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ABSTRACT: Zirconium based metal organic framework, UiO-66 (Zr), was successfully 

synthesized via solvothermal method, followed by various characterization including XRD, 

thermal analysis, N2 physisorption and TEM. As-synthesized UiO-66 (Zr) was employed in the 

transformation of methyl levulinate (ML) to gamma valerolactone (GVL) via catalytic transfer 
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hydrogenation (CTH) under continuous flow and various reaction conditions, which gave superior 

catalytic performance and efficiency as compared to reported catalysts. The obtained results show 

great potential of applying UiO-66 (Zr) in upgrading biomass derivatives to useful 

biofuel/chemical products, paving the way for green energy production from renewable resources. 

Keywords: Biomass valorization, methyl levulinate, gamma valerolactone, continuous flow, 

catalytic transfer hydrogenation (CTH), metal organic framework, UiO-66 (Zr) 

 

Introduction  

Due to the limited reserve of fossil fuels and the rising awareness on sustainable development, 

low-carbon-economy has been proposed and is being implementing globally, which is urging the 

expansion of renewable and sustainable energy. In this regard, valorization of enormous and low-

cost lignocellulosic biomass into biofuels and platform molecules is of vital importance and has 

attracted massive attention in the last few decades. A wide range of catalytic strategies have been 

developed for the transformation of lignocellulosic biomass into a wide range of chemicals, among 

which levulinic acid (LA) is listed as the top 12 prospective building blocks derived from sugars1, 

indicating the great possibility in the valorization of levulinic acid and alkyl levulinates into 

valuable products.  γ-valerolactone (GVL) is one of the promising platform molecule derived from 

lignocellulosic biomass via hydrogenation of levulinic acid and alkyl levulinates, which can be 

used as solvent, fuel additive and liquid fuel, as well as precursor for valuable chemicals (e.g. 

olefins, polymers, 5-nanonone).2–5  

Catalysts, either homogeneous or heterogeneous, have key effects on the transformation of 

levulinic acid and its ester derivates to γ-valerolactone, including (supported) transition/noble 
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metals, metal hydroxides, metal oxides, metal salts.6 A cobalt catalyst generated by reducing 

commercial Co3O4 was reported to be very efficient in solvent-free transformations of ethyl 

levulinate (EL) to GVL under mild condition.7 Ca5(PO4)3(OH) (HAP) incorporated with metals 

(Pd, Pt, Ru, Cu, Ni) was employed in the vapor phase hydrogenation of levulinic acid, in which 

2Ru/HAP catalyst gave most efficient GVL production with TOFGVL of 2.9 s-1 as compared to 

catalysts decorated with other metals. Apart from metal catalysts, metal hydroxides such as 

Ru(OH)x/TiO2
8 and Zr(OH)4 were also reported to be active in this transformation while giving 

good conversion and selectivity with excellent selectivity9. Considering the environmental 

impacts, metal hydroxides (homogeneous catalysts) are less preferable for separation/recycling 

issues while the high cost of noble metals will also limit their large-scale application in a certain 

content. In this aspect, metal oxides or supported metal oxides as catalysts offered an alternative 

to noble metal catalysts in the production GVL from LA or its esters in high yields such as 

ZrO2
10,11, Cu/ZrO2

12, ZrFeOx
13, ZrO2/SBA-1514, SnO2/SBA-1515, etc.  

Generally, there are two pathways for the catalytic hydrogenation upgrading of LA and its esters: 

(1) direct hydrogenation of the carbonyl group using molecular H2; (2) catalytic transfer 

hydrogenation (CTH) of the carbonyl group using organic molecules (e.g., alcohols and formic 

acid) as hydrogen donors. Subsequently, the reaction intermediates will be transformed into GVL 

via intramolecular (trans)esterification. Due to the low solubility of molecular H2 in most solvents, 

high H2 pressure is essential to achieve high yields, which raises not only safety concerns but also 

hefty infrastructure cost at industrial scale. In contrast, organic molecules as hydrogen donors can 

be potentially promising alternatives to molecular H2 with higher solubility in liquid phase 

reactions as well as easier controlling the degree in selective hydrogenation and/or 

hydrogenolysis.16 CTH pathways using inexpensive organic molecules as hydrogen sources can 
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be safer, more feasible and cost-effective for the large scale GVL production. Especially, CTH 

processes using various alcohols (methanol, ethanol, isopropanol, etc.) as hydrogen donors to 

hydrogenate the carbonyl group via Meerwein–Ponndorf–Verley (MPV) reduction is attractive 

and widely reported in GVL production4,11,15,17–19 because alcohols are low-cost and renewable 

hydrogen donors as well as solvents which can be separated from the reaction mixture and recycled 

into the feed. 

Interestingly, zirconium based catalysts (Zr(OH)4
9, ZrO2

10,11, Cu/ZrO2
12, ZrFeOx

13, ZrO2/SBA-

1514, Zr-beta20, Zr-HPA19,  Al–Zr mixed oxides17, etc. ) have exhibited high catalytic activity and 

stability in the GVL production through CTH process due to their amphoteric properties which 

provide acid-base pair sites facilitating CTH via MPV reduction. Meanwhile, the recent emerging 

of metal organic frameworks (MOFs) have attracted intensive attention with widely application in 

various fields, including gas storage, separation, sensors, fuel cells, catalysis due to their excelling 

properties including large surface area, tunable structure, physicochemical properties and 

functionality of metal ions and organic ligands.21–26 Applications of MOFs in upgrading 

lignocellulosic biomass and their derived platform molecules arise in recent year and show great 

potential for further development.27 Similar to the aforementioned amphoteric catalysts, 

zirconium-based MOFs consisted of Zr oxo clusters and organic linkers can similarly function in 

CTH process. In this regard, MOF-808, UiO-66 (Zr) and its functionalized derivates were reported 

to be active in catalytic transfer hydrogenation of LA and its esters, achieving relatively high yield 

of GVL.28,29 Zr4+-O2-
 acid-base pair sites located in the Zr oxo clusters are uniformly embedded in 

the porous framework with high surface area, boosting the reaction with efficient reagent diffusion 

as well as easy-accessible active sites. Moreover, the esterification reaction can also be benefited 
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from the Brönsted acidity of the μ3-OH groups and organic linker defect sites30–33, promoting the  

cyclization step in the GVL production.  

However, the reported reactions with UiO-66 (Zr) were performed under batch conditions, while 

flow reactions are more preferable from the practical point of view due to its advantages (e.g. easy 

scale-up and purification, efficient energy utilization).34  

In the present work, we demonstrated the application of UiO-66 (Zr) in GVL production via CTH 

of ML in continuous flow under various reaction conditions. ML was selected as precursor in this 

work since acid-free alkyl levulinates produced by alcoholysis of various carbohydrates has low 

boiling point which are easier in production and separation as compared to LA.10,35,36 

Experimental  

Materials 

ZrCl4 (>99.5%, Sigma-Aldrich), terephthalic acid (>99%, Acros), isopropanol (>99.9%, 

PanReac), GVL (>99%, Sigma-Aldrich), decane (>99%, Acros), HCl (37%, Sigma-Aldrich), 

dimethylformamide (>99.9%, PanReac), methanol (>99.9%, PanReac), ethanol (>99.9%, 

PanReac) were employed as purchased. ML (>99.5%) was provided by Avantium Chemicals BV 

as side product from the YXY process after purification. 

 

Synthesis of UiO-66 (Zr) 

In a typical procedure, a mixture of ZrCl4 (2000 mg, 8.54 mmol) and 16 mL concentrated (37%) 

HCl were first added to 80 mL DMF and sonicated for 20 min. Thereafter, terephthalic acid (2000 

mg, 12 mmol) and 80 mL DMF were added to the above mixture and sonicated for another 20 
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min. Then the mixture was transferred to a 500 mL teflon bottle and heated at 120 °C for 24 h in 

an oven. The generated precipitates were separated by filtration, washed first with DMF (100 mL 

x 2 x 30 min) and then with methanol (100 mL x 2 x 30 min), and then dried naturally and activated 

under vacuum at 80 °C. 

 Material characterization 

Powder diffraction patterns were recorded in a Bruker D8 DISCOVER A25 diffractometer using 

Ni filtered Cu Kα (λ = 1.5418 Å) radiation and operated at 40 KeV and 40 mA. N2 physisorption 

isotherms were measured at 77 K using a Micromeritics ASAP 2020 automated system to 

understand the textural properties of the samples. Samples were degassed under vacuum (0.1 Pa) 

for overnight at 423 K prior to the measurement. Thermal gravimetric analysis of the catalysts was 

performed with simultaneous TG-DTA measurement in System Setaram Setsys 12 TGA 

instrument. The analysis started at 30 oC with a ramping rate of 10 oC/min till 800 oC in air 

atmosphere (50 mL/min). Transmission electron microscopy (TEM) images were recorded by Jeol 

JEM 2010 with resolution of 0.38 nm at the Research Support Service Center (SCAI) from 

Universidad de Cordoba. 

 

Continuous catalytic transfer hydrogenation of ML 

The catalytic transfer hydrogenation of ML was carried out in the continuous flow reactor, 

Phoenix, from ThalesNano Inc. In detail, 0.23 g catalysts were packed in the catalyst cartridge 

with cotton filled on both sides to avoid blockage. Different amounts of ML were diluted in 

isopropanol to obtain the desired concentration with decane as internal standard. Reaction 

conditions were optimized by varying different reaction parameters, such as temperature, pressure, 
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concentration, flowrate. Solvent effect was also investigated by changing isopropanol to other 

alcohols. Blank experiment was performed without packing catalysts in the cartridge. Samples 

were collected on specific time-on-stream. 

 

Analysis of liquid samples 

The collected samples were analyzed by gas-chromatography (Agilent 5890 Series II) equipped 

with FID detector and SUPELCO EQUITY TM-1 fused silica capillary column (60 m × 0.25 mm 

× 0.25 μm). The injector and detector temperatures were set as 250 oC. The oven temperature was 

held for 1 minute at 60 oC, and then increased to 230 oC in 17 minutes and held for 5 minutes. 

Products analysis was carried out in GC-MS equipped with HP-5 column from SCAI of 

Universidad de Cordoba, using the same temperature setting as previous description. Conversion, 

selectivity and GVL productivity were calculated as below: 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =  
(𝐶𝑀𝐿,𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝐶𝑀𝐿,𝑓𝑖𝑛𝑎𝑙)

𝐶𝑀𝐿,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
× 100%  (1) 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝐶𝐺𝑉𝐿

𝐶𝑀𝐿,𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝐶𝑀𝐿,𝑓𝑖𝑛𝑎𝑙
× 100%    (2) 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
ℎ𝑜𝑢𝑟𝑙𝑦 𝑚𝑜𝑙𝑎𝑟 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑜𝑓 𝐺𝑉𝐿

𝑚𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
    (3) 

where C represents molar concentration and m represents weight. 

Results and discussion  

Catalytic transformation of ML to GVL over UiO-66 (Zr) 

Optimization of key reaction parameters 
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According to previous reports, reaction temperature plays a key role in the CTH of alkyl 

levulinates.10,28,29 Reaction temperatures were firstly optimized by varying from 180 oC to 240 oC 

while controlling the other parameters as below: 0.6 mol/L ML in isopropanol, flowrate = 0.3 

mL/min, 35 bar, 0.23 g UiO-66. The results are illustrated in Figure 1, which shows that the higher 

reaction temperature favors the transformation of ML to GVL. In detail, the main by-products are 

the transesterification product – isopropyl levulinate and slight amount of reaction intermediate – 

methyl 4-hydroxypentanoate. It can be seen from Figure 1 that there is strong competence between 

CTH pathway and transesterification pathway at lower temperature, while higher temperature 

promotes CTH pathway. Therefore, ML conversion was slightly improved within the investigated 

temperature range, while GVL selectivity was greatly improved from 49% to 96%. As a result, 

GVL productivity is then increased along at increasing conversion and selectivity. Meanwhile, it 

also indicates that the processing ability of UiO-66 (Zr) is boosted by an increase in reaction 

temperature. ML conversion and GVL selectivity reached >99% and 96% at the optimum 

temperature, 240 oC, respectively, with the productivity of 29.9 mmolGVLg-1h-1. Reaction 

temperature was subsequently set as 240 oC in the following experiments.  
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Figure 1. Catalytic performance of UiO-66 (Zr) in CTH of ML under different temperatures. 

Reaction conditions: 0.23 g UiO-66 (Zr), 0.6 mol/L ML in isopropanol, flowrate = 0.3 mL/min, 

35 bar. Time-on-stream (TOS) = 1 hour. 

Both the effects of reagent flowrates and ML concentration on the reaction were subsequently 

investigated under the previous optimized temperature (240 oC). The flowrate was varied from 0.1 

to 0.4 mL/min while maintaining ML concentration of 0.6 M. As seen in Figure 2 (a), ML 

conversion and the GVL selectivity remained almost unchanged under the investigated reaction 

conditions, giving higher GVL productivity with an increase in ML flowrate (molar flux). For 

better understanding the effect of ML molar flux, ML flowrate and concentration were varied to 

maintain the same ML molar flux, with results summarized in Figure 2 (b). The catalytic 

performance of UiO-66 (Zr) did not change with the same ML molar flux though the ML flowrate 

and concentration were different, giving the same GVL productivity with both conversion and 

selectivity over 90%. ML flowrate and concentration are not independent factors influencing the 

catalytic performance, while ML molar flux is the essential factor. In practical point of view, when 
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giving the same catalytic performance, process with lower flowrate and higher concentration is 

preferable that costs less in the separation step. 57.5 mmolGVLg-1h-1 GVL productivity, with ML 

conversion over 99% and GVL selectivity of 93%, was achieved under the following reaction 

conditions: 2.4 M ML in isopropanol, flowrate = 0.1 mL/min, 240 oC, 35 bar, 0.23 g UiO-66 (Zr). 

Due to the excellent conversion and selectivity, the flowrate was doubled for better understanding 

the catalytic ability of UiO-66 (Zr). In this regard, ML conversion decreased from over 99% to 

83.1% with slight drop in GVL selectivity (from 93% to 89), while the GVL productivity was 

dramatically enhanced by 160% (from 57.5 to 92.3 mmolGVLg-1h-1). Considering the reusability of 

the reagent and solvent, the improvement in efficiency compensates the slight drop in terms of 

conversion and selectivity. Hence, ML concentration and flowrate was set as 2.4 M and 0.2 

mL/min, respectively, in the following experiments. 
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Figure 2. Effect of ML molar flux on the catalytic performance of UiO-66 (Zr) in CTH of ML. 

Reaction conditions: 0.23 g UiO-66 (Zr), 240 oC, 35 bar. (a: 0.6 M ML in isopropanol). Time-on-

stream (TOS) = 1 hour. 

 

The effect of reaction pressure was studied with variation from 0 to 50 bar (in the back-pressure 

regulator) with previous optimized temperature, concentration and flowrate, which results are 
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illustrated in Figure 3.  The catalytic transformation of ML rarely proceeds without the addition 

of system pressure, while it is greatly improved in the presence of pressure. In detail, ML 

conversion increased from 10% to 85% by applying 20 bar system pressure, and further increase 

of pressure to 35 bar didn’t have obvious effect on conversion while promoting the GVL selectivity 

from 63% to 89%.  When increasing the pressure to 50 bar, only ML conversion was slightly 

increased (ca. 10%). It can be concluded that the increase of pressure favors the CTH of ML to 

GVL in terms of both conversion and selectivity, resulting in higher GVL productivity. This 

improvement could be attributed to the enhancement of reagents’ adsorption on the catalyst 

surface, facilitating the contact between reagents and the catalytic sites 

 

Finally, the solvent effect was also studied by changing isopropanol to methanol and ethanol. 

Nearly no ML conversion was observed when using methanol as hydrogen donor and solvent. 

Though the reaction achieved 89% ML conversion in case of using ethanol, more by-products was 

yielded (mainly the transesterification product, ethyl levulinate) that only 37% GVL yield was 

obtained. The lower catalytic activity could be attributed to the higher reduction potential of 

methanol and ethanol than that of isopropanol.9,13  

 

Above all, optimized reaction condition in the conversion of ML to GVL are as follows: 0.23 g 

UiO-66 (Zr), 2.4 M ML in isopropanol, flowrate = 0.2 mL/min, 240 oC, 35 bar, which were applied 

to test the stability of the UiO-66 (Zr). 
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Figure 3. Effect of reaction pressure on the catalytic transformation of ML using UiO-66 (Zr). 

Reaction conditions: 0.23 g UiO-66 (Zr), 2.4 M ML in isopropanol, flowrate = 0.2 mL/min, 

240oC. Time-on-stream (TOS) = 1 hour. 

Long term stability 

For better understanding the stability of UiO-66 (Zr), the reaction was performed under the 

previous optimized reaction conditions with longer time-on-stream. The result illustrated in Figure 

4 shows that the catalytic activity of UiO-66 (Zr) was quite stable in the first 9 hours on stream, 

with only slight decrease of ML conversion. With the continuation of the reaction, ML conversion 

slowly decreased to 56 % at the end with TOS = 30 hours, giving the GVL productivity of 58.94 

mmolGVLg-1h-1, while the GVL selectivity was well preserved over the whole experiment. The drop 

of conversion can be attributed to the catalyst deactivation along the reaction that small amount of 

di-isopropyl terephthalate was detected by GC-MS analysis of the collected samples, which is 
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consistent with the TGA curves in Figure 6 that UiO-66 (Zr) was converted into amorphous 

zirconia-via Zr(OH)4-after the reaction because of loss of organic ligands. Loss organic ligand was 

also reported in the same reaction by the other researchers, which loss one organic linker per unit 

formula after 5 cycles reaction.28  

 

Figure 4. Long term stability of UiO-66 (Zr) in catalytic transformation of ML to GVL. Reaction 

conditions: 0.23 g UiO-66 (Zr), 2.4 M ML in isopropanol, flowrate = 0.2 mL/min, 240 oC, 35 bar. 

Comparison of catalytic performance between UiO-66 (Zr) and literature 

The catalytic performance of UiO-66 (Zr) was compared with the literature values, which is 

summarized in Table 1. The optimal GVL productivity in the present work is 92.3 mmolGVLg-1h-1 

(TOS = 1 h), while it decreases to 58.9 mmolGVLg-1h-1 after 30 hours on streaming, which is still 

much higher than those reported values (c.a. 1 mmolGVLg-1h-1) obtained in batch using UiO-66 (Zr) 
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and its derivates as catalysts. Though 39.2 mmolGVLg-1h-1 GVL productivity was achieved using 

ZrFeO(1:1)-300 as catalysts, it is still much lower than that obtained in this work. Therefore, 

excellent catalytic performance of UiO-66 (Zr) was obtained under the investigated reaction 

conditions, which is superior to the reported values. 

 

Table 1. Comparison of catalytic performance between UiO-66 (Zr) and literature 

Entry Catalyst Conditions 
Conv. 

(%) 

Selec. 

(%) 

GVL 

productivity 

(mmol∙g-1∙h-1) 

Ref. 

1 UiO-66 (Zr) 

0.23 g catalysts, 2.4 M ML in 

isopropanol, flowrate = 0.2 

mL/min, 240 oC, 35 bar, TOS 

= 1 h 

83 89 92.3 

This 

work 

2 
UiO-66 (Zr) 

deactivated 

0.23 g catalysts, 2.4 M ML in 

isopropanol, flowrate = 0.2 

mL/min, 240 oC, 35 bar, TOS 

= 30 h 

56 85 58.9 

3 UiO-66 (Zr) 0.22 g catalysts, 4 mmol ethyl 

levulinate in 400 mmol 

isopropanol, 130 oC, t = 3 h 

(batch reaction) 

43.3 18.5 0.534 

28 
4 MOF-808 100 85 5.66 

5 UiO-66 (Zr) 0.1 g catalysts, 1 mmol ML in 

5 mL 2-butanol, 140 oC, Ar 0.5 

MPa, t = 9 h (batch reaction) 

70 51 0.4 

29 

6 UiO-66-S60 98 82 0.889 

7 UiO-66-S60
a 

0.1 g catalysts, 1 mmol ML in 

5 mL 2-butanol, 180 oC, Ar 0.5 

MPa, t = 9 h (batch reaction) 

>99.5 93 1.03 

8 Al7Zr3-300b 

0.072g catalysts, 1 mmol ethyl 

levulinate in 5 mL isopropanol, 

220 oC, t = 4 h (batch reaction) 

95.5 87.1 2.89 17 
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9 Zr(OH)4 

1 g catalysts, 2g ethyl 

levulinate in 38 g ethanol, 240 
oC, t = 1 h (batch reaction) 

89.1 84.5 10.7 9 

10 
ZrFeO(1:1)-

300c 

0.2 g catalysts, 0.65 g ethyl 

levulinate in 11.8 g 

isopropanol, 230 oC, t = 0.5 h 

(batch reaction) 

94.2 92 39.2 

13 

11 
ZrFeO(1:3)-

300d 

0.2 g catalysts, 0.65 g ethyl 

levulinate in 11.8 g ethanol, 

230 oC, t = 3 h (batch reaction) 

93.3 93.5 7.51 

 

a S60 represents 60 mol% sulfonated ligand  

b molar ratio Al:Zr =  7:3; the sample was calcined at 300 oC 

c molar ratio Zr:Fe = 1:1; the sample was calcined at 300 oC 

d molar ratio Zr:Fe = 1:3; the sample was calcined at 300 oC 

Material characterization 

Powder XRD analysis was carried to understand the crystal structure of the as-synthesized sample. 

The peaks at 2θ = 7.43o and 8.58o presence in the obtained XRD pattern (Figure 5, a) are two 

characteristic peaks of UiO-66 (Zr), which can be ascribed to the (111) and (002) planes 

respectively, confirming the consistent crystalline structure of the sample with the literature.37. 

Besides, no obvious peak of impurities was observed, indicating the high purity of the sample. 

However, no peak was observed for the sample recovered from the long-term stability tests, 

indicating that the crystallinity was not preserved after reaction, derived from the continuous loss 

of the organic ligand during the reaction. N2 absorption-desorption isotherm (Figure 5Figure 5, 

b) of UiO-66 (Zr) exhibited typical type I isotherm with sharp increase at low pressure (P/P0 < 
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0.1), characteristic of microporous materials. BET surface area of the as-synthesized UiO-66 (Zr) 

is 1147 m2/g while its total pore volume is 0.58 cm3/g. The BET surface area decreased to 109 

m2/g after the long-term stability test, which could be ascribed to the structure collapsion resulted 

from the loss of organics ligands. 
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Figure 5. XRD pattern (a) and N2 absorption-desorption isotherm (b) of fresh UiO-66 (Zr) and 

UiO-66 (Zr) after long-term stability test 

TGA curves of fresh UiO-66 (Zr) and used UiO-66 (Zr) in long-term stability test were illustrated 

in Figure 6. For fresh UiO-66 (Zr), the weight loss at temperature lower than 100 oC was attributed 

to loss of physisorbed water. Subsequently, progressive weight loss was observed until 300 oC, 

resulting from DMF removal and the dehydration of Zr6O4(OH)4 nodes to Zr6O6, in good 

agreement with previous reports in which the MOF formula after dehydration was proposed to be 

Zr6O6+xBDC6-x, where x stands for the missing ligands (from the synthetic protocol).33,37,38  

Last, the weight dropped sharply at ca. 500 oC because of the decomposition of the organic linkers, 

with a 42.8% weight remaining after the thermal treatment to 800ºC (TGA analysis was performed 

in air atmosphere). The decomposition of four organic linkers (4BDC, Figure 6) is responsible of 

the observed mass loss in the 350-600ºC region (33.6%) based on the literature reported MOF 
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formula. These results are in good agreement with previous literature reports in which 

as-synthesized UiO-66 (Zr) containing only 4 linkers per formula unit were synthesized in HCl 

medium38. The reported findings herein also pointed out a highly defective structure in our UiO-66 

(Zr), with potential benefits in catalytic reactions promoted by Brönsted acidic sites30,31,39. 

Nevertheless, UiO-66 (Zr) was finally decomposed into ZrO2 (via Zr(OH)4) as confirmed from 

TGA experiments40  and XRD data (results not shown) due to the continuous loss of organic 

ligands during reaction under the investigated moderate temperatures (180-240ºC) and continuous 

flow conditions.   

 

Figure 6 TGA curve of fresh UiO-66 (Zr) and UiO-66 (Zr) after long-term stability test 

 

TEM images of fresh and used UiO-66 (Zr) are shown in Figure 7. The surface of fresh UiO-66 

(Zr) turned from smooth into rough after the long-term stability test, which could be ascribed to 
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the loss of organic linkers during reaction and the formation of an amorphous ZrO2 phase. The 

loss of organic linkers eventually leads to a collapse of the UiO-66 (Zr) structure and was found 

to have a detrimental effect in catalytic performance. 

 

 

Figure 7 TEM images of fresh UiO-66 (Zr) (a, b) and UiO-66 (Zr) after long-term stability test 

(c, d) 

 

Conclusions  

Defective UiO-66 (Zr) with 4 linkers per formula unit was successfully synthesized in the present 

work and subsequently employed in the catalytic transformation of ML into GVL via CTH process, 

giving out excellent GVL productivity as compared to literature results. Slight loss of organic 

(a) (b) 

(c) (d) 
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linkers was observed during the reaction, which resulted in a gradual crystallinity loss and 

composition of UiO-66 (Zr) eventually deriving into the formation of an amorphous zirconia 

phase. Since the ML used in the present work was obtained as by-product from the YXY process 

of Avantium Chemicals BV, there is great potential in the application of efficient UiO-66 (Zr) in 

the continuous production of GVL, as well as other processes. Further research is still necessary 

to investigate the possibility to fully preserve the structure of UiO-66 (Zr) under continuous flow 

at moderate to high temperatures (>200ºC). 
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BET  Brunauer–Emmett–Teller 

CTH  catalytic transfer hydrogenation 

EL  ethyl levulinate 

GVL  γ-valerolactone  
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LA  levulinic acid 

ML  methyl levulinate 

MOFs  metal organic frameworks 

MPV  Meerwein–Ponndorf–Verley 

TEM  transmission electronic microscopy 

TOF  turn-over-frequency 

TOS  time-on-stream 

XRD  X-ray diffraction 
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Unprecedented efficient and highly selective production of gamma valerolactone (58.9 to 92.3 

mmolgvl∙gcat
-1∙h-1) was achieved by UiO-66 catalyzed upgrading biomass-derived methyl 

levulinate in continuous flow process. 

 

 


