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ABSTRACT: Attribute non-attendance (ANA) has received very little attention in the context of willingness to 

accept (WTA), although an increasing number of studies analyze the preferences of ecosystem service providers 

towards incentive-based schemes. We add to the understanding of ANA behavior by analyzing stated and inferred 

ANA in a choice experiment investigating farmers’ WTA for participating in agri-environmental schemes (AES) 

in southern Spain. We use mixed logit models, following Hess and Hensher (2010) for the inferred ANA approach. 

Evidence is found of ANA behavior for both stated and inferred approaches, with models accounting for ANA 

clearly outperforming those that do not account for it; however, we produce no conclusive results as to which 

ANA approach is best. WTA estimates are only moderately affected, which to some extent is consistent with the 

low level of non-attendance found for the monetary attribute. Stated and inferred approaches show very similar 

WTA estimates. Additionally, we investigate sources of observed heterogeneity related to ANA behavior by using 

a sequence of bivariate probit models for each attribute. Overall, our results hint at a positive relationship between 

ease of scheme adoption and non-attendance to attributes. However, further research is still needed in this field. 

Keywords: Choice experiments; Discontinuous preferences; Inferred attribute non-attendance; Agri-

environmental schemes; Payments for ecosystem services. 
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INTRODUCTION 

One of the main issues regarding the use of choice experiments (CE) relates to the continuity axiom. This axiom 

is based on standard neoclassical consumer theory, assuming unlimited substitutability among attributes. The 

implication is that respondents are presumed to consider the full profile of available information, making trade-

offs between all the attribute levels of the alternatives and behaving as utility maximizers. As a result, the choice 

of the preferred alternative should reflect fully compensatory behavior (Hensher et al 2005). However, there is 

empirical evidence that these assumptions are frequently violated via non-compensatory decision schemes such as 

simplified decision rules and information processing strategies (‘heuristics’), resulting in biased welfare estimates 

(e.g., Hensher et al 2005, Campbell et al 2008, Colombo and Glenk 2013). An additional factor is the presence of 

bounded rationality, which refers to individuals adapting their behavior according to the context, complexity, 

familiarity, and understanding of the valuation exercise (Colombo et al 2016). Thus, this heuristic process entails 

ignoring certain attributes, an effect commonly referred to as attribute non-attendance (ANA). If left unaccounted 

for, the presence of ANA behavior may bias welfare estimates. For example, if respondents do not pay attention 

to the monetary attribute, estimates of marginal utility of income are lowered, which results in inflated welfare 

measures in WTP contexts (Colombo and Glenk 2013). Therefore, accounting for ANA is strongly recommended, 

in order to prevent related biases. 

Not surprisingly, ANA has received much attention from scholars in the last decade. A large body of literature 

focuses on modeling respondents’ preferences including ANA in an attempt to limit potential biases in welfare 

estimates (see Leong and Hensher 2012, for a review). For instance, some authors use self-reported information 

on respondents’ attendance (i.e., stated attribute attendance) (e.g., Campbell et al 2008, Carlsson et al 2010, Hole 

2011, Scarpa et al 2013, Chalak et al 2016). Others control ANA by inferring from the CE data (i.e., inferred 

attribute attendance) (e.g., Scarpa et al 2009, Campbell et al 2011, Colombo et al 2016, Caputo et al 2013, Hole 

et al 2013). Alemu et al (2012), Kragt (2013), Scarpa et al (2013), and Ortega and Ward (2016) compare these two 

approaches finding that there is little concordance between them. In addition, several works focus on the 

relationship between ANA and other issues associated with CE applications. These include the effect of elements 

such as CE design features (e.g., number of choice sets, alternatives, attributes, and levels) (Weller et al 2014), 

respondents’ knowledge about the topic analyzed (Sandorf et al 2016), choice inconsistencies (Colombo et al 

2016), cost thresholds and cut-offs (Campbell et al 2012), ranking and non-attendance data (Chalak et al 2016), 

and serial and choice set attribute non-attendance (Scarpa et al 2010), on the degree to which respondents ignore 

attributes, endogeneity (Hole et al 2016, Collins 2012), and different treatments for scale variation (Scarpa et al 

2010, Balcombe et al 2015, Campbell et al 2011, Thiene et al 2015). 

However, most of the above studies concern consumers’ WTP for changes in the provision of environmental 

goods and services. There has been limited research on ANA in the context of willingness to accept (WTA), 

although an increasing number of studies analyze the preferences of ecosystem service (ES) providers towards 



incentive-based schemes (Villanueva et al 2017a, Colen et al 2016). These studies usually estimate the WTA of 

ES providers for enrolment in incentive-based schemes, with the underlying assumption being that providers’ 

choices about participation depend on the specific scheme characteristics. Especially abundant are those studies 

focused on farmers’ and foresters’ preferences towards payment for ecosystem service schemes (PES) (Peterson 

et al 2015, Vedel et al 2015, Costedoat et al 2016) and agri-environmental schemes (AES) (Espinosa-Goded et al 

2010, Christensen et al 2011, Broch and Vedel 2012). However, within this literature, studies have barely touched 

on the issue of discontinuous preferences. To our knowledge, although there are authors who have reported some 

continuity issues (Greiner 2016, Kassahun and Jacobsen 2015), so far only Espinosa-Goded and Barreiro-Hurlé 

(2010) have systematically accounted for ANA when investigating ES providers’ WTA. These authors use a stated 

attribute attendance approach, finding the presence of discontinuous preferences and obtaining moderate 

improvements in the goodness-of-fit for the models that account for ANA compared to uncorrected models. No 

studies to date, however, have used an inferred attribute attendance approach in this type of WTA context. 

Therefore, we aim to provide novel insights into ANA in this context by using both stated and inferred approaches 

and exploring the concordance between the two. 

We analyze farmers’ ANA behavior, both stated and inferred, in a CE investigating farmers’ WTA for 

participating in AES. For this purpose, we use data from a case study on olive growers’ preferences towards AES 

design in Andalusia (southern Spain) (Villanueva et al 2015). Stated preference attendance was accounted for by 

using debriefing questions, while Hess and Hensher’s (2010) methodological approach (HHA) was used for 

inferred preference attendance. Our empirical application is not intended to assess alternative methodological 

approaches developed to deal with the wide array of potential attribute processing strategies (Payne et al 1993), 

but rather to find a suitable and flexible approach which would allow an evaluation of the potential impact on taste 

heterogeneity and WTA estimates. For this purpose, we use mixed logit models to analyze stated and inferred 

ANA, with a special focus on the comparison between the two approaches and the impact of ANA on the 

estimation of WTA. Other novelties of the paper worthy of mention relate to the estimation of welfare measures, 

together with the investigation of sources of observed heterogeneity, which can be potential predictors of stated 

and inferred ANA behaviors. 

METHOD 

ANA Model Specification 

An ANA preference structure can be directly identified on the basis of ANA self-reported statements in the 

questionnaire (e.g., Hensher et al 2005) or from observed choice behavior based on suitable statistical models (e.g., 

Scarpa et al 2009, Hess and Hensher 2010). In the present study, we investigate two methodological approaches: 

stated attribute non-attendance (SNA) and inferred attribute non-attendance (INA). In both cases, error-component 

mixed logit models (EC_MXL), which rely on continuous preference mixing, were used. 



The MXL is possibly the most widely used econometric approach for CE applications due to its versatility in 

allowing for parameter variation across respondents, flexible substitution patterns and correlation with unobserved 

patterns (Train 2003). As in Hess and Hensher (2010), these models were estimated accounting for unobserved 

individual preference heterogeneity by specifying random parameters following normal distributions for the 

hypothetical AES attributes. Those for which standard deviations did not significantly differ from 0, implying an 

absence of heterogeneity, were treated as fixed effect parameters. Also, the experimentally designed AES 

alternatives were specified to share a zero-mean error component (EC) with standard deviation denoted by η 

(constant fixed effect for the no-enrolment alternative) (Scarpa et al 2005). 

The econometric specification is as follows. Let Pn (i/βk) be the probability of respondent n choosing 

alternative i conditional on the vector of taste coefficients βk, where βk ∽ f(βk /Ω) allowing for random variations. 

The probability of respondent n choosing the alternative i is given by: 

𝑃𝑛 (𝑖|Ω) = ∫ 𝑃𝑛 (𝑖|𝛽𝑘)𝑓(𝛽𝑘|Ω) 𝑑𝛽𝑘𝛽𝑘
    (1) 

where the MXL choice probability is conditional on Ω. With jn,t giving the alternative chosen by respondent n in 

choice situation t (taste only varies across the respondents) the log-likelihood for the model is given by: 

𝐿𝐿(Ω) = ∑ 𝑙𝑛 (∫ (∏ 𝑃𝑛(𝑗𝑛,𝑡|𝛽𝑘)
𝜏𝑛
𝑡=1 )𝑓(𝛽𝑘|Ω) 𝑑𝛽𝑘𝛽𝑘

)𝑁
𝑛=1    (2) 

Although in the calibration of the MXL the estimates of Ω work at the level of the sample, the likely values of 

parameters of the distribution of βk for respondents are estimated by conditioning on the observed specific choice 

patterns for each individual. Let Yn define the serial pattern of observed choices for respondent n, and let L(Yn|B) 

give the probability of observing this pattern of choices with a specific value for the vector βk. Then, considering 

that  

𝐿(𝑌𝑛|𝛽𝑘) = ∏ 𝑃𝑛(𝑗𝑛,𝑡|𝛽𝑘)
𝜏𝑛
𝑡=1      (3) 

the probability of observing the specific value of B for the sequence of choices of respondent n is given by: 

𝐾 = (𝛽𝑘|𝑌𝑛) =
𝐿(𝑌𝑛|𝛽𝑘)𝑓(𝛽𝑘|Ω)

∫ 𝐿(𝑌𝑛|𝛽𝑘)𝑓(𝛽𝑘|Ω)𝑑𝛽𝑘𝛽𝑘

     (4) 

from which the moments of the individual conditional distributions of βk can be estimated. 

For SNA, we used follow-up questions at the end of the sequence of choice sets, with respondents answering 

whether they attended to each attribute or not. We focus the SNA analysis on the parameter means, in contrast to 

the approach used by Espinosa-Goded and Barreiro-Hurlé (2010), which focuses on the heterogeneity of means. 

Once ANA has been identified through self-reported statements, the ANA behavior is accounted for by restricting 

the corresponding attribute coefficient to zero in the utility functions if respondents did in fact really ignore an 

attribute (Hensher et al 2012). Essentially, this means that there may be different zero restrictions imposed for 



each respondent. Thus, the model output will have two layers of separate parameter estimates in order to 

simultaneously address attendance and non-attendance behaviors in such a way that, when a respondent states non-

attendance, the corresponding parameters will be zero for the attendance layer and freely estimated for the non-

attendance layer (and vice versa). This approach has emerged as an efficient way to model attribute processing 

strategies (Hess and Hensher 2010) in contrast with setting the corresponding attributes (instead of the parameters) 

to zero, estimating only the parameters associated with the attendance layer (Kragt 2013) or, as mentioned above, 

exploring the heterogeneity around the mean parameters (Espinosa-Goded and Barreiro-Hurlé 2010). 

For INA, the two-stage approach proposed by Hess and Hensher (2010) (HHA) was followed. The first stage 

involves the stochastic identification of respondents showing ANA behavior. Thus, the core idea behind using 

HHA to deal with ANA is that the individual taste differences are captured through the density functions using the 

deviations from the mean. A posterior analysis of the MXL estimations is performed by conditioning on observed 

choices, so the estimated conditional mean and variance for each respondent (n) and attribute k is given by 𝛽
𝑘𝑛

∼

𝑁(𝜇
𝑘𝑛

, 𝜎𝑘𝑛
2 ). From this point, the coefficient of variation (CV) was estimated for each farmer according to the 

expression 𝑐𝑣𝑘𝑛 = 𝜎𝑘𝑛/𝜇
𝑘𝑛

. In this regard, Hess and Hensher (2010) propose using the CV as a noise-to-signal 

ratio to distinguish attribute attendance. The authors established the CV value of 2 as the threshold marking the 

point at which the respondents do not pay enough attention to the attribute to be deemed attended to. They 

acknowledge that this threshold could be considered somewhat arbitrary, but also claim that it is conservative since 

the respondent attribute specific normal distribution can be considered as overspread from it. In the second stage, 

the ANA behavior is modeled by allowing the estimation of separate parameters, as mentioned above, for 

attendance and non-attendance response patterns. Thus, as with the SNA approach, the utility function is split into 

two for attendance and non-attendance, to restrict the attribute coefficients to zero if an attribute was ignored (Hess 

and Hensher 2010). 

Testing Potential Confounding Effects Related to Experimental Design1 

The inferred HHA could be affected by confounding effects between real ANA patterns and behaviorally 

equivalent responses generated by the particular features of the experimental design in question. Thus, the role 

played by the experimental design, which is exogenous to the respondent’s choice behavior, should be evaluated 

to confirm that there is little or no presence of confounding effects. To do that, ordinary linear regressions were 

run to determine the extent to which experimental design features regarding the sequence of choices could 

systematically produce high or low CVs. As a diagnostic test, the CVs for each attribute were regressed on dummy 

variable indicators of the experimental design blocks. If these indicators prove to be significant and have notable 

explanatory power in terms of R2, then it can be demonstrated that some of the observed variation in CV is 

                                                            
1 We thank the anonymous reviewer for having suggested this part. 



attributable to the experimental design, and thus not related to genuine ANA behavior. Also, kernel density plots 

were estimated to graphically represent the dispersion of the CV for each random parameter. 

Concordance and WTA Estimates 

The concordance between SNA and INA was analyzed at aggregate and individual levels. To do so, the stated and 

inferred ANA frequencies were compared in the case of the aggregate approach, whereas the specific individual 

stated patterns of ANA were compared with the inferred ones in order to obtain the individual concordance level. 

In addition, the concordance level between ANA patterns for the two approaches was checked at the individual 

level (Scarpa et al 2013), but in this case by considering the number of attributes ignored at the same time. 

Marginal rates of substitution between non-monetary (NMi) attributes and the monetary (M) attribute were 

estimated by calculating the ratio of the negative coefficient of the former attributes to the positive coefficient of 

the latter [WTANMi = − (μ_NMi / μ_M)]. Since we have two utility functions in our case, one for the attribute 

attendance (AA) group and one for the attribute non-attendance (ANA) group, the unconditional WTA for the 

population was estimated by applying the Total Probability Theorem. There are two groups with coefficients and 

binomial probability of ANA for one non-monetary attribute, and two more groups with binomial probability for 

the monetary attribute. As the two probabilities are independent, the joint probability is the product of the two: 

𝑊𝑇𝐴 = − [

(
𝜇𝐴𝑁𝐴𝑁𝑀𝑖

𝜇𝐴𝑁𝐴𝑀

) × (𝑃𝐴𝑁𝐴𝑁𝑀𝑖
 ×  𝑃𝐴𝑁𝐴𝑀

) + (
𝜇𝐴𝐴𝑁𝑀𝑖

𝜇𝐴𝑁𝐴𝑀

) × (𝑃𝐴𝐴𝑁𝑀𝑖
 ×  𝑃𝐴𝑁𝐴𝑀

) +

(
𝜇𝐴𝑁𝐴𝑁𝑀𝑖

𝜇𝐴𝐴𝑀

) × (𝑃𝐴𝑁𝐴𝑁𝑀𝑖
 ×  𝑃𝐴𝐴𝑀

) +  (
𝜇𝐴𝐴𝑁𝑀𝑖

𝜇𝐴𝐴𝑀

) × (𝑃𝐴𝐴𝑁𝑀𝑖
 ×  𝑃𝐴𝐴𝑀

)
] (5) 

with PANA and PAA being the probabilities of non-attendance and attendance to the attributes, and µANA and µAA the 

mean parameters estimated for the ANA and AA groups of respondents, respectively. 

The parametric bootstrapping approach proposed by Krinsky and Robb (1986) uses the variance-covariance 

matrix to estimate confidence intervals for elasticities, through a Monte Carlo simulation. It has been widely used 

for the case of marginal WTA/WTP (Bliemer and Rose 2013). Specifically, to estimate each WTA in the context 

of an EC_MXL, the uncertainty (standard errors) attached to the structural parameters of the distributions (i.e., the 

mean and standard deviation) are considered. Thus, the Krinsky and Robb procedure for WTA estimation involves 

taking simulated draws for each of the estimated structural parameters. From the resulting distributions, simulated 

draws can be taken and the ratios computed (for an extensive description, see Hensher and Greene 2003). 

To test for equality between the WTA estimates for the three alternative approaches applied (not accounting 

for ANA, or Base; SNA; and INA), the Complete Combinatorial (CC) test suggested by Poe et al (2005) was used. 

Based on the three distributions of WTA estimates derived from the Krinsky and Robb procedure, the CC estimates 

all the differences of elements contained in two distributions to check for statistical difference (the difference 

vectors between each pair of WTA were estimated). The significance levels of the WTA differences were derived 



by assessing the value of the resulting cumulative distributions of the three difference vectors per attribute (the p-

value thus indicates the degree of non-overlap in a single vector component). As three comparisons were made 

per attribute, a Bonferroni correction was employed to keep the Type I error at the 5% level. Therefore, the 

following three hypotheses were tested per attribute: 

H01: WTAk Base = WTAk SNA ; HA1: WTAk Base ≠ WTAk SNA 

H02: WTAk Base = WTAk INA ; HA2: WTAk Base ≠ WTAk INA 

H03: WTAk SNA = WTAk INA ; HA3: WTAk SNA ≠ WTAk INA 

Uncovering the Sources of Observed Heterogeneity behind ANA Behavior 

To uncover the sources of observed heterogeneity that could be behind ANA behavior, a sequence of bivariate 

probit models (BVP) for each attribute was used. The first equation corresponded to SNA and the second to INA. 

As the stated and inferred outputs are likely to be linked, the BVP model takes into account the potential correlation 

among the unobserved disturbances of both equations2. The correlation is supposed to be positive, indicating a 

complementary relationship which leads to unbiased and efficient estimates, as opposed to when univariate probit 

models are used (Rodríguez-Entrena and Arriaza 2013). The general specification of the multivariate probit model 

is (Greene 2007): 

𝑦𝑖𝑚
∗ = 𝐵𝑚

′ 𝑥𝑖𝑚 + 𝜀𝑖𝑚 (𝑚 = 1, … , M)

𝑦𝑖𝑚 = {
1 if 𝑦𝑖𝑚

∗ > 0

0 otherwise
}                           

     (6)

 

where, in our case, m=1,2 denoting the two types of ANA behavior (stated vs inferred) for each attribute. In Eq. 

(6) the assumption is that a rational ith farmer has a latent variable,
*
imy , which captures the unobserved preferences 

associated with the mth choice of ANA (stated and inferred). This latent variable is assumed to be a linear 

combination of farmer and farm observed characteristics that affect the adoption of an ANA behavior for each 

AES attribute, imx , as well as unobserved characteristics captured by the stochastic error term im  (Chib and 

Greenberg 1998). The parameter vector to be estimated is denoted by 
'
mB . The exact measurement of response 

strengths 
*
imy  is latent in nature and its information about the non-attendance of a particular attribute is given by 

an observed dichotomous vector imy  (see Eq. (6)). 

                                                            
2 This econometrical approach is similar to the Seemingly Unrelated Regression Equations (SURE) model but with the distinctive feature 

that the nature of the dependent variables is binomial. 



As the variance-covariance matrix of im  in Eq. (6) includes potentially non-zero correlation off the main 

diagonal, the im  jointly follow a multivariate normal (MVN) distribution: 

(𝜀𝑖1, 𝜀𝑖2)′~𝑀𝑉𝑁 (0, [
1 𝜌12

𝜌12 1
])     (7) 

where jm  is the correlation coefficient of j  and m  for j m . A simulated maximum likelihood approach 

(SML) is used to estimate the BVP, where the probabilities that enter the log-likelihood, its derivatives, and so on 

are computed using the GHK (Geweke-Hajivassiliou-Keane) simulation method in Limdep 9.0 (Greene 2007). 

The approximation is based on averaging the values of the simulated probabilities from random draws (taken from 

upper-truncated standard normal distributions) in each replication (we used 200 random draws). For a detailed 

explanation of the procedure see Cappellari and Jenkins (2003). 

The procedure to obtain the final BVP models was as follows. For each attribute, we explored significant 

relationships individually for the two types of ANA behavior (SNA and INA). Then, multiple-predictors models 

were explored simultaneously, using the criteria of significance and substantiality (of parameters) together with 

parsimony to select the final model for each attribute. Thus, the final models were designed to contain the most 

significant predictors while also looking to include different kind of predictors (if relevant) such as farm 

characteristics and management, farmer profile and attitudes and farmer status quo regarding the fulfillment of the 

AES requisites. 

DATA 

Case Study and Attributes 

The data are sourced from a CE survey of olive farmers in Andalusia, Spain. Olive trees are the main crop grown 

in the region, covering more than 1.5 million hectares or 48% of the total farmland. Olive grove systems have 

great potential for improvement in the provision of ES, especially those related to biodiversity, soil fertility, 

mitigation of climate change, and scenery (Villanueva et al 2014), all of which are in high demand in European 

(EC 2010) and Andalusian (Rodríguez-Entrena et al 2012) societies. This was the motivation for the original 

research into the implementation of AES aimed at increasing the provision of these ES; hence the need for 

appropriately-designed CE attributes. 

Table 1 describes the six attributes used in the CE. Three attributes were linked to agricultural management, 

two attributes to policy design and an additional attribute specifying the level of compensation payments. For a 

detailed description of the attributes, we refer the reader to Villanueva et al (2015). 

 



Table 1. Attributes and levels used in the choice set design 

Attribute [Acronym] Explanation Levels 

Cover crops area [CCAR] Percentage of the olive grove area covered by 

cover crops 

- 25% 

- 50% 

Cover crops management [CCMA] Farmer’s management of the cover crops - Free 

- Restrictive management 

Ecological focus areas [EFA] Percentage of the olive grove plots covered by 

ecological focus areas 

- 0% 

- 2% 

Collective participation [COLLE] Participation of a group of farmers (at least 5) 

with farms located in the same municipality 

- Individual participation 

- Collective participation 

Monitoring [MONI] Percentage of farms monitored each year - 5% 

- 20% 

Payment [PAYM] Yearly payment per ha for a 5-year AES contract - €100/ha per year 

- €200/ha per year 

- €300/ha per year 

- €400/ha per year 

 

Experimental Design and Data Collection 

A fractional factorial design that is optimal in the differences (Street and Burgess 2007) was used to create a 

manageable number of choice sets, reducing the number of total possible combinations from 1924 to 192 profiles 

(D-efficiency=91.3%)3. These choice sets were divided into 24 balanced blocks of eight choice sets each, with 

each farmer answering one block4. Each choice set included two alternatives of AES and a status quo alternative, 

representing non-participation. Appendix A shows an example of a choice set. 

After thorough pre-testing, the questionnaire included four sets of questions addressing: i) farm 

characteristics, ii) farmer characteristics, iii) choice sets, and iv) farmers’ knowledge of and attitudes toward the 

implementation of AES in olive growing. An explanation of the attributes and the choice set was provided to 

farmers prior to completing the choice sets. An open-ended question format was used to collect information on 

reasons for serial non-participation to identify protest beliefs. 

A multi-stage cluster sampling procedure was employed. In the first stage, five agricultural districts in 

Andalusia were selected randomly and then 10 villages/towns as secondary sampling units. Finally, in each village, 

between six and eight face-to-face interviews were conducted, singling out farmers in various locations following 

a random route procedure. The interviews were carried out between October 2013 and January 2014 and produced 

                                                            
3 Following Scarpa and Rose (2008), our experimental design was evaluated ex-post in terms of D-error for the multinomial logit (MNL) 

model estimated from our data. While the D-error of our design is 0.0048, it decreases to 0.001 for an efficient design calculated using our 

ex-post priors, for the same number of profiles and blocks of our design.  
4 The choice task positions in the sequence were not rotated by respondent, nor were there alternative positions in the choice cards. In this 

regard, our previous experience with farmers made it advisable to keep the choice experiment as simple as possible. In any case, we do not 

expect this to have a strong effect as the interviewers were carefully trained to remind the respondents that each choice task was independent 

from the others and the three alternatives in play, so they very likely stated their sincere preferences. 



327 complete responses. In terms of key farm characteristics (size and average yield), as well as farmers’ features 

(age, level of education and farm-labor time), the sample mirrors farm characteristics obtained in a previous 

benchmarking survey carried out by Gómez-Limón and Arriaza (2011), who defined farm in the same way as in 

this study5. With respect to size, large farms seem to be slightly overrepresented relative to the benchmarking 

survey, although this may be explained by the on-going structural changes in the region. 

RESULTS 

Modeling Results 

Out of the total number of complete responses, 67 were serial non-participants (i.e., always chose the status quo 

alternative). Although they were scrutinized using debriefing questions (to distinguish protesters from very high 

takers), we focus the analysis on the respondents whose responses explicitly showed that they made trade-offs 

between the attributes and the attribute levels –i.e., those who did not always chose the status quo6. Thus 261 

responses were included in the analysis. 

Table 2 reports the share of respondents who did not attend to each attribute according to self-reported non-

attendance (SNA) and non-attendance inferred using the HHA (INA). For all the attributes, the level of non-

attendance is higher for SNA than for INA. For both approaches, Payment (PAYM) is the attribute with the lowest 

level of non-attendance (18.77% and 6.13% of the respondents ignored to this attribute for SNA and INA, 

respectively). For both SNA and INA, the attribute with the highest level of non-attendance is MONI (with 81.40% 

and 68.96% respectively), with the second most-ignored attribute being COLLE (54.41%) for SNA and EFA 

(21.84%) for INA. We can compare these results with Espinosa-Goded and Barreiro-Hurlé (2010), who, using the 

SNA approach, found that the lowest level of non-attendance relates to the yearly payment attribute (1%)7 with 

the corresponding values for the remaining attributes ranging between 19% and 67%. Also, Greiner (2016) reports 

that the farmers in her sample pointed to the monitoring attribute as the least attended to when making their choice 

decisions, yielding a much lower score (she uses a Likert scale) than the other attributes. 

 

                                                            
5 In our study, as in theirs, a farm is defined as a single decision-making entity regardless of its legal nature; there is no available register of 

farms defined as such and so we cannot compare our sample to the official statistics. To compare the characteristics of our sample to that 

of Gómez-Limón and Arriaza (2011), we ran unpaired t-tests (χ2 for dichotomous variables). 

6 It is arguable that very high takers (i.e., non-protest responses) also made trade-offs among the alternatives offered but we decided not to 

include them in the analysis as the line which separates these respondents from protesters is blurred. Thus, our analysis does not include 

those respondents who ignore attributes due to protest behaviour, as suggested by Alemu et al (2012). We refer readers interested in the 

issue of protest responses in studies investigating ES providers’ WTA to Villanueva et al (2017a). 

7 It could be argued that the very low level of non-attendance to the monetary attribute found by Espinosa-Goded and Barreiro-Hurlé (2010) 

stems from the low profitability of the agricultural systems under study, characterised by high levels of extensification. 



Table 2. Share of attribute non-attendance for stated (SNA) and inferred (INA) non-attendance approaches 

Attribute 
Stated Inferred 

Cover crops area [CCAR] 45.59 18.77 

Cover crops management [CCMA] 48.28 18.39 

Ecological focus areas [EFA] 40.23 21.84 

Collective participation [COLLE] 54.41 19.54 

Monitoring [MONI] 81.40 68.96 

Payment [PAYM] 18.77 6.13 

 

Table 3 shows the three EC_MXL models included in the analysis: the base model not accounting for ANA 

(MXL_Base) and the two models that do account for ANA, using respondents’ statements (MXL_SNA) and HHA 

(MXL_INA) (in the case of the latter two models, differentiating parameters of both utility functions, i.e., for those 

who attended to –attendance-A– and ignored –non-attendance-NA– the attributes). The three models are highly 

significant and show remarkable goodness-of-fit, although the models accounting for ANA clearly outperform the 

base model (registering better LL ratio, Pseudo R2, AIC/N, and BIC/N). All the attribute parameters are highly 

significant (most of them at the 0.1% level) and have the expected sign. The only exceptions are: the parameters 

of the MONI attribute, which are not significant in any of the models considered (except for the MXL_INA in the 

attendance group); the parameters of the CCMA and COLLE attributes in the non-attendance group for the 

MXL_SNA (significant at the 10% level); and, most notably, the non-attendance utility function of the MXL_INA 

model, which registers no significant mean parameters for any of the attributes. 

With regards to heterogeneity, unlike the attendance groups, the non-attendance groups report insignificant 

standard deviation parameters. Accordingly, all their parameters –except PAYM for the MXL-SNA– were set as 

fixed parameters, following the approach used by Hess and Hensher (2010)8. The parameter of the constant 

(ASCSQ) is negative and significantly different from zero for the three models, indicating unobserved sources of 

heterogeneity that explain farmers’ preferences towards AES9. The error component associated with the AES 

alternatives is significant for the three models, implying that it efficiently captures the ‘status quo effect’. 

Observing the results shown in Table 3, it is clear that the attribute MONI received the least attention from 

the farmers, indicating that monitoring played a minor role in their choices. These results are similar to those of 

Greiner (2016), who finds the monitoring attribute to be insignificant10; they differ, however, from those of Broch 

                                                            
8 Models with all the parameters estimated as random parameters are available upon request. 

9 The negative ASCSQ may mean that farmers would waive some of the compensation associated with AES participation for reasons 

unrelated to the attributes. 

10 She investigates farmers’ preferences towards the type of monitoring (self- vs. external monitoring) using first preference and best-worst 

RPL models, with the former approach being more similar to our base models. The monitoring attribute is found to be not significant when 

using the first preference RPL model, whereas it is significant with the best-worst model, albeit with a significance level lower than most 

of the other attributes. 



and Vedel (2012), who find that the monitoring attribute determines farmers’ willingness to participate in AES. 

The informal information collected during the survey suggests that two contrasting reasons could be behind these 

results, namely, the willingness to comply with the requirements and the adoption of strategic behavior linked to 

moral hazard (Villanueva et al 2015). We consider that the substantial amount of noise around this attribute 

suggests that it should be excluded from the ANA analysis; hence, we focus the analysis on the remaining five 

attributes. 

 



 

Table 3. MXL reference model (MXL_Base), and stated (MXL_SNA) and inferred (MXL_INA) non-attendance MXL models 

 MXL_Base MXL_SNA MXL_INA 

 Mean (µ) SD (σ) Mean (µ) SD (σ) Mean (µ) SD (σ) 

 Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE 

Attendance (A)  
 
     

 
  

   
 

    

CCAR -0.085 *** 0.010 0.108 *** 0.012 -0.155 *** 0.015 0.144 *** 0.018 -0.147 *** 0.014 0.137 *** 0.014 

CCMA -2.689 *** 0.259 3.284 *** 0.331 -6.587 *** 0.651 4.915 *** 0.493 -4.822 *** 0.412 4.459 *** 0.449 

EFA -0.876 *** 0.100 1.143 *** 0.117 -1.986 *** 0.213 1.615 *** 0.226 -1.824 *** 0.171 1.600 *** 0.139 

COLLE -2.298 *** 0.257 2.789 *** 0.255 -3.860 *** 0.392 3.604 *** 0.393 -3.820 *** 0.386 3.380 *** 0.350 

MONI -0.015  0.009 -- 
 

-- -0.028  0.016 --  -- -0.045 
*** 0.014 --  -- 

PAYM 0.018 *** 0.001 0.018 *** 0.001 0.023 *** 0.001 0.023 *** 0.001 0.024 *** 0.002 0.024 *** 0.002 

ASC_SQ -0.801 ** 0.351 --  -- -1.719 *** 0.377 --  -- -0.958 *** 0.344 --  -- 

Non-attendance (NA)                   

CCAR --  -- --  -- -0.014 
* 0.007 --  -- 0.052  0.040 --  -- 

CCMA --  -- --  -- -0.351 
Ŧ 0.186 --  -- 0.911  0.709 --  -- 

EFA --  -- --  -- -0.176 
* 0.079 --  -- 0.408  0.298 --  -- 

COLLE --  -- --  -- -0.442 Ŧ 0.239 --  -- 0.833  0.811 --  -- 

MONI --  -- --  -- -0.009  0.010 --  -- -0.015  0.010 --  -- 

PAYM --  -- --  -- 0.007 *** 0.002 0.007 *** 0.002 -0.003  0.003 --  -- 

Error comp. (η_nonSQ) 2.751 *** 0.296    3.220 *** 0.327    2.875 *** 0.416    

Log-Likelihood (LL) -1367.9    -1081.1 -1089.4 

K Parameters 12    19 19 

Pseudo R2 0.403    0.514 0.525 

AIC/N 1.322    1.065 1.060 

BIC/N 1.356    1.109 1.109 

Significance: ***, **, *, Ŧ indicate significance at the 0.1%, 1%, 5%, and 10% levels, respectively. 



Table 4 shows an evaluation of the differences between the mean parameters of the attendance and non-attendance 

groups for the MXL_SNA and MXL_INA models. The mean parameter values for the non-attendance group of 

the sample are much lower than those for the attendance group, so in all cases, the Delta method rejects the null 

hypothesis of parameter equality across the two subgroups (see the Asy. t parameters). Therefore, the results shown 

in Tables 3 and 4 indicate a strong dissimilarity in the utility functions of attendance and non-attendance groups 

of respondents. As shown in Table 4, this is in line with the differences in the goodness of fit criteria between the 

base (MXL_Base) and ANA models (MXL_SNA and MXL_INA), depicting substantial improvements when 

accounting for ANA. 

Table 4. Improvements in model performance considering non-attendance behavior and differences between attendance 

and non-attendance groups using models accounting for non-attendance (MXL_SNA and MXL_INA) 

Attributes 
MXL_SNA MXL_INA Goodness of fit 

criteria  

MXL_SNA vs  

MXL_Basec 

MXL_INA vs 

MXL_Basec µA- µNA
a Asy. tb µA- µNA

a Asy. tb 

CCAR -0.141 -8.60*** -0.198 -4.63*** LL 286.8 278.5 

CCMA -6.236 -9.30*** -5.733 -6.97*** Pseudo – R2 0.111 0.122 

EFA -1.810 -7.96*** -2.232 -6.65*** AIC/N 0.247 0.262 

COLLE -3.417 -7.51*** -4.653 -5.12*** BIC/N 0.247 0.247 

PAYM  0.015  7.95***  0.027  8.45***    
a µA- µNA is the difference between mean attribute parameters for attendance (A) and non-attendance (NA) groups. 

b The Delta method was used to test for statistical differences between µA- µNA (see Asy. t). 

c The differences in the goodness of fit criteria between the base model and the ANA models are displayed.  

Testing potential confounding effects related to the experimental design 

Table 5 displays the results related to the linear regressions run between the blocks of the experimental design and 

the CV for each parameter11. As indicated by the F-test, R-bar squared and the t-test, the experimental design in 

our case study does not represent a notable source of explanation for the coefficients of variation. Thus, there is 

no evidence of confounding effects between real ANA patterns and behaviorally equivalent responses generated 

by the particular features of the experimental design, since the observed variation in CV is not at all attributable 

to the experimental design. 

Table 5. Results of the linear regressions between the blocks of the experimental design and the CV 

Attribute R-squared 
Model test 

F (p-value) 
R-bar squared 

Coefficients for the blocks 

(dummy variables) 

CCAR 0.098 0.32 0.011 Insignificant (p-value > 0.05) 

CCMA 0.076 0.66 -0.012 Insignificant (p-value > 0.05) 

EFA 0.069 0.76 -0.020 Insignificant (p-value > 0.05) 

COLLE 0.109 0.19 0.023 Insignificant (p-value > 0.05) 

PAYM 0.057 0.91 -0.034 Insignificant (p-value > 0.05) 

                                                            
11 The regressions displayed in this table are an overview; the full output is available from the authors on request. 



Appendix B displays the dispersion of the CVs for each parameter through kernel density plots, together with 

information on the quantiles of the posterior distribution of CV. In this regard, the widest distribution corresponds 

to COLLE and EFA attributes (being 3.84 and 4.75 the CV values at 0.90-quantile), while by far the narrowest is 

that of the PAYM attribute (CV=1.22 at 0.90-quantile). This finding regarding the COLLE and EFA seems 

reasonable since these attributes can generate a higher degree of uncertainty among the farmers. As they are not 

at all familiar with collective enrolment and are doubtful about the effects of EFA on their farm income, the non-

attendance behavior may be more unpredictable. With regards to the distributions among attributes, there are no 

sharp distinctions, with only PAYM showing density concentrated below the threshold of 2. Thus regarding the 

PAYM attribute, there seems to be a lower degree of uncertainty, particularly due to the fact that farmers can 

compare payment levels with actual schemes. 

Comparison Between SNA and INA: ANA Concordance and the Impact on Welfare Estimates 

Table 6 shows the level of concordance between SNA and INA. As shown in the table, the level of concordance 

ranges from 56% for the COLLE attribute to 79% for the payment attribute (the average level for the five attributes 

is 64%). It is worth noting that the average level of concordance between SNA and INA is around 76% if we focus 

only on attendance groups, whereas a lower level of concordance (45% on average) is found for non-attendance 

groups. This points to a higher level of unreliability when individuals state their non-attendance compared to when 

they state their attendance. 

Table 6. Level of concordance (in percentages) between stated (SNA) and inferred (INA) non-attendance patterns 

Attribute 
 SNA Total concordance (SNA-INA) 

Attendance Non-attendance 

CCAR     

INA 
Attendance 46.36 32.18  

Non-attendance 8.05 13.41  

Total    59.77 

CCMA     

INA 
Attendance 46.74 34.87  

Non-attendance 4.98 13.41  

Total    60.15 

EFA     

INA 
Attendance 52.49 25.67  

Non-attendance 7.28 14.56  

Total    67.05 

COLLE     

INA 
Attendance 41.00 39.46  

Non-attendance 4.60 14.94  

Total    55.94 

PAYM     

INA 
Attendance 77.01 16.86  

Non-attendance 4.21 1.92  

Total    78.93 



Table 7 shows the individual ANA strategies stated by farmers (SNA) and inferred analytically (INA). Results 

show that the SNA patterns vary more widely than the INA ones, hinting at higher heterogeneity of ANA strategies. 

In this vein, the percentage of full attendance stated by the farmers was significantly lower (6.5%) than that inferred 

by the HHA (39.1%). If we add patterns with 4 attributes attended to, then the percentage grows to 34.5% and 

80.1% for SNA and INA, respectively. Models predicted full non-attendance for 1.1% of farmers for SNA, 

whereas no farmer was predicted as full non-attendance for INA. Additionally, the percentage of concordance 

between the two approaches taking into account the whole set of patterns (individual full profile approach) is 12%, 

a value which should not be seen as negligible considering the number of attributes and the high level of 

heterogeneity of SNA patterns. 

Table 7. Patterns of attendance to AES attributes stated by the farmers (SNA) and inferred analytically (INA) 

 Attendance to attributes SNA INA 

 Pattern CCAR CCMA EFA COLLE PAYM Freq. % Freq. % 

 1 1 1 1 1 1 17 6.51 102 39.08 

Sub-total 5 attributes 17 6.51 102 39.08 

 2 1 1 1 0 1 20 7.66 31 11.88 

 3 1 0 1 1 1 18 6.90 22 8.43 

 4 1 1 0 1 1 16 6.13 23 8.81 

 5 0 1 1 1 1 13 4.98 23 8.81 

 6 1 1 1 1 0 6 2.30 8 3.07 

Sub-total 4 attributes 73 27.97 107 41.00 

 7 0 0 1 1 1 12 4.60 11 4.21 

 8 0 1 0 1 1 11 4.21 5 1.92 

 9 0 1 1 0 1 10 3.83 5 1.92 

 10 1 1 0 0 1 10 3.83 7 2.68 

 11 1 0 0 1 1 10 3.83 3 1.15 

 12 1 0 1 0 1 9 3.45 1 0.38 

 13 1 1 0 1 0 8 3.07 1 0.38 

 14 1 1 1 0 0 2 0.77 2 0.77 

 15 1 0 1 1 0 1 0.38 3 1.15 

 16 0 1 1 1 0 1 0.38 -- -- 

Sub-total 3 attributes 74 28.35 38 14.56 

 17 0 0 0 1 1 30 11.49 3 1.15 

 18 0 1 0 0 1 11 4.21 5 1.92 

 19 1 0 0 0 1 9 3.45 2 0.77 

 20 1 0 0 1 0 5 1.92 -- -- 

 21 0 1 0 1 0 5 1.92 -- -- 

 22 0 0 1 0 1 4 1.53 -- -- 

 23 1 0 1 0 0 4 1.53 -- -- 

 24 1 1 0 0 0 3 1.15 -- -- 

 25 0 1 1 0 0 -- -- 1 0.38 

 26 0 0 1 1 0 1 0.38 -- -- 

 

  



Table 7. Patterns of attendance to AES attributes stated by the farmers (SNA) and inferred analytically (INA) (Cont.) 

 Attendance to attributes SNA INA 

 Pattern CCAR CCMA EFA COLLE PAYM Freq. % Freq. % 

Sub-total 2 attributes 72 27.58 11 4.22 

 27 0 0 0 0 1 12 4.60 2 0.77 

 28 1 0 0 0 0 4 1.53 -- -- 

 29 0 0 1 0 0 2 0.77 1 0.38 

 30 0 1 0 0 0 2 0.77 -- -- 

 31 0 0 0 1 0 2 0.77 -- -- 

Sub-total 1 attributes 22 8.44 3 1.15 

 32 0 0 0 0 0 3 1.15 -- -- 

Sub-total 0 attributes 3 1.15 -- -- 

Total 261 100.00 261 100.00 

 

Table 8 shows the estimates of WTA for the base, SNA and INA models. When accounting for ANA (i.e., using 

the parameters of the attendance group of the MXL_SNA and MXL_INA models), we find moderate-to-low 

departures from the WTA estimated without accounting for it (see the MXL_Base model). For SNA, the relative 

deviations from the base model range from 17% to 24%, except for CCMA which registers a 44% deviation. For 

INA, CCAR shows the only noticeable deviation at 16%, with the remaining attributes showing deviations lower 

than 7%. However, the results of the Poe et al (2005) test show significant differences between mean parameters 

for SNA compared to the base model only for the attribute CCMA, while no significant differences at all are found 

for INA. 

Table 8. Willingness to accept (WTA) estimates for the models considereda 

Attributes MXL_Base MXL_SNA MXL_INA 

CCAR 
4.84 

(3.77 – 5.83) 

5.66 

(4.30 – 7.43) 

5.63 

(4.80 – 6.46) 

CCMA 
153.44 

(128.44 – 180.81) 

221.07† 

(176.45 – 287.29) 

158.81 

(134.28 – 185.23) 

EFA 
49.97 

(38.94 – 61.28) 

62.09 

(47.48 – 80.69) 

53.24 

(44.64 – 62.93) 

COLLE 
129.98 

(106.08 – 155.99) 

152.77 

(119.75 – 197.28) 

133.61 

(114.11 – 154.10) 

a All WTA estimates are different from zero at the 0.1% significance level according to the Krinsky and Robb (1984) 

procedure. The Poe et al (2005) test was used to check for significant differences, with the attribute CCMA (see superscript 

†) being the only one showing significant differences at the 95% level between WTA estimates for SNA compared to the base 

approach. 

  



Disentangling the Stated (SNA) and Inferred (INA) Non-Attendance Behaviors 

We now turn to the results of the investigation on the potential predictors of the ANA behaviors. Tables 9 and 10 

show the final BVP models that include the covariates representing predictors of SNA and INA for each attribute. 

The rho coefficient is significant in all four BVP models meaning that residuals of the expressions explaining the 

two dependent variables (i.e., non-attendance resulting from the SNA and INA approaches) are correlated. This 

supports the econometric assumption that the stated non-attendance is not independent of the inferred non-

attendance, as it suggests that the BVP model is preferred over two separate probit models. The positive rho 

coefficients point to the existence of a relationship of complementary interdependence between the two 

approaches. 

Regarding the sources of observed heterogeneity that explain ANA behavior, BVP models show that SNA 

and INA behaviors are influenced by different types of factors relating to the initial degree of compliance with 

AES requirements (category status quo), farm characteristics (ownership, location, irrigated area, physical 

features, etc.) and management (harvesting, soil management, etc.), farmer characteristics (professional training, 

level of education, age, etc.) and attitudes, perceptions and knowledge (especially with regards to the practices 

involved in the schemes). In this regard, the inter-attribute results indicated that these potential explanations for 

the ANA behavior are quite attribute-specific as most of the covariates only impact on one attribute. Only the 

following covariates represent predictors of ANA behavior for more than one attribute: olive grove area owned 

(for CCMA and EFA), farmer not professionally trained (for CCAR and EFA), perception of cover crops as 

profitable (for CCAR, CCMA, and COLLE), and farmer knows the cover crop requisite within cross-compliance 

(for CCMA and COLLE). The attribute-specificity of ANA predictors have also been highlighted by Espinosa-

Goded and Barreiro-Hurlé (2010). However, apart from certain covariates found in both our study and theirs 

(namely ownership, irrigated area and previous experience in similar schemes, along with farmers’ age, education 

level, professional training, and belonging to professional associations), we show a much wider variety of 

predictors of a different nature. In particular, our results show that the easier the scheme is to adopt (shown not 

only by status quo features but also by other farm and farmer characteristics which facilitate implementation, such 

as previous experience in similar schemes, professional training, positive perception of scheme requirements and 

farmers’ knowledge about them, etc.), the higher the level of non-attendance. With regards to the comparison 

between predictors of SNA and INA, it is worth noting that we found a notably higher number of predictors for 

the former (20) than for the latter (14). Most of the predictors significantly explain one dependent variable (either 

SNA or INA), with only five predictors simultaneously explaining the two dependent variables. These predictors 

are olive grove area owned and farmers comply with restrictive cover crops management (for CCMA), and olive 

grove area owned, irrigated olive grove area, and perception of EFA as environmentally beneficial (for EFA). 

However, we do not find clear patterns of predictors explaining either one ANA approach or the other. 

 



 

Table 9. Bivariate probit (BVP) models for the attributes CCAR and CCMA 

  CCAR CCMA 

  SNA INA SNA INA 

  Coefficient SE Coefficient SE Coefficient SE Coefficient SE 

Covariate category Covariates             

Status Quo Farmers comply with CCAR-50% (% of farmers) 1.408 *** 0.254 0.223  0.265       

 Farmers comply with restrictive cover crops management (% 

of farmers) 
      1.398 *** 0.229 0.480 ** 0.208 

Farm characteristics 

and management 

Olive grove area owned (% of farm olive grove area)       0.362  0.238 0.624 ** 0.269 

Farm located in the Loma agricultural district (% of farmers) -0.451 * 0.242 -0.519  0.333       

Degree of slope (%) -0.013  0.010 -0.037 *** 0.014       

Tree density (olive trees per ha)       -0.002  0.002 -0.005 * 0.003 

Share of olives harvested from the ground above 10% of total 

olives harvested (1=Yes) 
-0.431 ** 0.191 -0.326  0.246       

Participation in current AES (1=Yes)       1.175 *** 0.316 0.271  0.253 

Farmer 

characteristics 

Number of children (#)       -0.012  0.260 -0.503 ** 0.249 

Farmer did not go to school (1=Yes)       0.563  0.411 0.597 * 0.312 

Farmer not professionally trained (1=Yes) -0.348 * 0.181 -0.156  0.209       

Farmer asks for advice at least once a month (1=Yes) -0.368 ** 0.181 -0.013  0.195       

Farmer attitudes and 

knowledge 

Perception of cover crops as profitable (dimensionless, 1-5) 0.352 * 0.186 0.065  0.195 0.181 ** 0.077 0.144 * 0.080 

Farmer knows the cover crops requisite within cross-

compliance (1=Yes) 
      0.664 *** 0.205 0.235  0.228 

Constant 0.173  0.203 -0.337  0.220 -1.795 *** 0.498 -1.317 ** 0.584 

Rho (1,2) 0.390 *** 0.109    0.333 ** 0.134    

Log-likelihood function -260.6      -225.8      

Inf. Cr. AIC 555      488.2      

Observations 244      242      

Significance: ***, **, * indicate significance at the 0.1%, 1%, and 5% levels respectively.  



 

Table 10. Bivariate probit (BVP) models for the attributes EFA and COLLE 

  EFA COLLE 

  SNA INA SNA INA 

  Coefficient SE Coefficient SE Coefficient SE Coefficient SE 

Covariate category Covariates             

Status quo Farmer complies with EFA-2% (1=Yes) 2.091 *** 0.461 0.091  0.226       

Farm characteristics 

and management 

Olive grove area owned (% of farm olive grove area) 0.006 * 0.003 -0.008 *** 0.003       

Irrigated olive grove area (% of farm olive grove area) -0.008 *** 0.003 -0.007 ** 0.003       

Distance between olive trees lines (m)       0.070  0.044 0.106 * 0.058 

Presence of vegetated boundaries between farms (1=Yes)       -0.633 *** 0.231 0.109  0.254 

Workforce (Person-days per ha)       -0.018 ** 0.008 0.007  0.009 

Belonging to integrated farming and/or irrigation associations (1=Yes)       0.216 * 0.126 0.128  0.140 

Farmer 

characteristics 

Farmer age (Years) -0.016 * 0.009 0.001  0.008       

Farmer not professionally trained (1=Yes) -0.453 ** 0.216 -0.059  0.199       

Farmer attitudes and 

knowledge 

Perception of cover crops as profitable (dimensionless, 1-5)       0.034  0.200 -0.933 *** 0.232 

Perception of cover crops as environmentally beneficial (dimensionless, 

1-5) 
      0.051  0.088 0.356 *** 0.128 

Farmer knows the cover crops requisite within cross-compliance 

(1=Yes) 
      -0.073  0.175 0.447 ** 0.220 

Perception of EFA as environmentally beneficial (dimensionless, 1-5) 0.151 ** 0.077 0.217 *** 0.078       

Official controls generally detect irregularities when receiving CAP 

support (dimensionless, 1-5) 
      0.295 * 0.172 -0.076  0.202 

Constant -0.003  0.588 -0.699  0.509 -0.979  0.605 -3.364 *** 0.916 

Rho (1,2) 0.212 * 0.126    0.640 *** 0.086    

Log-likelihood function -263.1      -266.3      

Inf. Cr. AIC 556.2      570.7      

Observations 246      242      

Significance: ***, **, * indicate significance at the 0.1%, 1%, and 5% levels respectively. 



DISCUSSION 

In light of the general lack of studies investigating ANA behavior in analyses focusing on ES providers’ 

preferences towards incentive-based schemes (with the only precedent being Espinosa-Goded and 

Barreiro-Hurlé 2010), we discuss the results by also referring to demand-side environmental valuation 

assessments. As in Espinosa-Goded and Barreiro-Hurlé (2010), and many demand-side environmental 

valuation studies (e.g., Campbell et al 2008, Scarpa et al 2009, Colombo et al 2016), we find ANA 

behavior in respondents’ choices, with a low number of respondents attending to all the attributes. 

Regardless of the ANA approach (stated or inferred) applied, the monetary attribute registers the lowest 

level of non-attendance, which also mirrors Espinosa-Goded and Barreiro-Hurlé (2010)’s results. The 

low level of non-attendance to the monetary attribute reported in this study and that of Espinosa-Goded 

and Barreiro-Hurlé on ES providers’ WTA may contrast with demand-side environmental valuation 

studies, which report much higher levels (e.g., 90%, 61%, and 39% for Scarpa et al 2009, Campbell et 

al 2011, and Kragt 2013, respectively). The different valuation framework, with farmers facing a 

decision –usually familiar to them– on whether or not to change their business management by adopting 

certain environmentally-friendly practices (usually involving opportunity costs) depending on the 

compensation offered, seems to explain this markedly different level of non-attendance to the monetary 

attribute. This likely results in a lower risk of incurring the typical biases encountered in demand-side 

valuation assessments, such as social desirability and yeah-saying (Loureiro and Lotade 2005, Balcombe 

et al 2011), which can have a very relevant effect in the context of environmental public goods valuation.  

With regards to non-monetary attributes, we find discrepancies in the level of non-attendance 

between the two ANA approaches, with the inferred approach showing a lower level of non-attendance 

than the stated approach. Regardless of the approach, the very high non-attendance to the monitoring 

attribute should be seen more as the consequence of the unexpected result of the very low importance 

of the attribute. For the other non-monetary attributes, it seems that, when asked, farmers overstate their 

level of non-attendance to attributes, maybe as a result of applying a heuristic process in which they 

overrate the importance of some attributes over others in their choices. This is in line with Alemu et al 

(2012), who suggest that individuals’ ex-post rationalization may differ from their ex-ante behavioral 

processing of the choice sets. We believe that the higher number of ANA patterns shown for the stated 

approach compared to the inferred approach is in keeping with this rationale. Also, as advocated by Hess 

et al (2012), there is a possibility that farmers do not, in fact, ignore an attribute, but simply show a 

lower intensity of preferences related to it. In this regard, instead of questioning farmers at the end of 

the choice sets, deeper insights may be gained by questioning them about their attribute attendance in 

each choice set, as Scarpa et al (2010) and Ortega and Ward (2016) do. There may, however, be weak 

theoretical justification for such an approach (Balcombe et al 2015). 

By accounting for ANA, using either the stated or inferred approach, model fits are improved 

compared to uncorrected models because these approaches successfully capture the different behavioral 



patterns of both attendance and non-attendance groups (evidenced by significant differences in marginal 

sensitivities and heterogeneity). This finding has already been reported in previous studies on demand-

side environmental valuation (among others, see Kragt 2013, Weller et al 2014), but this study is the 

first to show such a result in the context of supply-side environmental valuation. However, as is the case 

with the demand-side literature (for a discussion, see Alemu et al 2012, Colombo et al 2013), we have 

no conclusive results on the extent to which the inferred approach is better than the stated one since both 

approaches show similar goodness-of-fit indicators for our dataset. Yet, looking at the level of 

significance of attribute parameters (means and standard deviations) of the SNA and INA models 

(particularly regarding the non-attendance groups), it can be argued that the latter is better able to 

discriminate between attendance and non-attendance groups of respondents.  

The above-mentioned finding hints at the creditable performance of HHA in modeling ANA 

behavior. However, we consider that this very much depends on the specific case under study. We find 

that this approach suffers from a number of limitations which have to be taken into account by the 

analyst when using it. The most obvious relates to the arbitrariness of the CV threshold of to 2. In our 

specific application, this threshold seems to effectively separate attribute attendance and non-attendance, 

but this will not always necessarily be the case. In this sense, we show that the quantiles and the kernel 

density plots of the CV of each attribute provide useful information, indicating the suitability of this 

approach (or the lack of it) regarding the threshold of 2 for successfully capturing ANA behavior. Taking 

this information into account, the analyst may decide whether this or another threshold would be more 

suitable to identify ANA behavior for each attribute. Furthermore, it is worth noting that the reliance of 

this approach on the CV to distinguish such behavior entails the risk of confounding effects, which could 

be related to the experimental design or certain types of respondent behavior, such as variety-seeking12. 

Particularly, when the CE relies on a reduced number of choices, respondents’ trade-offs may not 

provide enough information to significantly reduce the standard deviation of random parameters. This 

may be especially relevant when employing orthogonal designs which are not predicated on prior 

assumptions on random parameter distributions. In this regard, the analyst can conduct an ex-post test 

to check for any unintended effects relating to the former (for example, using regression analysis, as 

shown in our study) and –partially– the latter (by looking at the parameter estimations). In addition, it 

would be advisable to use specific questions to control for these potential confounding behaviors.  

The specialized literature shows a complementary stream of ANA behavior modeling based on 

finite mixing, especially relating to the so-called equality constrained latent class (ECLC) models 

(Scarpa et al 2009, Campbell et al 2011, Scarpa et al 2013). Using this approach, researchers can analyze 

different heuristics by constraining the attributes entering the utility function, which is very convenient 

                                                            
12 In our study, however, we do not believe that there have been important confounding effects between ANA and variety-

seeking behaviors, as the high CVs encountered for ANA respondents are mostly determined by very low conditional means 

(the inferred utility function for the non-attenders lacks random taste heterogeneity and significant taste parameters). 



given the variety of choice patterns elicited from ANA −as is shown in our application. However, as for 

the HHA, this approach is not free of limitations. For example, there is a degree of arbitrariness in the 

selection of the different non-attendance profiles to be analyzed through the constraint classes, and this 

clearly entails trade-offs between the number of classes and the feasibility of modeling. In addition, 

there is also a notable risk of confounding effects between non-attendance and taste heterogeneity (Hess 

et al 2012) since respondents with weak preferences for an attribute would be incorrectly classified as 

non-attenders (Hole et al 2016). A further application of ECLC to the context of supply-side 

environmental valuation would undoubtedly contribute to this discussion. Additionally, both for HHA 

and ECLC, it would be useful to incorporate recent advances aimed at disentangling ANA behavior, 

such as addressing sequential and individual scale heteroscedasticity (Scarpa et al 2010, Balcombe et al 

2015), jointly analyzing importance ranking and non-attendance data (Chalak et al 2016) and adopting 

an endogenous ANA approach (Hole et al 2016, Hole et al 2013, Hole 2011, Collins 2012), as well as 

accounting for potential correlation between scale and preference heterogeneity (Thiene et al 2015), 

among others. 

While we find that models accounting for ANA outperform those that do not account for it, our 

results regarding WTA estimates show little to no significant differences. This would suggest that the 

failure to address ANA in these types of studies may not have produced the large impacts on welfare 

estimates often reported for demand-side WTP contexts (Hensher et al 2005, Scarpa et al 2009, Hole 

2011, Hess et al 2012, Kragt 2013, Collins et al 2013, Scarpa et al 2013), although some studies do not 

report any such impacts (e.g., Hole et al 2013). The higher level of attendance to the monetary attribute 

reported in our WTA context compared to the levels reported for WTP contexts is very likely linked to 

these different impacts on welfare estimates. However, we report non-negligible deviations, all of them 

positive and with one attribute out of four showing significant differences, implying that by not 

accounting for ANA analysts may provide erroneous signals to policy-makers (especially by suggesting 

implementation budgets that are too low). Therefore, we consider that further research is still needed to 

establish the extent to which, and under what circumstances, WTA estimates may be notably impacted 

(or not) by ANA behavior. 

We also provide some insights into the explanations for ANA behavior by jointly modeling stated 

and inferred ANA. Our results show a wide variety of variables influencing non-attendance to attributes, 

including farmers’ status quo, farm characteristics and management, farmer characteristics and attitudes, 

perceptions and knowledge. Some variables have previously been reported as predictors of farmers’ 

ANA behavior in this type of WTA study (Espinosa-Goded and Barreiro-Hurlé 2010), while most of 

them relate to variables previously identified as determinants of scheme adoption (Uthes and Matzdorf 

2013, Siebert et al 2006). Overall, our results point to a positive relationship between ease of scheme 

adoption and non-attendance to attributes. The rationale behind this may be that farmers consider 

attributes (scheme requirements) and levels to be of lesser importance if they find that they already 



comply to a large extent with the requirements included in the scheme. This shows the important role 

played not only by attribute non-attendance but also by attribute-level non-attendance in these valuation 

contexts. 

With respect to the different individuals’ status quo level –and its obvious impact on welfare 

estimates–, it is worth noting that this is something rarely reported in demand-side environmental 

valuation studies (see, for example, Marsh et al 2011). Conversely, although a consideration of the 

different individuals’ status quo is, in theory, relevant in studies analyzing ES providers’ WTA, we find 

that it is not yet sufficiently acknowledged (to our knowledge, few studies highlight this, including Vedel 

et al 2015, Villanueva et al 2017b), with most such studies failing to collect and report information on 

the different providers’ status quo. Thus, we strongly recommend collecting information about 

individuals’ status quo in this type of studies and including it in the analysis. 

The analysis of predictors of ANA behavior offers some interesting interpretations related to the 

reasons for non-attendance. Thus, in line with the findings of Caputo et al (2013), Balcombe et al (2015) 

and Hole et al (2016), most of these predictors, especially those related to the farmers’ status quo and 

perceptions about the advantages of the AES and, to a lesser extent, farm characteristics and 

management, suggest different patterns of preference heterogeneity likely due to genuine indifference 

(i.e., not placing value on certain attributes). However, only a few factors seem to be more closely related 

to simplified decision heuristics. Specifically, these include respondents’ educational level, training, and 

age. Consequently, the analysis of factors behind ANA behavior has helped shed light on the extent to 

which farmers’ behavior correspond to ANA as a special form of preference heterogeneity. To some 

degree, this finding is in line with that of Hole (2016), since when non-attendance is interpreted as a 

form of preference heterogeneity, approaches accounting for ANA yield similar inferences to those from 

standard models. Nonetheless, it is worth recognizing that a combination of both behavioral patterns 

(genuine indifference and simplified decision heuristics) may be an even more plausible alternative. 

CONCLUSIONS 

Whereas discontinuous preferences have been systematically investigated in demand-side 

environmental valuation assessments, there are virtually no studies that explore this topic in analyses 

focusing on the supply side. This is in spite of the growing body of literature analyzing ecosystem service 

providers’ preferences towards incentive-based schemes (e.g., PES and AES). To the best of our 

knowledge, our study joins that of Espinosa-Goded and Barreiro-Hurlé (2010) in representing the only 

two studies to account for ANA behavior in an analysis of ecosystem service providers’ WTA. 

Additionally, among the novelties of our study, it is worth highlighting that it is the first of this type to 

compare stated and inferred ANA approaches (using Hess and Hensher (2010) proposal for the latter), 

their concordance and resulting WTA estimates, and to explore determinants of ANA for both 

approaches. 



The results provide evidence of ANA behavior in respondents’ choices, with few respondents 

attending to all the attributes. By accounting for ANA, using either the stated or inferred approach, 

model fits are improved compared to the uncorrected model, suggesting that both approaches 

successfully capture the different behavioral patterns of the two groups of respondents (those who attend 

to the attributes and those who ignore them). We have no conclusive results on the extent to which the 

inferred approach is better than the stated one, although the former seems better able to detect such 

behavior. WTA estimates show little to no significant differences between the models accounting for 

ANA and the uncorrected model, suggesting that the failure to address ANA in these types of studies 

may not produce the large impacts on welfare estimates reported for other valuation contexts. This can 

partially be explained by the low level of non-attendance to the monetary attribute encountered for both 

stated and inferred ANA. It is plausible that the different valuation context, with farmers deciding 

whether or not to change their business management by adopting certain environmentally-friendly 

practices (usually involving opportunity costs) depending on the compensation offered, is behind this. 

We also provide insights into the explanations for ANA behavior by jointly modeling stated and 

inferred ANA using bivariate probit models. Our results show a wide variety of variables influencing 

non-attendance to attributes, including individual status quo, respondents’ characteristics and attitudes, 

perceptions and knowledge, as well as farm characteristics and management. Overall, our results hint at 

a positive relationship between ease of scheme adoption and non-attendance to attributes. The rationale 

behind this may be that farmers consider attributes (scheme requirements) and levels to be of lesser 

importance if they find that they already largely comply with the scheme requirements. This implies that 

not only attribute non-attendance but also attribute-level non-attendance plays an important role in these 

valuation contexts. Nevertheless, further research is clearly needed to establish a common framework 

for dealing with ANA behavior, to understand its impact on welfare estimates in different contexts, and 

to recognize what factors lie behind it. 
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APPENDIX A 

 

Fig. A.1. Example of a choice set. 

  

Alternative A Alternative B Alternative C 

 

Yearly 
payment 

€200/ha 
 

 

€300/ha 
 

 

 
 
 
 
 

Neither 
Alternative A, 

nor Alternative 
B. I would 

maintain my 
current farm 
management 

 

Cover crops 
area 

50% of olive tree area 

 

50% of olive tree area 

 

 

Cover crops 
management 

Restrictive mgmt. 

 

Free mgmt. 

 
 

Ecological 
focus areas 

0% of EFA in olive 
tree area 

 

2% of EFA in olive 
tree area 

 
 

Participation 

Individual 
 

 

Collective 
 

 

 

Monitoring 

Monitoring at 20% 

 

Monitoring at 5% 

 

I choose A 
 

I choose B 
 

I choose C 
 

 

 

 

APPENDIX B 

Table B.1. Attribute specific quantiles of the coefficient of variation of the conditional parameters 

Quantile CCAR CCMA EFA COLLE PAYM 

0.10 0.33 0.33 0.39 0.35 0.29 

0.25 0.49 0.46 0.56 0.53 0.36 

0.50 0.85 0.77 0.86 0.81 0.48 

0.75 1.56 1.48 1.81 1.83 0.68 

0.90 2.88 3.18 4.75 3.84 1.22 

 


