UNIVERSIDAD DE CORDOBA

Departamento de Informatica y Analisis Numérico

Programa de doctorado en computacion avanzada, energia y plasmas

Modelos metaheuristicos para el soporte
a la decision en el proceso de
construccion de software

Metaheuristic models for decision support in the software
construction process

MEMORIA DE TESIS PRESENTADA POR

Aurora Ramirez Quesada

COMO REQUISITO PARA OPTAR AL GRADO

DE DOCTOR EN INFORMATICA

Directores
Dr. José Rauil Romero Salguero

Dr. Sebastian Ventura Soto

Coérdoba, 3 de septiembre de 2018

TITULO: Modelos metaheuristicos para el soporte a la decision en el proceso de
construccion de software

AUTOR: Aurora Ramirez Quesada

© Edita: UCOPress. 2018
Campus de Rabanales

Ctra. Nacional IV, Km. 396 A
14071 Cérdoba

https://lwww.uco.es/ucopress/index.php/es/
ucopress@uco.es

UNIVERSITY OF CORDOBA

Department of Computer Science and Numerical Analysis

Metaheuristic models for
decision support in the

software construction process

A THESIS SUBMITTED BY

Aurora Ramirez Quesada

IN FULFILMENT OF THE REQUIREMENTS FOR

THE DEGREE OF DOCTOR IN COMPUTER SCIENCE

Supervisors
Dr. José Rauil Romero Salguero

Dr. Sebastian Ventura Soto

Cérdoba, 3" September 2018

TITULO DE LA TESIS:

Modelos metaheuristicos para el soporte a la decision en el proceso de construccion
de software :

(Metaheuristic models for decision support in the software construction process)

DOCTORANDA: Aurora Ramirez Quesada

INFORME RAZONADO DEL/DE LOS DIRECTOR/ES DE LA TESIS

(se hara mencion a la evolucién y desarrollo de la tesis, asi como a trabajos y publicaciones derivados de la misma).

En su tesis, D? Aurora Ramirez Quesada ha abordado el desarrollo de métodos para
el descubrimiento (semi-)automatico de arquitecturas software a partir de sus
requisitos no funcionales. Para ello, el problema se ha enfocado desde tres
perspectivas distintas. Una primera propuesta explora el uso de algoritmos evolutivos
mono-objetivos para la generacion de la mejor posible solucién candidata
(arquitectura). Una segunda alternativa escal6 el problema y analiz6 el uso de los
nuevos algoritmos especificos para optimizaciéon de muchos objetivos. Finalmente,
dada la naturaleza creativa del proceso de disefio software, la tercera propuesta
estudia como el humano puede involucrarse en el proceso de optimizacion y propone
un novedoso algoritmo con este fin.

A partir de los resultados alcanzados en esta tesis, se lograron varias publicaciones en
revistas internacionales de impacto y conferencias internacionales, lo que muestra la
calidad cientifica del trabajo realizado, y permite su presentacién por compendio. Por
otra parte, las lineas de investigacion desarrolladas en esta memoria no han quedado
agotadas, existiendo trabajo futuro que puede también dar lugar a varias publicaciones
cientificas de calidad.

En conclusién, consideramos que la memoria presentada por D2 Aurora Ramirez
Quesada reune, en nuestra opinion, las condiciones necesarias para su defensa.

Por todo ello, se autoriza la presentacién de la tesis doctoral.

Cérdoba, 3 de Septiembre de 2018

Firma de los directores

Fdo.: José Raul Romero Salguero Fdo.: Sebastian Ventura Soto

ESCUELA POLITECNICA
SUPERIOR DE CORDOBA

Universidad de Cordoba

DEPARTAMENTO |
INFORMATICA Y
ANALISIS NUMERI

La memoria titulada “Modelos metaheuristicos para el soporte a la decision en el
proceso de contruccion de software”, que presenta Aurora Ramirez Quesada para
optar al grado de Doctor en el marco del programa de doctorado “Computacién
avanzada, energia y plasmas”, recopila un trabajo original de investigacién realiza-
do en el Departamento de Informéatica y Analisis Numérico de la Escuela Politécnica
Superior de la Universidad de Cérdoba . Dicho trabajo ha sido realizado bajo la di-
reccién de Dr. José Rail Romero Salguero y Dr. Sebastian Ventura Soto cumpliendo,
a su juicio, los requisitos exigidos a este tipo de trabajos y respetando los derechos de
otros autores a ser citados, cuando se han utilizado sus resultados o publicaciones.

Cérdoba, Septiembre de 2018

La candidata:

Fdo.: Aurora Ramirez Quesada

Los directores:

Fdo.: Dr. José Raul Romero Salguero Fdo.: Dr. Sebastian Ventura Soto

Tesis con mencién internacional

Esta tesis cumple los criterios establecidos por la Universidad de Cérdoba para la

obtencién del Titulo de Doctor con Mencién Internacional:

1.

Estancia predoctoral minima de 3 meses fuera de Espana en una institucion
de ensefianza superior o centro de investigacion de prestigio, cursando estudios
o realizando trabajos de investigacién relacionados con la tesis doctoral:

Department of Computer Science and Creative Technologies, Faculty of Envi-
ronment and Technology. University of the West of England, Bristol, United
Kingdom. Responsable de la estancia: Dr. Christopher L. Simons, Senior
Lecturer.

 La tesis cuenta con el informe previo de dos doctores o doctoras expertos y

con experiencia investigadora acreditada pertenecientes a alguna institucion
de educacién superior o instituto de investigacién distinto de Espana:

a. Dr. Virgilijus Sakalauskas, Professor. Dept. Informatics, Kaunas Fa-
culty, Vilnius University, Lithuania.

b. Dr. Francisco Servant, Assistant Professor. Dept. Computer Science,
Virginia Tech., Blacksburg, Virginia, United States of America.

Entre los miembros del tribunal evaluador de la tesis se encuentra un doc-
tor procedente de una institucion de educacion superior distinto de Espana y
diferente del responsable de la estancia predoctoral:

Dr. Robert Feldt, Professor. Dept. Computer Science and Engineering,
Chalmers University of Technology, Gothenburg, Sweden.

Parte de la tesis doctoral se ha redactado y presentado en dos idiomas, caste-
llano e inglés.

Cérdoba, septiembre de 2018

La candidata:

Fdo.: Aurora Ramirez Quesada

Tesis Doctoral subvencionada por el programa de Formacién del Profesorado
Universitario (FPU) del Ministerio de Educacién, Cultura y Deportes (referencia
FPU13/01466), convocatoria publicada en el B.O.E. Ne279 de 21 de noviembre

de 2013 y resuelta en el B.O.E. Ne215 de 4 de septiembre de 2014.

La estancia para la obtencién de la mencion internacional ha sido financiada por el

mencionado programa (referencia EST16/00143), conforme a la convocatoria
publicada en el B.O.E. Ne14 de 17 de enero de 2017 y resuelta el 4 de abril de 2017.

Asimismo, esta Tesis Doctoral ha sido parcialmente subvencionada por el
Ministerio de Ciencia y Tecnologia mediante el proyecto TIN2011-22408, el
Ministerio de Economia y Competitivad (proyectos TIN2014-55252-P y
TIN2017-83445-P), la Red de Excelencia en Ingenieria de Software basada en
bisqueda (TIN2015-71841-REDT), y fondos FEDER.

GOBIERNO
DE ESPANA

GOBIERNO
' DE ESPANA

MINISTERIO |
DE EDUCACION, CULTURA
Y DEPORTE

MINISTERIO |
DE ECONOMIA
Y COMPETITIVIDAD

MINISTERIO
DE CIENCIA

Y TECNOLOGIA

* X %
*
% *

* *

UNION EUROPEA

Fondo Europeo de Desarrollo Regional

Agradecimientos

“No duty is more urgent than that of returning thanks.”
James Allen

Llegando al final de una larga etapa de formacion, si es que eso termina en algin
momento, me doy cuenta de lo afortunada que he sido por poder compartirla con
tantas personas. Una péagina no es suficiente para expresar mi agradecimiento a
todas ellas, pero lo intentaré.

A la casualidad, que cruzo a Raul en mi camino hace ya més de 10 anos, por haberme
permitido descubrir a un atento tutor, un excelente profesor, un magnifico director
y, sobre todo, una gran persona y mejor amigo. Rail, te doy las gracias por tu
entrega, reflejada en cada minuto de cada reunién frente a la desafiante pizarra en
blanco, cada palabra en los incontables correos electronicos, o cada coma en rojo en
cada manuscrito que con tanto esmero revisas, porque todo ello me ha convertido
en la investigadora que soy hoy. A Sebastian, por abrirle las puertas del laboratorio
a aquella timida estudiante, y darle la oportunidad de desarrollar su trabajo en él.
Tu experiencia y apoyo constante también han sido claves en su consecucién.

A mis companeros de laboratorio, con quienes he tenido la suerte de compartir el
dia a dia. A esa primera generacion (Juan Ignacio, Juan Luis, José Maria, Alberto
y Oscar) porque, cada uno a vuestra manera, me habéis servido de ejemplo. A la
sequnda generacion (José Marfa, Rubén y Rafa), por su agradable compania en
los tltimos anos. Os deseo que disfrutéis lo que os queda de camino. Al resto de
miembros del grupo KDIS por su apoyo, especialmente a Carlos, por tener siempre un
momento para explicarme los entresijos del misterioso mundo de las metaheuristicas.

También quiero mostrar mi agradecimiento al departamento de Informatica y Anali-
sis Numérico y a buena parte de la Escuela Politécnica Superior, cuyos profesores
han mostrado interés en mi trabajo cada vez que nos cruzabamos por un pasillo. No
me puedo olvidar de la magnifica comunidad SBSE en Espana, cuyas ideas han sido
fuente de inspiracién a lo largo de estos anos. A Chris Simons, the perfect British
host, por su amabilidad y ayuda durante mi estancia en Bristol, y con quien espero
poder seguir debatiendo ideas brillantes.

Quiero también agradecer a todos los companeros y amigos con los que he ido
compartiendo mis distintas etapas universitarias. Vosotros me recorddis que existe
informatica mas alla de la investigacion, e investigacion més alla de la informatica.
A mis amigos de siempre, porque me recuerdan que existe vida fuera de ambas.

Finalmente, a mi pequena pero gran familia, por su infinito carino y apoyo. A mis
padres, Mateo y Pilar, por haberme bindrado la mejor educacion posible y estar
siempre a mi lado de forma incondicional. A mi hermana, Estrella, con quien méas
y mejores momentos he compartido desde que tengo uso de razén, porque siempre
estds ahi para evadirnos juntas del doctorado. Estoy segura de que muy pronto
terminaras el tuyo con todos los honores que mereces.

Gracias de todo corazdn.
Aurora

Resumen

En la actualidad, los ingenieros software no solo tienen la responsabilidad de cons-
truir sistemas que desempenen una determinada funcionalidad, sino que cada vez
es mas importante que dichos sistemas también cumplan con requisitos no funcio-
nales como alta disponibilidad, eficiencia o seguridad, entre otros. Para lograrlo,
los ingenieros se enfrentan a un proceso continuo de decisién, pues deben estudiar
las necesidades del sistema a desarrollar y las alternativas tecnolégicas existentes
para implementarlo. Todo este proceso debe estar encaminado a la obtencién de
sistemas software de gran calidad, reutilizables y que faciliten su mantenimiento y
modificacién en un escenario tan exigente y competitivo.

La ingenieria del software, como método sistematico para la construccion de softwa-
re, ha aportado una serie de pautas y tareas que, realizadas de forma disciplinada
y adaptadas al contexto de desarrollo, posibilitan la obtencién de software de cali-
dad. En concreto, el proceso de analisis y diseno del software ha adquirido una gran
importancia, pues en ella se concibe la estructura del sistema, en términos de sus blo-
ques funcionales y las interacciones entre ellos. Es en este momento cuando se toman
las decisiones acerca de la arquitectura, incluyendo los componentes que la confor-
man, que mejor se adapta a los requisitos, tanto funcionales como no funcionales,
que presenta el sistema y que claramente repercuten en su posterior desarrollo. Por
tanto, es necesario que el ingeniero analice rigurosamente las alternativas existentes,
sus implicaciones en los criterios de calidad impuestos y la necesidad de establecer
compromisos entre ellos. En este contexto, los ingenieros se guian principalmente
por sus habilidades y experiencia, por lo que dotarles de métodos de apoyo a la
decisién representaria un avance significativo en el area.

La aplicacién de técnicas de inteligencia artificial en este ambito ha despertado un
gran interés en los ultimos anos. En particular, la inteligencia artificial ha encontra-
do en la ingenieria del software un ambito de aplicacién complejo, donde diferentes
técnicas pueden ayudar a conseguir la semi-automatizacion de tareas tradicional-
mente realizadas de forma manual. De la unién de ambas areas surge la denominada
ingenieria del software basada en bisqueda, que propone la reformulacion de las
actividades propias de la ingenieria del software como problemas de optimizacion.
A continuacion, estos problemas podran ser resueltos mediante técnicas de busque-
da como las metaheuristicas. Este tipo de técnicas se caracterizan por explorar el
espacio de posibles soluciones de una manera “inteligente”, a menudo simulando
procesos naturales como es el caso de los algoritmos evolutivos.

A pesar de ser un campo de investigacién muy reciente, es posible encontrar pro-
puestas para automatizar una gran variedad de tareas dentro del ciclo de vida del

software, como son la priorizacién de requisitos, la planificacién de recursos, la re-
factorizacion del codigo fuente o la generaciéon de casos de prueba. En el ambito del
analisis y diseno de software, cuyas tareas requieren de creatividad y experiencia,
conseguir una automatizacién completa resulta poco realista. Es por ello por lo que
la resolucion de sus tareas mediante enfoques de bisqueda debe ser tratada desde la
perspectiva del ingeniero, promoviendo incluso la interaccion con ellos. Ademas, el
alto grado de abstraccion de algunas de sus tareas y la dificultad de evaluar cuanti-
tavimente la calidad de un diseno software, suponen grandes retos en la aplicacion
de técnicas de busqueda durante las fases tempranas del proceso de construccion de
software.

Esta tesis doctoral busca realizar aportaciones significativas al campo de la ingenieria
del software basada en busqueda y, mas concretamente, al area de la optimizacion
de arquitecturas software. Aunque se estan realizando importantes avances en este
area, la mayoria de propuestas se centran en la obtencion de arquitecturas de bajo
nivel o en la seleccion y despliegue de artefactos software ya desarrollados. Por tanto,
no existen propuestas que aborden el modelado arquitecténico a un nivel de abs-
traccién elevado, donde aun no existe un conocimiento profundo sobre cémo sera el
sistema y, por tanto, es mas dificil asistir al ingeniero. Como problema de estudio,
se ha abordado principalmente la tarea del descubrimiento de arquitecturas software
basadas en componentes. El objetivo de este problema consiste en abstraer los blo-
ques arquitectonicos que mejor definen la estructura actual del software, asi como
sus interacciones, con el fin de facilitar al ingeniero su posterior analisis y mejora.

Durante el desarrollo de esta tesis doctoral se ha explorado el uso de una gran varie-
dad de técnicas de busqueda, estudiando su idoneidad y realizando las adaptaciones
necesarias para hacer frente a los retos mencionados anteriormente. La primera pro-
puesta se ha centrado en la formulaciéon del descubrimiento de arquitecturas como
problema de optimizacion, abordando la representacion computacional de los arte-
factos software que deben ser modelados y definiendo medidas software para evaluar
su calidad durante el proceso de busqueda. Ademas, se ha desarrollado un primer
modelo basado en algoritmos evolutivos mono-objetivo para su resolucion, el cual ha
sido validado experimentalmente con sistemas software reales. Dicho modelo se ca-
racteriza por ser comprensible y flexible, pues sus componentes han sido disenados
considerando estandares y herramientas del ambito de la ingenieria del software,
siendo ademas configurable en funcién de las necesidades del ingeniero.

A continuacién, el descubrimiento de arquitecturas ha sido tratado desde una pers-
pectiva multiobjetivo, donde varias medidas software, a menudo en conflicto, deben
ser simultdneamente optimizadas. En este caso, la resolucién del problema se ha
llevado a cabo mediante ocho algoritmos del estado del arte, incluyendo propuestas

recientes del ambito de la optimizacion de muchos objetivos. Tras ser adaptados al
problema, estos algoritmos han sido comparados mediante un extenso estudio expe-
rimental con el objetivo de analizar la influencia que tiene el niimero y la elecciéon
de las métricas a la hora de guiar el proceso de busqueda. Ademas de realizar una
validacién del rendimiento de estos algoritmos siguiendo las practicas habituales
del area, este estudio aporta un analisis detallado de las implicaciones que supone
la optimizacién de multiples objetivos en la obtencion de modelos de soporte a la
decision.

La dltima propuesta en el contexto del descubrimiento de arquitecturas software
se centra en la incorporacién de la opinion del ingeniero al proceso de bisqueda.
Para ello se ha disenado un mecanismo de interacciéon que permite al ingeniero indi-
car tanto las caracteristicas deseables en las soluciones arquitecténicas (preferencias
positivas) como aquellos aspectos que deben evitarse (preferencias negativas). Esta
informacién es combinada con las medidas software utilizadas hasta el momento,
permitiendo al algoritmo evolutivo adaptar la busqueda conforme el ingeniero in-
teractie. Dadas las caracteristicas del modelo, su validacion se ha realizado con la
participacion de ingenieros con distinta experiencia en desarrollo software, a fin de
demostrar la idoneidad y utilidad de la propuesta.

En el transcurso de la tesis doctoral, los conocimientos adquiridos y las técnicas
desarrolladas también han sido extrapolados a otros ambitos de la ingenieria del
software basada en busqueda mediante colaboraciones con investigadores del area.
Cabe destacar especialmente la formalizacién de una nueva disciplina transversal,
denominada ingenieria del software basada en bisqueda interactiva, cuyo fin es pro-
mover la participacién activa del ingeniero durante el proceso de busqueda. Ademas,
se ha explorado la aplicaciéon de algoritmos de muchos objetivos a un problema clasi-
co de la computacién orientada a servicios, como es la composiciéon de servicios web.

Abstract

Nowadays, software engineers have not only the responsibility of building systems
that provide a particular functionality, but they also have to guarantee that these
systems fulfil demanding non-functional requirements like high availability, efficiency
or security. To achieve this, software engineers face a continuous decision process,
as they have to evaluate system needs and existing technological alternatives to
implement it. All this process should be oriented towards obtaining high-quality
and reusable systems, also making future modifications and maintenance easier in
such a competitive scenario.

Software engineering, as a systematic method to build software, has provided a
number of guidelines and tasks that, when done in a disciplinarily manner and
properly adapted to the development context, allow the creation of high-quality
software. More specifically, software analysis and design has acquired great relevance,
being the phase in which the software structure is conceived in terms of its functional
blocks and their interactions. In this phase, engineers have to make decisions about
the most suitable architecture, including its constituent components. Such decisions
are made according to the system requirements, either functional or non-functional,
and will have a great impact on its future development. Therefore, the engineer
has to rigorously analyse existing alternatives, their implications on the imposed
quality criteria and the need of establishing trade-offs among them. In this context,
engineers are mostly guided by their own capabilities and experience, so providing
them with decision support methods would represent a significant contribution.

The application of artificial intelligent techniques in this area has experienced a
growing interest in the last years. Particularly, software engineering represents a
complex application domain to artificial intelligence, whose diverse techniques can
help in the semi-automation of tasks traditionally performed manually. The union
of both fields has led to the appearance of search-based software engineering, which
proposes reformulating software engineering activities as optimisation problems. For
their resolution, search techniques like metaheuristics can be then applied. This type
of technique performs an “intelligent” exploration of the space of candidate solutions,
often inspired by natural processes as happens with evolutionary algorithms.

Despite the novelty of this research field, there are proposals to automate a great
variety of tasks within the software lifecycle, such as requirement prioritisation, re-
source planning, code refactoring or test case generation. Focusing on analysis and
design, whose tasks require creativity and experience, trying to achieve full automa-
tion is not realistic. Therefore, solving design tasks by means of search approaches

should be oriented towards the engineer’s perspective, even promoting their interac-
tion. Furthermore, design tasks are also characterised by a high level of abstraction
and the difficulty of quantitatively evaluating design quality. All these aspects re-
present key challenges for the application of search techniques in early phases of the
software construction process.

The aim of this Ph.D. Thesis is to make significant contributions in search-based
software engineering and, specially, in the area of software architecture optimisation.
Although it is an area in which significant progress is being done, most of the
current proposals are focused on generating low-level architectures or selecting and
deploying already developed artefacts. Therefore, there is a lack of proposals dealing
with architectural modelling at a high level of abstraction. At this level, engineers
do not have a deep understanding of the system yet, meaning that assisting them
is even more difficult. As case study, the discovery of component-based software
architectures has been primary addressed. The objective for this problem consists in
the abstraction of the architectural blocks, and their interactions, that best define
the current structure of a software system. This can be viewed as the first step
an engineer would perform in order to further analyse and improve the system
architecture.

In this Ph.D. Thesis, the use of a great variety of search techniques has been explored.
The suitability of these techniques has been studied, also making the necessary
adaptations to cope with the aforementioned challenges. A first proposal has been
focused on the formulation of software architecture discovery as an optimisation
problem, which consists in the computational representation of its software artefacts
and the definition of software metrics to evaluate their quality during the search
process. Moreover, a single-objective evolutionary algorithm has been designed for
its resolution, which has been validated using real software systems. The resulting
model is comprehensible and flexible, since its components have been designed under
software engineering standards and tools and are also configurable according to
engineer’s needs.

Next, the discovery of software architectures has been tackled from a multi-objective
perspective, in which several software metrics, often in conflict, have to be simulta-
neously optimised. In this case, the problem is solved by applying eight state-of-the-
art algorithms, including some recent many-objective approaches. These algorithms
have been adapted to the problem and compared in an extensive experimental study,
whose purpose is to analyse the influence of the number and combination of metrics
when guiding the search process. Apart from the performance validation following

usual practices within the field, this study provides a detailed analysis of the prac-
tical implications behind the optimisation of multiple objectives in the context of
decision support.

The last proposal is focused on interactively including the engineer’s opinion in the
search-based architecture discovery process. To do this, an interaction mechanism
has been designed, which allows the engineer to express desired characteristics for
the solutions (positive preferences), as well as those aspects that should be avoi-
ded (negative preferences). The gathered information is combined with the software
metrics used until the moment, thus making possible to adapt the search as the
engineer interacts. Due to the characteristics of the proposed model, engineers of
different expertise in software development have participated in its validation with
the aim of showing the suitability and utility of the approach.

The knowledge acquired along the development of the Thesis, as well as the proposed
approaches, have also been transferred to other search-based software engineering
areas as a result of research collaborations. In this sense, it is worth noting the
formalisation of interactive search-based software engineering as a cross-cutting dis-
cipline, which aims at promoting the active participation of the engineer during the
search process. Furthermore, the use of many-objective algorithms has been explo-
red in the context of service-oriented computing to address the so-called web service
composition problem.

Preface

The Spanish legislation for Ph.D. studies, RD 99/2011, published the 28" of Ja-
nuary of 2011 (BOE-A-2011-2541), grants each Spanish University competencies to
establish the necessary supervision and evaluation procedures to guarantee the qua-
lity of Ph.D. Theses. As unique requirement for the defence, this national regulation
indicates that the manuscript should be accompanied by a document detailing the
complementary learning activities carried out by the student.

Accordingly, the University of Cérdoba has a specific regulation for Ph.D. studies,
approved by its governing board the 21*" of December of 2011. This regulation
establishes two different modalities to elaborate the manuscript that the student,
under the supervision of one or more Ph.D. advisors, has to present at the end
of his/her doctorate studies. This Ph.D. Thesis follows the modality described in
the article no. 24 of the aforementioned regulation, referred as Ph.D. Thesis as
a compendium of publications. According to that article, the Ph.D. Thesis can be
presented as a compendium of, at least, three research articles published (or accepted
for publication) in research journals of high quality, i.e. appearing in the first three
quartiles of the Journal Citation Reports (JCR). If such a requirement is fulfilled,
the manuscript has to include: an introduction to justify the thematic cohesion of
the Ph.D. Thesis; the hypotheses and objectives to be achieved, and how they are
associated to the publications; full copy of the publications, and conclusions.

Following these guidelines, this Ph.D. Thesis is organised as described next. Firstly,
an introductory part is divided into five chapters. More specifically, Chapter 1 pre-
sents the background and state of the art of the research areas in which this Ph.D.
Thesis is framed. Next, the motivation, objectives and hypotheses are detailed in
Chapter 2. Chapter 3 explains the research methodology, while an overview of the
obtained results is presented in Chapter 4. Lastly, Chapter 5 discusses conclusions
and future work. The second part of the document is comprised of three chapters.
Chapter 6 includes the three main publications derived from this Ph.D. Thesis.
Chapter 7 compiles other journal publications associated to this Ph.D. Thesis. Fi-
nally, Chapter 8 provides the list of conference publications.

List of Figures
List of Tables

List of Acronyms

I Introduction

1. Background

1.1. Software architectures
1.1.1. Foundations and definitions
1.1.2. The architecting process
1.1.3. Decision support for architecture design

1.2. Search techniques
1.2.1. Search and optimisation
1.2.2. Metaheuristics
1.2.3. Optimisation with multiple objectives
1.2.4. Interactive optimisation

1.3. Search-based software engineering
1.3.1. Origin and characteristics
1.3.2. Search-based software design

1.3.3. Software architecture optimisation

2. Motivation and objectives
2.1. Objectives
2.2. Research questions

2.3. Relation between objectives and publications

Contents

VII

3. Methodology
3.1. Literature analysis oo
3.2. Experimental framework L.
3.2.1. Implementation and execution environments
3.2.2. Problem instances.
3.2.3. Performance evaluation

3.3. Threats to validity o

4. Results
4.1. Evolutionary discovery of architectures
4.1.1. Proposed approach
4.1.2. Discussion of results
4.1.3. Associated publications
4.2. The multi- and many-objective perspectives
4.2.1. Proposed approach
4.2.2. Discussion of resultso
4.2.3. Associated publications
4.3. The human-in-the-loop approach
4.3.1. Proposed approach
4.3.2. Discussion of resultso

4.3.3. Associated publications L.

5. Conclusions and future work
5.1. Concluding remarks

5.2. Future lines of research

Bibliography

II Scientific Publications

6. Compendium of publications

6.1. An approach for the evolutionary discovery of software architectures .

IT

41
41
42
43
43
43
45

47
47
48
20
51
52
52
g
o6
57
58
58
60

63
63
66

71

97

99
101

6.2. A comparative study of many-objective evolutionary algorithms for
the discovery of software architectures 125

6.3. Interactive multi-objective optimisation of software

architectures 183
. Other publications associated to this Ph.D. Thesis 203
7.1. Evolutionary composition of QoS-aware web services: a many-objective
perspective e e e e 205
7.2. A systematic literature review of interaction in search-based software
ENGINEETING o v v e e e 221
. Conference publications 245
8.1. International conferences and workshops 245
8.2. National conferences 246

I1I

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.

List of Figures

The role of artificial intelligence in the decision-making process 12
Classification of metaheuristic techniques 14
Examples of trajectory-based search methods 16
The generational cycle of an evolutionary algorithm 17
The concept of Pareto dominance in multi-objective optimisation . . 19
Overview of an interactive algorithm 24

1.1.
1.2.

2.1.

3.1.

4.1.
4.2.
4.3.
4.4.

List of Tables

Quality indicators and their properties

Families of many-objective evolutionary algorithms
Objectives, research tasks and publications
Software systems used for experimentation

Design metrics to evaluate component-based architectures (I)
Design metrics to evaluate component-based architectures (II)

Design metrics to evaluate component-based architectures (IIT)

Design preferences for the interactive discovery of architectures

VII

List of Acronyms

ADL architecture description language

AT artificial intelligence

ACO ant colony optimisation

CBSE component-based software engineering
COTS commercial-off-the-shelf

DSS decision support system

EA evolutionary algorithm

EC evolutionary computation

HC hill climbing

IEC interactive evolutionary computation

LS local search

MA memetic algorithm

MaOEA many-objective evolutionary algorithm
MaOO many-objective optimisation

MaOP many-objective problem

MCDM multiple criteria decision making
MDE model-driven engineering

MOEA multi-objective evolutionary algorithm
MOO multi-objective optimisation

MOP multi-objective problem

MVC model-view-controller

PF Pareto front

IX

PS Pareto set

PSO particle swarm optimisation

QoS quality-of-service

QoSWSC QoS-aware web service composition
RQ research question

SA simulated annealing

SE software engineering

SI swarm intelligence

SBSE search-based software engineering
SBSD search-based software design
SLR systematic literature review

SPL software product line

SOA service-oriented architecture

TS tabu search

UML unified modelling language

Part 1

Introduction

Background

“Learning never exhausts the mind”.

Leonardo da Vinct

his chapter presents the fundamentals and state of the art of the research areas
T in which this Ph.D. Thesis is founded. More precisely, the conceptual frame-
work underlying the design of software architectures is firstly described. Decision
support methods for the architecting process are also covered. Then, an introduc-
tion to search techniques is presented, including an overview of metaheuristics with
special focus on evolutionary computation (EC). Two advanced approaches, i.e.
multi-objective optimisation (MOO) and interactive optimisation, are detailed next.
Lastly, search-based software engineering (SBSE) is explored in depth in order to
analyse the current state of the field regarding the application of search techniques
to address software design problems. A historical perspective of SBSE methods for

software architecture optimisation is also provided.

Chapter 1. Background

1.1. Software architectures

1.1.1. Foundations and definitions

The specification of abstract descriptions of software systems has always been a
central part of the software development process [73]. However, the lack of specific
methodologies has clearly hampered design traceability and knowledge transfer at
the beginnings of software engineering (SE). The increasing complexity of software
systems has led to the appearance of a more disciplined approach, allowing to es-
tablish a common terminology to reason about their high-level structure. Software
architecting is now a well-established practice within the software industry, with
specialised engineers, description languages and modelling tools. According to the
ISO/IEC/IEEE Std. 42010:2011 System and software engineering — Architecture

description [94], a software architecture is defined as follows:

A software architecture represents “the fundamental concepts or proper-
ties of a system in its environment embodied in its elements, relationships,

and in the principles of its design and evolution”.

Therefore, the architectural analysis of a software system not only represents an
essential activity during early software conception, but also guides its subsequent
development. The aforementioned definition also refers to the external environ-
ment in which the system will operate, which is equally important than its inter-
nal structure [57]. Hence, software architectures can be viewed at two different
levels: macro-architecture, which concerns the system environment, and a micro-

architecture, which dictates how the system is internally organised [57].

Focusing on this latter perspective, software architectures act as a bridge between re-
quirements and implementation [73]. In this sense, a software architecture provides
a high-level description of the system that allows engineers to specify how require-
ments are to be satisfied and what properties the system has to exhibit. According
to Garlan [73], software architectures are fundamental to the following aspects of

software development:

1. Understanding, since they describe the system at a level of abstraction that

makes software comprehension and reasoning easier;

4

1.1. Software architectures

2. Reuse, due to the fact that architectural solutions result in independent com-

ponents, which are often based on recurrent patterns;

3. Construction, as the architecture specifies the principal functional blocks and

existing dependencies between them:;

4. Fwvolution, for which the architecture separates the functionalities from the
mechanisms to manage their interactions, which are subject to change in the

future;

5. Analysis, architectures being an important input for the assessment of non-

functional properties, conformance to styles and constraint satisfaction; and,

6. Management, since designing a good architecture can lead to cost and effort

savings, which are crucial for the success of complex industrial systems.

Languages and architectural styles

Formal notations to model and manage software architectures are frequently adopted
in academia and industry. In this sense, the SO Std. 42010 [94] provides the

following definition:

An architecture description language (ADL) “is any form of expres-

sion for use in architecture descriptions”.

More specifically, an ADL specifies a conceptual framework and a concrete syntax to
specify the architecture [73]. ADLs must be simple, interpretable, understandable
and not necessarily graphic, though they are often supported by tools to create,
visualise and analyse architectural models [94]. An example of a generic ADL is
Acme, whist other ADLs are specific, such as AADL (Architecture Analysis and
Design Language) and EADL (Embedded Architecture Description Language) for
embedded systems or Darwin for distributed systems. More general, the unified
modelling language (UML) [138] supports now modelling architectural concepts be-

yond deployment aspects, the only view considered in its first version.

Due to the variety of purposes for which software systems are now conceived and the

broad range of possible technologies to bring them into life, architectural solutions

Chapter 1. Background

often conform to a particular style and adopt patterns to successfully achieve system
goals. Both concepts are highly relevant in today’s industrial practice. On the one
hand, architectural styles, such as data flow architectures or data-centred architec-
tures, provide a common vocabulary to interpret an architecture [2]. On the other
hand, architectural patterns like model-view-controller (MVC) are reusable solutions
for recurrent problems that appear within a particular context [32]. As opposed to
them, architectural bad smells are anti-patterns that appear as consequence of de-
sign decisions that negatively impact quality properties, such as understandability

and maintainability [72].

Component-based software architectures

Component-based software architectures represent a particular type of software
architecture whose distinctive characteristic is the reuse of functionality. A well-

established definition of software component is provided by C. Szyperski [185]:

“A software component is a unit of composition with contractually spec-
ified interfaces and explicit context dependencies only. A software compo-
nent can be deployed independently and is subject to third-party composi-
tion”. Each interface is “a set of named operations that can be invoked

by clients”.

Components are linked by means of connectors, which serve to specify that one
part of the system is providing the services that other parts need to operate [138].
In component-based software engineering (CBSE), the architect is responsible for
identifying components, assigning responsibilities to them and establishing how they
will collaborate through well-defined interfaces [76, 185]. This way, the system is
constructed by assembling independent and reusable components that all together
will provide the required functionality. As components are abstract units, they can
represent a variety of artefacts, including modules or packages in object-oriented sys-
tems, services in cloud environments or distributed objects in distributed systems.
This characteristic also implies that they remain independent of the specific lan-
guages and technologies that will be later selected for development and deployment.
In fact, a complementary decision for the architect to make is whether a component

should be built in-house or it can be acquired from specialised repositories. In this

1.1. Software architectures

sense, commercial-off-the-shelf (COTS) components offer already implemented and
tested functionality that can greatly reduce development effort but at the expense of
integration costs. Also, architects should be aware of legacy software, i.e. old parts of
the system that are critical to the business and should remain operative [153]. These
legacy systems are non-replaceable due to high rebuilding cost, inextensible design,
lack of proper documentation or obsolete hardware, so the proposed architectural

solution should provide effective ways for integration and communication.

1.1.2. The architecting process

The relevance and cross-cutting nature of software architectures imply that software
architects play a pivotal role within the software project. They have to interact with
stakeholders, lead the design team and be in permanent communication with project
managers to guarantee project success [76]. Furthermore, their expertise, experience
and know-how become indispensable when it comes to deal with complex systems
for which innovative solutions are required. A software architect is involved in an

iterative process comprised of three main steps [76]:

1. Architecture requirements definition, which is aimed at producing a specifica-

tion of those requirements that are relevant to the software architecture.

2. Architecture design, which includes the identification of components, and the

allocation of responsibilities.

3. Architecture validation, which assesses that the proposed architecture fits its

purpose according to project requirements and constraints.

Architecture identification and recovery

Within the architecture design phase, component modelling can be carried out with
a variety of methodologies. Two relevant activities for which supporting methods
have been proposed are component identification and architecture recovery. On the
one hand, component identification methods are applied to derive a partition of the
system functionalities from the requirements specification at the beginning of the
development process [23]. Existing methods are often top-down approaches but they

can differ in how components are defined and which are the particular goals to be

7

Chapter 1. Background

pursued. Furthermore, a distinction has to be made regarding how these methods
are described, i.e. from general recommendations to more formal methodologies [23].
Other approaches rely on metrics like coupling and cohesion to guide the creation

of component-based designs [109].

On the other hand, architecture recovery concerns the reconstruction of the sys-
tem architecture from low-level artefacts, specially code [59]. This re-engineering
process can be required during maintenance tasks, since architects need to com-
prehend the actual structure of the system in order to extend or adapt it to new
requirements or contexts. Due to uncontrolled changes, design documentation often
become incoherent, meaning that code represents the main source of information for
architects. Systematic manual inspection [188], semi-automated methods based on
clustering [121] and combined approaches [142] can help engineers to retrieve some
high-level design entities. This is still an active focus of research and current pro-
posals are studying what code elements can be mapped onto architectural elements

and how they influence recovery techniques [43, 115, 183].

Architecture evaluation

During validation, architects verify the fulfilment of quality properties and identify
potential risks [57]. Even though precise quality estimations are not possible at
such an early stage of the project, software architecture analysis methods can pro-
vide evidence of the effects of the architecture on quality. Evaluation methods at
the architectural level are classified in two main categories, namely questioning tech-
niques and measuring techniques, which actually can complement each other [18].
The former are mostly based on qualitative assessment by means of scenarios and
check lists, whereas the latter require software metrics and simulations to quantify
the quality of the architecture. Nevertheless, current analysis methods are mostly

manual processes that strongly rely on the experience of the architect.

Focusing on measuring techniques, the definition of software metrics able to accu-
rately reflect quality properties is still a paramount concern within the SE commu-
nity. Progress has been made with the definition of the SQuaRE quality model for
system and software products in the ISO/IEC Std. 25010— Systems and software
quality models [93], but it does not provide specific metrics to measure quality prop-

erties. Similarly, the upcoming standard for architecture evaluation (ISO/IEC Std.

1.1. Software architectures

42030 — Architecture evaluation), whose publication is expected during 2018, seems
to be focused on desired characteristics of evaluation methods and how they can

determine the extent to which stakeholders’ concerns are addressed [126].

Given that component-based software architectures rely on composition principles in
order to allow the reuse of functionalities, ease of maintenance becomes the primary

quality attribute. In this sense, the ISO/IEC Std. 25010 provides a formal definition

of maintainability:

Software maintainability refers to “the degree to which the software prod-
uct can be modified. Modifications may include corrections, improvements
or adaptation of the software to changes in environment, and in require-

ments and functional specifications”.

Among the characteristics in which software maintainability is decomposed, the

following three characteristics are essential in CBSE:

s Modularity, which is defined as “the degree to which a system is composed of
discrete components such that a change to one component has minimal impact

on other components”.

» Reusability, which establishes “the degree to which an asset can be used in

more than one software system or in building other assets”.

s Analysability, which determines “the degree to which the parts of the software
to be modified can be identified”.

In order to measure these and other qualitative aspects of software architectures,
different metrics have been extensively investigated in the literature. First at-
tempts consist in the specialisation of general quality models for software archi-
tectures [113], the adaptation of object-oriented metrics [194] or the proposal of
novel metric suites [132]. Other authors focus their studies on the assessment of
certain properties, such as modularity [167] or adaptability [148]. Within CBSE, it
is also possible to find compilations of metrics for components [1, 117, 132], as well
as specific metrics and evaluation methods for relevant properties, such as reusabil-

ity [201], analysability [29] or usability of COTS components [22].

9

Chapter 1. Background

1.1.3. Decision support for architecture design

Decision making is an intrinsic characteristic of the architecting process, since soft-
ware architects have to conceive different solutions and choose the best alterna-
tive according to functional requirements, non-functional requirements and business
goals [6, 64]. Therefore, architecture design can be studied from the perspective of
multiple criteria decision making (MCDM). In this sense, the International MCDM
Society [92] provides the following definition [89]:

MCDM encompasses “the study of methods and procedures by which the
concerns about multiple, usually conflicting, criteria can be formally incor-

porated into the management planning process”.

In this context, a decision-making scenario is characterised by the set of alterna-
tives, each one representing a different choice to the decision maker, and a number
of decision criteria, that establish the different views from which alternatives can be
evaluated [190]. Taking both elements as input, a decision-making technique pro-
vides a systematic process to choose the best alternative among the existing ones
with respect to decision criteria [64, 190]. A decision support system (DSS) can be
then constructed to provide the MCDM methods as a computer-based information
system [131]. When these decision criteria can be numerically quantified, MCDM
techniques perform the following steps [190]:

1. Formal definition of relevant criteria and alternatives.
2. Determination of the relative importance of the decision criteria.
3. Numerical evaluation of alternatives with respect to the decision criteria.

4. Prioritisation of the alternatives on the basis of the numerical assessment.
Several authors have pointed out the benefits that a systematic decision-making
process could bring to the architecting process [64, 134]. Such a process would help

architects to manage trade-offs among conflicting goals, deal with the inherent un-

certainty of early analysis, and evaluate potential consequences of their decisions.

10

1.2. Search techniques

Also, this process could serve to capture the rationale behind architectural deci-
sions, making them explicit and well-documented. In fact, the lack of support to
architectural knowledge management has been identified as a possible aspect lim-
iting broader adoption of decision-making methods by the software industry [49].
Furthermore, MCDM methods could involve multiple stakeholders or design team
members within the process to get closer to real design scenarios [162], for which

group decision-making techniques could be considered.

Examples of MCDM methods to support different activities related to architecture
design can be found in the literature. Svahnberg et al. have proposed a method
to identify the best architecture among a set of preliminary solutions [184]. The
analytic hierarchy process (AHP) is applied to prioritise these solutions according
to quality attributes and the opinions of multiple stakeholders. AHP analyses all
possible pairwise comparisons to rate the alternatives, and is a popular technique
within other areas of SE, such as requirement prioritisation [21]. Another DSS can
recommend the selection of a particular architecture style based on fuzzy logic and
historical information of previous projects [131]. A hierarchy of software architec-
ture metrics and a set of preference relations between them are the basis of another
MCDM method for the selection of architectural patterns [139]. In the context of
CBSE, BAREMO is a MCDM method that applies AHP to select software compo-
nents from repositories based on four criteria, namely production time, cost, quality
and risk [114].

1.2. Search techniques

1.2.1. Search and optimisation

The field of artificial intelligence (AT) is closely related to the decision-making pro-
cess, since intelligent techniques can support some of its steps [60]. In this sense, an
intelligent DSS is a special type of knowledge-based DSS that applies Al techniques
to automate some tasks of the process, such as the analysis of information or the
search of solutions [150]. In particular, Figure 1.1 depicts the correspondence be-
tween problem-solving and the common steps of the decision-making process [86].
In this context, a search problem is formulated in terms of goals, states and ac-

tions [166]. These elements represent the information that an intelligent technique

11

Chapter 1. Background

Identify % Gather Compare Take
w problem information /\ alternatives action
K Stat \ \ \ -
A ate N Define A Make a A Follow-up

objectives alternatives choice decision

Decision-making
proce:

Problem > Problem Problem
representation >

formulation resolution

Artificial
Intelligence

Figure 1.1: The role of artificial intelligence in the decision-making process

needs to make its decisions, i.e. an objective to be pursued, the possible solutions
that can lead to the achievement of the goal, and a set of transitions to move from
one solution to another. Once the problem has been defined, a search algorithm will

perform as follows [166]:

A search algorithm “takes a problem as input and returns a solution in
the form of an action sequence (...), i.e. a path from the initial state to a

state that satisfies the goal.”

Traditional search algorithms translate this idea into building a tree of possible
states and traversing through the tree in order to find the solution. In each step of
the process, the algorithm applies an operator to expand the set of states to which it
can move and chooses one to proceed with the search. If no additional information
is used to choose the next state, the algorithm is performing a blind or uninformed
search. Examples of this type of search are breadth-first and depth-first search. As
opposed to blind search, heuristics perform a more informed search in the sense
that they use problem knowledge to determine which state is the most promising to
go next. Therefore, heuristics are specifically defined for the problem under study
and can be highly effective to accelerate the search. However, heuristic algorithms
partially explore the search space, meaning that finding the optimal solution cannot
be guaranteed. Examples of heuristic algorithms are A*, branch and bound methods,

and greedy search.

Some search problems cannot be defined in terms of states and actions, but as a
set of decision variables whose optimal values need to be determined. This type of
search problem is known as optimisation problem, whose mathematical formulation
requires three elements: 1) n decision variables, either discrete or continuous, whose

values represent a solution; 2) problem constraints, expressed as inequality and/or

12

1.2. Search techniques

equality functions; and 3) an evaluation function, a.k.a. objective function, to map
the solutions to a numeric value representing its quality. Under these assumptions,

solving an optimisation problem can be stated as follows [42, 130]:

Given a search space (), solving an optimisation problem consists in
finding the solution = = (z1,...,2,), that maximises (or minimises) the
evaluation function f: Q C " — R, subject to existing inequality (g) and

equality (h) constraints:

fl@) = fly) Vyeq
0, i={1,..,m}
hij(z)=0, j={1,...,0} (1.1)

Regardless of how the search problem is formulated, search algorithms can be clas-

sified on the basis of four criteria [166]:

Completeness, which guarantees that the algorithm can find a solution, if such

a solution exists.
= Time complexity, which refers to the time needed to find a solution.

Space complexity, which focuses on memory requirements during search.

Optimality, which means that the algorithm is able to find the best solution.

1.2.2. Metaheuristics

The term “meta-heuristic” was introduced in 1986 to refer to a high level mechanism

to escape from local optima [75]. A formal definition is given below [140]:

A metaheuristic is “an iterative generation process which guides a subor-
dinate heuristic by combining intelligently different concepts for exploring
and exploiting the search space, learning strategies are used to structure

information in order to find efficiently near-optimal solutions”.

13

Chapter 1. Background

Metaheuristics
Trajectory-based Population-based
Simula.ted Tabu GRASP Evolutionary Scatter Swarm
annealing search computation search intelligence
Iterated local Iterated | T~ Pl
search greedy Ger}etic Genetic' An.t c.olor.ly Artificial bee
algorithms programming optimisation colony
Differential Particle swarm
evolution optimisation

Figure 1.2: Classification of metaheuristic techniques

Metaheuristics have become highly popular due to their efficiency and adaptability.
The success of metaheuristics strongly relies on achieving a good balance between
intensification and diversification [26]. The former concept refers to the need of
exploiting the knowledge acquired during the search, e.g. some properties of good
solutions or their location in the search space. The latter term concerns the exploring
capabilities of the method, which are essential to avoid local optima. Although there
is a great variety of metaheuristic methods, most of them are characterised by the

following properties [187]:

Iterative, meaning that they start from complete solution(s), as opposed to

greedy approaches that construct them from scratch.

= Stochastic, since they apply random rules in some steps of the search to escape

from local optima.

s Memory-based, which refers to the use of information extracted from the solu-

tions or the search process to enhance their search capabilities.

= Bio-inspired, as they simulate natural processes that exhibit intelligent be-

haviour.

A commonly accepted classification of metaheuristics is based on the number of
solutions that are simultaneously handled [26, 27]. On the one hand, metaheuristics
based on trajectory only maintain one solution that is iteratively improved. On
the other hand, population-based metaheuristics manage a group of solutions in

each step of the search. Population-based metaheuristics can be further divided

14

1.2. Search techniques

according to the biological processes in which they are inspired. In this sense, EC
is based on the evolution of species, whereas swarm intelligence (SI) simulates the
collective behaviour of different living beings like ants and birds. Figure 1.2 shows a
classification of the most popular methods. Those applied in this Ph.D. Thesis are

briefly explained in next sections.

Metaheuristics based on trajectory

Trajectory-based metaheuristics start from a single solution and iteratively explore
its neighbourhood looking for better solutions. Thus, the two basic elements of
this type of technique are: 1) a method to generate neighbouring solutions, which
depends on how the problem is encoded; and 2) a decision rule to accept one of these
neighbours as the new solution. A formal definition of neighbourhood is provided

next [187]:

“In a discrete optimisation problem, the neighbourhood N(s) of a solution
s is represented by the set {s’ | d(s,s) < €}, where d represents a given

distance that is related to the move operator”.

The simplest approach is to follow a steepest-ascent! strategy, known as hill climbing
(HC) [166] (see Figure 1.3a). HC generates a set of neighbours, and the best one
according to the evaluation function is chosen for the next iteration. HC is a local
search (LS) method that can rapidly progress towards an optimum, but it could
also be easily trapped into a local optimum. To avoid this, multiple runs can be
performed, each one starting from a different solution. Due to the lack of randomness
and the absence of memory structures, HC is not usually considered a metaheuristic

as such, but represents the baseline approach for defining more advanced techniques.

A first method to overcome the limitations of HC is simulated annealing (SA) [102],
which takes its name from the physical annealing process used in metallurgy. In
this process, metals undergo fast heating and are then slowly cooled to reach an
appropriate energy state [187]. Analogously, this final state corresponds with the
global optimum in SA, and the energy is determined by the evaluation function.

The key characteristic of SA is that it can accept movements to worse neighbours

1Steepest-descent for minimisation problems.

15

Chapter 1. Background

>
>

o)
2 2 Global
° ° optimum
2 Qo
a o
o o
i
o S
v
(Initial 7 rc
Initial solution —2\ P
solution
Search space Search space
(a) Hill climbing (b) Simulated annealing

Figure 1.3: Examples of trajectory-based search methods

based on a probability that decreases with the elapse of the search. Figure 1.3b
illustrates this process. The probabilistic acceptance rule depends on the amount of
objective degradation and the temperature parameter, which is modified according

to a cooling scheme.

Finally, tabu search (TS) [75] differs from SA in that it adopts a memory mechanism
to avoid local optima. More specifically, T'S allows movements to worse solutions if
no neighbour improves the current one, but maintains a tabu list to prevent accep-
tance of previously visited solutions [74]. This short-term memory is updated every
iteration, usually storing a fixed number of accepted moves or their characteristics.
TS can be enhanced with the combination of medium-term and long-term lists to

promote intensification and diversification, respectively [187].

Metaheuristics based on populations

EC is based on the Darwinian principles of natural evolution, such as the survival of
the fittest, and is probably the most popular population-based metaheuristic [62].
In EC, candidate solutions are called individuals, which are characterised by a phe-
notype, i.e. the real-world solution, and a genotype, i.e. its computational encoding.
The genotype is usually a linear structure, e.g. an array, containing genes that
store the values of the decision variables. Following with the simile, the evaluation
function is here called fitness function, since it provides a value of the adaptation of

the individual that can be used to compare it against others.

16

1.2. Search techniques

Initialisation
Mating

selection
[Population] —> Parents]

N |
4/ Replacement Genetic
\

Stopping

operators
condition
[Survivors] <— [Offspring]
Survival
competition

Figure 1.4: The generational cycle of an evolutionary algorithm (adapted from Eiben
and Smith [62])

Every evolutionary algorithm (EA) follows an iterative process similar to the one
shown in Figure 1.4. As can be seen, the evolutionary process starts with the
random creation of a population of individuals, which are evaluated by the fitness
function. A selection process, which is often based on the quality of the individuals,
picks some of them to become parents. Parents are then recombined to generate
new solutions by interchanging their genetic information. The descendants can
be also mutated, which consists in applying small alterations in their genotypes.
Often, each genetic operator is applied with a configured probability. The resulting
offspring will compete against current population members to become part of the
next population, a process that can also be based on their fitness values. This process
is repeated for a number of generations, i.e. iterations, until a stopping condition
is met. The application of selection pressure, elitism and genetic operators provide
a proper balance between diversification, which is preferred in the first generations,

and intensification, which is required in the last part of the process.

EAs can be used in combination with other metaheuristics or heuristics in order to
exploit their respective abilities. In general, the idea is to incorporate additional
knowledge in some steps of the evolutionary search [62]. For instance, random
initialisation can be replaced by some heuristic procedure, while problem-specific
information can be considered within the genetic operators in order to perform more
informed transformations. A memetic algorithm (MA) is an example of hybrid
technique [25] that integrates local improvements into the evolution by means of
methods like HC or SA. The design of a MA involves deciding the step of the

17

Chapter 1. Background

evolution in which LS is applied and what individuals will be the initial solutions,

among other aspects [108].

1.2.3. Optimisation with multiple objectives

Real-world decision scenarios often present multiple objectives that should be si-
multaneously considered [51]. Furthermore, these objectives are usually in conflict,
meaning that it is not possible to find a solution achieving optimal values for all
objectives. The field of MOO is focused on solving this type of problem, known
as multi-objective problem (MOP). MOO is strongly related to MCDM, since its
main goal is to find a number of solutions representing different trade-offs among
the objectives, so that a decision maker can choose the solution to be implemented
based on additional preferences [51]. The mathematical formulation of a MOP only
differs from Equation 1.1 in that the goal is to maximise (or minimise) k objective

functions [42]:

Given a search space (), solving an MOP consists in finding the solution
x = (21, ...,T,) € Q, that minimises (or maximises) the evaluation function

F(z) ={fi(x),..., fe(x) , k > 2}, subject to existing constraints.

Due to the presence of several objectives, a new concept of “optimality” is required to
specify whether one solution is better than another. In MOO, the Pareto dominance
principle establishes that Pareto optimal solutions are those solutions that are non-

inferior than any other solution [42]:

Given a maximisation MOP, a solution x dominates another solution y

(z > y) if and only if fi(x) = fily) ATj | fi(z) > fi(y) , i ={1,... k}

The entire set of Pareto optimal solutions is referred as the Pareto set (PS). Fig-
ure 1.5 illustrates the concept of Pareto dominance and the possible relationships
between solutions. The set of all non-dominated vectors comprises the Pareto

front (PF). Based on these concepts, the goals in MOO are [51]:

» To find a good approximation to the optimal PF (a.k.a. PFj..).

18

1.2. Search techniques

f2 A JA A weakly dominatesF and G

B

® G is strongly dominated
by B, Cand D
F
oC
.D D and E are non-dominated
G
L .E

PF={A,B,C,D,E}
>
fy

Figure 1.5: The concept of Pareto dominance in multi-objective optimisation
= To find a diverse and well-spread set of solutions.

Quality indicators are performance measures that can be used to numerically as-
sess the quality of the returned PF, or PFjp,oun, according to these aspects [42].
More specifically, they usually evaluate some of the following properties [210]: 1)
convergence, i.e. the distance to the optimal PF; 2) uniformity, which ensures a
good distribution of the solutions; and 3) spread, which measures the extent of the
PF. In addition, quality indicators can be classified according to the number of PF's
required for its computation. In this sense, unary indicators estimate the quality
of a PF only based on its vectors, whilst binary indicators require an additional
PF, i.e. a reference PF, to return a relative value. Table 1.1 provides a list of the
most used quality indicators, their description and properties [42, 161]. One of the
most popular is hypervolume, whose value would correspond to the shaded area in
Figure 1.5. The choice of a particular quality indicator to compare algorithm per-
formance is not straightforward, so a general recommendation is to report several

indicators [161].

Multi-objective evolutionary algorithms

An EA that has been adapted to deal with multiple objective functions is referred as
a multi-objective evolutionary algorithm (MOEA) [209]. In general, a MOEA intro-

duces some changes in the selection and replacement procedures, since these steps

19

Chapter 1. Background

Table 1.1: Quality indicators frequently used in MOO and their properties (C:
coverage, U: uniformity, S: spread)

Indicator Definition C U S
Hypervolume Hyperarea covered by a PF v v /

g Spacing Distance variance of neighbouring vectors v

> | Spread Extent of the PF with respect to extreme vectors v
Generalised Spread Extension of spread for more than two objectives v
I, Minimum shifting in one PF to dominate another v

B Generational Distance | Shortest distance from P Fjpown t0 PFirye v

g Inverted Gener. Dist. | Shortest distance from PFyye t0 PFrpown v v /

A Maximum PF Error Largest minimum distance to P Fjye v
Coverage Ratio of dominated vectors in a PF by another PF | v/

often perform comparisons based on solution quality. More specifically, three evolu-
tionary aspects need to be revisited [211]: fitness assignment, diversity preservation
and elitism. Frequently, MOEAs define a function based on dominance criteria
that allow ranking solutions according to their optimality. Also, specific mecha-
nisms based on density estimation are used to maintain diversity. Elitism can be
promoted by means of an external archive that stores the best solutions found so

far.

Since the appearance of the first MOEA in 1985 [170], a plethora of algorithms have
been proposed. The first generation of MOEAs is founded on the Pareto domi-
nance, also including some niching or fitness sharing techniques [41]. The design of
an elitism mechanism, either based on external archives or specific selection proce-
dures, is the distinctive characteristic of the so-called second generation [41]. Two
popular algorithms belonging to this category are SPEA2 (Strength Pareto Evolu-
tionary Algorithm 2) [212] and NSGA-II (Non-dominated Sorting Genetic Algorithm
II) [54], which are actually improved versions of first-generation algorithms. On the
one hand, SPEA2 defines a fitness assignment method to determine a strength value
for each individual, counting the number of solutions it dominates. It also applies
a density estimation strategy based on clustering to select more diverse individuals
and maintains a fixed-size archive. On the other hand, NSGA-II defines a sorting
method to rank the solutions in fronts according to the dominance between them.
A crowding distance is also computed to act as a secondary criterion when two
solutions are in the same front. As opposed to SPEA2, NSGA-II does not use an

archive, since the sorting method always guarantees that best solutions are kept.

20

1.2. Search techniques

Many-objective optimisation

Recently, the resolution of optimisation problems with a large number of objec-
tives has gained increasing attention in MOO from both theoretical and practi-
cal views [110, 154, 155]. According to recent literature, a many-objective prob-
lem (MaOP) requires the definition of four objectives at least [35, 112]. First studies
within many-objective optimisation (MaOO) reveal that traditional MOEAs suffer
performance degradation as the number of objectives increases [101, 152, 171]. In an
attempt to solve this, existing MOEAs were adapted to improve their performance in
this new scenario, specially regarding diversity preservation [3, 106]. As the field has

been studied in more depth, a number of challenges have been identified [35, 112]:

» Deterioration of selection pressure due to the exponential growth of the number

of non-dominated solutions.

» Inefficiency of crossover operators, since solutions tend to be far from each
other.

= Some search procedures become computationally expensive, e.g. hypervolume

calculation or distance-based strategies.

= Accurate representations of the optimal PF need to be comprised of a high

number of solutions.

» Visualisation of high-dimensional PF's, which is essential for decision-making,

requires the use of specialised techniques [199].

The growing interest in solving MaOPs has led to the appearance of a new type of
specialised algorithm, referred as many-objective evolutionary algorithm (MaOEA).
MaOEAs are often categorised into families, depending on the mechanisms proposed
to face some of the aforementioned challenges [110, 196, 198]. Table 1.2 provides a
compilation of current approaches and a list of some representative algorithms. The

algorithms applied in this Ph.D. Thesis are presented next, grouped by family.

Firstly, two algorithms that makes use of relaxed dominance principles are intro-
duced. eMOEA [53] divides the objective space into fixed-length hypercubes to

define a new dominance relation, named e-dominance, over the resulting landscape.

21

Chapter 1. Background

Table 1.2: Families of many-objective evolutionary algorithms

Family Description Algorithms

Relaxed Relaxed forms of dominance are considered | e MOEA, MDMOEA,
dominance to increase selection pressure. GrEA

Diversity New mechanisms to mitigate the impact of | SPEA2+SDE, VaEA,

previous diversity preservation techniques. | NSGA-II+SDE

Decomposition | Objective values are aggregated to evaluate | MOEA /D, MSOP,

or compare solutions. MOEA/DD
Indicator An indicator evaluates the contribution of | HypE, SMS-EMOA,
each solution to the quality of the PF. IBEA, MOMBI

Reference set Reference points, configured by the user or | NSGA-III, RVEA
automatically generated, guide the search.

Preferences The search is directed towards the region of | R-NSGA-II, PBEA
the PF that represent user’s preferences.

Dimensionality | Redundant objectives are excluded from the | PCA-NSGA-II,
reduction search process. PCSEA

Thus, solution = e-dominates solution y if x belongs to better or equal hypercubes
for all the objectives and to a better hypercube for at least one objective than y. In
each iteration, e MOEA selects one parent from the current population and another
one from an archive of solutions. Offspring will survive depending on the hyper-
cubes to which they belong and those already filled by archive members. Another
relevant algorithm is GrEA (Grid-based Evolutionary Algorithm) [205]. It also re-
lies on the notion of landscape partition, though hypercubes — here called grids —
are dynamically created. Initially, GrEA uses grid inform