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Abstract  

The mechanical harvesting of juice oranges can be achieved by the application of forced 

vibration to the tree canopy to detach fruit. Among the available harvesting technologies, 

canopy shaker systems have the advantage of working continuously, with rods that penetrate 

the tree canopy generating low-frequency, high-amplitude movement. The objective of this 

work is to analyse the fruit detachment process in order to improve the design and 

management of canopy shaker systems, reducing the risk of damage to fruit during the 

mechanical harvesting process. Three different canopy shaker systems were used to remove 

oranges in a well-adapted intensive orchard during the harvesting period. The fruit 

detachment process was recorded with a triaxial accelerometer sensor with a datalogger 

inserted into each tested fruit. Fruit movement displayed a similar frequency value as 

harvester rods (4.1-4.9 Hz), while the resultant acceleration depended on the interaction of 

the tree-machine system (38.8-60.4 m s-2). The fruit detachment event occurrence required a 

vibration time ranging between 1.45-5.75 s, which can limit the machine’s maximum speed. 

After the detachment event, fruit presented a short mean time (0.28 s) with no interaction 

with other fruit, branch or machine. The interaction of fruit during the harvesting process was 

more important, in terms of maximum acceleration, after the detachment event (527.6 m s-2) 

than before (401.0 m s-2). The use of a catch frame to collect fruit and of padding material in 

the machinery are fundamental measures to reduce the damage caused to fruit with canopy 

shaker technologies. 
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1. Introduction  

Citrus production in Spain represents over 50% of the cultivated area devoted to this crop in 

the EU and more than half of its production, making Spain the sixth largest citrus producer 

in the world (FAOSTAT, 2014).  Most of Spain’s citrus production is destined for the fresh 

market, mainly within the EU, with about 5.4 million tonnes, followed by industrial 

processing, with approximately 1.4 million tonnes (MAGRAMA 2015). Citrus production is 

characterised by high volatility in both the price paid to the farmer and the availability of 

labour for hand harvesting. However, the juice market increases in importance in years when 
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the price of the product decreases, which compromises the profitability of farms due to the 

high production costs involved.  

The hand harvesting cost of fresh oranges in the south of Spain ranges between 0.045-0.05 € 

kg-1 (Junta de Andalucía, 2014), with values even higher than those of Florida for productive 

plantations destined for juice (Brown, 2005). The mechanical harvesting of citrus for juice 

could reduce harvesting costs by 50% and increase labour productivity by 10 (Roka & 

Hyman, 2012). In addition to sharing the significant obstacles that have been described for 

the adoption of mechanised citrus harvesting for industry in Florida, Spanish citrus orchards 

are aimed primarily at the fresh market and are hand harvested. Moreover, Spanish orchards 

are small, with non-adapted trees, which complicates the incorporation of harvesting 

technologies. The implementation of mechanical harvesting for citrus requires trunks aligned 

in a row, ample row distance and hedged trees with uniform tree canopies (Roka, Ehsani, 

Futch, & Hyman, 2014). 

Canopy shaker systems are a harvesting technology that has been successfully employed for 

juice fruits for last three decades. These machines provide a continuous vibration of the tree 

canopy that allows fruit removal with greater precision than other shaker concepts (Whitney 

& Sumner, 1977). Canopy shakers can be regulated throughout the harvesting season to adapt 

the machine operating parameters to fruit characteristics (Sola-Guirado et al., 2016), but their 

success largely depends on the operator's experience (Savary, Ehsani, Schueller, & 

Rajaraman, 2010). Adaptation of canopy shaker systems allows the introduction of this 

technology to traditionally hand-harvested crops such as table olives (Ferguson & Castro 

Garcia, 2014) or oil olives (Sola-Guirado et al., 2014). Use of the same machine for several 

crops which have different harvesting periods would facilitate the market uptake of this type 

of system. 

An adjustable and efficient harvesting technology could be of particular interest, especially 

for fresh fruit orchards, in years when market prices are low. In a first step, hand harvesting 

could be used for higher quality fresh fruit that is easier to pick. The second step would be 

the mass harvesting of remaining fruit that is more complicated and expensive to collect. A 

multi-use orchard, with both fresh and juice fruit, could improve a farm’s profitability, reduce 

economic uncertainty and minimise fresh market logistics (transport, handling and potential 

assignment for juice transformation) thus allowing farmers dual-purpose orchards depending 

on the period of the year.  

Several different approaches have been adopted to study the detachment process of oranges 

with canopy shaker technology. The knowledge base was established by experimental 

determination of the strength properties of the twig-to-orange connecting joint in several 

loading modes (Alper & Foux, 1976). Interaction between the machine and canopy was 

analysed to improve harvesting efficiency and reduce tree damage, based on field 

measurements and simulation in branches (Savary et al., 2010; Gupta, Ehsani, & Kim, 2016). 

Torregrosa, Albert, Aleixos, Ortiz, & Blasco (2014) carried out direct measurement of the 

fruit detachment process with artificial vision in vibration laboratory tests. However, no 

studies have been performed on the fruit during the field mechanical harvesting process. 

The objective of this study was to analyse the detachment process for sweet oranges using 

canopy shaker systems under field conditions. Vibration analysis of the time and frequency 

domains of the fruit detachment process could contribute to improving the design and 

management of this machinery, in addition to improving fruit removal and limiting the 

damage to fruit trees during mechanical harvesting. 
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2. Material and methods  

Mechanical harvesting tests were carried out in Cordoba (Spain) during the sweet orange 

(Citrus sinensis (L.) Osbeck cv. "Valencia") harvesting season (5th May to 2nd June, 2016) 

when flowering was ending and before the natural immature fruitlets fell in June (Table 1). 

Trees were shaped into wide hedges, planted over 0.4 m ridges and had wide row distances 

to allow machine manoeuvrability. Four testing plots were used over the harvesting period. 

Fruit retention force (FRF) was determined using a manual dynamometer (Mecmesin CFG + 

200, Slinfold, UK) adapted to traction tests with a 200 N range and 0.2 N resolution, in 40 

oranges located on both sides of the tree canopy. 

 Field harvesting tests were carried out with three canopy shaker systems based on different 

mechanical principles for shaking (Figure 1). Each shaker system is outlined in patents of 

Briesemeister, Schloesser, Woodruff, & Russell (2008) US patent 7407166, Youman, Scott, 

& Schultz, (1999) US patent 5904034, and Sola-Guirado, Gil-Ribes, Blanco-Roldán, Castro-

Garcia, Moreno-Martinez, et al. (2016) ES patent 2560353, for SC-1, SC-2 and SC3 

respectively. The machines were drawn, powered and driven by a tractor. The first machine 

(CS-1) was a tractor-drawn canopy shaker (Oxbo 3210, Byron, New York) habitually used 

on farms. The other two were pre-commercial prototypes, from CPP Mecaolivar (see 

acknowledgments), adapted to mechanical citrus harvesting by the University of Cordoba in 

collaboration with the companies MaqTec Inc. (CS-2) and Moresil S.L. (CS-3). Table 2 

shows the most important characteristics of each machine. The operating parameters of the 

machines were regulated in previous field tests based on previous experiences and 

recommendations for citrus harvesting (Peterson, 1998), resulting in a ground speed range 

between 1 and 1.5 km h-1 and a vibration frequency close to 4.5 Hz.  

The fruit tested was located on the outer zones of the canopy, between 1 and 2 m high, where 

good contact with the shaking rods was ensured. Fruit vibration measurement during the 

mechanical harvesting process was recorded with an acceleration sensor that had been 

inserted into the fruit. A triaxial MEMS accelerometer sensor (Gulf Coast Data Concepts 

LLC X200-4, Waveland, MS) with a measurement range of ±200 g, 16-bit resolution, a 

sensitivity of 0.06 m s-2 and a sampling frequency of 400 Hz was used. Fruit was drilled with 

a 20 mm diameter, 80 mm deep hole in the blossom-end peel zone, without altering the fruit 

- peduncle union. The sensor was secured to the fruit with adhesive tape to avoid separation. 

The sensor weighed 48 g and was protected with a 10 g rubber sheath, which increased the 

fruit’s weight by less than 10% (Figure 2). The fruit tested was selected on both sides of the 

trees. In total, 73 oranges recorded valid data, which corresponded to 32, 23 and 18 pieces 

for the SC-1, SC-2 and SC-3 machines, respectively. Vibration analysis was performed using 

NVGate v8.0 software, using a Fast Fourier Transformation with 401 lines in a frequency 

range of 0- 156.2 Hz with a 0.3905 Hz resolution. 

Fruit movement during the canopy shaking process was recorded using a 3-axis acceleration 

sensor with a resolution of 0.0025 s. The majority of tested fruit was removed from the 

canopy during the canopy shaking process and the fruit detachment event was identified. The 

beginning of the shaking period was considered to be when any measurement axis exceeded 

the value of 10 m s-2. The fundamental vibration frequency was determined from acceleration 

data before fruit detachment. The resultant acceleration in fruit was calculated as the vector 

sum of the values along each measurement axis (Castro-Garcia, Blanco-Roldán, Ferguson, 

González-Sánchez, & Gil-Ribes, 2017). The root mean square (RMS) value of the resultant 

acceleration was determined at 1.5 s before the detachment event, or at an intermediate time 

period if the fruit was not removed (Acc RMS before). Five peak values of resultant acceleration 
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were identified and averaged before and after the detachment event. The average of the five 

peak values of resultant acceleration before the detachment event (Acc max before) represented 

the iteration process of the fruit with the tree canopy or the machine. On the other hand, the 

average of the five peak values of resultant acceleration after the detachment event (Acc max 

after) represented the interaction process of the detached fruit with the tree -branches or fruit-

, with the machine -rods or catch frame- or with the ground. 

Data were processed by analysis of variance (ANOVA) and significant mean differences 

were separated using the Tukey post-hoc test that was accepted if p < 0.05. 

 

3. Results 

Fruit retention force values were distributed normally in each harvesting plot. Figure 3 shows 

the percentile distribution of FRF data measured in each harvesting plot. Harvesting plots 1, 

2 and 3 had mean FRF values ranging from 62 to 72 N, with non-significant differences 

between them. However, the 90th percentile value of FRF for harvesting plot 4 was 114 N, 

higher than the values of the rest of harvesting plots, which had values of 83, 94 and 92 N, 

respectively. 

The tested fruit was accessible to harvester rods and a value of 89% of fruit removal 

efficiency was reached. The oranges remaining on the tree after the canopy shaking process 

were 3, 1 and 4 for machines CS-1, CS-2 and CS-3, respectively.  

The acceleration sensor recorded fruit movement during the canopy shaking process with 

high precision along the three-measurement axis. Figure 4 shows an example of the 

acceleration signal in the time domain of a horizontal measurement axis of the fruit. Before 

the detachment event, fruit presented periodic oscillation with increasing acceleration values 

and a fixed frequency value depending on machine regulation. During this time period, 

Accmax before identified the impact of the tested fruit with rods, branches or other fruit. Then, 

the fruit detachment was identified as a sudden event, which interrupted the periodic and 

forced movement of the fruit, leaving it in an interaction-free movement when acceleration 

values drastically reduced. After the detachment event, fruit fell with a high initial velocity 

(estimated at 4 m s-1 under simplifications of vertical free fall movement) interacting with 

the machine shaking system and the tree canopy. Finally, the fruit fell on the ground or into 

the catch frame, generating events with high values of Accmax after. 

The harvesting plots showed no significant mean differences in the vibration analysis results 

for the tested fruit. Consequently, vibration analysis results were grouped by machine and 

are shown in Table 3.  

The mean values of vibration time before detachment event ranged between 1.45 and 5.75 s. 

Within this range, SC-3 showed the highest mean value (5.75 s) compared with other 

machines. This machine displayed an intermediate value of vibration frequency but with a 

reduced mean value of AccRMS before. The mean time when fruit had no interaction with other 

elements after the detachment event was 0.28 s, with no significant differences between 

canopy shaking systems. Similarly, the mean time after the detachment event when fruit 

interacted with other elements before coming to a complete halt was 1.25 s. 

The three tested canopy shaker systems presented significant differences with respect to the 

mean value of vibration frequency (Table 3). Also, the vibration frequency values of each 

machine showed reduced variability, with a variation coefficient value less than 10% between 

the fruit. Vibration frequency and AccRMS before values did not show a significant linear 

relationship (Coef. Pearson = 0.096, sig = 0.457, n = 63) for the tested canopy shakers. That 

is, the high values of vibration frequency did not correspond with high levels of acceleration 
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in the fruit.  The mean value of AccRMS before was higher for SC-2 than for other machines, 

with mean values in the range of 38.8 -60.4 m s-2. Mean values of Accmax before and Accmax after 

presented high values but with non-significant differences between machines. However, the 

mean value of Accmax after was higher than Accmax before (Paired-samples T test, t = 3.681, sig = 

0.000). This result showed that the resultant acceleration peak values caused by fruit 

interactions after the detachment event (527.6 m s-2) were more important than acceleration 

peak values before the detachment event (401.0 m s-2). 

 

4. Discussion  

A canopy shaker system can achieve a fruit removal efficiency of 90-95% when the 

appropriate vibration parameters are used, it is operated by an experienced person and an 

adequate contact between canopy and rods is provided (Roka et al., 2014). In accordance 

with this assumption, the field test results showed a mean fruit removal efficiency of 89%. 

However, the fruit removal efficiency values ranged from a value of 95% for harvesting plot 

1, with a reduced mean value of FRF (61.9 N), to 83% on harvesting plot 4, with the highest 

value of FRF (87.2 N). For high FRF values (102 N), Whitney (1999) reported similar values 

of 80% fruit removal efficiency, but required that rods penetrate the canopy beyond the trunk 

line. Subsequently, Peterson (1998) obtained values from 89 to 91% of fruit removal 

efficiency with FRF values in the range of 120-138 N. 

However, the use of an abscission agent is not a common practice when canopy contact 

technology is used (Sanders, 2005). In fact, one of the main objectives of the abscission 

agent’s development process was to improve the fruit removal efficiency of trunk shakers, 

where the use of such an agent is advisable (Burns, Roka, Li, Pozo, & Buker, 2006; Koo, 

Salyani, & Whitney, 2000). For a canopy shaker machine, the FRF value mainly influences 

maximum ground speed and, therefore, machinery field capacity (Burns, Buker, & Roka, 

2005). Machinery field capacity, fruit removal efficiency and fruit and tree damage are 

related, and one of the main decisions is to find the best combination of these three elements 

(Torregrosa, Ortí, Martín, Gil, & Ortiz, 2009). 

In order to achieve a high value of fruit removal efficiency, mechanical harvesting methods 

must overcome the obstacle of highly variable citrus fruit properties. Distribution of citrus 

fruit in the canopy can vary according to tree spacing (Whitney & Wheaton, 1984), secondary 

and fruit-bearing branches present a complicated distribution in the tree (Gupta, Ehsani, & 

Kim, 2015), and fruit production even varies between seasons (Moreno, Torregrosa, Moltó, 

& Chueca, 2015). Acceleration results obtained from the analysis of vibration in fruit showed 

the complexity of the movement of the fruit in the tree canopy and the large number of 

parameters involved in the detachment process (Torregrosa et al., 2014). However, vibration 

frequency values showed only a little variation due to its exclusive dependence on machinery 

adjustments. Vibration frequency is becoming an operational parameter to adjust before 

harvesting, whereas acceleration transmission to fruit will depend on machine and tree 

interaction. 

Results showed that citrus fruit required a vibration time below a frequency value to reach 

the detachment event. According to the different results of the canopy shaker machinery 

tested, a mean citrus fruit required between 7.0 and 26.5 cycles of movements to achieve 

detachment. In similar tests, but under laboratory-controlled conditions and with a shaking 

mechanism, Torregrosa et al., (2014) required between 4.4 to 15.6 cycles. Also, these authors 

showed that an increment of amplitude could reduce the number of cycles required to achieve 

detachment. However, the difference between results may be justified because fruit in the 
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canopy displayed increased movement when the machine moved towards them, increasing 

the amplitude of acceleration until their detachment (Figure 3). On the other hand, there was 

fruit that was not removed from the canopy that registered a high number of cycles without 

detachment. It could be that these oranges were included in the 90th percentile of high FRF 

values. However, it is known that the mechanical detachment of citrus fruit is strongly 

influenced by axial stress and that repeated loading by material fatigue has little effect (Alper 

& Foux, 1976). In any case, citrus fruit should be exposed to a vibration time or number of 

cycles accompanied by the appropriate vibration parameters if detachment is to be effective 

(Lenker & Hedden, 1968; Ortiz & Torregrosa, 2013). 

To ensure the application of an appropriate vibration time and to achieve high fruit removal 

efficiency, canopy shakers can reduce ground speed or use longer rods, which increase 

machine contact with the canopy. However, these partial solutions can generate greater 

problems, such as economic considerations or dynamic resistance of the rod materials. From 

another perspective, Mateev & Kostadinov (2004) developed a probabilistic model to explain 

the harvesting process of Morello by vibration. These authors estimated that the quantity of 

non-detached fruit decreased exponentially when vibration time increased. Although it was 

possible to increase fruit removal efficiency by increasing vibration time, it did not seem 

appropriate to reach a value of 100% because this limited the machine’s field capacity and 

increased damage to the tree. Field results support the research of Ortiz & Torregrosa (2013) 

who indicated that with fruit detachment by vibration, fruit removal efficiency usually 

presents a ceiling effect when vibration time is prolonged. 

Mechanical harvesting with canopy shakers produces fruit detachment in a short time and 

allows the machine to continuously operate at an elevated ground speed. Shamshiri, Ehsani, 

Maja, & Roka (2013) reported a usual ground speed of 1.8 km h-1 for canopy shakers. 

However, the vibration time required to detach fruit, ranging between 1.45-5.75 s limited 

both the machine ground speed and its fruit removal efficiency. In field tests with the SC-1 

shaking system, Burns et al. (2005) showed that mechanical harvesting at a ground speed of 

3.2 km h-1 reduced fruit removal efficiency compared with 2.4 and 1.6 km h-1. Therefore, 

they recommended the application of an abscission agent to increase machine ground speed 

without compromising fruit removal efficiency.  

Fruit interaction with the canopy during the vibration process, before and after detachment, 

is usually an important component of the fruit damage caused by mechanical harvesting 

(Jiménez-Jiménez, Castro-García, Blanco-Roldán, González-Sánchez, & Gil-Ribes, 2013). 

The results showed that citrus fruits presented a short time (0.28 s) after the detachment event 

without interaction with other fruit, branch or machine, combined with a high level of Accmax 

after. This time and the acceleration received by the fruit has an important role in preserving 

fruit quality, where fruit interception by catch frames or elevated canvases could reduce the 

impact suffered (Ortiz, Blasco, Balasch, & Torregrosa, 2011). Therefore, a coordinated 

design between machine and tree is necessary to preserve the quality of the harvested fruit. 

The canopy shaker system should be in permanent contact with the tree canopy to maintain 

vibration transmission, and tree pruning should facilitate the use of catch frames and reduce 

the probability of fruit impact.    

Vibration frequency is a regulation parameter of the machine that can be transmitted from 

the machine to the fruit. However, the value of AccRMS before, as a result of the vibration in the 

fruit, obtained widely varying results. In the case of the trunk shaker, acceleration in the 

canopy has a direct relationship with vibration frequency (Castro-Garcia, Castillo-Ruiz, 

Jimenez-Jimenez, Gil-Ribes, & Blanco-Roldan, 2015). However, for canopy shakers, 
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vibration frequency was not correlated with acceleration produced in the fruit. A good 

vibration transmission from the machine to the fruit is required to reach a high value of 

acceleration (Castro-Garcia et al., 2015; Sola-Guirado et al., 2014). Vibration transmission 

from the machine to the fruit could be improved through compression of the canopy by the 

shaking system, and by increasing the density of rods to ensure that fruit receives sufficient 

levels of vibration to achieve detachment. Nevertheless, both parameters can be the origin of 

increased damage to the tree and to fruit. 

 

5. Conclusion 

Citrus fruit located in the machine-tree zone of interaction showed complex movement 

during mechanical harvesting with canopy shaker systems. Although the fruit acquired the 

vibration frequency value of the machine, the values of resultant acceleration in the fruit 

depended on the interaction between machine and tree. The increment of vibration 

transmission from machine to tree should increase fruit removal efficiency. The vibration 

time required to achieve fruit detachment is the main limitation to increasing machine ground 

speed. Fruit quality is mainly compromised by the importance of the impact received after 

detachment. The design and use of a catch frame and padding material on the rods and surface 

of the machine are fundamental to reduce the damage caused to the fruit by impact received. 
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Figures  

 
Figure 1. Tractor-drawn continuous canopy shaker systems used in citrus harvesting tests. 

Left: CS-1: Oxbo,3210; Centre: CS-2: Mediolive Prototype; Right: CS-3: Samolive 

Prototype. 

 

 
Figure 2. Placement of the acceleration sensor inside an orange before mechanical harvesting. 

 
Figure 3. Percentile distribution of fruit detachment force in the harvesting testing plots. 
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Figure 4. Example of a fruit acceleration signal in the time domain of a horizontal 

measurement axis during the harvesting process with SC-2 machine. 

 

 

 

Table 1. Characteristics of citrus orchards mechanically harvested with canopy shaker 

systems. 

 Plot 1 Plot 2 Plot 3 Plot 4 

Distance between rows (m) 8 7 7 7 

Tree distance in same row (m) 4 3 3 4 

Hedge height (m) 3.9 4.5 3.5 4.5 

Hedge width (m) 3.8 4.6 3.6 4.5 

Trees per ha 288 440 440 330 

Production (kg ha-1) 37,600 33,500 21,200 22,900 

Fruit retention force (N) 61.9±15.2 71.5±17.3 70.2±16.7 87.2±20.8 

Date planted 2005 2007 2007 2005 

Values showed are mean ± standard deviation. 
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Table 2. Characteristics of tractor-drawn canopy shakers used in citrus harvesting tests. 

 

 SC-1 SC-2 SC-3 

Ground speed (km h-1) 1.5 1.0 1.0 

Drums for rod holder 6 1 4 

Total number of rods  288 156 120 

Drums with canopy approximation  1 1 4 

Vertical rod separation (m) 0.3 0.25 0.36 

Rod length (m) 1.4 0.7 1.3 

Catch frame No Yes Yes 

 

 

 

Table 3. Vibration analysis of tested fruit under mechanical harvesting with canopy shaker 

(SC) machinery. 

 

 SC-1 (n=29) SC-2 (n=22) SC-3 (n=14) 

Vibration time (s)   

Before detachment 2.39 (1.53) a 1.45 (0.87) a 5.75 (4.66) b 

Interaction-free 0.34 (0.22) a 0.21 (0.10) a 0.26 (0.18) a 

After detachment 1.16 (0.65) a 1.08 (0.56) a 1.71 (1.93) a 

Total duration 3.98 (1.78) a 2.70 (0.94) a 7.76 (5.77) b 

Vibration frequency (Hz)   

 4.1 (0.3) a 4.9 (0.3) b 4.6 (0.4) c 

Acceleration (m s-2)   

AccRMS before 51.3 (31.2) a 60.4 (28.6) b 38.8 (13.7) a 

Accmax before 449.8 (226.3) a 409.6 (203.0) a 307.6 (150.1) a 

Accmax after 548.1 (197.2) a 549.8 (217.0) a 453.2 (237.8) a 

Values shown are mean, with standard deviation in brackets (). 

Same superscript letter in the same row is not significantly different (Tukey post-hoc test, p 

≥ 0.05). 

AccRMS before = resultant RMS acceleration value during 1.5 s before detachment event. 

Accmax before = mean value of five impact acceleration before detachment event. 

Accmax after = mean value of five picks of resultant acceleration after detachment event. 

 


