences or their length

increase. Therefore, their optimization represents the first

theoretical choice to improve the algorithm performance. Thus,

the Clustal W has been parallelized for SGI computers [40], multi-

core platforms using threads [41], the hybrid multi-core Cell chip

[42] and scalable clusters using the Message Passing Interface

(MPI) [43]. However, none of them has really exploited the

ClustalW Implementation on Many-Core Architectures

PLOS ONE | www.plosone.org 3 April 2014 | Volume 9 | Issue 4 | e94044

http://galactus.uma.es/manycore

parallelism in the third stage, as it is pointed out in the next

section.

Clustal W Behavior Analyses
In order to properly optimize the Clustal W parallelization,

each stage of the algorithm should be carefully analyzed.

Traditionally, the Clustal W has been used to align short

sequences of nucleic acids (DNA or RNA) and peptides, with

high-performance implementations of Clustal W exploiting

parallelism to obtain the best results for larger number of such

sequences. However, as the MC64-ClustalWP2 focuses on longer

DNA sequences (for instance, from 10 kb to 300 Mb), the

parallelization and optimization strategies should be different.

As previously noted, the Clustal W is divided into three main

stages, shown at the top of Figure 2. The first stage fulfills the cells

of a distance matrix with a score that represents the distance

between every pair of sequences. Each score is calculated running

a pairwise-alignment operation. The second stage generates a

guide tree using a clustering method, like the Neighbor-Joining

(NJ) [44] and, finally, the third stage progressively generates the

multiple alignment, following the topology of the guide tree.

The pairwise alignments of the first main stage are calculated

using the local Myers-Miller algorithm [45], a Smith-Waterman

pairwise aligner that implements affine-gap penalties [3]. Its space

complexity is linear, at the expense of doubling the execution time

when compared to other standard pairwise aligners. The multiple

alignment of n sequences requires to complete the distance matrix,

performing n/2*(n21) alignment operations between each pair of

sequences. There are no dependencies between them, so they can

be executed in parallel. The MPI-alike implementations for

Personal Computer (PC) clusters usually assume this coarse-

grained approach [46]. A more fine-grained approach is used by

the MSA-CUDA [47], as each pairwise alignment is partially

distributed among several executing threads, thus obtaining two

levels of parallelism. Each alignment returns a score value, which

is then stored into the corresponding cell of the distance matrix. In

addition, the actual pairwise alignments are also required by

Clustal W to fine-tune the distance matrix values.

The clustering stage builds a phylogenetic tree from the

previously calculated distance matrix, returning an unrooted tree

with the evolutionary distances between branches. This is the less

time-consuming stage [39] and, when working with only a few

sequences (n,100), it can be considered negligible, as its

complexity only relies on the number of sequences to align. In

any case, the algorithm used for this node-clustering phase is the

Neighbor-Joining (NJ) method [44], which has been previously

parallelized for GPU many-core systems [48]. Other methods like

the Unweighted Pair Group Method with Arithmetic Mean

(UPGMA) [49] can also be used.

Finally, the progressive-alignment stage globally aligns sequenc-

es in an iterative way, following the path described by the

unrooted-guide-tree topology. This stage starts aligning the closest

pairs of leaf sequences. Then, the resulting pairwise alignments

must be aligned again, following the closest path given by the

guide tree. This high-level alignment strategy is called profile-

profile alignment, where a profile is obtained from a previous

intermediate of the multiple alignment, following a path from the

leaves to the top of the tree. Thus, a profile alignment presents a

more advanced scoring system and is more computationally

expensive than a common-pairwise alignment. Furthermore,

dependencies in the tree do not allow parallelizing all alignments,

as occurs in the first stage. Therefore, only independent parallel-

branches of the tree can be simultaneously executed, and thus may

be restricted by the tree shape. This low-parallelization factor is

determined by the log n in a well-balanced tree of n nodes for the

best-case scenario. In a deeper level, the core of the aligner can be

divided as well into two independent loops to be run separately,

corresponding to the forward and backward loops [50]. Some

implementations take advantage of this fact to run both loops in

parallel, as the ClustalW-MPI [43]. The result produced by this

stage is the full alignment.

A New Strategy to Parallelize Clustal W: MC64-ClustalWP2
In order to exploit the parallelism in the many-core architec-

tures, the tasks to be executed must be spread among all the

available cores, which should communicate between themselves at

a high speed. Thus, the first step carried out in this work was

considering Clustal as three main tasks to be independently

parallelized. In addition, as we focus on aligning a few long

sequences, the second stage can be ignored, because its execution

time can be considered negligible. An exhaustive analysis of the

Clustal W allowed us to identify the progressive alignment source-

Figure 2. Global behavior of the Clustal W algorithm and its three main stages. The top part shows the three main stages of the Clustal W
showing both the data used and generated in each one. In the bottom part, the functions and high-level pseudo-code reveal the similarities between
the most time-consuming and representative parts of the algorithm.
doi:10.1371/journal.pone.0094044.g002

ClustalW Implementation on Many-Core Architectures

PLOS ONE | www.plosone.org 4 April 2014 | Volume 9 | Issue 4 | e94044

code that should be rewritten, in order to have a structure very

close to that of the pairwise-alignments stage. A bird’s eye Clustal

W structure of such approach is shown at the bottom of Figure 2.

This chart reveals the inherent similarity between the first and

the last stage, where the alignment of a pair of sequences is

replaced by the alignment of a pair of profiles. These profile

alignments make use of a more-advanced scoring system, and they

are far-more computational expensive. In particular, the score

calculus function, prfscore(), the hot spot of the aligner, is a time-

consuming vector multiplication (whereas in the first stage, the

corresponding operation is a straightforward access to an array

cell).

A new parallel approach of the pairwise-alignments
stage

In order to parallelize the first ClustalW stage in a previous

work, we replaced it with an iterative call to the MC64-NW/SW

pairwise aligner [21], obtaining more than a 60% performance

speedup against the ClustalW-MPI executed in a quad-core Xeon

system [43]. The resulting algorithm, named MC64-ClustalW,

was a coarse-grained strategy, as only individual alignments were

parallelized. Besides, a considerable percentage of the tiles were

idle at the beginning and at the end of each alignment, due to the

wave-front growth behavior of the algorithm. Furthermore, only a

tile was used in the backward stage of a pairwise alignment, being

therefore a waste of resources.

Following the Tile64 terminology, a geometry is a set of

adjacent cores that forms a rectangular shape, behaving as an

independent subset of the Tile64 chip from a functional point of

view. The Tile64 can be partitioned into several geometries, but

any tile can only belong to a particular geometry at a given time.

In the present work, we propose a much more advanced and fine-

grained approach, being a new phase in our efforts to improve the

performance of Clustal W, in which the parallelism is exploited at

two levels: i) several alignments are calculated simultaneously in

different geometries of cores; and ii) inside each of them, the

alignment is computed in parallel by all the cores contained in it.

To achieve this new run-distribution requires a higher-level

controller to schedule alignments among all groups of geometries.

This new design unrolls the two main loops in the pairalign()

function, and replaces the original linear-space approach with a

call to the MC64-NW/SW which, in turn, uses an advanced

FastLSA strategy. With this unrolling method, each pairwise

alignment is assigned to an available geometry, in the same way as

our previous MC64-NW/SW works [20]. Therefore, the number

of pairwise alignments that can be simultaneously calculated

corresponds to the number of geometries into which the Tile64

core-array is divided. Nonetheless, forward and backward stages of

the pairwise alignment are separated: geometries of n workers

calculate the full DPM for the forward stage (F-xx geometries from

this point on), but geometries of only one worker perform the

backtracking and alignment generation (B-xx geometries from this

point on). Thus, several working geometries of these two classes

collaborate to calculate all the alignments, taking the most out of

every available tile. Meanwhile, the high-level controller schedules

and manages all the pending jobs. Furthermore, the temporary

grid-cache data must be shared between their geometries, in order

to communicate a forward stage job with its backward stage

counterpart.

A new parallel approach of the progressive-alignment
stage

With MC64-ClustalWP2 we propose as well a new paralleliza-

tion strategy for the progressive-alignment stage. As stated above,

Figure 2 shows that the progressive alignment is actually a Myers-

Miller-like alignment algorithm, whose two main loops can be

unrolled in a similar way as the pairwise alignment was done.

Therefore, we propose to transform the linear-space recursive

Myers-Miller into a quadratic-space sequential Needleman-

Wunsch. In both cases, the corresponding progressive affine-gap

algorithm must be applied. In a similar way as with the first stage,

this sequential dynamic-programming strategy has been paralle-

lized using the FastLSA approach, in order to reduce the constant

multiplicative factor.

However, two levels of parallelism cannot be achieved in this

progressive-alignment stage, because each alignment profile

depends on the previous ones; these dependencies are given by

the guide tree. Our parallel approach transforms the prfalign()

function into a new parallel program, using the same FastLSA

strategy to distribute a single alignment to all the available tiles in

the many-core system. Thus, applying the wave-front parallel

strategy and selecting an optimal k value, the speedup will depend

on the number of available processing resources, as long as the

scalability factor is very close to that of our previous MC64-NW/

SW [20].

In this design, a controller tile is in charge of the management of

the grid cache and the distribution of jobs among the rest of

available worker tiles. The profiles of the original Clustal W are

still used, so the profile initialization is performed by the controller

tile, whereas the workers call the original prfscore() calculus-

function profile. The new implementations of both the pairwise

and progressive aligners, as well as their relative speedups, are

discussed in the next sections.

Deployment of the MC64-ClustalWP2 on the Tile64
Many-Core Microprocessor

The main asset of the many-core CPU Tile64 System-on-Chip

is the execution of parallel programs, due to its 64 cores/tiles

running at 866 MHz in a TILExpress-20G card. The drawback is

that inherently sequential code is poorly performed by a single tile.

Considering that the Clustal W contains purely sequential blocks

of code, yet being potentially parallelizable, we have based our

implementation on a heterogeneous programming model. In such

an approach, the code is commonly executed in the host CPU,

using many-core GPU cards as code accelerators, effectively

exploiting the best complementary potential of each kind of

microprocessor. Different standards and programming methodol-

ogies have been proposed to unify and schedule the tasks in these

systems, like the OpenCL [51]. Albeit, no one supports the Tile64

architecture yet, due to the novelty of the many-core CPU

technologies.

The Clustal W 1.83 source code, written in the C programming

language, has been carefully adapted to support the heterogeneous

programming approach, generating a x86-Tile64 implementation

of the MC64-ClustalWP2 parallel algorithm. Thus, the MC64-

ClustalWP2 is composed by three executables: one runs in the host

and two run in the Tile64. The main one is executed in the host; it

processes the input parameters, sets the internal variables and

orchestrates the three stages of the algorithm, eventually produc-

ing the multiple alignment. The three stages of the Clustal W are

scheduled between the host CPU and the many-core CPU, as

follows:

ClustalW Implementation on Many-Core Architectures

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e94044

N The pairwise alignments are launched in the Tile64 environ-

ment, following the schema previously described. The

pairwise-alignments overseer is the previously named ‘‘high-

level controller’’, a Perl script launched in the host to supervise

the work distribution among the geometries.

N Once every pairwise alignment and its score are obtained, the

host performs the clustering algorithm, whose execution time is

negligible compared to the other stages, since the number of

sequences is reduced. Therefore, the parallelization is not

worth the effort in this stage. The result is the phylogenetic

tree.

N Again, each profile alignment of the progressive-alignment

stage is executed in the Tile64 microprocessor, following the

job distribution previously stated. Every intermediary result is

processed by the host, in order to calculate the next one, until

the final multiple alignment is obtained.

Therefore, this hybrid work distribution exploits both architec-

ture strengths, thus running the sequential code in the PC host and

the parallel code in the Tile64 microprocessor. The complete

workflow can be seen in the Figure 3. Following this approach, the

implementation requires communicating both platforms for

pairwise and progressive alignments.

Implementation of the new pairwise-alignments stage
The MC64-ClustalWP2 pairwise aligner design requires two

different job classes to be run in the many-core platform; they deal

with the forward and backward stages, respectively. In order to

balance the developing effort versus the performance gain, the

starting point was our local MC64-NW/SW pairwise aligner [20],

where the necessary modifications were carried out to adapt it to

the new requirements.

Both stages were decoupled, but keeping the same controller-

worker strategy. So, in order to run any job, at least two tiles are

needed in each stage: one acting as the stage controller and the

other executing the code of the worker stage. With this approach,

the same executable runs a forward or a backward stage,

depending on a flag parameter: the forward stage is launched on

a F-xx geometry, whereas the backward stage is launched on a B-xx

one. This requires to share data between the two controllers of the

same alignment (now decoupled), by temporarily storing the grid

cache and the internal variables in the TILExpress-20G card

8 GB SSD file system. On the other hand, the original MC64-

NW/SW used 6 bytes per cell, since gap penalties are never

greater than 128 [5]. However, the pairwise alignment in Clustal

W uses bigger values, so the grid-cache cell structure was modified

as well to support it. Now, 12 bytes are used and the absolute

values are stored instead of the relative differences in the case of

the two auxiliary matrices. This is translated into more memory/

file-system usage and less performance, due to the Tile64

instruction characteristics. As a collateral effect, the optimal k

values calculated in the MC64-NW/SW parallelization are invalid

and must be recalculated.

Taking into consideration that four cores are reserved for the

internal management of the chip and communications with the

host, the 60 remaining available cores are distributed into a

number of static geometries. Different empirical tests have

demonstrated that the optimal geometries to use are four forward

stage geometries of 762 tiles and two backward stage geometries

of 261 tiles. The rationale of such result is that the forward stage is

far more computationally expensive than the backward one.

Nonetheless, when the number of pairwise alignments is between

five and eight, it is better to use eight 761 F-xx geometries,

because this optimizes the workload by avoiding a second batch of

alignments with idle geometries.

To achieve two levels of parallelism, a ‘‘high-level’’ controller is

needed to manage several alignments simultaneously; this

controller appears in Figure 3 with the name Pairwise-alignments

overseer. This controller runs in the host because it must

communicate with the tile-monitor command-line tool which

Tilera provides in its Multicore Development Environment

(MDE), in order to manage the tile geometries. To take apart

Figure 3. Heterogeneous programming model of the MC64-ClustalWP2 and each stage complexity. The executable algorithm is run in
the host machine: the pairwise-alignments stage communicates with an external host program, which schedules the alignments among tiles. The
clustering stage is executed in the host, and the progressive-alignment stage is controlled by the host, by calculating each profile alignment in the
Tile64 microprocessor. The time complexity of each stage is shown in the lower part.
doi:10.1371/journal.pone.0094044.g003

ClustalW Implementation on Many-Core Architectures

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e94044

this functionality from the Clustal W source code, this task is

carried out by a Perl script, which is called from the host main

executable with the proper parameters: sequences to align, scoring

matrix, etc.

Although other kinds of communications would be possible, like

a telnet access, a client-server approach using the available

Ethernet ports or a serial console, the communication between the

Perl script and the Tile64 is performed via the more straightfor-

ward tile-monitor command line tool: when the Perl script starts a

new tile-monitor session, it takes input/output communication

channels through which the commands and results are sent. The

Perl script manages pending jobs and available geometries, in

order to schedule workload. Finally, when every pairwise

alignment has been calculated, the MC64-ClustalWP2 pairalign()

function gets all of them from the Perl script. Starting from them,

the scoring matrix is computed as the original Clustal W does.

Implementation of the new progressive-alignment stage
The implementation of the progressive aligner requires as well

communicating the MC64-ClustalWP2 program, run in the host,

with the parallel code executed in the Tile64. However, an

intermediate script is not needed this time, as long as the algorithm

has only one level of parallelism (every tile works for the same

profile alignment and, thus, no fine-grained tile-monitor control is

required).

This stage is controlled by the host main executable, which

launches each profile alignment on the Tile64 environment. To do

this, many internal variables must be shared between these both

hardware environments. In total, 37 different variables and

structures are needed, in order to rebuild the profiles and run

the algorithm in the Tile64; other five are updated and returned to

the host. To perform these communications and, at the same time,

to avoid spreading dependencies throughout the code, we have

built an intermediate layer library, called MC64-NWProfile_Par-

ameterManagement, that encapsulates data structures and com-

munication functions. This layer carries out communications using

properly-formatted plain-text files. This facilitates uploading the

required data into the Tile64, as well as download from it when

required. In addition, the MC64_ParameterManagement provides

the implementation of the profile-alignment algorithm, which is

executed in the Tile64 microprocessor, as seen in Figure 3. Thus,

the Clustal W malign() remains nearly the same, but the prfalign()

function has been replaced by the needed calls to the parameter

management library functions, which wait for the Tile64 program

to finish before continuing.

The profile alignment algorithm for the Tile64 microprocessor

has been developed starting from the MC64-NW/SW code, and

applying several major changes to align profiles instead of

sequences. For internal purposes, we have called MC64-

NWProfile this new sub-algorithm, due to its global behavior.

Each profile is a bi-dimensional structure of 356m, where the

height (35) is determined by all the possible residues plus gaps,

whereas the width (m) is determined by the profile length; i.e., the

length of the globally aligned sequences in the block. The

progressive alignment is based on the alignment of these

structures, with the prfscore() function determining the score for

position i,j of the DPM from the vector multiplication of the

profile1[i] row and the profile2[j] row.

Firstly, the MC64-NWProfile computes the profiles using the

internal variables passed to it. Once calculated, the algorithm

follows the same controller-workers approach than the MC64-

NW/SW, using a similar wave-front parallelism. However, the

prfscore() is now a vector-multiplication operation instead of an

indirect-access operation. Additionally, the cells are 12 bytes

instead of 6 bytes, so the job-partition optimal k values for each pair

of profiles are completely different from those calculated in the

pairwise-alignments stage. Thus, new optimal k values for

significant profiles lengths must be pre-calculated, and, when a

pair of profiles is to be aligned, the actual k value is interpolated

from these ones.

To calculate a cell’s content in this parallel approach, each

worker requires accessing to the profile structures to compute the

scores and alignment. However, for relatively long sequences, each

profile can take several megabytes (for example, to align 200 kb

sequences, each profile requires 24 MB), so a new problem arises:

the location of these two profiles in memory. A direct approach to

overcome such limitation is to store a single copy of the profiles in

the shared memory, being accessible by both the controller and

every worker. Yet, unfortunately, the shared memory access is very

slow (can consume tens of CPU cycles) in comparison to the local

memory access. Therefore, a better approach is to copy the

profiles into the local memory of each tile. This simple

modification represents an 8x speedup in execution time, though

it requires much more memory (following the 200 kb example,

24 MB62659 workers = 2.8 GB), and thus restricts the range of

valid k values. Indeed, both the grid cache and the profile copies

coexist in the available 8 GB (used as SSD shared and local

memory). As a consequence, the available memory to store the

grid cache decreases using this approach, and then, a low k value

may produce a memory overflow.

In contrast, the MC64-NWProfile obtains a better performance

with lower k values. Therefore, an intermediate approach is to only

copy the necessary fragments for the current job to the worker

local memory. Hence, when a worker receives a new job, it brings

these fragments of the profiles to the local memory and when

finished, it frees the memory. This approach opens the door to use

small k value sizes, though the handicap is that the same fragments

are eventually copied in the same worker several times for each

alignment. In spite of this, using low k values instead of bigger ones,

allows obtaining an additional 1.5x overall speedup, as it has been

empirically demonstrated (data not shown). Finally, when the

alignment is obtained, the local Clustal W variables are modified

and returned to the host, which generates the intermediary

multiple alignment and continues the process, following the guide-

tree topology to progressively generate the next alignments.

Results and Discussion

Once the algorithm was developed and implemented using the

approach stated above, the MC64-ClustalWP2 was tested to

benchmark its performance against the original algorithm and

other parallel implementations, using different architectures and

approaches. At first, we launched stress tests with ten sequences of

different sizes and measured the speedup of the MC64-

ClustalWP2 against other Clustal W implementations. A further

test was carried out to analyze families of long sequences, which

are aligned in much less time than with other general global MSA

strategies, as discussed below.

Heterogeneous Tile64/PC MC64-ClustalWP2 speedup
tests

In order to test the relative performance of the new MC64-

ClustalWP2 parallel strategy implementation with the many-core

Tile64 microprocessor, the original Clustal W algorithm and other

parallel implementations were compared using a set of sequences

with different sizes. In particular, the tested algorithms were the

Clustal W 1.83 (originally written in C language) [28] and two

parallel implementations: the ClustalW-MTV (the latest version of

ClustalW Implementation on Many-Core Architectures

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e94044

MT-ClustalW for multi-threaded systems) [41] and the ClustalW-

MPI (focused on multi-core systems and PC clusters using the MPI

library) [43]. The Clustal W many-core GPU implementations, as

the MSA-CUDA [47], were excluded from this test, since they are

unable to align such large sequences. The dataset used for the

experiment is composed of 10 sets of artificial sequences whose

lengths range between 25 and 300 kb. The alignment of hundreds

or thousands of sequences with lower lengths is not the focus of our

parallel approach (and neither its strength), so it is not worthy to

carry out any test on such sets of sequences. In these cases, the

scientist may choose from a different set of tools specifically

developed for the purpose, including the above-mentioned GPU

implementations and programs like MAFFT (the PartTree

algorithm [52]) and Clustal-Omega [53].

All of the algorithms tested were run in the same environment

(Intel Xeon Quad Core 2.0 GHz PC with 8 GB of quad-channel

DDR2 memory), providing the same results but with rather

different execution times. The MC64-ClustalWP2 used the Tile64

microprocessor on-boarded in a TilExpress-20G card with 8 GB

RAM. The execution time and minimum-gain ratio of the MC64-

ClustalWP2 algorithm against the other ones is shown for each set

of sequences in Figure 4.

The results reveal the best performance of the MC64-

ClustalWP2 against every other implementation. This tendency

increases with the length of the sequences, because a higher

parallelization factor is obtained. Thus, the MC64-ClustalWP2

reaches a speedup of more than 7x when compared to the best

multi-core implementation (ClustalW-MPI). In particular, both

multi-core approaches present very similar behaviors with

differences only appreciable when aligning 300 kb length

sequences. On the other hand, the MC64-ClustalWP2 obtains a

speedup factor of more than 18x when compared to the original

algorithm. The Figures 5 and 6 show the relative acceleration

factor in both the first and third stages against ClustalW and

ClustalW-MPI, which reveals that our work-distribution strategy

for the third stage yields much more parallelism than other

methods.

Variation analyses of the human herpesvirus 1 genomes
As a final test, the MC64-ClustalWP2 was used to run an

experiment whose execution time is near prohibitive when non-

parallel or less-efficient parallel MSA methods are applied. In this

stress test, 37 different human herpesvirus 1 (Herpes simplex virus

type 1; HHV-1) genomes, publicly available at GenBank ,http://

www.ncbi.nlm.nih.gov/genbank., were selected to be aligned.

The complete genome of the HHV-1 is about 152 kilobase pairs

(kbp), and the different strains should a priori present several

mutation areas, due to the high mutation-rates of this kind of DNA

viruses. Therefore, such alignments can be carried out with

dynamic-programming algorithms like Clustal W.

The MC64-ClustalWP2 aligned the 37 sequence genomes in

36,103 seconds (10.03 h; 21,742 seconds for the first stage, nearly

zero for the second one and 14,360 seconds for the third stage).

The final phylogenetic tree is shown in Figure 7. The upper part of

the dendrogram includes the reference genome, which appears

twice in the database (GenBank accession numbers NC_001806.1

and X14112.1) and was modeled from the strain 17 sequencing

(GenBank accession number JN555585.1).

The quality of the alignments provided by any MSA algorithm,

including Clustal W, depends on many factors, being an issue open

for discussion [38,54]. As expected in this case, the resulting

alignment highlighted the polymorphisms between the virus

strains. The most divergent strain was the TFT401 ocular one

(GenBank accession number JN420337.1), also showing a low

sequencing-coverage [55]. The alignment hereby presented

confirms the previously reported sequencing results. As an

Figure 4. Execution time of the alignment of sets of ten randomly-generated sequences of different sizes, using Clustal W
implementations. The tested algorithms are the original Clustal W 1.83, the MC64-ClustalWP2 for Tile64 and PC, and two parallel implementations
for x86 systems (MT-ClustalW and ClustalW-MPI). In addition, the minimum gain ratio of the MC64-ClustalWP2 against all the other implementations
is exposed for each set of sequences.
doi:10.1371/journal.pone.0094044.g004

ClustalW Implementation on Many-Core Architectures

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e94044

http://www.ncbi.nlm.nih.gov/genbank
http://www.ncbi.nlm.nih.gov/genbank

example, a review of these genomes in relation to their

glycoproteins coding genes has been published elsewhere [56].

This alignment was also performed with other global MSA

algorithms, and even with other Clustal W implementations

(which provides exactly the same alignment), but the quickest

among them (ClustalW-MPI) required 274,149 seconds (3.17 days)

to complete the alignment, being 7.59 times slower than our

approach which, hence, becomes the only one capable to deal with

this type of alignments in a reasonable time. On the other hand,

some of the MSA algorithms do not generate an evolutionary tree

of the genomic sequences, as they are oriented to find only the

similar regions. Besides, they lack accuracy when the aligned

Figure 5. Speedup of the MC64-ClustalWP2 against Clustal W 1.83. The speedup is shown both for each relevant stage and for the full
execution when aligning sets of ten randomly-generated sequences of different sizes.
doi:10.1371/journal.pone.0094044.g005

Figure 6. Speedup of the MC64-ClustalWP2 against ClustalW-MPI. The speedup is shown both for each relevant stage and for the full
execution when aligning sets of ten randomly-generated sequences of different sizes.
doi:10.1371/journal.pone.0094044.g006

ClustalW Implementation on Many-Core Architectures

PLOS ONE | www.plosone.org 9 April 2014 | Volume 9 | Issue 4 | e94044

sequences have highly polymorphic regions (e.g., with high

mutation-rates), which is typical for most viruses [35].

Conclusions and Future Work

We have developed a new parallel strategy for Clustal W, which

is one of the most relevant algorithms in bioinformatics for

multiple-sequence alignments and dendrogram generation. This

algorithm uses the pairwise-alignment operation as its core. Our

work has focused on large sequences, a field where the resources of

a GPGPU architecture have proven insufficient but, in contrast,

our previous developments in many-core technologies for

bioinformatics, like the MC64-NW/SW, have shown a high

performance [20,22]. In this scenario, we have separately

redesigned and parallelized the two most time-consuming stages

of Clustal W, using a new approach that exploits parallelism in

systems with many cores. This new model, named MC64-

ClustalWP2, allows aligning large sequences in a relatively short

period of time on a personal computer, obtaining a global speedup

of more than 18x against the original Clustal W, and more than 7x

against the best x86 parallel implementation to date. This allows

aligning more and larger sequences and, thus, enhances the range

of problems that can be addressed in an affordable time.

The MC64-ClustalWP2 has been implemented for the hetero-

geneous standalone system x86-Tile64, using the Tile64 many-

core microprocessor. Thus, within a single computer, the MC64-

ClustalWP2 offers an impressive performance, being scalable to

larger many-core systems using the same parallel strategy. This

represents also a proof of concept that new parallel strategies can

be exploited to harness the new developments in the many-core

microprocessors to analyze the increasing amount of data

generated by the second- and third-generation sequencing

platforms. Thus, the Clustal W dynamic-programming approach

that we have developed (MC64-ClustalWP2) can align genomes

with highly polymorphic regions [35], which cannot be accom-

plished by the MSA heuristic aligners of genomes.

These developments allow to identify identities and differences

to generate dendrograms for biodiversity and evolutionary studies,

and to develop molecular markers like the ones based, for instance,

on Single Nucleotide Polymorphisms (SNP), as well as on

microsatellites, also known as Short Tandem Repeats (STR) in

animals and as Simple Sequence Repeats (SSR) in plants, for

germplasm management, breeding, identification and protection

of the intellectual property, PDO, illegal traffic control and fraud

prevention, as we have described for the olive oil [57].

Additionally, the MC64-ClustalWP2 strategy can be deployed

for any many-core system with very little effort, like the current

and future Intel Xeon Phi and the Tilera microprocessors. In

particular, we have already developed a threaded version of

MC64-NW/SW for the Intel i7 processor, and we are planning to

use it as starting point to take full advantage of every Intel Xeon

Phi core, where several threads must be executed to achieve an

instruction-per-cycle performance. Furthermore, the approach

can be escalated, both in processor and in memory resources,

interconnecting several TilExpress-20G cards through their

10GBase-CX4 connectors to build a powerful cluster of Tile64

microprocessors, with thousands of cores, increasing both the

number and the length of the sequences to align. We have already

designed such a cluster, which is currently being evaluated [58].

Figure 7. Phylogenetic tree of 37 different genomes of HHV-1. To calculate the multiple alignment of the genomes in this tree, MC64-
ClustalWP2 run 7.59 times faster than its closest competitor (ClustalW-MPI).
doi:10.1371/journal.pone.0094044.g007

ClustalW Implementation on Many-Core Architectures

PLOS ONE | www.plosone.org 10 April 2014 | Volume 9 | Issue 4 | e94044

On the other hand, a possible optimization in order to improve

even further the parallelism of the first stage is to get rid of the

intermediate Perl script and to transfer its high-level controller

functionalities to a core of the many-core system. This allows using

a single geometry where each worker is independent (i.e., may

indistinctively work for any alignment), receiving in each case the

data from the input sequences to be aligned. This new approach

would maximize the core usage in the first stage, but would require

more data transfers and memory resources in the overall system,

which is strongly limited to 8 GB of RAM in the case of the Tile64

hardware. As an additional optimization for the alignment of

thousands of sequences, the clustering stage could be parallelized

as stated in [59]. However, we are not dealing with such an

scenario now, since the MC64-ClustalWP2 is oriented to align

long sequences.

On the other hand, the MC64-ClustalWP2 should be consid-

ered as a complementary tool to heuristic algorithms like the MGA

[33] for the alignment of large sequences with highly polymorphic

regions. In this regard, a more complex and ‘‘intelligent’’

alignment system could be built in a heterogeneous environment,

in order to distribute and optimize the alignment tasks and stages,

attending to the sequence characteristics. These developments

should enhance the current tools in the bioinformatics arsenal.

Lastly, the MC64-ClustalWP2 algorithm is freely accessible to

the scientific community and can be remotely executed on our

server (a system that integrates the TilExpress-20G card) by means

of a web service at ,http://galactus.uma.es/manycore.. In the

same way, the MC64-ClustalWP2 project is available under the

GNU General Public License (GPL), and its source code can be

downloaded from the same website.

Acknowledgments

We are grateful to Tilera for providing hardware and software tools

,http://www.tilera.com..

Author Contributions

Conceived and designed the experiments: DD FJE PH GD SG. Performed

the experiments: DD FJE. Analyzed the data: DD FJE PH JC AG GD SG.

Contributed reagents/materials/analysis tools: JC AG GD. Wrote the

paper: DD FJE PH JC AG GD SG. Software design: DD FJE SG. Web

deployment: DD AG SG.

References

1. Needleman SB, Wunsch CD (1970) A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology 48: 443–453.

2. Smith TF, Waterman MS (1981) Identification of common molecular

subsequences. J Mol Biol 147: 195–197.

3. Gotoh O (1982) An improved algorithm for matching biological sequences.

Journal of Molecular Biology 162: 705–708.

4. Hirschberg DS (1975) A linear space algorithm for computing maximal common

subsequences. Commun ACM 18: 341–343.

5. Driga A, Lu P, Schaeffer J, Szafron D, Charter K, et al. (2006) FastLSA: A Fast,

Linear-Space, Parallel and Sequential Algorithm for Sequence Alignment.

Algorithmica 45: 337–375.

6. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence

comparison. Proceedings of the National Academy of Sciences of the United

States of America 85: 2444–2448.

7. Altschul S, Gish W, Miller W, Myers E-M, Lipman D (1990) Basic local

alignment search tool. J Mol Biol 215: 403–410.

8. Pearson WR (1991) Searching protein sequence libraries: comparison of the

sensitivity and selectivity of the Smith-Waterman and FASTA algorithms.

Genomics 11: 635–650.

9. Mirto M, Fiore S, Epicoco I, Cafaro M, Mocavero S, et al. (2008) A

Bioinformatics Grid Alignment Toolkit. Future Generation Computer Systems

24: 752–762.

10. Goetzmann JF (2007) Massively Parallel Contact Simulation on Graphics

Hardware using NVIDIA CUDA [Bacherlor’s Thesis]. Institute for Computer

Science, Universität Mainz.

11. Adapteva (2011) Epiphany Multicore IP. Available: http://www.adapteva.com/

index.php?option = com_content&view = article&id = 72&Itemid = 79. Accessed

2013 Jul 16.

12. Shah M, Barreh J, Brooks J, Golla R, Grohoski G, et al. (2007) UltraSPARC T2:

A highly-treaded, power-efficient, SPARC SOC Asian Solid-State Circuits

Conference (ASSCC07): 22–25.

13. Mattson TG, Wijngaart RVD, Frumkin M (2008) Programming the Intel 80-

core network-on-a-chip Terascale processor. Proceedings of the 2008 ACM/

IEEE conference on Supercomputing. Austin, Texas: IEEE Press. pp. 1–11.

14. Intel (2010) The SCC Platform Overview. Available: http://techresearch.intel.

com/spaw2/uploads/files/SCC-Overview.pdf. Accessed 2013 Jul 16.

15. Intel (2010) Intel’s Teraflops Research Chip. Available: http://download.intel.

com/pressroom/kits/Teraflops/Teraflops_Research_Chip_Overview.pdf. Ac-

cessed 2013 Jul 16.

16. Wentzlaff D, Griffin P, Hoffmann H, Bao L, Edwards B, et al. (2007) On-Chip

Interconnection Architecture of the Tile Processor. IEEE Micro 27: 15–31.

17. Tilera (2011) Product Brief: TILE-Gx 8000 Series. Available: http://www.tilera.

com/sites/default/files/productbriefs/TILE-Gx8000Series Brief_0.pdf. Ac-

cessed 2013 Jul 16.

18. Manavski SA, Valle G (2008) CUDA compatible GPU cards as efficient

hardware accelerators for Smith-Waterman sequence alignment. BMC Bioin-

formatics 9 Suppl 2: S10.

19. Liu Y, Schmidt B, Maskell DL (2010) CUDASW++2.0: enhanced Smith-

Waterman protein database search on CUDA-enabled GPUs based on SIMT

and virtualized SIMD abstractions. BMC Research Notes 3: 93.

20. Dı́az D, Esteban FJ, Hernández P, Caballero JA, Dorado G, et al. (2011)
Parallelizing and optimizing a bioinformatics pairwise sequence alignment

algorithm for many-core architecture. Parallel Computing 37: 244–259.

21. Esteban FJ, Dı́az D, Hernández P, Caballero JA, Dorado G, et al. (2013) Direct

approaches to exploit many-core architecture in bioinformatics. Future
Generation Computer Systems 29: 15–26.

22. Gálvez S, Dı́az D, Hernández P, Esteban FJ, Caballero JA, et al. (2010) Next-

Generation Bioinformatics: Using Many-Core Processor Architecture to

Develop a Web Service for Sequence Alignment. Bioinformatics 26: 683–686.

23. Agrifood Biotechnology (‘‘Biotecnologı́a Agroalimentaria’’) Research Group
(2009) Many-core bioinformatics algorithms development. Available: http://

galactus.uma.es/manycore/. Accessed 2013 Sep 11.

24. Bains W (1986) MULTAN: a program to align multiple DNA sequences.

Nucleic Acids Research 14: 159–177.

25. Waterman MS (1986) Multiple sequence alignment by consensus. Nucleic Acids
Research 14: 9095–9102.

26. Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple
sequence alignment on a microcomputer. Gene 73: 237–244.

27. Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for

multiple sequence alignment. Computer applications in the biosciences:

CABIOS 8: 189–191.

28. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Res 22: 4673–4680.

29. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007)
Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

30. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast

and accurate multiple sequence alignment. Journal of Molecular Biology 302:

205–217.

31. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Research 32: 1792–1797.

32. Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, et al. (2003) LAGAN
and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic

DNA. Genome Res 13: 721–731.

33. Hohl M, Kurtz S, Ohlebusch E (2002) Efficient multiple genome alignment.

Bioinformatics 18: S312–320.

34. Dewey CN (2007) Aligning multiple whole genomes with Mercator and
MAVID. Methods Mol Biol 395: 221–236.

35. Chain P, Kurtz S, Ohlebusch E, Slezak T (2003) An applications-focused review
of comparative genomics tools: Capabilities, limitations and future challenges.

Briefings in Bioinformatics 4: 105–123.

36. Darling AE, Mau B, Perna NT (2010) progressiveMauve: Multiple Genome
Alignment with Gene Gain, Loss and Rearrangement. PLoS ONE 5: e11147.

37. Paten B, Earl D, Nguyen N, Diekhans M, Zerbino D, et al. (2011) Cactus:
Algorithms for genome multiple sequence alignment. Genome Res 21: 1512–

1528.

38. Notredame C (2007) Recent Evolutions of Multiple Sequence Alignment

Algorithms. PLoS Comput Biol 3: e123.

39. Vandierendonck H, Rul S, Questier M, De Bosschere K (2008) Experiences
with Parallelizing a Bio-informatics Program on the Cell BE High Performance

Embedded Architectures and Compilers. In:Stenström P, Dubois M, Katevenis

M, Gupta R, Ungerer T, editors: Springer Berlin/Heidelberg. pp. 161–175.

ClustalW Implementation on Many-Core Architectures

PLOS ONE | www.plosone.org 11 April 2014 | Volume 9 | Issue 4 | e94044

http://galactus.uma.es/manycore
http://www.tilera.com
http://techresearch.intel.com/spaw2/uploads/files/SCC-Overview.pdf
http://techresearch.intel.com/spaw2/uploads/files/SCC-Overview.pdf
http://download.intel.com/pressroom/kits/Teraflops/Teraflops_Research_Chip_Overview.pdf
http://download.intel.com/pressroom/kits/Teraflops/Teraflops_Research_Chip_Overview.pdf
http://www.tilera.com/sites/default/files/productbriefs/TILE-Gx8000Series
http://www.tilera.com/sites/default/files/productbriefs/TILE-Gx8000Series
http://galactus.uma.es/manycore/
http://galactus.uma.es/manycore/

40. Mikhailov D, Cofer H, Gomperts R (2001) Performance optimization of Clustal

W: parallel Clustal W, HT Clustal, and MULTICLUSTAL. Silicon Graphics,

Inc.

41. Chaichoompu K, Kittitornkun S, Tongsima S (2006) MT-ClustalW: multi-

threading multiple sequence alignment. Proceedings of the 20th Parallel and

Distributed Processing Symposium (IPDPS 2006). pp. 8.

42. Vandierendonck H, Rul S, De Bosschere K (2010) Accelerating Multiple

Sequence Alignment with the Cell BE Processor. The Computer Journal 53:

814–826.

43. Li K-B (2003) ClustalW-MPI: ClustalW analysis using distributed and parallel

computing. Bioinformatics 19: 1585–1586.

44. Saitou N, Nei M (1987) The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.

45. Myers EW, Miller W (1988) Optimal alignments in linear space. Comput Appl

Biosci 4: 11–17.

46. Cheetham J, Dehne F, Pitre S, Rau-Chaplin A, Taillon PJ (2003) Parallel

CLUSTAL W for PC clusters. Proceedings of the 2003 international conference

on Computational science and its applications: Part II. Montreal, Canada:

Springer-Verlag. pp. 300–309.

47. Yongchao L, Schmidt B, Maskell DL (2009) MSA-CUDA: Multiple Sequence

Alignment on Graphics Processing Units with CUDA. Proceedings of the 20th

IEEE International Conference on Application-specific Systems, Architectures

and Processors (ASAP 2009). pp. 121–128.

48. Yongchao L, Schmidt B, Maskell DL (2009) Parallel reconstruction of neighbor-

joining trees for large multiple sequence alignments using CUDA. Proceedings

of the IEEE International Symposium on Parallel and Distributed Processing

(IPDPS 2009). pp. 1–8.

49. Michener CD, Sokal RR (1957) A quantitative approach to a problem of

classification. Evolution 11.

50. Isaza S, Sanchez F, Gaydadjiev G, Ramirez A, Valero M (2010) Scalability

Analysis of Progressive Alignment on a Multicore. Proceedings of the
International Conference on Complex, Intelligent and Software Intensive

Systems (CISIS 2010). pp. 889–894.

51. Stone JE, Gohara D, Shi G (2010) OpenCL: A Parallel Programming Standard
for Heterogeneous Computing Systems. Computing in Science and Engineer-

ing. pp. 66–73.
52. Katoh K, Toh H (2007) PartTree: an algorithm to build an approximate tree

from a large number of unaligned sequences. Bioinformatics 23: 372–374.

53. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, et al. (2011) Fast, scalable
generation of high-quality protein multiple sequence alignments using Clustal

Omega. Mol Syst Biol 7: 539.
54. Higgins DG, Blackshields G, Wallace IM (2005) Mind the gaps: progress in

progressive alignment. Proc Natl Acad Sci U S A 102: 10411–10412.
55. Kolb AW, Adams M, Cabot EL, Craven M, Brandt CR (2011) Multiplex

sequencing of seven ocular herpes simplex virus type-1 genomes: phylogeny,

sequence variability, and SNP distribution. Invest Ophthalmol Vis Sci 52: 9061–
9073.

56. Norberg P, Bergstrom T, Rekabdar E, Lindh M, Liljeqvist JA (2004)
Phylogenetic analysis of clinical herpes simplex virus type 1 isolates identified

three genetic groups and recombinant viruses. J Virol 78: 10755–10764.

57. Perez-Jimenez M, Besnard G, Dorado G, Hernandez P (2013) Varietal tracing
of virgin olive oils based on plastid DNA variation profiling. PLoS One 8:

e70507.
58. Esteban F, Dı́az D, Hernández P, Caballero J, Dorado G, et al. (2013) MC64-

Cluster: A Many-Core CPU Cluster for Bioinformatics Applications. In: Rocha
Á, Correia AM, Wilson T, Stroetmann KA, editors. Advances in Information

Systems and Technologies: Springer Berlin Heidelberg. pp. 819–825.

59. Du Z, Lin F (2006) pNJTree: A parallel program for reconstruction of neighbor-
joining tree and its application in ClustalW. Parallel Computing 32: 441–446.

ClustalW Implementation on Many-Core Architectures

PLOS ONE | www.plosone.org 12 April 2014 | Volume 9 | Issue 4 | e94044

