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Mención de doctorado internacional 

Esta tesis cumple con los requisitos establecidos por la Universidad de Córdoba para 

la obtención de la mención de doctorado internacional: 

- Estancia de 3 meses realizada en Civil, Structural & Environmental 

Engineering Department of Trinity College Dublin (Irlanda), bajo la 

supervisión de Dr. Aonghus Mc Nabola. 

- Informe previo de dos doctores externos y con experiencia investigadora 

acreditada de alguna institución de educación superior o instituto de 

investigación de fuera de España. 

- Un miembro del tribunal pertenece a un centro de investigación extranjero. 

- Parte de la tesis está escrita en inglés y castellano. 
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Tesis como compendio de publicaciones 

Esta tesis se presenta como compendio de publicaciones, cumpliendo con 

los requisitos establecidos por la Universidad de Córdoba para este fin. Tres de los 

seis capítulos de esta tesis se corresponden con tres artículos científicos publicados 

en revistas incluidas en el primer cuartil según la última relación del Journal Cittation 

Reports (2018). 

1. Mérida García A, Fernández García I, Camacho Poyato E, Montesinos 

Barrios P, Rodríguez Díaz JA (2018). Coupling irrigation scheduling with 

solar energy production in a smart irrigation management system. J. Clean. 

Prod. 175, 670-682. Índice de impacto: 5.651. 1er cuartil en el área de 

Ingeniería y Medioambiente, posición 7/50. 

2. Mérida García, A., Gallagher, J., Mc Nabola, A., Camacho Poyato, E., 

Montesinos Barrios, P., Rodríguez Díaz, J.A., 2019. Comparing the 

environmental and economic impacts of on- or off-grid solar photovoltaics 

with traditional energy sources for rural irrigation systems. Renew. Energy 

140, 895–904. Índice de impacto: 4.900. 1er cuartil en el área de Energía y 

Combustibles, posición 20/97; y en Tecnología y Ciencia de la 

Sostenibilidad (Green and Sustainable Science and Technology), posición 

7/33. 

3. Mérida García A, González Perea R, Camacho Poyato E, Montesinos 

Barrios P, Rodríguez Díaz JA, 2020. Comprehensive sizing methodology of 

Smart photovoltaic irrigation systems. Agricultural Water Management. 

Aceptado para publicación. Índice de impacto: 3.542. 1er cuartil en el área 

de Recursos Hídricos, posición 12/91; y en Agronomía, posición 9/89.  
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TÍTULO DE LA TESIS: Modelo integral de aprovechamiento de la 

energía solar fotovoltaica en riego. 

DOCTORANDA: Aida Mérida García 

INFORME RAZONADO DEL/DE LOS DIRECTOR/ES DE LA 

TESIS: 

La tecnificación del regadío y su cada vez mayor dependencia energética, 

esencialmente debida a los bombeos de los sistemas de distribución de agua a 

presión, ha motivado que en los últimos años los regantes hayan experimentado un 

importante aumento en sus costes de producción que hacen que, en ocasiones, la 

rentabilidad de la producción agrícola se vea seriamente comprometida. Además de 

esto, en el contexto actual de cambio climático, la sociedad demanda de manera 

creciente alimentos producidos de una forma sostenible, con una huella ambiental 

mínima. 

Ante esta situación, las energías renovables, y especialmente la energía solar 

fotovoltaica, están comenzando a jugar un papel importante en las redes de 

distribución de agua. Por un lado, la reducción de los costes de producción de los 

paneles hace que los períodos de amortización se hayan reducido a 4-6 años. Por 
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otro lado, la reducción en las emisiones asociadas a los bombeos permite reducir la 

huella de carbono asociada a la producción agrícola, lo que puede considerarse una 

ventaja competitiva en los mercados, de acuerdo con las demandas actuales de la 

sociedad. 

No obstante, la energía solar fotovoltaica presenta ciertos inconvenientes que 

hacen que las prácticas de manejo del riego tradicionales no sean del todo válidas 

en las nuevas condiciones. Esto es debido principalmente a la imposibilidad de regar 

cuando la irradiancia es demasiado baja, lo que implica que sea necesario 

sincronizar el manejo del riego con la producción energética de la planta solar. Por 

otro lado, se hace necesario considerar la planta solar y el sistema de riego como 

un todo, que debe funcionar de forma conjunta para poder optimizar el uso de la 

potencia generada en cada momento y asegurar un uso eficiente del agua. Hasta la 

fecha, estos aspectos no se habían abordado en profundidad. 

Con el objetivo de abordar esta problemática se ha desarrollado esta Tesis 

Doctoral, la cual se divide en tres grandes apartados claramente diferenciados, los 

cuáles abordan diferentes problemas relacionados con el riego solar y aportan 

soluciones para facilitar el manejo óptimo de dicha tecnología. La Tesis se ha 

elaborado como compendio de artículos científicos, que han dado lugar a 

publicaciones en revistas científicas con altos índices de impacto, en el primer cuartil 

de su área de conocimiento: 

- Mérida García, A., Fernández García, I., Camacho Poyato, E., Montesinos 

Barrios, P., & Rodríguez Díaz, J. A. (2018). Coupling irrigation scheduling with solar 
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energy production in a smart irrigation management system. Journal of Cleaner 

Production, 175, 670-682. doi:10.1016/j.jclepro.2017.12.093  

En este trabajo, como primer paso de la Tesis, se desarrolla un sistema de 

riego solar inteligente, el cual sincroniza la producción energética de la planta solar 

y el riego deficitario del olivar. Para ello, el sistema considera datos de irradiancia en 

tiempo real, modelo hidráulico del sistema de riego y un modelo suelo-agua-planta.  

Este modelo se ha puesto en marcha y validado en una planta piloto instalada 

para este fin en la Finca Experimental del Campus de Rabanales de la Universidad 

de Córdoba. 

- Mérida García, A., Gallagher, J., McNabola, A., Camacho Poyato, E., 

Montesinos Barrios, P., & Rodríguez Díaz, J. A. (2019). Comparing the 

environmental and economic impacts of on- or off-grid solar photovoltaics with 

traditional energy sources for rural irrigation systems. Renewable Energy, 140, 895-

904. doi:10.1016/j.renene.2019.03.122 

En el segundo de los trabajos se aborda el impacto ambiental y la huella de 

CO2 del riego solar en comparación con otras fuentes convencionales tales como los 

generadores diésel y la red eléctrica. Este trabajo lo realizó en colaboración con 

investigadores del Trinity College de Dublin (Irlanda) durante su estancia 

predoctoral, necesaria para la obtención de la mención internacional de los estudios 

de doctorado. 

- Mérida García, A., González Perea, R., Camacho Poyato, E., Montesinos 

Barrios, P., & Rodríguez Díaz, J. A. (2019). Comprehensive sizing methodology of 
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smart photovoltaic irrigation systems. Agricultural Water Management. Accepted for 

publication. 

En el tercer trabajo se aborda la necesidad del diseño conjunto de la 

instalación de riego y de la planta solar simultáneamente. Para ellos se recurre a 

métodos heurísticos que permiten optimizar el diámetro de las tuberías, la gestión 

de riego en parcela y el tamaño de la planta solar. 

Por último, complementando los trabajos anteriores, se añade un cuarto 

artículo como anejo, en el cual se muestran los detalles de la herramienta informática 

desarrollada para la implementación y operación del sistema de riego solar 

inteligente: 

- González Perea, R. G., Mérida García, A., Fernández García, I., Poyato, E. 

C., Montesinos, P., & Rodríguez Díaz, J. A. (2019). Middleware to operate smart 

photovoltaic irrigation systems in real time. Water (Switzerland), 11(7) 

doi:10.3390/w11071508 

En su conjunto, la investigación realizada representa un claro avance al 

estado del conocimiento actual en esta temática, sobre la cual prácticamente no 

existían trabajos previos. Además, la investigación desarrollada puede tener 

importantes repercusiones en el sector del riego, cada vez más interesado en el uso 

de la energía solar fotovoltaica para el suministro de agua por sus beneficios tanto 

económicos como ambientales. 

Esta Tesis Doctoral se ha realizado al amparo de dos proyectos del Plan 

Nacional: “Tecnologías Innovadoras para mejorar el uso del agua y energía en el 
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regadío” (AGL2014-59747-C2-2-R) y “Eficiencia en la sostenibilidad del nexo agua y 

energía en el regadío” (AGL2017-82927-C3-1-R). Para la realización de la misma, 

la Doctoranda ha disfrutado de una beca de Formación de Personal Investigador 

(FPI), en la que, además de los trabajos de investigación, ha colaborado activamente 

en la docencia de diversas asignaturas en el ámbito de la Ingeniería Hidráulica y del 

Riego. 

Por todo ello, se autoriza la presentación de la tesis doctoral. 

 

 

Córdoba, 6 de Noviembre de 2019 

Firma de los directores 
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Summary 

Irrigated agriculture makes possible to increase the productivity of the cropped 

area, becoming a key activity to meet the growing food demand resulting from the 

increase of global population. The transformation of arable land from rain-fed to 

irrigated raises in turn the water demand by the agricultural sector, which currently 

accounts for 70% of total extractions, on a global scale.  

The modernization of the irrigation sector led a substantial improvement in the 

efficiency of water use, although, in parallel, the replacement of systems based on 

open channels to pressurized networks resulted in a significant increase in energy 

demand. The main drawbacks of this growing demand are the higher farm operating 

costs and environmental impact linked to agriculture. In this context, there is a need 

to look for alternative energy sources with low greenhouse gas emissions, 

maintaining and even increasing the profitability of the agricultural activity.  

This thesis is structured in 6 chapters and an annex, focused on the 

integration of photovoltaic technology in irrigation as energy supply source. Thus, the 

different chapters contemplate this integration from the point of view of irrigation 

management and schedule to the dimensioning of the system, taking into account 

economic, environmental and operational aspects. The first chapter contextualizes 

the reason of this thesis, which objectives are set out in chapter 2, in which the 

structure of the rest of the document is also detailed. 

Chapter 3 presents a model for the management of photovoltaic irrigation. 

This model integrates crop, climatic, hydraulic and energy variables, accomplishing 

a real time synchronization of the photovoltaic power generated and the power and 
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irrigation times demanded by the network which supplies. The application of this 

model to a real case study (experimental olive orchard of the Rabanales Campus of 

the University of Córdoba) has achieved excellent results, being able to satisfy, 

automatically, more than 96% of the irrigation requirements of the crop during the 

irrigation season analysed. In addition, the substitution of the conventional electrical 

supply by photovoltaic energy avoided the emission of 1.2 t of CO2 eq. corresponding 

to 602 h of irrigation (during a season), in the olive orchard field of the case study 

analysed. 

In chapter 4 an analysis of the life cycle of the photovoltaic technology used 

as energy source in irrigation is carried out. In addition, it is also compared with the 

life cycle linked to the energy supply with traditional options, diesel generators and 

the electricity grid. Subsequently, a comparative analysis is carried out between the 

different supply options, establishing two possible scenarios: with and without grid 

connection. The results derived from this work, expressed in relation to the unit of 

energy in kWh, showed the importance linked to the percentage of photovoltaic 

energy produced that is actually used, thus having a great repercussion the 

seasonality of irrigation and the possibility of taking advantage of the surplus energy 

generated when irrigation is not required. This work was also complemented with an 

analysis of the life cycle cost for the different technologies. Thus, the photovoltaic 

option has the lowest total costs (63% and 36% lower than the diesel generator and 

electricity grid options, respectively, for a useful life of the project of 30 years), despite 

requiring a higher initial investment.  

Chapter 5 presents a model for the optimal dimensioning of photovoltaic 

irrigation systems, which determines hydrants grouping in irrigation sectors, the pipe 
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diameters for each section of the network and the dimensioning of the photovoltaic 

plant. This model, based on evolutionary algorithms (specifically the genetic 

algorithm NSGAII) also integrates the first of the models presented, with which the 

operation of each generated sizing option is verified. The possible solutions are 

evaluated to select those that best fit the established objective functions. Therefore, 

the results provided by the model are those combinations of hydrant grouping, pipe 

sizes and PV plant dimensioning that minimize the investment costs while ensuring 

the proper operation of the system. Once the model was developed, it was simulated 

to carry out the dimensioning of the PV irrigation system of the experimental olive 

orchard field of the University of Córdoba. The results showed design solutions with 

investment cost reductions between 24 and 39%, compared to the original design of 

the installation, with an irrigation satisfaction equal or greater than the current 96% 

in all options. 

Finally, chapter 6 synthesizes the main conclusions obtained after the 

development of this thesis, as well as the possible future avenues of research. 

This thesis highlights the importance of the integration of photovoltaic energy 

in agriculture as energy supply source, with low environmental impact, alternative to 

traditional energy sources. Therefore, it presents innovative tools for photovoltaic 

irrigation management and jointly dimensioning of the system irrigation network-

photovoltaic plant, taking into account the energy, hydraulic, economic, 

environmental and operational aspects of the system. Therefore, the purpose of 

providing the incorporation of this technology in the sector is combined with the 

objectives of reducing the environmental impact of this activity and improving the 

profitability of the farmer. 
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Resumen 

La agricultura de regadío permite aumentar la productividad de la superficie 

agrícola, convirtiéndose en una actividad clave para satisfacer la creciente demanda 

de alimentos derivada del aumento de la población mundial. La conversión de 

superficie cultivable del secano al regadío a su vez incrementa la demanda de agua 

por parte del sector agrícola, la cual representa en la actualidad un 70% de las 

extracciones totales, a escala global.  

La modernización del regadío ha permitido una mejora sustancial en la 

eficiencia del uso del agua, aunque, de forma paralela, la sustitución de los sistemas 

basados en canales abiertos por redes a presión ha dado lugar a un aumento 

significativo en la demanda de energía. Los principales inconvenientes derivados de 

esta creciente demanda se traducen en un mayor coste de operación en las 

explotaciones e impacto ambiental vinculado a la agricultura. En este contexto surge 

la necesidad de buscar fuentes de energía alternativas de baja emisión de gases 

efecto invernadero que permitan, además, mantener e incluso aumentar la 

rentabilidad de la actividad agrícola.  

Esta tesis se estructura en 6 capítulos y un anexo, enfocados todos ellos a la 

integración de la tecnología fotovoltaica en el riego, como fuente de suministro 

energético. Así, los distintos capítulos contemplan esta integración desde el punto 

de vista de la gestión y programación del riego hasta el dimensionamiento del 

sistema, teniendo en cuenta aspectos económicos, ambientales y de operatividad. 

El primero de los capítulos contextualiza el porqué de esta tesis, estando los 

objetivos de la misma recogidos en el capítulo 2, donde además se detalla la 

estructura del resto del documento. 
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En el capítulo 3 se presenta un modelo para la gestión del riego fotovoltaico. 

Este modelo integra variables del cultivo, climáticas, hidráulicas y energéticas, 

llevando a cabo una sincronización en tiempo real de la potencia fotovoltaica 

generada y la potencia y tiempos de riego demandados por la red a la que abastece. 

La aplicación de este modelo a un caso de estudio real (parcela experimental de 

olivar del Campus de Rabanales de la Universidad de Córdoba) ha conseguido 

resultados excelentes, siendo capaz de satisfacer, de forma automática, más del 

96% de los requerimientos de riego del cultivo durante la campaña de riego 

analizada. Además, la sustitución del suministro eléctrico convencional por energía 

fotovoltaica evitó la emisión de 1.2 t de CO2 eq. correspondientes a 602 h de riego 

(durante una campaña), en el cultivo de olivar del caso de estudio analizado. 

En el capítulo 4 se lleva a cabo un análisis del ciclo de vida de la tecnología 

fotovoltaica empleada como fuente de energía en el regadío. Además, también se 

compara con el ciclo de vida vinculado al suministro energético mediante las 

alternativas tradicionales, generadores diésel y la red eléctrica. Posteriormente, se 

lleva a cabo un análisis comparativo entre las distintas opciones de suministro, 

estableciendo para ello dos posibles escenarios: con y sin conexión a red. Los 

resultados derivados de este trabajo, expresados en relación a la unidad de energía 

en kWh, mostraron la importancia vinculada al porcentaje de energía fotovoltaica 

producida que es realmente aprovechado, teniendo por ello una gran repercusión la 

estacionalidad del riego y la posibilidad de aprovechar el excedente de energía 

producida en los momentos en los que no es necesario regar el cultivo. Este trabajo 

fue además complementado con un análisis del coste asociado al ciclo de vida de 

las distintas tecnologías. Así, la opción fotovoltaica presenta el menor de los costes 

totales (63% y 36% inferior a la opción de generador diésel y red eléctrica, 
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respectivamente, para una vida útil de proyecto de 30 años), a pesar de requerir una 

mayor inversión inicial.  

En el capítulo 5 se presenta un modelo para el dimensionamiento óptimo de 

sistemas de riego fotovoltaico, el cual determina el agrupamiento de hidrantes en 

sectores de riego, el diámetro de tubería para cada tramo de la red y el 

dimensionamiento de la planta fotovoltaica. Este modelo, basado en algoritmos 

evolutivos (en concreto el algoritmo genético NSGAII) integra así mismo el primero 

de los modelos presentados, con el que se comprueba el funcionamiento de cada 

una de las opciones de dimensionamiento generadas. Las posibles soluciones son 

evaluadas con el fin de seleccionar aquellas que cumplen mejor las funciones 

objetivo establecidas. Por ello, los resultados facilitados por el modelo son aquellas 

combinaciones de agrupamiento de hidrantes, dimensiones de tuberías y tamaño de 

la planta FV que minimizan los costes de inversión y garantizan al mismo tiempo el 

correcto funcionamiento del sistema. Una vez desarrollado el modelo, éste fue 

simulado para llevar a cabo el dimensionamiento del sistema de riego FV de la 

parcela de olivar experimental de la Universidad de Córdoba. Los resultados 

obtenidos mostraron soluciones de diseño con ahorros en el coste de inversión de 

entre el 24 y el 39%, en comparación con el diseño original de la instalación, con una 

satisfacción del riego igual o superior al 96% actual en todas las opciones. 

Finalmente, el capítulo 6 sintetiza las principales conclusiones obtenidas tras 

el desarrollo de esta tesis, así como las posibles futuras vías de investigación. 

Esta tesis destaca la importancia de la integración de la energía fotovoltaica 

en la agricultura como medio de suministro energético, de bajo impacto ambiental, 

alternativo a las fuentes de energía tradicionales. Por ello, en ella se presentan 
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herramientas innovadoras de gestión del riego fotovoltaico y dimensionamiento 

conjunto del sistema red de riego-planta fotovoltaica, teniendo en cuenta los 

aspectos energéticos, hidráulicos, económicos, ambientales y de operatividad del 

sistema. Por tanto, el propósito de facilitar la incorporación de esta tecnología en el 

sector queda acompañado de los objetivos de disminuir el impacto ambiental de esta 

actividad y mejorar la rentabilidad del agricultor.



Table of Contents 

xxv 
 

Table of Contents 

1. Introduction ...................................................................................................... 1 

1.1. Background ............................................................................................. 1 

1.2. The Spanish irrigation agriculture ........................................................... 2 

1.3. Photovoltaic irrigation .............................................................................. 6 

1.4. References ............................................................................................ 10 

2. Objectives and thesis structure ...................................................................... 15 

2.1. Objectives ............................................................................................. 15 

2.2. Thesis structure .................................................................................... 15 

3. Coupling irrigation scheduling with solar energy production in a smart 

irrigation management system ............................................................................... 19 

3.1. Introduction ........................................................................................... 20 

3.2. Methodology ......................................................................................... 24 

3.3. Results and discussion ......................................................................... 34 

3.4. Conclusions .......................................................................................... 47 

3.5. References ............................................................................................ 48 

4. Environmental and economic life cycle analysis of PV irrigation compared to 

traditional options ................................................................................................... 55 

4.1. Introduction ........................................................................................... 56 

4.2. Methodology ......................................................................................... 58 

4.3. Results & discussion ............................................................................. 67 

4.4. Conclusions .......................................................................................... 81 

4.5. References ............................................................................................ 82 

4.6. Supplementary information ................................................................... 89 

5. Optimal dimensioning of photovoltaic irrigation systems ............................... 93 



Table of Contents 
 

xxvi 
 

Abstract. ..................................................................................................................93 

5.1. Introduction ............................................................................................94 

5.2. Methodology ..........................................................................................97 

5.3. Results and Discussion ....................................................................... 107 

5.4. Conclusions ......................................................................................... 116 

5.5. References .......................................................................................... 117 

6. Conclusions .................................................................................................. 121 

6. Conclusiones ................................................................................................ 125 

Appendix A. Middleware to operate Smart photovoltaic irrigation systems in real 

time. ...................................................................................................................... 129 

A.1.        Introduction ......................................................................................... 130 

A.2.        RESSIM Design.................................................................................. 132 

A.3.        Implementation of RESSIM in a Real Case Study .............................. 141 

A.4.        Conclusions ........................................................................................ 147 

 



List of Tables 

xxvii 
 

List of Tables 

Table 3.1. Maximum (Emax), minimum (Emin) and mean (Emean) daily energy 

production, total monthly energy production (Egen), total monthly energy 

required (Ereq) and total monthly energy required to produced energy ratio (%) 

at the experimental site for 2013 …….…………………….…………….……...37 

Table 3.2. Monthly peak (Pmax) and mean (Pmean) of the instantaneous power 

produced by the photovoltaic installation at the experimental site in 2013 and 

the minimum power required by each sector for their proper operation ….....39 

Table 3.3. List of days on which irrigation was not fully satisfied in the different sectors 

(OS), irrigation volume required (VreqTotal (l)), irrigation volume applied (VAp (l)) 

and irrigation deficit during the 2013 irrigation season in percentage and time 

units (min) ……………………….………………………………………………..46 

Table 4.1. Impact categories to be evaluated in the LCA of PV, diesel and grid 

electricity systems …………………………………………………………...…..60 

Table 4.2. Effects of adding the extension of the grid –cable and poles- to reach the 

grid in an isolated farm for the different impact categories ……………………79 

Table 4.3. Effect of fuel and electricity cost variation on the LCC for the solar PV plant 

……………………………………………………………………………………...80 

Table S.4.6.1. Raw material and processes included in the LCA of the different 

energy sources examined for the irrigation network ……..……………..…….89 

Table 5.1. Economical costs and total investment cost reductions associated to the 

best solutions obtained related to the original design of the case study system 

…………………………………………………………………………………….112 

Table 5.2. Sector power demand, PVPP of the PV plant, % irrigation requirements 

and required PV area for the best solutions ……………………………….....113 



 

 
 



List of Figures 

xxix 
 

List of Figures 

Fig. 1.1 Energy generation from renewable and non-renewable energy sources in 

Spain between 2011 and 2018. Source: Author´s elaboration based on REE 

(2019b) …………………………………………………………………..…………4 

Fig. 1.2 Energy generation expressed as GWh, from the different renewable energy 

sources in Spain between 2011 and 2018. Source: Author´s elaboration 

based on REE (2019b) ……………………………………………………………5 

Fig. 1.3. European and Spanish Greenhouse gas emissions evolution in the period 

1990-2017. Source: Author´s elaboration based on (Eurostat, 2019) 

…………………………………………………………………...……………….....6 

Fig. 3.1. Irrigation network of the experimental field at the University of Cordoba 

(Southern Spain) ….…………………………………………………..………….25 

Fig. 3.2. SPIM Flow chart ………..……………………………………………………....28 

Fig. 3.3. Schematic representation of the operating mode of the model….………….29 

Fig. 3.4. Experimental power-flow curve of the pump ………………………...……….34 

Fig. 3.5. Average monthly irradiation for 2013 and duration of the olive tree irrigation 

season ………………………………………………………………………….....35 

Fig. 3.6.a. Photovoltaic power generation on 30th June 2013, power threshold and 

operation sequence of sectors S1, S2 and S3 of the irrigation network 

………………………………….……………………………………………….....36 

Fig. 3.6.b. Photovoltaic power generation on 25th April 2013, power threshold and 

operation sequence of sectors S1, S2 and S3 of the irrigation network 

…………………………….…………………………………………………….....36 

Fig. 3.7.a. Seasonal distribution of daily effective precipitation, soil water content 

(SW), soil water content threshold for corrections, required and applied 

irrigation depth and irrigation correction depth in S1 for the 2013 irrigation 

season …..………………………………………………………………………...42 



List of Figures 

xxx 
 

Fig. 3.7.b. Seasonal distribution of daily effective precipitation, soil water content 

(SW), soil water content threshold for corrections, required and applied 

irrigation depth and irrigation correction depth in S2 for the 2013 irrigation 

season ..…………………………………………………………………………...43 

Fig. 3.7.c. Seasonal distribution of daily effective precipitation, soil water content 

(SW), soil water content threshold for corrections, required and applied 

irrigation depth and irrigation correction depth in S3 for the 2013 irrigation 

season …..………………………………………………………………………...44 

Fig. 4.1. Schematic representation of the PV irrigation installation in Cordoba (South 

Spain) …………………………………………………………..…………………61 

Fig. 4.2. Environmental burdens associated with the installation and operation of the 

different energy generation options assessed …..…………………………….69 

Fig. 4.3. Materials percentage contribution towards the installation of each energy 

generation option …………………………………………………….…………..73 

Fig. 4.4. Installation and operation costs (in Euros) for the different options for a 30-

year lifespan ………………………………………………………………………75 

Fig. 4.5. Environmental impact (a) GWP, (b) ARDP, (c) AP, (d) HTP and € FRDP 

burden categories for each energy supply option for a range of different 

lifespan durations ………………………………………………...………………77 

Fig. S.4.6.1. Percentage contribution of components in Scenarios 1 and 2, comparing 

the solar PV and diesel generator, for the five impact categories examined: 

(a) GWP, (b) ARDP, (c) AP (d) HTP and (e) FRDP burdens …………….…...90 

Fig. S.4.6.2. Dynamic environmental impact of the grid electricity for each of the five 

impact categories investigated, which is based on increased renewable 

energy contributions to the grid over the next 30-years ……….……..……….91 

Fig. 5.1. Layout of the PV irrigation system of the University of Córdoba …….……..98 

Fig. 5.2. Flow chart for MOPISS algorithm ….…………………………...……………104 



List of Figures 

xxxi 
 

Fig. 5.3. Schematic representation of the process for pipes diameter sizing and real 

pipes velocity determination ………………………...…………………………105 

Fig. 5.4. Schematic representation of the two-point crossover operator ….…….....106 

Fig. 5.5. Evolution of OF1 (left) and OF2 (right) throughout 100 generations for 

scenario 1 and 2 ………………………………………………………………...110 

Fig. 5.6. Pareto front for OF1 and OF2 for generation 100 ……………………….....111 

Fig. 5.7. Maximum and minimum flow velocities and total length for each pipe 

diameter (mm) in the network design for solutions for both scenarios …….114 

Fig. A.1. Architecture of Real time Smart Solar Irrigation Manager (RESSIM) .......133 

Fig. A.2. Architecture of the open database of RESSIM …………………………….137 

Fig. A.3. Chart flow of RESSIM ………………………………………………………..138 

Fig. A.4. RESSIM graphical user interface (GUI) …………………………………….141 

Fig. A.5. Experimental farm of Cordoba University …………………………………..142 

Fig. A.6. Irrigation scheduling with the smart photovoltaic irrigation manager (SPIM) 

and RESSIM management for a whole irrigation season …………………...144 

Fig. A.7. Photovoltaic power generation, power threshold and operation sequence of 

sectors of the irrigation network in the Julian day of the year 106 (a) and 209 

(b) of the irrigation seasons ……………………………………………………145 

Fig. A.8. Screenshots of the RESSIM model on the Julian day of the year 106 (a) and 

209 (b) …………………………………………………………………………...146



 

 



List of symbols and abbreviations 

xxxiii 
 

List of Symbols and abbreviations 

 

A: irrigated area 

AC: ant colony 

AP: acidification potential 

ARDP: abiotic resource depletion potential 

CD: crop density 

Cp: pumping system cost 

CRUD: create, read, update and delete 

D: deep percolation (chap 3) 

D: total days for month (chap 5) 

DE: differential evolution 

DF:  emitter flow rate 

Dr: soil moisture depletion in the root area 

EAW: easily accessible water 

EB: environmental burden 

Egen: total monthly energy production 

Emax: maximum daily energy production 

Emean: mean daily energy production 

Emin: minimum daily energy production 

EPBT: energy payback time 

Ereq: total monthly energy required 



List of symbols and abbreviations 
 

xxxiv 
 

Etc adj: real crop adjusted evapotranspiration 

ETc: crop evapotranspiration 

ETo: reference evapotranspiration 

FRDP: fossil resource depletion potential 

GA: Genetic Algorithms 

gen: generations 

GGEs: greenhouse gas emissions 

GHG: greenhouse gas 

GP: genetic programming 

GPE: genetic programming expression 

GUI: graphical user interface 

GWP: global warming potential 

H: hydrants  

Hi: minimum pressure head required for sector i 

HS: harmony search 

HTTP: human toxicity potential 

i: sector index 

IAp: applied irrigation depth 

Ib: irradiance on the horizontal surface 

ICTs: information and communication technologies 

Id: diffuse irradiance 

ID: irrigation days of the month 



List of symbols and abbreviations 

xxxv 
 

IE: irrigation efficiency 

In t: irradiance on the collector plane 

Istc: irradiance under standard conditions 

JSON: JavaScript object notation 

K: environmental burden associated to each material or process 

Kc: crop coefficient 

Kr: coefficient of soil evaporation reduction 

LCA: life cycle assessment 

LCC: life cycle cost 

LCCinst: total life cycle cost associated to the installation stage 

LCCope: total life cycle cost associated to the operation stage 

Lp: total length of each pipe type included in the network 

MOPISS: model for optimal photovoltaic irrigation system sizing 

n: day of the year 

ne: number of emitters in sector 

NE: number of emitters per plant 

NGSA: non-dominated sorting genetic algorithm 

OF: objective function 

P: pipes 

PA: precision agriculture 

PCϕ: unit cost of the commercial pipe diameters 



List of symbols and abbreviations 
 

xxxvi 
 

PE: polyethylene 

Peff: effective precipitation 

PeffR: real effective precipitation 

Pmin i: minimum power demand of sector i 

Pn: net power transferred to the pump 

pop: population 

PP: peak power under standard conditions 

Ppv n t: instantaneous photovoltaic power 

PS: particle swarm 

PV: photovoltaic 

PVPP: photovoltaic peak power 

qe: emitters flow 

Qi: flow demand for sector i 

R: runoff 

rb: geometric factor which relates beam irradiation on the tilted plane to that on the 

horizontal surface 

RDI: regulated deficit irrigation coefficient 

RE: renewable energy 

RESSIM: real time smart solar irrigation manager 

S: energy source option (chap 4) 

S: number of sectors (chap 5) 

Sc: cultivated area 

ShH: sector for hydrant H 



List of symbols and abbreviations 

xxxvii 
 

SPH: solar peak hours 

SPIM: smart photovoltaic irrigation manager 

Spv: PV modules surface  

SQL: structured query language 

SW: soil water content 

t: time of day 

TAW: total available soil water 

Tcell: cell temperature in the modules 

treq: irrigation time required 

Tstc: cell module temperature under standard conditions 

U: total units for the material or process involved in each option 

UC: unit cost 

v: variables 

Vmax: maximum velocity rate 

Vmin: minimum velocity rate 

𝑉𝑝𝑃
: flow velocity for pipe P in the network 

Vreq: daily irrigation volume required 

WA: monthly water allocation 

X: total number of different materials and processes 

ηam: asynchronous motor efficiency 

ηfc: converter efficiency 



List of symbols and abbreviations 
 

xxxviii 
 

ηp: pumping system efficiency  

𝛥 treq i n: time correction 

𝛽: performance decay coefficient due to the rising temperature of the module cells 

𝛾: water specific weight 

𝜌, 𝜔 and 𝛾: weighting coefficients for objective function 2 

𝜌: albedo 

 𝜑: tilt angle of the modules, in degrees 

 



1. Introduction 

1 
 

1. Introduction 

1.1. Background 

The global population increase is expected to reach 9.7 billion people by 2050. 

This fact will require substantial improvements in the use and conservation of 

resources, which should be enough to satisfy the growing food demand (Tubiello et 

al., 2014; FAO, 2017). In that way, the transformation of rainfed systems into irrigated 

lands allows for double and triple cropping, and also increases its production (FAO, 

2011). Nowadays, irrigated agriculture, with around M 324 ha (FAO, 2014), 

represents 70% of global freshwater extraction, which must be considered under a 

climate change and limited resource context (FAO, 2017). In that way, the 

modernization of the agricultural sector implied some measures, as the 

transformation of open distribution networks into pressurized ones, among others. 

These water pressurized distribution systems allowed improving the efficiency in the 

use of water but also increased the energy requirements for pumping, which rose 

farm operation costs (Corominas, 2010; Fernández García et al., 2013). In this 

context, initiatives focussed on the optimization of both, water and energy use in 

agriculture, are specially required. 

Higher farm energy requirements not only affect to the economic aspects, but 

also increases the greenhouse gas emissions (GGEs) due to agricultural activities. 

Moreover, high diesel and electricity costs and often unreliable energy services in 

isolated areas hinders pumping requirements satisfaction for irrigation for small and 

large farmers (Hartung and Pluschke, 2018). Due to these facts, and the social 

concern about global warming and climate change, renewable energies are being 

widely integrated in the agricultural sector. This alternative energy sources, as wind, 
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hydraulics and solar, allow reducing the environmental impact and grid-electricity or 

diesel dependency of farms (Carrillo Cobo et al., 2014). 

1.2. The Spanish irrigation agriculture 

The agricultural sector is one of the Spanish key activities for the economy, 

along with the service sector, construction and industry  (INE, 2018). The total 

cropped area of the country is around M 17 ha, from which M 3.7 ha, representing 

22% of the total, are irrigated (MAPA, 2018). The most representative crops are 

cereals, olive orchard and vineyard, with 25%, 21% and 10% of the area, respectively 

(MAPAMA, 2017). One of the most remarkable challenges facing the Mediterranean 

agricultural activities is defined by water scarcity and the irregular distribution of 

precipitation and droughts that characterises this climate, exacerbated by climate 

change. In that way, the Spanish National Irrigation Plan  focused on the 

modernisation of the hydraulic infrastructures and the incorporation of research 

programs and innovative techniques, being the improvement of the sustainability one 

of the main principles of the initiative (MAPA, 2001). Thus, as a direct consequence 

of the modernization process, in addition to the pressurization of a large part of the 

distribution networks, irrigation systems, as drip or sprinkler, made possible to 

improve water use efficiency at farm level. These two irrigation systems currently 

represent around 39% and 27% of total water used by irrigated agriculture, 

respectively, which set at around 14.9 hm3 (INE, 2016). Thus, irrigation 

modernization in the period from 2007 until 2017, showed a significant evolution on 

the main irrigation systems used. This was reflected in a 17% reduction of the area 

irrigated by gravity, while sprinkler, automotive irrigation and localised irrigation rose 

23%, 27%, and 28%, respectively (MAPAMA, 2017). Moreover, irrigation 
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management based on climatic variables, crop characteristics and phenological 

stage, just as the application of deficit irrigation techniques, made it possible to adjust 

irrigation doses, reducing the total water volume used. Concurrently, the achieved 

improvements in water use efficiency derived from the pressurization translated into 

a higher energy dependency of farms, required not only for water abstraction but also 

for pumping (Corominas, 2010). These higher energy requirements together with the 

increase in the electric tariffs and fuel could endanger the profitability of some crops. 

In Spain, the electricity sector currently accounts for almost a quarter of final 

energy consumption, only behind petroleum products (CES, 2017). In the last ten 

years, its final price has followed an upward trend. This continued growth of final 

electricity price, composed  by the energy, entry fee and taxes prices, has been 

mainly explained by the evolution of the regulated costs: tolls and taxes, which 

represent 60% of the final price (CES, 2017). In addition to the economic aspects, in 

the CO2 emissions context, the agricultural sector in Spain reached 33.75 Mt in 2016. 

This figure represents 17% of the emissions related to “diffuse sectors”, which 

comprises agriculture, transport, residential and commercial activities (MITECO, 

2016). In this same way, the generation structure of the electricity also plays an 

important role, since the higher the presence of renewable energies in the electricity 

mix is, the lower the environmental burden linked to its use will result. In the case of 

the Spanish grid electricity, in the last 8 years, renewable energies have represented 

on average 36% (REE, 2019a) of the total energy generated (Fig. 1.1). 
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Fig. 1.1 Energy generation from renewable and non-renewable energy sources in Spain 
between 2011 and 2018. Source: Author´s elaboration based on REE (2019b) 

From this 36% of energy, between 8-10% came from solar photovoltaic (PV) 

(REE, 2019b). Thus, PV energy represented the third renewable energy source 

related to its production, with around 8000 GWh yearly, following wind and hydraulics 

(Fig. 1.2). Nevertheless, renewable energies participation in the electricity grid should 

increase in the next years to achieve the proposed objectives of the environmental 

policies. 
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Fig. 1.2 Energy generation expressed as GWh, from the different renewable energy sources 
in Spain between 2011 and 2018. Source: Author´s elaboration based on REE (2019b) 

The Integrated National Energy and Climate Plan addresses the policies and 

measures needed to contribute to the European target with a reduction of at least 

20% of GHGs by 2030, compared to 1990 levels,  which implies the contribution of 

the diffuse sectors, within which agriculture is included (MITECO, 2019). In this way, 

initiatives for reducing GHGs emissions already proposed by the national 

government include the substitution in the agricultural sector of fossil fuels by 

renewable energies, by using biomass boilers and solar irrigation, as example 

(MITECO, 2016). This proposal of integrating PV energy in irrigation in Spain is also 

favoured by high levels of radiation which are recorded in most of the Spanish area 
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throughout the year. Thus, PV technology shows a great potential as alternative 

energy source to the traditional ones for achieving a more sustainable and profitable 

agriculture. 

1.3. Photovoltaic irrigation 

The EU- 28 is currently the third largest emitter of GHGs on a global scale 

(Ministry of Defence, 2018). Its GHGs emissions evolution has followed a general 

decreasing trend from 1990, in which Spanish emissions have represented between 

5.1 and 8.4% (Fig. 1.3). Even so, the transition to a competitive low-carbon European 

economy entails to reduce its internal emissions by 80% by 2050, compared to 1990 

levels (EC, 2011). 

 

Fig. 1.3. European and Spanish Greenhouse gas emissions evolution in the period 1990-
2017. Source: Author´s elaboration based on (Eurostat, 2019) 
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In this context, some countries are promoting solar PV irrigation systems in 

the framework of national action plans regarding climate change as a way to reduce 

emissions from agriculture. This fact is also fostered by the continuous reduction of 

solar panels cost, which makes its implementation in irrigation economically viable 

for farmers. Nevertheless, the integration of technology for solar pumping and 

irrigation is needed and is expected to be available in the future (Hartung and 

Pluschke, 2018).  

To date, research works focused on the integration of renewable energies in 

irrigation have developed several methodologies and systems whose power source 

is based on solar PV. The most common configurations imply the hybridization with 

other renewable energies, as wind; the storage of potential energy, by pumping water 

from the supply point until a high reservoir or tank, from which the irrigation is 

subsequently applied by gravity; or the use of batteries/diesel generator as support 

system (Maheshwari et al., 2017; Ouachani et al., 2017; Yahyaoui et al., 2016). 

These options involve an increase in the investment cost of the system, space 

requirements and an important environmental burden related with the disposal of 

batteries or the use of diesel (Reca-Cardeña and López-Luque, 2018). For that 

reason, the study of the particularities of each project for the system configuration 

selection is crucial. Moreover, some crops can tolerate certain water stress, so they 

could operate with a direct injection system without any energy/water storage or 

support element. In this way, all solutions try to find the way of compensating the 

variability on PV power production, to meet the demand of the irrigation network 

during the irrigations season. In addition, the decrease in PV technology cost in 

recent years (Reca-Cardeña and López-Luque, 2018) facilitates its implementation 

in existing irrigation networks, substituting diesel or the electricity grid, as well as in 
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new irrigation projects. Usually, developed methodologies for the design of PV 

irrigation systems focus on the optimal PV plant dimensioning and do not take into 

account the need of considering both, the hydraulic (irrigation network) and energy 

components (PV plant) of the system jointly, in order to optimise the total cost of the 

installation, as well as its operability, in accordance to the particularities of this energy 

source. In the same way, works which objective was to optimize the irrigation network 

dimensioning did not usually consider the energy source nature.  In both cases, the 

most common optimization developed methodologies include optimization algorithms 

as Genetic Algorithms (GA). GA is a tool to find optimal solutions to a multi-objective 

problem. This optimization algorithm performance relies on the generation of a series 

of possible solutions which are subsequently evaluated and selected. Selected 

solutions are then also evaluated, based, in both cases, on its fitness to the 

established objective functions (Deb et al., 2002). This process is repeated until the 

total generations of individuals are completed, which will show a set of optimal 

solutions.  

In a general overview of PV irrigation systems, previous investigations have 

revealed that this technology shows potential reductions in GHGs emissions per unit 

of energy, compared with pumps powered by grid electricity or diesel (GIZ, 2016). 

Nevertheless, the design of the system will also reverberate on its environmental 

impact, due to the burden associated to the production of PV modules, principally 

(Desideri et al., 2012). The environmental burden associated to PV energy is 

frequently analysed with Life Cycle Assessment (LCA) methodology. This 

methodology allows accounting not only for the GHGs emissions, but also includes 

other environmental categories as acidification, abiotic and fuel resources depletion 

potentials, including the production, transport, operation and, in some cases, the 
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disposal of the devices at the end of its useful lifespan (IEA, 2011). The LCA works 

of PV installations usually shows the different burdens related to 1 kWh of generated 

energy, considering all potential energy production of the modules. Nevertheless, in 

the case of irrigation, not all the energy produced is used, so a specific study in which 

the operation time of the system is included would be necessary. In that way, related 

with the surplus of PV energy generated, Agrivoltaic production sustains that new 

agriculture should not only be self-sufficient energetically, but also it should generate 

an energy surplus, which would be injected in the grid, optimizing the economic 

returns of the farm (Reca-Cardeña and López-Luque, 2018). Thus, Agrivoltaic 

concept is known as the amalgamation between the crop and PV energy production 

in a same field. In this case, all energy produced would be used, although national 

legislation of each country would define the extra farm profits derived from the sale 

of the surplus of energy. 

In essence, PV technology is going to play an important role as energy source 

in the new agriculture concept, as a more sustainable and profitable alternative to the 

traditional options. Nevertheless, drawbacks associated to the variability in the PV 

energy production, due to its dependency on climatic variables, will make necessary 

to develop new methodologies and tools. Thus, the integration of PV energy 

production with hydraulic and agronomic aspects of the irrigation sector in a specific 

smart management system allows for the energy self-sufficiency of the farm. 

Moreover, the lower dependency on diesel or electricity grid of farms and the 

development of specific designing PV irrigation system methodologies, which involve 

economic and operation aspects, allows for the resources consumption optimization 

and thus, the environmental economy of agriculture. 
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2. Objectives and thesis structure 

2.1. Objectives 

The general objective of this thesis is to develop new tools for the integration 

of photovoltaic energy in the irrigation sector considering economic, environmental 

and operability aspects. 

To achieve this goal, the specific objectives are detailed below: 

1. Develop a smart photovoltaic irrigation system to apply crop irrigation 

requirements based on the synchronization of the photovoltaic power 

production with the power requirements and the water demand of the 

irrigation sectors of the network. 

2. Determine the environmental impact and economic costs associated to 

photovoltaic energy in irrigation systems and compare with the use of 

traditional energy sources. 

3. Develop a model for the optimal sizing of photovoltaic irrigation systems 

based on economic and operability aspects.    

2.2. Thesis structure 

According to these objectives, this thesis comprises six chapters and one 

appendix. Following the introduction (Chapter 1) and objectives (Chapter 2), the 

chapters are: 

Chapter 3 presents a model to manage photovoltaic irrigation by the 

synchronization of the photovoltaic power production and the hydraulic power and 

irrigation water demands of the sectors that make up the network. This model 
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considers climatic, hydraulic, energetic variables and the specific characteristics of 

the crop, soil and the selected irrigation scheduling. This chapter has been published 

under the title “Coupling irrigation scheduling with solar energy production in a smart 

irrigation management system” (2018) by Mérida García A, Fernández García I, 

Camacho Poyato E, Montesinos Barrios P, Rodríguez Díaz JA in Journal of Cleaner 

Production. 

Chapter 4 includes an environmental an economic analysis of photovoltaic 

energy in irrigation and compares these results with those obtained for the use of 

traditional energy sources (diesel generators and grid electricity). This chapter has 

been published under the title “Comparing the environmental and economic impacts 

of on- or off- grid solar photovoltaics with traditional energy sources for rural irrigation 

systems” (2019) by Merida García A, Gallagher J, McNabola A, Camacho Poyato E, 

Montesinos barrios P, Rodríguez Díaz JA in the journal Renewable Energy. 

The methodology developed to resolve the optimal dimensioning of the 

photovoltaic irrigation system is integrated in the model presented in Chapter 5. This 

methodology, which includes economic and operability aspects, is based on evolutive 

algorithms and incorporates also the model previously stated in Charter 3, which is 

used to check the operation aspects of the possible designs evaluated. The model 

offers as results the hydrants grouping, pipes size and the photovoltaic plant peak 

power required. This chapter corresponds to the paper “Comprehensive sizing 

methodology of smart photovoltaic irrigation systems” (2020) by Merida Garcia A, 

Gonzalez Perea R, Camacho Poyato E, Montesinos Barrios P, Rodríguez Díaz JA, 

published in the journal Agricultural Water Management. 
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Appendix A includes the paper “Middleware to operate smart photovoltaic 

irrigation systems in teal time” (2019) by González Perea R, Mérida García A, 

Fernández García I, Camacho Poyato E, Montesinos P, Rodriguez Diaz JA, 

published in the journal Water. It shows the tool developed for the real on field 

management of the smart photovoltaic irrigation system. Thus, this work provides a 

useful middleware to control and supervise smart photovoltaic irrigation systems 

operation. This is a platform which connects several information sources as 

agroclimatic stations and databases with a graphic interface, being the model 

detailed in chapter 3 the management centre of the platform.  
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3. Coupling irrigation scheduling with solar energy 

production in a smart irrigation management system 

This chapter has been published entirely in the journal “Journal of Cleaner 

Production”, A. Mérida García, I. Fernández García, E. Camacho Poyato, P. 

Montesinos Barrios, J.A. Rodríguez Díaz (2018) 

 

Abstract. In recent years, pressurized pipe networks have improved the 

efficiency of irrigation systems while substantially increasing their energy demand. 

The progressive rise in energy costs makes it difficult to maintain the profitability of 

agricultural holdings. Moreover, global warming is a serious problem that threatens 

the environment worldwide and low CO2 emission processes should be promoted. 

To address these issues, it is necessary to look for sustainable and more profitable 

alternatives for the agricultural sector. One of these new alternatives is the use of 

renewable energies for pumping irrigation water at farm level, particularly 

photovoltaic energy. Nevertheless, the instability of irradiation hinders its 

management for stand-alone photovoltaic installations. In this work, a real-time 

model called the Smart Photovoltaic Irrigation Manager (SPIM) is developed to 

synchronize the photovoltaic power availability with the energy required to pump the 

irrigation requirements of different sectors of irrigation networks. SPIM consists of 

different modules to calculate the key management variables of the photovoltaic 

irrigation system: the daily irrigation requirements, the hydraulic behaviour of the 

irrigation network, the instantaneous photovoltaic power production and the daily soil 

water balance. The lack of photovoltaic energy during daylight hours on any day of 

the irrigation season to supply the daily required amount of water is balanced with 
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either the water stored in the soil or by extending the duration of the irrigation events 

in the following days when necessary. SPIM has been applied to simulate the 

management of photovoltaic irrigation in a real olive orchard in Southern Spain during 

the 2013 irrigation season. The results showed that the proper management of the 

photovoltaic irrigation system provided enough water to satisfy crop irrigation 

requirements throughout the irrigation season and avoided the emission of 1.2 t CO2 

eq. using only the energy generated by solar panels. 

Keywords: Precision irrigation; Energy availability; Sustainable irrigation. 

3.1. Introduction 

In some areas, the consequences of climate change on the availability of 

resources seem to be evident. Irregular and unpredictable precipitations or extended 

periods of drought and floods are some examples of such effects. These changes 

also favour the emergence of severe pests and crop diseases, which result in harvest 

losses and the need for higher agrochemical applications (Rosenzweig et al., 2001). 

In subsequent years, contamination and climate change will have negative impacts 

on agriculture, thus threatening world food security (Nelson et al., 2009). Against this 

backdrop, proper energy and water management is essential to reduce contaminant 

emissions and ensure world food production (Tubiello et al., 2014). Moreover, a 

growing population has resulted in a significant increase in global food demand that 

entails greater pressures on water resources. To address this problem, agriculture 

has undergone significant intensification, which has involved the development of new 

harvesting technologies and new irrigation systems, among others. In recent years, 

for example, open channel systems have been fully transformed into pressurized 

pipe systems and more efficient on-farm irrigation systems have been adopted in 
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Mediterranean countries, where irrigated agriculture is of major importance. Although 

this process of modernization has led to improved water use efficiencies, large 

amounts of energy are required for the abstraction, transportation and distribution of 

water (Corominas, 2010). Irrigation networks are usually powered by electric energy 

coming from the power grid. However, in the case of isolated areas where grids are 

not available, pumping systems mainly depend on diesel engines. Hence, agricultural 

modernization and its consequent dependence on electric energy and fuel motors 

have led to an exorbitant increase in carbon emissions. In the last fifty years, 

greenhouse gas (GHG) emissions generated by agriculture, forestry and fishing have 

doubled. In 2010, more than 785 million tonnes of CO2 corresponded to emissions 

related to the use of energy in the agricultural sector. This figure represents nearly 

one fifth of the total world CO2 emissions (Tubiello et al., 2014). Moreover, the 

increase in electrical rates and fuel prices linked to the large consumption of energy 

on farms has dramatically raised the annual operating costs of agricultural activities. 

To remediate this situation, it is essential to search for new management alternatives 

for agricultural systems that focus on reducing environmental impact, while 

enhancing farm profitability. In order to improve energy efficiency in pressurized 

irrigation systems, several methodologies have been developed. Fernández García 

et al. (2013) reduced energy consumption by network sectoring, achieving energy 

savings of between 20% and 29%. Another option to diminish energy demand is to 

control critical points (hydrants with high energy requirements due to their distance 

from the supply point or to their elevation) (Khadra and Lamaddalena, 2010; Díaz et 

al., 2012). The proper management of critical points improves the overall efficiency 

of the irrigation infrastructure with minimal costs, saving around 27% of the energy 

consumed previously in the peak month (González Perea et al., 2014). However, 
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these strategies were designed for networks powered by conventional energy 

sources (electricity grid or fuel). Due to global warming and environmental damage, 

renewable energies are being promoted as new, clean and sustainable alternatives 

to conventional energy sources. Photovoltaic and wind energy, for example, are 

being incorporated as reliable energy sources in the industrial and agricultural 

sectors. Hamidat et al. (2003) applied solar energy to small-scale irrigation, covering 

daily water needs in plots smaller than 2 ha in the Sahara region. Other works have 

shown that the use of hybrid (wind/solar) systems as an energy source can satisfy 

irrigation energy requirements and increase profitability by combining winter and 

summer crops (Vick, 2010). Other authors have estimated the real power production 

of photovoltaic panels and developed sizing and performance optimization methods 

for irrigation systems powered by solar energy (Jafar, 2000; Bakelli et al., 2011; 

López-Luque et al., 2015; Louazene et al., 2017). In this way, Chandel et al. (2017) 

and Li et al. (2017) analysed the different factors affecting the performance of the 

photovoltaic pumping system, considering also hybrid systems (photovoltaic-wind) 

as a solution to improve the overall efficiency of the energy production system. 

However, these previous works do not integrate irrigation management with solar 

energy production, which varies seasonally and during the day. Carrillo Cobo et al. 

(2014b) combined network sectoring with an energy supply based partially on solar 

energy. In their study, the authors defined the sector size to best match the variable 

production of photovoltaic energy and reduce dependence on the electricity grid. 

Based on this methodology, they estimated energy cost savings of up to 72%. A 

recent work (Yahyaoui et al., 2016) focused on the optimal management of energy 

sources (photovoltaic panels and batteries) aimed at storing the monthly crop 

irrigation requirements in the reservoir that supplies water to the irrigation system. 
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Ghavidel et al. (2016) studied the most economical option using a modified 

gravitational search algorithm for a system which also included a water tank for both 

drinking and domestic water and compared the use of photovoltaic energy and PATs 

(pump as turbine) with and without the use of combustion engines. Reges et al. 

(2016) presented a photovoltaic system which included batteries for the energy 

storage. Kabalci et al. (2016) worked also with a similar system, including a water 

storage tank remote controlled. The use of energy and water storage systems is 

justified due to the continuous variations in sun irradiation, which can drastically 

decrease the efficiency of the irrigation system (Closas and Rap, 2017). Maheshwari 

et al. (2017) designed a photovoltaic irrigation system which pumped the irrigation 

water into a storage tank, supplying water to the irrigation system by gravity. Bhosale 

et al. (2017) also worked on a smart scale model at lab level for a photovoltaic 

irrigation system, including batteries and soil moisture sensors to automatically 

control the water supply. In a similar line, Bhattacharjee et al. (2017) developed an 

optimized power management method in which a battery provided the required 

energy in the intervals with insufficient photovoltaic power. Ouachani et al. (2017) 

developed intelligent algorithms for the optimal management of renewable energy 

systems that combine wind turbines and photovoltaic panels and store energy in a 

battery bank. However, none of the cited works has studied the interaction among 

the variability of solar energy production, the hydraulic behaviour of the irrigation 

system and irrigation scheduling at farm level on a daily basis. These factors strongly 

affect the operation of the pumping system when water is supplied directly to the 

irrigation system without batteries or intermediate water tanks. In this work, we have 

developed a smart irrigation management model based on the use of solar energy to 

directly supply the irrigation water to the network, without intermediate storage 
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elements (water tanks and batteries). The innovation of this model relies on the 

integration in a single algorithm of the coordinated operation of the solar energy 

production, the pumping station, the irrigation network and a soil-water-plant model 

to satisfy the crop irrigation requirements. To use efficiently the available amount of 

water, the model synchronizes, in real time, the power requirements of the irrigation 

system (related to its location, size and hydraulic features) with the instantaneous 

solar irradiation. Smart irrigation management relies on the model's memory to 

compensate insufficient daily irrigation times by extending the duration of irrigation 

events in the following days, according to the availability of energy. The model was 

applied to establish the daily operation of the irrigation system in an olive orchard 

located in Cordoba (southern Spain) for the 2013 irrigation season. 

3.2. Methodology 

3.2.1. Case study 

This study analyses the operation of an irrigation network that uses solar 

energy to supply water to olive trees grown on an intensive basis. The trial site is 

located on the experimental farm of the University of Cordoba (southern Spain) (Fig. 

3.1). 

The farm spans an area of 13.4 ha and has an average elevation of around 

160 m above sea level and a maximum elevation difference of 24 m. The agro-

climatic characteristics of the experimental site are typically Mediterranean, with an 

average annual temperature of 17.5 ºC and total annual rainfall of 500-600 mm, 

mainly in fall and spring. The annual daily average irradiance is 5.14 kWm-2, with 

maximum values from 9:30 h to 15:30 h (local time). The highest values of irradiance 
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on the horizontal plane are generally recorded in July, with more than 900 Wm-2 at 

midday (CENSOLAR, 2007). Climate data were obtained from a weather station 

located within the university campus. Concerning the soil features, trees are 

cultivated in a clay-loamy soil with increasing clay content in deeper soil profiles.  

 

Fig. 3.1. Irrigation network of the experimental field at the University of Cordoba (Southern 
Spain) 
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A 13 kW submersible pump powers water from a reservoir into the irrigation 

network. The network feeds 13 hydrants grouped into 3 sectors, each of which is 

controlled by an electrovalve. The trees are watered by drip irrigation using pressure 

compensating emitters that work between 1 and 4 bar. The photovoltaic system is 

located on the roof of a storehouse located 200 m from the pump. The system 

provides a peak power of 15.4 kW by 120 photovoltaic panels that occupy 168 m2 of 

surface area. The panels are south facing, with a fixed tilt angle of 15º. A solar 

irradiance sensor located near the solar panels provides information in real time. The 

pump operating point is controlled by a variable frequency drive, which matches 

pressure and flow according to the instantaneous solar irradiance. 

3.2.2. Model description 

The proposed model, which is called the Smart Photovoltaic Irrigation 

Manager (SPIM), was developed in MATLAB™. The aim of SPIM is to provide 

seasonal smart irrigation schedules on a daily basis for crops at plot scale using solar 

energy to pump water directly into the irrigation network. The duration of the daily 

irrigation events varies throughout the season depending on the crop requirements 

and the availability of energy. To facilitate the matching of energy availability and flow 

demand, the irrigation network is operated by sectors. The daily energy requirements 

of each sector are estimated according to the location, size, soil and crop parameters 

as well as the hydraulic features of the sector. The model matches the power demand 

of each sector in real time to satisfy the daily irrigation needs according to the 

available energy. Thus, the daily on-off sequence of sectors varies throughout the 

season depending on the instantaneous irradiance. The model's memory compares 

the accumulated values of the sectors' irrigation demands and the actual 
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accumulated volume of water applied as its aim is to reach the end of the irrigation 

campaign with the minimal difference between the values. The real operation time of 

each sector depends on the instantaneous photovoltaic power, Ppv n t, which in turn 

depends on the day of the year (n) and the time of day (t). It is also affected by 

reductions in irradiance due to adverse meteorological conditions (cloudy days). Ppv 

n t is compared with the minimal power required to pump Qi, Pmin i (W), and calculated 

as follows: 

𝑃min 𝑖 =
1

𝜂𝑝
∙ 𝛾 ∙ 𝑄𝑖 ∙ 𝐻𝑖                                       (3.1) 

where i is the sector index; Hi (m) is the minimum pressure head required for the 

proper operation of sector i, which depends on its elevation, size, hydraulic 

characteristics and type of emitters; Qi (m3s-1) is the sector flow demand that depends 

on the sector's hydraulic characteristics; hp is the pumping system efficiency for each 

pair of Qi-Hi values and g (Nm-3) is the water's specific weight. A daily irrigation time 

log is used to update the duration of the irrigation events of the different sectors on 

the following days, treq i n+1 (min) (Eq. 3.2) according to the weather conditions, which 

affect both the crop irrigation requirements and solar energy availability. 

𝑡𝑟𝑒𝑞 𝑖 𝑛+1 = 𝑡𝑟𝑒𝑞 𝑖 𝑛 + ∆𝑡𝑟𝑒𝑞 𝑖 𝑛                   (3.2) 

where n is the day index; treq i n (min) is the required irrigation time to satisfy the daily 

irrigation needs of sector i on day n and Dtreq i n (min) is the time correction due to the 

non-satisfaction of the irrigation requirements for sector i on day n. After calculating 

the power requirements, the sectors are sorted in increasing order to compare their 

Pmin i values to the Ppv n t values, which vary for the day of the year (n) and during the 
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daylight hours (t in min), while Pmin i values are constant for each sector. Any sector 

can operate when Ppv n t>1.1 Pmin i (Yahyaoui et al., 2016). The system will start to 

supply water consecutively to the lowest power demanding sectors (in increasing 

order) during their corresponding treq i n until Ppv n t is sufficient to satisfy the highest 

power demanding sector that will be irrigated during its treq i n. After irrigating this 

sector, the system irrigates the lower power demanding sectors in decreasing order 

until their corresponding treq i n are satisfied. Unexpected clouds can interrupt the 

operation of the system at any time. When this occurs, the total applied water for that 

day may be insufficient to satisfy the daily irrigation needs. If this is the case, the 

system will check the soil water balance and decide if the irrigation time for the 

following day should be corrected. A general overview of SPIM is given in Fig. 3.2, 

while details of the model are shown in Fig. 3.3. The main SPIM modules are 

described in what follows. 

 

 

 

 

 

 

 

 

Fig. 3.2. SPIM Flow chart 
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Fig. 3.3. Schematic representation of the operating mode of the model 
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3.2.3. Network hydraulic characterization module 

In order to determine the net minimum power required for each sector, the 

entire irrigation network from pump to emitters is modeled in the hydraulic simulator 

EPANET (Rossman, 2000). The whole network is analyzed to determine the required 

pressure head in the pumping station that guarantees the minimum working pressure 

in the most unfavorable emitter. The different sectors are then simulated under a 

wide range of working conditions to determine their corresponding Pmin i. To validate 

the simulation results, actual pump characteristic curves for the different pressure 

head settings of the variable speed drive should be determined from data recorded 

in the flowmeter and pressure gauge located at the pumping station. 

3.2.4. Photovoltaic power controller 

The available net instantaneous power, Ppv n t, provided by the photovoltaic 

system during the day was estimated using the following equation (López-Luque et 

al., 2015): 

𝑃𝑝𝑣𝑛 𝑡 =
 𝐼𝑛 𝑡

𝐼𝑠𝑡𝑐
∗ 𝑃𝑃 ∗ [1 − 𝛽(𝑇𝑐𝑒𝑙𝑙 𝑛 𝑡 − 𝑇𝑠𝑡𝑐)]           (3.3) 

where t is the time index; Int is the irradiance on the collector plane (Wm-2); Istc is the 

irradiance under standard conditions (1000Wm-2); PP is the peak power generated 

under standard conditions by the photovoltaic installation (W); b is the performance 

decay coefficient due to the rising temperature of the module cells (0.004 ºC-1, for 

silicon cells); Tcell n t is the cell temperature in the modules and Tstc is the cell module 

temperature under standard conditions (25 ºC). Int can be described as a function of 

the irradiance in the horizontal plane: 
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𝐼𝑛 𝑡 = 𝑟𝑏 ∙ 𝐼𝑏 𝑛 𝑡 +
1+𝑐𝑜𝑠𝜑

2
∙ 𝐼𝑑 𝑛 𝑡 +  𝜌 ∗

1−𝑐𝑜𝑠𝜑

2
∗ [𝐼𝑏 𝑛 𝑡 + 𝐼𝑑 𝑛 𝑡]      (3.4) 

where rb is the geometric factor which relates beam irradiation on the tilted plane to 

that on a horizontal surface, Ibn t, 𝜑 is the tilt angle of the modules (degree), Idnt is the 

diffuse irradiance (Wm-2) and r is the albedo (Duffie et al., 2013). Finally, the net 

power transferred to the pump, Pnt, is affected by the converter (𝜂𝑓𝑐) and the 

asynchronous motor (𝜂𝑎𝑚) efficiencies (Eq. 3.5). 

𝑃𝑛 𝑡 = 𝜂𝑎𝑚 ∗ 𝜂𝑓𝑐 ∗ 𝑃𝑝𝑣 𝑛 𝑡                             (3.5) 

To evaluate the instantaneous photovoltaic power available to water each 

sector, conservative fixed values for the converter and asynchronous motor 

efficiencies of 0.95 and 0.8, respectively, were considered in this study. 

3.2.5. Crop irrigation needs 

Daily crop irrigation needs are equivalent to crop daily evapotranspiration. The 

selected irrigation strategy was to replenish daily the crop evapotranspiration of the 

previous day. Thus, the daily irrigation volume is determined from real daily ETo 

values recorded at the nearest agroclimatic station, and from the crop coefficients 

according to the crop stage, Kcn (Doorenbos and Pruitt, 1997): 

𝐸𝑇𝑐 𝑖 𝑛−1 = 𝐸𝑇𝑜 𝑖 𝑛−1 ∙ 𝐾𝑐 𝑖 𝑛−1 ∙ 𝐾𝑟 𝑖                  (3.6) 

where ETc i n-1 is the crop evapotranspiration for day n-1 and sector i (if a different 

crop is cultivated in each sector) and Kri is the coefficient of soil evaporation reduction, 

which varies during the year in a range of 0-1 for crops with less than 60% of soil 

cover, and equals 1 otherwise. 
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Daily irrigation depth was calculated as the difference between ETc on the 

previous day and the effective precipitation on the current day, Peff, which represents 

the precipitation fraction that infiltrates into the soil and is available for the crop. This 

irrigation depth is affected by the regulated deficit irrigation coefficient, RDIn, which 

usually ranges from 0.4 to 1 depending on the crop tolerance to the lack of water in 

the different phenological phases. This coefficient permits different irrigation 

managements according to the crop production conditions. When RDIn equals 1, the 

crop will be watered to satisfy its full irrigation requirements. Values below 1 indicate 

that the irrigation target is to partially satisfy the crop irrigation needs according to 

water availability. This irrigation management practice is known as deficit irrigation, 

and is very common in water scarce regions. Controlled deficit irrigation allows 

maintaining crop production by reducing water consumption in those periods when 

the lack of water does not affect harvest, while small reductions or even no reductions 

in the irrigation needs are applied in the most critical periods (Pérez-Rodríguez and 

Parras-Cintero, 2014). Hence, this daily irrigation volume is calculated by: 

𝑉𝑟𝑒𝑞𝑖 𝑛
= [(𝐸𝑇𝑐 𝑖 𝑛−1 

− 𝑃𝑒𝑓𝑓 𝑛) ∙ 𝐼𝐸 ∙ 𝑅𝐷𝐼𝑖 𝑛−1] ∙ 𝐴𝑖 ∙ 10            (3.7) 

where Ai is the irrigated area (ha) associated to sector i, the value of 10 is the unit 

conversion factor and IE is the irrigation efficiency. 

Once Vreq i n is determined, the estimated value of the required daily irrigation 

time treq i n is calculated using the hydraulic information of each sector (number of 

emitters). These values are updated according to equation 2 during the irrigation 

season. 
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3.2.6. Daily soil water balance 

The soil water balance is calculated on a daily basis to evaluate the correction 

term Dtreq i n in Eq. (2). This correction adjusts the initial value of the required daily 

irrigation time treq i n according to real climate data (effective precipitation and 

irradiance) and the real irrigation depth applied. During the irrigation season, soil 

water content, SWi n, in sector i is calculated at the end of each day according to the 

following soil water balance equation: 

𝑆𝑊𝑖 𝑛 = 𝑆𝑊𝑖 𝑛−1 + P𝑒𝑓𝑓𝑅 𝑛 + I𝐴𝑝 𝑖 𝑛 − ET𝑐 𝑎𝑑𝑗 𝑖 𝑛 − R𝑖 𝑛 − D𝑖 𝑛      (3.8) 

where SWi n-1 is the soil water content (mm) at the end of day n-1, PeffR n is the real 

effective rainfall (mm), Ri n is runoff (mm) and Di n is deep percolation (mm). IAp i n is 

the applied irrigation depth (mm), which is calculated from water meter records and 

ETc adj i n is the real crop adjusted evapotranspiration of the current day, which is 

calculated by Eq. (3.9) (FAO, 2006): 

𝐸𝑇𝑐 𝑎𝑑𝑗 𝑖 𝑛 = (
𝑇𝐴𝑊−𝐷𝑟𝑖 𝑛

𝑇𝐴𝑊−𝐸𝐸𝑊𝑖
) · 𝐸𝑇𝑐 𝑖 𝑛                           (3.9) 

where TAW is the total available soil water, Dr is the soil moisture depletion in the 

root area (mm) and EAW is the easily accessible water, estimated as a percentage 

of TAW. In cloudy days, if SWi n values are greater than a threshold based on EAW, 

then Dtreq i n is 0. Otherwise, its value is calculated by: 

∆𝑡𝑟𝑒𝑞 𝑖 𝑛 =
𝑉𝑟𝑒𝑞 𝑖 𝑛− 𝐼𝐴𝑝 𝑖 𝑛·𝐴𝑖

∑𝑞𝑒 𝑖 𝑛𝑒 𝑖
                                (3.10) 
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where qe i is the emitter's flow (l h-1) for sector i and ne i the number of emitters of the 

sector i. The duration of the irrigation season can be previously defined, being 

subsequently adjusted depending on the water allocation and the precipitation 

distribution in the year. 

3.3. Results and discussion 

3.3.1. Hydraulic network analysis 

SPIM has been applied to schedule the irrigation season of the olive orchard 

described in section 2.1. The irrigation system consisted of 3 sectors (S1, S2 and 

S3), whose Pmin i, were determined by hydraulic analysis. These values increased by 

10%, resulting in threshold powers of 5.94 kW, 12.39 kW and 9.6 kW for S1, S2 and 

S3, respectively. The pump provided pressure head values ranging from 35 to 55 m, 

with a corresponding range of power requirements between 2 and 11.5 kW 

depending on the sector and the flow. Fig. 3.4 shows the experimental flow-power 

curves for each sector at different pressure heads. 

Fig. 3.4. Experimental power-flow curve of the pump 
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As a threshold was established for the operation of each sector, each sector 

provides the flow corresponding to this power threshold most of the time, with only 

small fluctuations (5.7 l s-1, 12.6 l s-1, and 11 l s-1 for sector 1, 2 and 3, respectively). 

3.3.2. Photovoltaic energy production 

The production of photovoltaic energy during the day was estimated 

according to the irradiance on the horizontal plane, which was measured by an 

irradiance sensor in 5-min intervals. The highest monthly irradiance within the annual 

energy production of the photovoltaic system coincides with the irrigation season in 

the region for woody crops (from April to September) (Fig. 3.5). 

 

Fig. 3.5. Average monthly irradiation for 2013 and duration of the olive tree irrigation season 
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(blue line) by the photovoltaic system on 30th June (clear day) in which the maximum 

power provided by the system was 15.62 kW, corresponding to an irradiance value 

of 1419 Wm-2 on the inclined collector plane. In partially cloudy days, such as 25th 

April (Fig. 3.6b), the energy production of the photovoltaic system (blue line) showed 

large fluctuations. On these days, the number of available hours with sufficient solar 

power was lower. 

 
Fig. 3.6.a. Photovoltaic power generation on 30th June 2013, power threshold and operation 

sequence of sectors S1, S2 and S3 of the irrigation network. 

Fig. 3.6.b. Photovoltaic power generation on 25th April 2013, power threshold and operation 
sequence of sectors S1, S2 and S3 of the irrigation network. 
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Table 3.1 shows the highest, medium and lowest values of the daily energy 

produced each month of the 2013-irrigation season and the monthly energy produced 

by the photovoltaic installation. In some cases, months with a higher expected energy 

production (August) have a lower maximum daily energy production compared to 

other months, such as May. This is due to the negative effect of high temperatures 

on the modules’ performance (Binshad et al., 2016). Additionally, the monthly 

absolute energy requirements and their fraction over the generated energy are also 

included in the table. The range of energy demand over energy production varied 

between 16 and 35.5%, thus indicating that the photovoltaic station assuring the 

application of the full water allocation during the irrigation season. The remaining 

energy that is not used in irrigation could be employed in other activities or even be 

delivered to the grid if permitted under national electrical regulations. 

Table 3.1. Maximum (Emax), minimum (Emin) and mean (Emean) daily energy production, total 
monthly energy production (Egen), total monthly energy required (Ereq) and total monthly 
energy required to produced energy ratio (%) at the experimental site for 2013. 

 
Emax 

(kWh/d) 

Emean 

(kWh/d) 

Emin 

(kWh/d) 

Egen  

(kWh) 

Ereq  

(kWh) 
% 

April 125.10 90.15 26.45 2,704.54 459.78 17.00 

May 146.88 113.19 47.37 3,508.77 910.91 26.00 

June 147.69 122.39 57.01 3,671.77 1301.87 35.50 

July 136.03 126.04 95.52 3,907.24 690.96 17.70 

August 127.67 109.22 52.24 3,385.97 541.81 16.00 

September 117.11 84.90 24.94 2,547.05 646.70 25.40 
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3.3.3. Irrigation requirements and daily soil water balance 

The model was used to manage irrigation from 15th April to 30th September 

2013. The experimental site is located in a water scarce region where deficit irrigation 

is a common practice for most crops. The water allocation for irrigating the trial field 

ranged from 1000 to 2000 m3 ha-1 depending on the sector. The daily irrigation 

volume was calculated by Eqs. (3.6) and (3.7), and is related to ETo of the previous 

day, the estimated effective precipitation and several coefficients. The soil coefficient 

Kr was 1 (60% of soil cover) and Kc, the crop coefficient, varied from 0.45 (July and 

August) to 0.65 (for autumn and spring months) for olive trees within the province of 

Cordoba (Pastor and Orgaz, 1994). The coefficient that controlled deficit irrigation, 

RDI, varied over the season (0.75 April-June, 0.4 July-August and 0.64 September) 

(Pérez-Rodríguez and Parras-Cintero, 2014). Additionally, following the proportion 

established by the RDI coefficients, daily irrigation volumes were adjusted to the 

water allocation corresponding to each sector. Daily soil water balances were carried 

out to update treq i n. As the trial field was drip irrigated, runoff and deep percolation 

were deemed null. Based on the soil characteristics, the threshold value of soil water 

content to update the irrigation time was 25% of the total available water (TAW), since 

the value of the easily accessible water considered in this study for olive tree was 

75% of TAW (Orgaz and Fereres, 1999). The daily irrigation requirements for the 

2013 irrigation season are shown in Fig. 3.7a, b and c for sectors 1, 2 and 3, 

respectively. Peak irrigation demand occurred in May and June, whereas the 

irrigation needs were lower in July and August consistent with the RDIn values. For 

the whole season, the irrigation needs were 1413 m3 ha-1, which is the average value 

of irrigation demand in each sector (1000 m3 ha-1; 1714 m3 ha-1 and 1795 m3 ha-1, for 
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sector 1, sector 2 and sector 3, respectively). As for the soil water content, it generally 

decreased throughout the irrigation season due to the deficit irrigation scheduling. 

3.3.4. Smart irrigation scheduling 

Considering the minimum required power for each sector, the less power 

demanding sector, S1, was irrigated when the produced photovoltaic power was 

between 5.94 kW and 9.60 kW. The next sector in increasing order of demanded 

power, S3, was irrigated when the power ranged from 9.60 kW to 12.39 kW. Finally, 

S2, which is the most power demanding sector, was irrigated when the power was 

higher than 12.39 kW. Table 3.2 presents these values together with the daily peak 

and medium power produced during the 2013 irrigation season, which show the 

capability of the photovoltaic system to supply the irrigation requirements of the crop. 

Table 3.2. Monthly peak (Pmax) and mean (Pmean) of the instantaneous power produced by the 
photovoltaic installation at the experimental site in 2013 and the minimum power required by 
each sector for their proper operation. 

 Pmax (kW) Pmean (kW) PminS1 (kW) PminS2 (kW) PminS3 (kW) 

April 19.09 3.76 5,94 12,39 9,60 

May 20.81 4.72 5,94 12,39 9,60 

June 20.38 5.10 5,94 12,39 9,60 

July 17.79 5.25 5,94 12,39 9,60 

August 16.61 4.55 5,94 12,39 9,60 

September 16.69 3.54 5,94 12,39 9,60 

The smart irrigation system operated at 5 min intervals. When the photovoltaic 

power reached the threshold for supplying water to the less demanding sector, the 

operational rule was to remain on standby for 5 min to prevent system instabilities 
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due to irradiance fluctuations. After that time, if the irradiance level remained above 

the lowest threshold, the irrigation of the lowest energy demanding sector (S1) 

commenced. Once S1 was activated, this sector was irrigated for at least 15 min in 

order to avoid system instability although irradiance fluctuations occurred. This 

occurs whenever a new sector starts to irrigate. In this case study, the pump 

characteristics allow the system to work as long as the power provided by the 

photovoltaic installation exceeds 2 kW, even though the corresponding flow is lower. 

Thus, if irradiance fluctuations drastically reduced the generated power (lower than 

2 kW) while any sector was operating, the pump would switch off. Once these 15 min 

elapsed, the system evaluated the power availability at 5-min intervals, as well as the 

remaining time needed to satisfy the irrigation requirements of the sector. If the 

remaining time was between 5 and 15 min, the working sector would continue to be 

irrigated although the generated photovoltaic power was sufficient to activate other 

sectors with higher power requirements (S2 or S3). In contrast, if the remaining 

irrigation time was greater than 15 min and the available photovoltaic power was 

higher than the minimum required power to operate S2 or S3, the most power 

demanding sector would be activated. This process continued until the irrigation time 

of the 3 sectors was satisfied or until the irradiance was insufficient to provide the 

minimum power required in any sector. Days on which irrigation needs entailed an 

irrigation time below 15 min for any sector (irrigation requirements were smaller than 

the pumped water volume for 15 min) the system would not operate. At the end of 

the day, SPIM evaluated the soil water content to check if the irrigation time of the 

following day should be updated or not to compensate the lack of irrigation. The 

irrigation time of the following day was only updated in the event that the soil water 

content was below the established threshold. Moreover, if the estimated effective 
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precipitation was greater than the crop irrigation requirements on rainy days, the 

system would not operate (Fig. 3.7). As an example, Fig. 3.6a mentioned above 

shows the scheduling of the 3 sectors on 30th June, a typical sunny day. S1 started 

to water at 9:50 h (local time) and irrigated for 60 min. S3 was then activated for 60 

min, after which S2 started to irrigate until 13:15 h. Once the most power demanding 

sector finished, S3 began to irrigate again for 75 min (14:30 h) until the irrigation 

requirements of the sector were satisfied. Finally, S1 operated for a further 140 min 

until 16:50 h. On this day, the total irrigation time was 7 h; one of the longest irrigation 

times of the season. As is shown in Fig. 3.6a, on clear days, the total available hours 

with enough photovoltaic power were generally higher than the required hours, so 

the installation did not use its full potential on these particular days. In contrast, 25th 

April is a good example of a cloudy day with large irradiance fluctuations. The 

operation of the photovoltaic irrigation system is shown in Fig. 3.6b, in which the 

sector activation sequence matched the available power during the daytime. On this 

day, irrigation started with the operation of S1 at 10:00 h (local time) and lasted for 

60 min. S3 then started to irrigate until 11:50 h, after which S2 operated for 1 h (12:50 

h). At 12:50 h, S3 began irrigating again for 1 h and 20 min (13:10 h), after which S1 

irrigated for an additional 15 min (13:25 h). As S3 had not finished, the sector began 

to irrigate again for 15 min since the power provided by the photovoltaic installation 

reached it threshold. This was followed by 20 min of irrigation in S1 as the 

photovoltaic power decreased again. At 14:00 h, S3 restarted irrigation for 15 min 

until completing its irrigation time. Finally, S1 finished with 65 more minutes of 

irrigation. In this case, the total irrigation time was 5 h and 20 min. However, due to 

the irradiance fluctuations described above, there were too many changes in the 
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operating sector. In contrast to Fig. 3.6a, b shows that both the available and required 

hours were much more similar on cloudy days. 

 

 

Fig. 3.7.a. Seasonal distribution of daily effective precipitation, soil water content (SW), soil 
water content threshold for corrections, required and applied irrigation depth and irrigation 

correction depth in S1 for the 2013 irrigation season. 
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Fig. 3.7.b. Seasonal distribution of daily effective precipitation, soil water content (SW), soil 
water content threshold for corrections, required and applied irrigation depth and irrigation 

correction depth in S2 for the 2013 irrigation season. 
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Fig. 3.7.c. Seasonal distribution of daily effective precipitation, soil water content (SW), soil 
water content threshold for corrections, required and applied irrigation depth and irrigation 

correction depth in S3 for the 2013 irrigation season. 

The smart irrigation scheduling of the whole irrigation season for the 3 sectors 

is shown in Fig. 3.7a, b and c. Required and applied water volumes are given, as well 

as the correction of the required water volume when necessary. Generally, days with 

low solar energy production coincided with periods in which crop irrigation needs 
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were low. Most of the days, the system could provide enough energy to satisfy the 

irrigation requirements. Nevertheless, when the system was unable to apply the 

scheduled amount of water due to weather conditions, this water deficit was 

considered in the soil water balance to check if the irrigation time of the following day 

should be modified or not, as explained above. 

As can be observed in Fig. 3.7a, b and c, the irrigation requirements could not 

be satisfied due to a lack of energy on only 7 days of the irrigation season in certain 

sectors. This is also shown in Table 3 where both the water volume and operation 

times (required and applied) are given. On 17th June, for example, the photovoltaic 

power was higher than the threshold for only 30 min in S2. However, S2 required 90 

min, so the irrigation needs of this sector, as well as those of the other sectors, could 

not be satisfied. In the case of S1, the operation time was 15 min less than the 

required irrigation time on 27th April, 8th June and 17th June, while the same thing 

occurred for S2 (the most demanding sector) on 28th May, 9th and 17th June and 28th 

September. Finally, in the case of S3, irrigation could not be satisfied on 28th May, 

8th, 9th and 17th June, 7th and 28th September. Table 3.3 also shows the percentage 

deficit of water and operation time for each sector, with the maximum deficit occurring 

on 7th and 28th September (100% in S3 and S2, respectively) and the minimum deficit 

on 27th April (16.63% in S1). As shown in Fig. 3.7a, b and c, it was only necessary to 

update the irrigation schedule on 2 days of the irrigation season for S1 (8th and 17th 

June) in order to increase the irrigation time programmed for the following days. For 

the rest of the cases (5 days), although the irrigation requirements were higher than 

the applied irrigation, the soil water content was sufficient to satisfy the difference, 

and no correction was needed. 
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Table 3.3. List of days on which irrigation was not fully satisfied in the different sectors (OS), 
irrigation volume required (VreqTotal (l)), irrigation volume applied (VAp (l)) and irrigation deficit 
during the 2013 irrigation season in percentage and time units (min). 

DAY OS VreqTotal VAp Deficit tdef 

27th Apr . 49,093 40,927 16.63 % 24 

28th May 
S2 48,862 10,790 77.92 % 50 

S3 70,416 38,918 44.73 % 48 

8th June 
S1 43,769 33,891 22.57 % 29 

S3 55,017 42,350 23.02 % 19 

9th June 
S2 31,182 15,360 50.74 % 20 

S3 44,369 9,311 79.01 % 53 

17th June 

S1 77,780 57,417 26.18 % 60 

S2 69,609 21,165 69.59 % 63 

S3 99,197 43,018 56.63 % 85 

7th Sep S3 49,386 0 100 % 75 

28th Sep 
S2 23,872 0 100 % 31 

S3 33,671 7,440 77.90 % 40 

The rest of the days of the season the system was able to satisfy the irrigation 

requirements, so the differences between the required and the applied irrigation 

volume were due to the fact that the system operated at 5-min intervals. Therefore, 

when the difference between the required and operation times was less than 5 min, 

the system considered that daily irrigation was complete. On days when the real 

irrigation times were 15 min less than the required times, the soil water balance was 

the tool used to update the irrigation time of the following day (for example 18th June 

for S1) when the soil water content was below 31.5 mm, which was the established 

threshold corresponding to 25% of TAW for the soil of this plot. 
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The integration of solar energy in irrigation does not only eliminate electricity 

costs, which are leading farmers to question the viability of irrigation (Córcoles et al., 

2015), but also reduces CO2 emissions (Carrillo-Cobo et al., 2014). Taking into 

account that each kWh of conventional electric energy emits 0.264 kg of CO2 

equivalent (Iberdrola, 2012), the photovoltaic installation of the irrigation network 

studied here avoided the emission of 1.2 t CO2 eq during the 2013 irrigation season 

corresponding to a total pumping time of 602 h and 20 min from 16th April to 30th 

September. 

3.4. Conclusions 

The use of solar energy to power irrigation systems involves the reduction or 

even the removal of energy costs for farmers. It is also a feasible option to supply 

energy in isolated areas. Moreover, the use of renewable energies is a low GHG 

emissions alternative to conventional electric energy or diesel engines, although the 

operation of the irrigation systems must be adapted to a variable energy supply. 

The algorithm Smart Photovoltaic Irrigation Manager, SPIM, has been 

develop to schedule irrigation using solar energy. SPIM operates, in real time, the 

sectors of the irrigation networks synchronizing the photovoltaic energy production 

with the pumping power demand. The main feature of this algorithm is its ability to 

use jointly climatic, crop, hydraulic and soil data to operate efficiently the solar 

irrigation system, satisfying the crop irrigation needs throughout the irrigation season. 

Also, SPIM compensates occasional water supply lacks, due to irradiance 

fluctuations, in the following days with adequate weather conditions. 
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The proposed model has been evaluated in a real case study. SPIM was used 

to schedule the daily operation of a photovoltaic irrigation system in an olive orchard 

in Southern Spain during the 2013 irrigation season. The photovoltaic system 

operated for a period of 168 days and was able to supply the full water allocation to 

the experimental field (1000 m3 ha-1; 1714 m3 ha-1 and 1795 m3 ha-1, for sector 1, 

sector 2 and sector 3, respectively) and provide the power requirements to each 

sector (5.94 kW, 12.39 kW and 9.6 kW for S1, S2 and S3, respectively). In 7 days, 

the irradiation level was insufficient to satisfy crop irrigation requirements. However, 

on the irrigation schedule was updated on only 2 of these days, thus increasing the 

irrigation time programmed for the following days since the soil water content was 

not sufficient to fulfil the non-satisfied irrigation volume. These results indicate that 

the system behaved very satisfactorily. Moreover, the substitution of the electricity 

grid for a 15.4 kW peak power photovoltaic installation during the entire irrigation 

season (602 h and 20 min) avoided the emission of 1.2 t CO2 eq. 

The main finding of this work is that solar irrigation in areas with appropriate 

irradiance levels is a feasible alternative to use renewable energy sources, when 

tools like SPIM are available, increasing the sustainability and profitability of irrigated 

agriculture. 
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energy sources for rural irrigation systems 

This chapter has been published entirely in the journal “Renewable Energy”, A. 

Mérida García, J. Gallagher, A. McNabola, E. Camacho Poyato, P. Montesinos 

Barrios, J.A. Rodríguez Díaz (2019) 

 

 

Abstract. This study quantifies the environmental and economic life cycle impacts of 

solar photovoltaics (PV), grid electricity and a diesel generator as power sources for 

pumping water in an irrigation network in Spain. It compares these energy sources 

in the context of on-grid or off-grid scenarios, where the PV energy is consumed 

solely by the irrigation pumping system (off-grid) or distributed between the pump 

and grid (on-grid). Overall, the results show the PV as the option with lower burdens 

for most environmental impact categories in both, an off- and on-grid scenario, over 

a 30-year lifespan. However, solar PV demonstrated a higher abiotic resource 

depletion burden, due to the high material demands from its manufacturing. The on-

grid PV option allowed for the export of excess energy, having environmental impacts 

six times lower than the off-grid option. From an economic perspective, solar PV 

option was the cheapest energy source, despite higher initial investment. Finally, 

extending the grid connection to the isolated location ensures grid exports from the 

solar PV installation, reducing the associated impacts by between 54 and 77% for 

the different burden categories. Based on a 30-year lifespan, solar PV is the most 
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economically- and environmentally-viable energy source for pumping in irrigation 

networks. 

Keywords: Pumping; Renewable energy; Grid electricity; Diesel generator; Life 

cycle assessment 

4.1. Introduction 

Global warming and its direct consequence, climatic change, is a problem that 

is affecting all corners of the planet (FAO, 2016). In parallel, the growing stress on 

the water-energy nexus and related interdependencies is more evident than ever 

(IEA, 2016). In 2014, the carbon intensity of electricity generation was 36% lower 

than 1990 levels in the EU-28 states. This is despite a 0.9% increase per annum 

observed in recent years, while the carbon intensity of electricity followed a 

continuous decreasing trend between 1990 and 2010 due to the increasing 

contribution of low carbon energy sources and improvement in efficiency (EEA, 

2015). The European Union (EU) have set out to reduce greenhouse gas (GHG) 

emissions by 20% in comparison to 1990 levels (EC, 2017). Governments have 

outlined a range of actions to address this challenge, such as a transition to low 

carbon transportation, promoting energy efficiency and the growth of the renewable 

energy (RE) sector, which will play a vital role in achieving energy security and a low 

carbon future. In Spain, other cross-cutting activities include the voluntary registration 

of carbon footprints and the promotion of environmentally-driven actions and projects 

which help to support this reduction in national GHG emissions (MAPAMA, 2017). 

In many countries, the agricultural sector has undergone a significant 

modernization process in recent years. As a consequence of the incorporation of 
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pressurized irrigation in a wide variety of crops, due to water scarcity, electric and 

diesel engines have been integrated into these systems to pump water to the required 

pressure and flow, thus increasing energy demands (Corominas, 2010). In parallel, 

a rise in annual oil and electricity prices has led to the uptake of alternative sources 

of energy, with RE technologies offering a cost effective and low carbon energy 

source for the agricultural sector. Recent projects have focused on solar photovoltaic 

(PV) pumping for irrigation, reducing the reliance of farms on grid electricity or diesel 

generation (Carrillo-Cobo et al., 2014; López-Luque et al., 2015; Reca et al., 2016). 

However, the biggest drawback for many RE technologies comes from its 

dependence on meteorological conditions. To overcome this problem some studies 

evaluated the use of energy storage, using batteries and intermediate water storage 

facilities, to ensure the availability of energy despite unfavourable climatic conditions 

(Bhattacharjee et al., 2017; Ouachani et al., 2017; Yahyaoui et al., 2016). Recently, 

Mérida García et al. (2018) developed a direct pumping model to synchronise solar 

PV energy production with the power requirements of an irrigation network on a real-

time basis. It was demonstrated that an olive orchard in southern Spain could be 

sustained for an entire irrigation season using solar PV energy, avoiding 1.2 tonnes 

of carbon dioxide equivalent (t CO2 eq.). Thus, solar PV energy presents a feasible 

alternative to reduce energy dependency on diesel and grid electricity for the 

irrigation sector. 

However, despite solar PV not generating GHG emissions during its 

operation, there is a recognised environmental impact associated with its production 

(manufacturing, transport to site and installation) which should be considered 

(Desideri et al., 2012). Life cycle assessment (LCA) studies have presented not only 

the associated GHG emissions of solar PV technology, as global warming potential 
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(GWP), but also evaluate other environmental impact categories that relate to fossil 

resource depletion potential (FRDP), abiotic resource depletion potential (ARDP) and 

other polluting impacts (human toxicity potential e HTP, and acidification potential - 

AP) (Berger et al., 2010; Evans et al., 2009; Gerbinet et al., 2014; IEA, 2011). Most 

recently, Gallagher et al. (2017) examined the LCA of different RE technologies, 

including solar PV, and found high ARDP contributions over its life cycle. It was 

concluded that there is a need for adopting circular economy measures (EC, 2015), 

e.g. recycling and the adoption of eco-design initiatives, to further reduce the 

environmental impact of solar PV and other RE technologies in the future. 

Furthermore, in the case of solar PV as an energy source for seasonal irrigation 

(Mérida García et al., 2018), there is a need to consider the intermittent energy 

requirements for pumping and how the maximum generation potential of particular 

sites may not be fully utilised for this application of PV systems. Previous 

investigations have not considered that, the life cycle impact of solar PV systems in 

irrigation systems where the full power potential is not used, may be higher than 

previously published assessments of this form of RE.  

4.2. Methodology 

4.2.1. Goal and scope definition 

This study evaluates the environmental impacts derived from the use of solar 

PV technology as an energy supply source in the irrigation sector, in comparison with 

the use of traditional energy supply options i.e. grid electricity or a diesel generator. 

Details of the materials used, manufacturing processes and installation demands for 

these three energy sources were collated and analysed. The LCA considered the 

manufacturing process, installation and operational stages of the life cycle of each 
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energy supply option. The environmental burdens associated with maintenance were 

omitted for all options, as it was negligible in the context of production related 

impacts. 

Due to the case study focus on solar PV technology, and considering that the 

useful lifespan of PV modules is around 25-30 years (Knapp and Jester, 2001; 

Fthenakis and Alsema, 2006; Berger et al., 2010; IEA, 2011; De Wild-Scholten, 2013; 

Fu et al., 2015; Akinyele et al., 2017), a 30-year period was selected for the 

operational life cycle boundary conditions. The functional unit of 1 kWh of energy 

produced was considered suitable for comparing the different energy systems 

examined in this study. For the impact analysis, the CML method was chosen (CML, 

2010), as it is a common impact assessment methodology which contains a wide 

variety of flows to evaluate the environmental burden of a process (Smith et al., 2015; 

Chen et al., 2016). Five impact categories were selected (Table 4.1) as the most 

representative and relevant for this case study (Goedkoop et al., 2008; Gallagher et 

al., 2015). 

An analysis of two different scenarios was conducted, to consider the 

environmental impacts of an off-grid (Scenario 1) and on-grid (Scenario 2) 

installation. The life cycle cost (LCC) was also calculated, to determine the cost 

effectiveness and compare it with the environmental payback period. 
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Table 4.1. Impact categories to be evaluated in the LCA of PV, diesel and grid electricity 
systems. 

Impact Category Description 

GWP Global Warming 
Potential (kg CO2 eq.) 

Related to GHG emissions that 
contribute to climate change and its 
effects. 

ARDP Abiotic Resource 
Depletion Potential 
(kg Sb eq.) 

Protection of human welfare, human 
and ecosystem health. Related with 
the extraction of minerals and fossil 
fuels, based on the global reserves. 

AP Acidification Potential 
(kg SO2 eq.) 

Acidifying substances impacts on soil, 
groundwater, surface water, 
organisms, ecosystems and materials. 
Calculated with the adapted RAINS 10 
model. 

HTP Human Toxicity 
Potential (kg 1.4-
DCBe eq.) 

Effects of toxic substances on the 
human environment. Health risks of 
exposure in the working environment 
are not included. Expressed as 1,4-
dichlorobenzene equivalents kg-1 
emission. Calculated with USES-LCA. 

FRDP Fossil Resource 
Depletion Potential 
(kJ eq.) 

Depletion of energy as fossil fuel 
deposits used to generate electricity 
(measured in equivalent kilojoules). 

 

4.2.2. Case study: photovoltaic irrigation system, Córdoba (Spain) 

The case study selected for this investigation was a solar PV powered 

irrigation system, providing the crop water needs for a 13.4-ha olive orchard in 

Córdoba in Southern Spain. A 168 m2 solar PV plant was installed on the south facing 

roof of a storehouse, located 200 m from the pumping station and 1 km from the 

irrigated field (Fig. 4.1). The peak power from the 120-thin film module PV plant was 

calculated as 15.36 kW, to meet the energy requirements of the pump installation. 

The irrigation water was directly pumped from a reservoir into the irrigation network, 
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which was organised into three irrigation sectors, using a 13-kW submergible pump 

and without energy storage elements. 

 

 
 

Fig. 4.1. Schematic representation of the PV irrigation installation in Cordoba (South Spain). 

The power requirements of the sector and the daily irrigation demands were 

previously calculated. This work is based on the methodology and results explained 

in detail in Mérida García et al. (2018); in which a real-time model, the Smart 

Photovoltaic Irrigation Manager (SPIM), was developed to synchronise PV power 

production and irrigation requirements in an irrigation network. Moreover, in this 

same work, detailed calculations for the estimation of the power production of the PV 

plant is also provided, based on equations described on López-Luque et al. (2015). 

The estimation was based on the irradiance levels, as well as the PV plant peak 

power and the temperature. The crop was frequently irrigated in the drier months, 

April to September, each year. As such, irrigation was not necessary for the 

remaining six months of the year as there was sufficient rainfall and water storage in 

the soil. 
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Grid electricity and diesel generators are common sources of energy for 

pressurized irrigation systems (Mérida García et al., 2018). Diesel generators are 

commonly used where farms have energy requirements in isolated rural locations 

and do not have access to a grid connection. This study will undertake an 

environmental and economic assessment for each of these energy options 

considered to determine the life cycle performance of solar PV in comparison to 

traditional energy systems. 

4.2.3. Inventory analysis 

A database was generated in Microsoft Excel, including the raw materials, 

manufacturing, installation and transport processes for each technology. The data is 

provided in the supplementary information (S.I.) section (Table S.4.6.1). OpenLCA 

software and the Ecoinvent database were used to collect the data (Ecoinvent, 2014). 

ISO 14040 standards for LCA were followed to ensure that at least 95% of the total 

mass and 90% of the total energy inputs for each energy source were accounted for 

(ISO, 2006). 

The environmental burden associated with each impact category was 

calculated as the sum of all materials and processes involved in each option, as it is 

expressed in Eq. (4.1): 

𝐸𝐵𝑠,𝑖 = ∑ 𝐾𝑥,𝑖
𝑋
𝑥=1 ∙  𝑈𝑥                                      (4.1) 

where EB is the environmental burden associated to the option s (off-grid solar PV, 

diesel generator, on-grid solar PV, grid electricity) and the impact category i; K is the 

environmental burden associated to each material or process; X is the total number 
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of different materials and processes; and U is the total units for the material or 

process involved in each option. 

4.2.3.1. Photovoltaic energy 

The solar panels installed in this plant were Sharp thin-film solar PV modules, 

model No. NS-F128G6, with a nominal peak power of 128 W and a total weight of 26 

kg per module. The rest of the components of the PV installation were the inverter, 

the cable for connecting the solar PV plant and the pump, and the metallic frame 

connecting the panels to the storehouse roof. In addition, the transportation of these 

components, installation of the panel frames on the rooftop and site works 

(excavation for the installation of the power cable) were also accounted for in the 

calculations. Each PV module consisted of several few-microns thick semiconductors 

layers, which reduced the overall material demands and costs of the modules (Edoff, 

2012). The manufacturing process of thin-film solar PV modules represents most of 

the energy requirements, due to the material deposition processes (Chatzisideris et 

al., 2016). In this study, it was assumed that the operational environmental impacts 

associated with maintenance would be negligible for the solar PV installation. 

4.2.3.2. Diesel generator 

The diesel generator considered for this study was a 15 kW Cummins Power 

Generation generator, model C15 D6, with a Kubota engine, and a total weight of 

481 kg. The diesel generator system was composed of several elements: engine, 

alternator, radiator, electronic controls, skid, air filter and turbo charger. As it was 

considered in Benton et al. (2017), the first five components were estimated to 

represent approximately 87% of the materials involved. Due to the complexity of the 



Integral model for the use of solar photovoltaic energy in irrigation 

64 
 

materials composition, the breakdown was synthesized based on Jiang et al. (2014), 

in which the material list was generated based on requirements for the manufacturing 

process of the diesel generator (e.g. steel, cast iron, aluminium, rubber, copper and 

polyethylene), including the energy requirements of the process. In addition, the 

cumulative diesel consumption required by the generator over the operational lifetime 

to irrigate the olive orchard was estimated. Diesel consumption was estimated from 

hourly fuel requirements of the generator and the annual irrigation hours required for 

the crop determined in Mérida García et al. (2018). The materials and energy 

requirements for the diesel storage tank were also included (sufficient to store all the 

fuel required for an entire irrigation season). Lastly, the transport of the generator, 

tank and fuel to the pumping station location were also accounted for in the 

assessment. 

4.2.3.3. Electricity grid 

The environmental impact of grid electricity was derived from national 

inventory data relating to energy sources in Spain for 2017, as well as accounting for 

the embodied burdens of the distribution network. In Spain, RE contributes to 34.4% 

of the total energy generation, with nuclear (21.7%) and coal (14.5%) representing 

other key sources of energy  (REE, 2016). The mix of these sources for a specific 

country varies over time, therefore these calculations show an approximation based 

on the most recent information. To account for the changing energy mix likely to occur 

over the next 30 years, with a continued increase of RE contributions, the operational 

energy demands accounted for the dynamic environmental impacts of grid electricity 

over time (Gallagher et al., 2017), as is shown in the S.I. (Fig. S.4.6.2). In this study, 

it was assumed that the grid connection existed for the system and therefore the 
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default scenario only accounted for operational impacts of the supply of grid 

electricity. 

4.2.4. Life cycle cost and payback period 

Following the methodology described by Wu et al. (2018); which accounted 

for the life cycle cost (LCC) as the sum of the equipment, consumables and 

maintenance costs, considering a range of fuel cost variations, this study calculated 

the LCC for (i) the construction stage only, or (ii) the combined construction and 

operational stages. Thus, the LCC was estimated for each option (off-grid solar PV, 

diesel generator, on-grid solar PV and grid electricity) by applying the following Eq. 

(4.2): 

𝐿𝐶𝐶𝑠 = 𝐿𝐶𝐶𝑖𝑛𝑠𝑡 + 𝐿𝐶𝐶𝑜𝑝𝑒                                   (4.2) 

where LCCs represents the life cycle cost of the option s; and LCCinst and LCCope 

relate to the total life cycle cost associated to the installation and operation stages, 

respectively. From this, the payback period for the investment of these off and on-

grid scenarios of the solar PV installation could be compared. To do so, the future 

annual operational costs related to diesel and electricity for the irrigation network 

were estimated. This allows for a comparison of the economic and environmental 

impacts of the solar PV installation with these traditional energy sources for irrigation 

systems over time. 

4.2.4.1. Future diesel and electricity costs 

Diesel and electricity prices are continuously varying, and it is difficult to 

predict the future cost of the energy consumed by the irrigation installation. The 
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energy price in the EU depends on a range of different supply and demand 

conditions, such as the national energy mix, the geographical situation or the network 

costs (Eurostat, 2017). A sensitivity analysis was included to incorporate changes in 

fuel and electricity prices (Wu et al., 2018). A range of prices for diesel, between € 

0.80 and € 1.30 l-1, and for electricity, between € 0.14 and € 0.24 kWh-1, were 

considered. In the final case, a fixed cost due to the peak power contracted was also 

included to account for fixed costs by the electricity supplier. 

4.2.5. Scenario and sensitivity analysis 

Scenario 1 compared the off-grid energy options of a standalone solar PV 

installation and a diesel generator. For this solar PV installation, the energy demand 

for pumping during the irrigation season was only accounted for, and any surplus 

energy generated could not be used or stored. In Scenario 2, which had an available 

grid-connection, the solar PV installation was compared with grid electricity. In this 

situation, the total energy generated by the solar PV installation was accounted for, 

as surplus energy was assumed to be fed back into the grid. 

For the sensitivity analysis of the environmental impacts of these energy 

scenarios, different lifespan lengths of between 5 and 30 years were considered. The 

impact of adding grid connection to a specific location in which the grid was not 

available, as well as the analysis of different prices for fuel and electricity, for the 

economic evaluation, were also included. 
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4.3. Results & discussion 

4.3.1. Energy balance 

The irrigation demand of the field of the case study was concentrated in the 

period comprised between April to September, as previously explained. This period 

entailed a total irrigation time of about 603 h, with an average of 4 h day-1, 

corresponding to the three sectors. The power demanded by the sectors varied 

between 5.4 and 11.3 kW, depending on the size, topography and flow demand. 

Thus, the total energy required by the network was about 4620 kWh year-1. This 

information was obtained from the SPIM model in the case study network for an 

irrigation season, as it was previously detailed (Mérida García et al., 2018). 

In the case of the diesel engine and grid electricity options, the environmental 

burden associated to its installation and operation stages was related to the energy 

consumed in the total operation hours. Nevertheless, in the case of the PV plant, the 

total energy generated (around 28,700 kWh year-1) greatly exceeded the energy 

demand of the irrigation network, which only represented a 16% of the total, and a 

25% of the energy generated during the irrigation season. That was the key point in 

the difference between the environmental burden per kWh associated to the on- and 

off-grid PV plants. Thus, for the on-grid PV plant option, the environmental burden 

was associated to the total energy generated by the PV modules, due to the surplus 

of energy (28,700 -4,618 kWh year-1) was considered to be injected into the grid. On 

the other hand, for the off-grid PV plant, the environmental burden was associated 

only to the energy requirements of the irrigation network (4,618 kWh year-1), as the 

surplus of energy could not be used nor stored. 
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4.3.2. Contribution analysis 

4.3.2.1. Component contributions 

The cumulative environmental impacts per kWh for each method of energy 

generation to support pumping in the irrigation network, in a 30 years lifespan 

analysis, are presented in Fig. 4.2. 

Firstly, the differences in the environmental impact values are evident for the 

solar PV installation in Scenario 1 (off-grid connection) and Scenario 2 (grid 

connection). The total energy produced in Scenario 1 was not fully consumed through 

the process of pumping in the irrigation network, and there is no grid connection 

availability for exporting the excess electricity generated. Furthermore, the solar PV 

installation generated surplus daily electricity due to a 4-h average pumping regime 

and irrigation is only required for six months of the year, April to September (the 

irrigation season for olive tree in the Mediterranean region). As Fig. 4.2 shows, the 

environmental impacts for the off-grid solar PV installation was approximately six 

times higher than the on-grid solar PV plant for each environmental burden category. 

Most of this impact was associated with the installation stage (due to manufacturing) 

of the solar PV's life cycle, corresponding to previous findings by Peng et al. (2013); 

while the replacement of the inverter was the only factor affecting the operational 

environmental impacts for both the on- and off-grid scenarios. 
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Fig. 4.2. Environmental burdens associated with the installation and operation of the 
different energy generation options assessed. 

In Scenario 1, in which a grid connection was not available, the GWP burden 

for the solar PV plant was 121 g CO2 eq. kWh-1, compared to a value of 20 g CO2 eq. 

kWh-1 for Scenario 2. The results for Scenario 2 were comparable with that of 
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previous LCA studies of solar PV (Kim et al., 2012; Irvine and Rowlands-Jones, 2016; 

Gallagher et al., 2017; Luo et al., 2018). The evidence suggests that thin film panels 

have lower cumulative energy requirements in manufacturing than crystalline panels 

(Sumper et al., 2011; Kittner et al., 2013), suggesting there is scope to reduce the 

GWP burden of these solar PV panels through lean design and more sustainable 

manufacturing processes. 

On the other hand, the ARDP burden for the on-grid PV plant was estimated 

at 2.1⋅10-4 g Sb eq. kWh-1, slightly lower than the previously obtained by Gallagher 

et al. (2017). This difference could be explained by the lower material use of thin film 

modules compared with polycrystalline. Nevertheless, Lunardi et al. (2018) estimated 

significantly lower values for tandem solar modules. This difference could be due to 

the contribution of aluminium, copper, zinc and tin dioxide. These materials showed 

a high burden associated to this category, although they appeared as minority 

components of the panels and inverter, being not included this list in the Lunardi et 

al. (2018) study. In the case of the AP, its burden showed a value of 7.3⋅10-2 g SO2 

eq. kWh-1, again below the results obtained by Gallagher et al. (2017) and Corona et 

al. (2017). 

The largest contribution was related to the use of solar glass, because the 

module did not include metal frame, but it included nonetheless two glass layers, and 

the manufacturing process. Probably, the manufacturing was the main difference in 

the results, which could be related to the lower energy demand of thin film technology 

manufacturing process. In a similar line, the HTP burden estimated for the on-grid 

PV plant was 11.6 g 1.4 DCBe eq. kWh-1, lower than the values showed in previous 

studies (Corona et al. 2017; Gallagher et al., 2017). This burden was mostly related 
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to the manufacturing process (55%) of the modules studied in this work, so the 

difference was again related to the lower energy requirements. In the same way, the 

FRDP burden (240 kJ eq. kWh-1) was lower than the determined by Corona et al. 

(2017). In addition to the difference in the energy requirements, for the FRDP, the 

energy mix also played an important role. Thus, the high contribution of coal to the 

grid electricity in Morocco, where Corona et al. (2017) developed their work, could 

also explain this difference. 

The alternative option for off-grid electricity in Scenario 1 was the diesel 

generator, while direct grid electricity provided the second option in Scenario 2. Both 

options provided the precise quantity of energy required during the operational stage 

of the systems life cycle. However, the diesel generator had associated burdens 

during the installation (generator and diesel storage tank) and operational (diesel 

supply and generator replacements) stages. An extension of the electricity grid was 

considered in the sensitivity analysis, and the environmental impacts were compared 

to the savings associated with the allowance of excess energy feeding into the grid. 

The diesel generator presented the largest contribution for GWP, AP, HTP 

and FRDP burdens. In that way, Smith et al. (2015) and Amante-García et al. (2017) 

also compared a range of energy sources and showed that the diesel generator had 

the highest impact for most categories. In relation to carbon emissions, provided as 

the GWP results, the diesel generator showed a burden 13 times higher than an off-

grid solar PV plant, while in the on-grid scenario, the solar PV plant burden 

represented a 10% of the grid electricity GWP. In the case of the AP, the off-grid solar 

PV plant represented only a 3% of the burden associated to the diesel engine, while 

the grid electricity showed a burden 24 times higher than the on-grid PV plant. In a 
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similar way, the HTP and FRDP burden for grid electricity were 10 times higher than 

the burden associated to the on-grid PV plant. Nevertheless, the diesel generator 

showed a HTP that was four times higher than the burden associated to the off-grid 

PV plant. For FRDP, the off-grid PV plant represented the 4% of the burden 

associated to the diesel generator, the option with the greatest value for this category, 

due to the fuel consumption. Finally, for the ARDP burden category, the off-grid PV 

installation provided the highest impact (Fig. 4.2b). The ARDP burden was two times 

higher than the diesel generator, which was due to the use of metals and glass for 

the different components of the PV plant. Nevertheless, for Scenario 2, in which all 

the energy generated by the PV plant was considered, both options (on-grid solar PV 

and grid electricity) provided very similar results, with grid electricity presenting a 

burden 10% higher than the on-grid PV plant.  

4.3.2.2. Material contributions 

In this study, all environmental burdens for the solar PV system included were 

associated not only to the panels, but also to the materials, energy requirements, 

transport and installation of the rest of the components (inverter, metal support 

structure and cable for the connection between the PV plant and the pump station). 

Thus, the materials and processes percentage contribution for Scenarios 1 and 2 is 

represented in Fig. 4.3. 
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a)  

b)  

c)  

d)  

e)  

Fig. 4.3. Materials percentage contribution towards the installation of each energy 
generation option. 
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It can be noted that, in the PV installation, the materials implied a 29% of the 

total CO2 emissions against a 60% for the energy requirements (manufacturing, 

mainly for the PV panels) (Fig. 4.3a). Similarly, for HTP and FRDP, the manufacturing 

process represented the highest burden, with 56% (Fig. 4.2d) and 54% (Fig. 4.2e), 

respectively. Nevertheless, for the ARDP burden, the metals represented 80%, 

against a 13% for the rest of the materials involved (Fig. 4.3b), while for the AP, solar 

glass and the manufacturing process represented the highest impact, with 41% and 

29%, respectively (Fig. 4.3c). On the other hand, for the diesel generator option, the 

fuel represented the highest burden for all the impact categories, equating to 77% of 

the HTP burden and between 92 and 97% for all other impact categories. This was 

due to the annual consumption of more than 1,500 l of fuel, and the estimated 15-

year generator lifespan, resulting in the material requirements of two generators over 

a 30-year period. The percentage contribution for the components for Scenarios 1 & 

2 and impact categories are presented in plots in the S.I. (Fig. S.4.6.1). 

4.3.3. Life cycle cost and energy payback period 

The economic analysis was carried out following the energy prices for the last 

years in Spain, where the case study was placed, and assuming this as a mean value 

for the next 30 years. This assumption was considered sufficient to make an 

approximation to the comparison between the different options. 

Firstly, the real investment cost of the solar PV plant was used and included 

an estimated cost for the replacement of the inverter after a 15-year period. For the 

diesel generator option, an average cost for the generator and tank was considered, 

provided by different commercial sources. The generator was replaced every 15 

years. Moreover, for the fuel, the average price of the last 3 years was determined, 
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and applied as an assumed mean value (MINETAD, 2017a). Finally, for the electricity 

grid option, the fixed monthly cost per contracted kWh and the average price for the 

last 5 years for the kWh consumed were estimated (IDAE, 2017; MINETAD, 2017b). 

Fig. 4.4 shows the costs for the installation and operational costs for the different 

options over the lifespan of the project (30-year period). 

 

Fig. 4.4. Installation and operation costs (in Euros) for the different options for a 30-year 
lifespan. 

Despite presenting the largest installation cost, the results showed that the 

lowest life cycle cost of € 26,444 was for solar PV. In the case of irrigation installations 

with the possibility of connecting to the grid electricity, the LCC took a value of € 

41,593, for that period, while the high operational costs for the diesel generator led 

to a total of € 70,748. Nevertheless, although the difference between the LCC of the 

solar PV and grid electricity options was not very large, if the state legislation allowed 

selling the surplus of energy, profits for the farmer could also be considered. Thus, 

the solar PV plant represented 37% of the LCC of the diesel generator, while it 

represented 64% of the LCC of the grid electricity option, over a 30-years period. 

Based on the location of the solar PV plant and its irradiation conditions, the 

energy payback time (EPBT) was estimated as 0.5 and 3.1 years for the on-grid and 

off-grid scenarios respectively. These EBPT result falls in the range of previous 

studies: 0.3 years for thin film modules by Peng et al. (2013); 0.9-1.1 years for multi- 
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and mono-crystalline silicon by Wetzel and Borchers (2015); and 3.5-5.0 years for a 

polycrystalline silicon PV plant by Sumper et al. (2011). Moreover, the economic 

payback time was estimated as 8.6 years for the off-grid PV installation, while for an 

on-grid solar PV plant, the selling of the surplus of energy should be considered, and 

this will depend on the legislation of each country. Finally, the environmental/carbon 

payback time estimated for the off-grid solar PV installation was 2.4 years, when it 

was compared to diesel engine, while in a comparison with the grid electricity, this 

value was almost 18 years. However, if all the energy generated by the PV plant is 

considered, this ratio takes a significantly lower value, slightly lower than 3 years. 

Despite of the fact that with a grid connected PV plant all the energy generated by 

the solar panels could be used, the lower total carbon emissions linked to the grid 

electricity made this ratio higher than the obtained for the PV-diesel comparison. This 

was due to the energy consumed by the irrigation representing a sixth part of the total 

energy generated, while the GWP per kilowatt-hour attributed to the grid electricity 

was 7.5 times lower than the estimated for the diesel engine. 

4.3.4. Sensitivity analysis 

4.3.4.1. Lifespan duration of each energy source 

The influence of adopting shorter operational lifespans of 5, 10 and 20 years 

were examined, to determine the impact of this and the environmental impacts per 

kWh generated for the different energy supply options. By doing so, the shorter 

lifespan durations of 5 and 10 years only included one diesel generator and one 

inverter for the solar PV plant, as the useful life for both components was considered 

to be 15 years. Fig. 4.5 presents the results of the sensitivity analysis for the lifespan 

duration assessment.  
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Fig. 4.5. Environmental impact (a) GWP, (b) ARDP, (c) AP, (d) HTP and € FRDP burden 
categories for each energy supply option for a range of different lifespan durations. 

It can be noted that, for the diesel generator option, the different 

environmental burdens did not experience significant variations for the lifespan 

lengths between 10 and 30 years, the difference for the 5 years lifespan being slightly 
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higher. It was due to most of the burden being linked to the operation stage and the 

results were expressed per kWh. Thus, a longer period implied a higher fuel 

consumption but also a higher amount of energy in which this burden was distributed. 

In a same way, the grid electricity only experienced very small variations, 

imperceptible in most of the plots. These variations were due to the evolution of the 

electricity mix over the years, which represented an increase of 11% in the ARDP, 

while GWP and FRDP decreased by 4% and 5%, respectively. However, for the PV 

plant, the longer the period is, the lower the burden results, due to fact that the impact 

of the PV installation is mostly associated to the preoperational time, and the same 

modules can work for a 30-year period. 

In a comparison between Scenarios 1 and 2, it can be noted that the PV option 

without grid connection had a higher GWP impact than the electricity grid option for 

a lifespan period below 20 years. Nevertheless, for a longer lifespan, the PV plant 

presented a lower GWP burden for both, grid and no grid connected installations, 

than grid electricity (Fig. 4.5a). For the ARDP burden, the PV plant presented the 

highest values, but for a grid connected installation, the ARDP burden received a 

lower burden than the diesel generator option when the lifespan length overcame 10 

years (Fig. 4.5b). For the HTP category, the grid connected PV plant showed a lower 

burden than the traditional options. Nevertheless, for the off-grid PV plant, the HTP 

burden also achieved lower values than diesel engine and grid electricity for a 10- 

and 20-years lifespan and beyond, respectively (Fig. 4.5d). Finally, the FRDP always 

showed the greatest values for the diesel generator option. 

 



4. Comparing the environmental and economic impacts of on- or off- grid 
solar photovoltaics with traditional energy sources for rural irrigation systems 

79 
 

4.3.4.2. Adding a grid connection for the off-grid solar PV installation 

The additional impact of adding an extra cable and electric poles to reach the 

grid connection for an isolated irrigation network, for relatively short distances, was 

considered. The results are shown in Table 4.2. It can be noted that the addition of 1 

km of cable and the corresponding poles (placed at 50 m intervals) increased the 

GWP, ARDP, AP, HTP and FRDP by 52%, 47%, 64% 185% and 38% respectively, 

in comparison with the on-grid PV plant, in which the connection to the grid was 

already available. Nevertheless, if these results are compared with the off-grid PV 

plant, all the impact categories experienced a reduction of between 73 and 77%, 

except for the HTP, which showed a decrease of 54%. Thus, the incorporation of the 

grid connection to the off-grid PV plant resulted in a substantial decrease in all the 

impact categories. Despite the additional materials and energy required for the cable 

and poles, this decrease was because the surplus of energy generated could be 

exported. In that way, the environmental burden was distributed to the total energy 

generation of the PV plant, so the impact was lower than the off-grid PV plant 

solution, for all the impact categories. 

Table 4.2. Effects of adding the extension of the grid –cable and poles- to reach the grid in 
an isolated farm for the different impact categories. 

 GWP ARDP AP HTP FRDP 

Off-grid solar PV 121 1.3·10-3 4.6·10-1 72 1,509 

Solar PV with existing 
grid connection 

19 2.1·10-4 7.3·10-2 12 242 

Solar PV with new 
grid connection* 

29 3.1·10-4 1.2·10-1 33 336 

* New grid connection includes additional 1 km of cable and poles. 
** GWP (g CO2 eq. kWh-1), ARDP (Sb eq. kWh-1), AP (g SO2 eq. kWh-1), HTP (1.4-DCBe eq. 
kWh-1), FRDP (kJ eq. kWh-1) 
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4.3.4.3. Effect of different energy prices 

To evaluate the impact of the oscillation in the fuel and electricity costs, due 

to the difficulty in predicting their evolution, a range of different prices were evaluated. 

Thus, the LCC for the diesel engine option, with a range of prices between € 0.80 

and € 1.30 per lite (l-1) for the off-grid scenario, was recalculated. Similarly, a range 

of prices for electricity, between € 0.14 and € 0.24 per kilowatt hour (kWh-1) were 

recalculated for the on-grid scenario. These values are shown in Table 4.3. 

Table 4.3. Effect of fuel and electricity cost variation on the LCC for the solar PV plant. 

Diesel Generator  Electricity 

Unit Cost 
(€ l-1) 

Diesel generator 
(€) 

 
Unit cost 
(€ kWh-1) 

Grid 
electricity 

(€) 

0.80 55,795  0.14 36,245 

0.90 61,255  0.16 39,016 

1.07 70,748  0.18 41,593 

1.20 77,633  0.20 44,558 

1.30 83,092  0.24 50,100 

 

It can be noted that, despite the oscillation in the energy prices, for both, the 

traditional on-grid and off-grid options, the LCC determined was always higher than 

that estimated for the PV plant (€ 26,444). Although the probability of cheaper prices 

in the following years is not very high, these values were included to show a wider 

variety of possibilities, showing both diesel engine and grid electricity options, even 

for those, a higher LCC than the PV plant. 



4. Comparing the environmental and economic impacts of on- or off- grid 
solar photovoltaics with traditional energy sources for rural irrigation systems 

81 
 

4.4. Conclusions 

The PV technology is being widely integrated in the agriculture sector, as a 

cleaner and profitable alternative to traditional energy sources. This technology has 

no significant environmental impacts during its operational time, but the 

manufacturing process must be evaluated. Thus, in this work, the LCA of a PV 

irrigation system was analysed and compared with the most common energy supply 

options in the irrigation sector (diesel engine and grid electricity) for off-grid and on-

grid scenarios. In that way, the PV option offered the lowest GWP burden, for both, 

on-grid and off-grid plants. For the rest of the impact categories, the PV plant showed 

the best option, except for the ARDP, in which the off-grid PV plant showed the 

highest value. Moreover, it should be noted that the off-grid PV plant impact per kWh 

was 6 times higher than the on-grid PV option, as the plant operates the whole year 

using part of the energy generated for irrigation and the excess energy could be 

exported. 

Economically, the initial cost for the PV plant showed the highest value of the 

three options, although in the operation stage, both, the diesel generator and grid 

electricity option presented higher values. Consequently, the total cost for a 30 years 

lifespan showed the PV plant as the cheapest option, for all the diesel and grid 

electricity price range evaluated. Finally, the energy payback time for the PV plant 

was estimated in 0.5 and 3.1 years, when all its energy production was the required 

by the irrigation network, for on-grid and off-grid installations, respectively. The 

lifespan length sensitivity analysis showed that the PV plant gradually decreased its 

environmental burden from 5 to 30 years, due to the major impact was linked to the 

installation stage. Nevertheless, for the diesel generator and grid electricity option, 

the magnitude of the environmental impact per kWh did not experience significant 
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differences, due to most of the impacts being linked to the operational time. The 

evaluation of adding a grid connection to an isolated PV plant showed the possibility 

of using the remaining 80% of the energy generated by the PV plant. Thus, despite 

of the additional environmental impact of the cable and poles, the possibility of 

connecting the PV plant to the grid, for relatively close locations, allowed to reduce 

between 54 and 77% the environmental impact per kWh for the different categories. 

In a final overview, it can be noted that the characteristics of the irrigation installation 

can play an important role to determine the best option to satisfy the energy 

requirements from an environmental and economic point of view. So that, depending 

on the length of the lifespan of the project, as well as the availably of grid electricity 

connection, the possibility to sell the surplus of energy, and the annual energy 

requirements of the irrigation installation, the PV plant environmental burden and 

economic impact will show it convenience. For the case study analysed, it was 

demonstrated that the PV plant offers a lower environmental impact for most of the 

categories. Moreover, for a 30 years lifespan, it also showed the best option from an 

economic point of view, even if the surplus of energy cannot be sold. 

4.5. References 

Akinyele, D.O., Rayudu, R.K., Nair, N.K.C., 2017. Life cycle impact assessment of 

photovoltaic power generation from crystalline silicon-based solar modules in 

Nigeria. Renew. Energy 101, 537–549. doi:10.1016/j.renene.2016.09.017 

Amante-García, B., Grimau, V.L., Casals, L.C., 2017. LCA of different energy 

sources for a water purification plant in Burkina Fasso. Desalin. Water Treat. 

76, 375–381. doi:10.5004/dwt.2017.20462 

Benton, K., Yang, X., Wang, Z., 2017. Life cycle energy assessment of a standby 

diesel generator set. J. Clean. Prod. 149, 265–274. 



4. Comparing the environmental and economic impacts of on- or off- grid 
solar photovoltaics with traditional energy sources for rural irrigation systems 

83 
 

doi:10.1016/j.jclepro.2017.02.082 

Berger, W., Simon, F.G., Weimann, K., Alsema, E.A., 2010. A novel approach for the 

recycling of thin film photovoltaic modules. Resour. Conserv. Recycl. 54, 711–

718. doi:10.1016/j.resconrec.2009.12.001 

Bhattacharjee, A., Mandal, D.K., Saha, H., 2017. Design of an optimized battery 

energy storage enabled Solar PV Pump for rural irrigation. 1st IEEE Int. Conf. 

Power Electron. Intell. Control Energy Syst. ICPEICES 2016 1–6. 

doi:10.1109/ICPEICES.2016.7853237 

Carrillo-Cobo, M.T., Camacho-Poyato, E., Montesinos, P., Rodriguez-Diaz, J.A., 

2014. Assessing the potential of solar energy in pressurized irrigation 

networks. The case of Bembézar MI irrigation district (Spain). Spanish J. Agric. 

Res. 12, 838–849. doi:10.5424/sjar/2014123-5327 

Chatzisideris, M.D., Espinosa, N., Laurent, A., Krebs, F.C., 2016. Ecodesign 

perspectives of thin-film photovoltaic technologies: A review of life cycle 

assessment studies. Sol. Energy Mater. Sol. Cells 156, 2–10. 

doi:10.1016/j.solmat.2016.05.048 

Chen, W., Hong, J., Yuan, X., Liu, J., 2016. Environmental impact assessment of 

monocrystalline silicon solar photovoltaic cell production: A case study in 

China. J. Clean. Prod. 112, 1025–1032. doi:10.1016/j.jclepro.2015.08.024 

CML, 2010. Characterization Factors database available online from Institute of 

Environmental Sciences (CML). 

Corominas, J., 2010. Agua y energía en el riego en la época de la sostenibilidad. Ing. 

del agua 17, 219–233. 

Corona, B., Escudero, L., Quéméré, G., Luque-Heredia, I., San Miguel, G., 2017. 

Energy and environmental life cycle assessment of a high concentration 



Integral model for the use of solar photovoltaic energy in irrigation 

84 
 

photovoltaic power plant in Morocco. Int. J. Life Cycle Assess. 22, 364–373. 

doi:10.1007/s11367-016-1157-y 

De Wild-Scholten, M.J., 2013. Energy payback time and carbon footprint of 

commercial photovoltaic systems. Sol. Energy Mater. Sol. Cells 119, 296–305. 

doi:10.1016/j.solmat.2013.08.037 

Desideri, U., Proietti, S., Zepparelli, F., Sdringola, P., Bini, S., 2012. Life Cycle 

Assessment of a ground-mounted 1778kWp photovoltaic plant and comparison 

with traditional energy production systems. Appl. Energy 97, 930–943. 

doi:10.1016/j.apenergy.2012.01.055 

EC, 2017. 2020 climate & energy package. European Commission [WWW 

Document]. URL https://ec.europa.eu (accessed 10.2.17). 

EC, 2015. Roadmap - Circular Economy - Closing the loop. European Commission. 

Ecoinvent, 2014. In:SimaPro, a.v (Ed.). Ecoinvent Database Version 3. 

Edoff, M., 2012. Thin film solar cells: Research in an industrial perspective. Ambio 

41, 112–118. doi:10.1007/s13280-012-0265-6 

EEA, 2015. Overview of electricity production and use in Europe. European 

Environment Agency 15. 

Eurostat, 2017. Electricity price statistics [WWW Document]. Eurostat. URL 

http://ec.europa.eu/eurostat/statistics-

explained/index.php/Electricity_price_statistics (accessed 3.27.18). 

Evans, A., Strezov, V., Evans, T.J., 2009. Assessment of sustainability indicators for 

renewable energy technologies. Renew. Sustain. Energy Rev. 13, 1082–1088. 

doi:10.1016/j.rser.2008.03.008 

FAO, 2016. Climate change and food security: Risks and responses. 

Fthenakis, V., Alsema, E., 2006. Photovoltaics Energy Payback Times, Greenhouse 



4. Comparing the environmental and economic impacts of on- or off- grid 
solar photovoltaics with traditional energy sources for rural irrigation systems 

85 
 

Gas Emissions and External Costs: 2004–early 2005 Status. Prog. Photovolt 

Res. Appl. 14, 275–280. doi:10.1002/pip 

Fu, Y., Liu, X., Yuan, Z., 2015. Life-cycle assessment of multi-crystalline photovoltaic 

(PV) systems in China. J. Clean. Prod. 86, 180–190. 

doi:10.1016/j.jclepro.2014.07.057 

Gallagher, J., Basu, B., Browne, M., Kenna, A., McCormack, S., Pilla, F., Styles, D., 

2017. Adapting Stand-Alone Renewable Energy Technologies for the Circular 

Economy through Eco-Design and Recycling 0, 1–8. doi:10.1111/jiec.12703 

Gallagher, J., Styles, D., McNabola, A., Williams, A.P., 2015. Life cycle 

environmental balance and greenhouse gas mitigation potential of micro-

hydropower energy recovery in the water industry. J. Clean. Prod. 99, 152–

159. doi:10.1016/j.jclepro.2015.03.011 

Gerbinet, S., Belboom, S., Léonard, A., 2014. Life Cycle Analysis (LCA) of 

photovoltaic panels: A review. Renew. Sustain. Energy Rev. 38, 747–753. 

doi:10.1016/j.rser.2014.07.043 

Goedkoop, M., Oele, M., de Schryver, A., Vieira, M., 2008. SimaPro Database 

Manual - Methods Library. Pré Consultants, The Netherlands. 

IDAE, 2017. Informe precios energéticos regulados [WWW Document]. URL 

http://www.idae.es/ (accessed 1.15.18). 

IEA, 2016. World Energy Outlook. Int. Energy Agency. Fr. 

IEA, 2011. Methodology Guidelines on Life Cycle Assessment of Photovoltaic 

Electricity. Int. Energy Agency. Photovolt. power Syst. Program. 

Irvine, S.J.C., Rowlands-Jones, R.L., 2016. Potential for further reduction in the 

embodied carbon in PV solar energy systems. IET Renew. Power Gener. 10, 

428–433. doi:10.1049/iet-rpg.2015.0374 



Integral model for the use of solar photovoltaic energy in irrigation 

86 
 

ISO, 2006. ISO 14040: Environmental Management e Life Cycle Assessment e 

Principles and Framework. ISO, Geneva. 

Jiang, Q., Liu, Z., Li, T., Zhang, H., Iqbal, A., 2014. Life cycle assessment of a diesel 

engine based on an integrated hybrid inventory analysis model. Procedia CIRP 

15, 496–501. doi:10.1016/j.procir.2014.06.091 

Kim, H.C., Fthenakis, V., Choi, J.K., Turney, D.E., 2012. Life Cycle Greenhouse Gas 

Emissions of Thin-film Photovoltaic Electricity Generation: Systematic Review 

and Harmonization. J. Ind. Ecol. 16. doi:10.1111/j.1530-9290.2011.00423.x 

Kittner, N., Gheewala, S.H., Kamens, R.M., 2013. An environmental life cycle 

comparison of single-crystalline and amorphous-silicon thin-film photovoltaic 

systems in Thailand. Energy Sustain. Dev. 17, 605–614. 

doi:10.1016/j.esd.2013.09.003 

Knapp, K., Jester, T., 2001. Empirical investigation of the energy payback time for 

photovoltaic modules. Sol. Energy 71, 165–172. doi:10.1016/S0038-

092X(01)00033-0 

López-Luque, R., Reca, J., Martínez, J., 2015. Optimal design of a standalone direct 

pumping photovoltaic system for deficit irrigation of olive orchards. Appl. 

Energy 149, 13–23. doi:10.1016/j.apenergy.2015.03.107 

Lunardi, M.M., Moore, S., Alvarez-Gaitan, J.P., Yan, C., Hao, X., Corkish, R., 2018. 

A comparative life cycle assessment of chalcogenide/Si tandem solar modules. 

Energy 145, 700–709. doi:10.1016/j.energy.2017.12.130 

Luo, W., Khoo, Y.S., Kumar, A., Low, J.S.C., Li, Y., Tan, Y.S., Wang, Y., Aberle, A.G., 

Ramakrishna, S., 2018. A comparative life-cycle assessment of photovoltaic 

electricity generation in Singapore by multicrystalline silicon technologies. Sol. 

Energy Mater. Sol. Cells 174, 157–162. doi:10.1016/j.solmat.2017.08.040 



4. Comparing the environmental and economic impacts of on- or off- grid 
solar photovoltaics with traditional energy sources for rural irrigation systems 

87 
 

MAPAMA, 2017. Actuaciones de reducción de emisiones [WWW Document]. URL 

http://www.mapama.gob.es (accessed 10.2.17). 

Mérida García, A., Fernández García, I., Camacho Poyato, E., Montesinos Barrios, 

P., Rodríguez Díaz, J.A., 2018. Coupling irrigation scheduling with solar energy 

production in a smart irrigation management system. J. Clean. Prod. 175, 670–

682. doi:10.1016/j.jclepro.2017.12.093 

MINETAD, 2017a. Precios medios nacionales de carburantes y componentes 

energéticos del IPC [WWW Document]. URL http://www.minetad.gob.es 

(accessed 11.17.17). 

MINETAD, 2017b. Precio neto de la electricidad para uso doméstico y uso industrial 

[WWW Document]. URL http://www.minetad.gob.es (accessed 11.17.17). 

Ouachani, I., Rabhi, A., Yahyaoui, I., Tidhaf, B., Tadeo, T.F., 2017. Renewable 

Energy Management Algorithm for a Water Pumping System. Energy Procedia 

111, 1030–1039. doi:10.1016/j.egypro.2017.03.266 

Peng, J., Lu, L., Yang, H., 2013. Review on life cycle assessment of energy payback 

and greenhouse gas emission of solar photovoltaic systems. Renew. Sustain. 

Energy Rev. 19, 255–274. doi:10.1016/j.rser.2012.11.035 

Reca, J., Torrente, C., López-Luque, R., Martínez, J., 2016. Feasibility analysis of a 

standalone direct pumping photovoltaic system for irrigation in Mediterranean 

greenhouses. Renew. Energy 85, 1143–1154. 

doi:10.1016/j.renene.2015.07.056 

REE, 2016. Estructura de Generación de Energía Anual Nacional. Red Eléctrica 

España. 

Smith, C., Burrows, J., Scheier, E., Young, A., Smith, J., Young, T., Gheewala, S.H., 

2015. Comparative Life Cycle Assessment of a Thai Island’s diesel/PV/wind 



Integral model for the use of solar photovoltaic energy in irrigation 

88 
 

hybrid microgrid. Renew. Energy 80, 85–100. 

doi:10.1016/j.renene.2015.01.003 

Sumper, A., Robledo-García, M., Villafáfila-Robles, R., Bergas-Jané, J., Andrés-

Peiró, J., 2011. Life-cycle assessment of a photovoltaic system in Catalonia 

(Spain). Renew. Sustain. Energy Rev. 15, 3888–3896. 

doi:10.1016/j.rser.2011.07.023 

Wetzel, T., Borchers, S., 2015. Update of energy payback time and greenhouse gas 

emissions data for crystalline silicon photovoltaic modules. Prog. photovoltaics 

Res. Appl. 23, 1429–1435. 

Wu, B., Maleki, A., Pourfayaz, F., Rosen, M.A., 2018. Optimal design of stand-alone 

reverse osmosis desalination driven by a photovoltaic and diesel generator 

hybrid system. Sol. Energy 163, 91–103. doi:10.1016/j.solener.2018.01.016 

Yahyaoui, I., Tadeo, F., Segatto, M.V., 2016. Energy and water management for drip-

irrigation of tomatoes in a semi- arid district. Agric. Water Manag. 183, 4–15. 

doi:10.1016/j.agwat.2016.08.003 

 



4. Comparing the environmental and economic impacts of on- or off- grid 
solar photovoltaics with traditional energy sources for rural irrigation systems 

89 
 

4.6. Supplementary information  
 

Table S.4.6.1. Raw material and processes included in the LCA of the different energy 
sources examined for the irrigation network. 

Material / 
Process 

Scenario 1 Scenario 2 

Off-grid 
Solar PV 

Diesel 
Generator 

On-grid 
Solar PV 

Grid 
Electricity** 

Solar glass ●  ●  

Metals ● ● ●  

Plastic & 
rubber 

● ● ●  

Silicon ●  ●  

Diesel  ●   

Manufacturing ● ● ●  

Transport ● ● ●  

Installation ●  ●  

Grid Electricity    ●* 

*The analysis of the grid electricity was based on the information about its generation 
structure (REE, 2016) (Hydraulics 16.2%, wind 21.6%, photovoltaic 3.6%, nuclear 25.4%, 
coal 17%, fuel + gas 3%, combined cycle 13.2%). 
**It considered the embodied and operational burdens associated to each electricity 
contributor (renewable and non-renewable). 
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(a) 

 

(b)

(c)

(d)

(e)

 

Fig. S.4.6.1. Percentage contribution of components in Scenarios 1 and 2, comparing the 
solar PV and diesel generator, for the five impact categories examined: (a) GWP, (b) ARDP, 

(c) AP (d) HTP and (e) FRDP burdens. 
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Fig. S.4.6.2. Dynamic environmental impact of the grid electricity for each of the five impact 
categories investigated, which is based on increased renewable energy contributions to the 

grid over the next 30-years.
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5. Comprehensive sizing methodology of smart 

photovoltaic irrigation systems 

This chapter has been published entirely in the journal “Agricultural Water 

Management”, A. Mérida García, R. González Perea, E. Camacho Poyato, P. 

Montesinos Barrios, J.A. Rodríguez Díaz (2020) 

Abstract. The use of photovoltaic (PV) energy in irrigation is increasing its relevance 

as energy source in irrigated agriculture. The main reason relays on its economic and 

environmental benefits, compared to traditional options. To reduce economic, 

materials and energy requirements of PV irrigation systems, its design and 

dimensioning should be optimal. In this work, we developed the model MOPISS 

(Model for Optimal Photovoltaic Irrigation System Sizing) focussed on the selection 

of pipe diameters and PV plant dimensioning, optimizing jointly the investment cost 

and operation of the system. MOPISS, developed in MATLAB™, integrated a 

customized version of the Non-dominated Sorting Genetic Algorithm (NSGA-II) with 

two objective functions, aimed at searching the optimal sizing of the irrigation network 

and PV plant. The results showed a series of solutions with optimal hydrants grouping 

in sectors, pipe diameters and PV plant size. MOPISS was applied to a real case 

study obtaining solutions which satisfied 96% of the irrigation requirements while 

saved cost between 22.9 and 38.2% over the total investment cost, compared with 

the original design. MOPISS is a useful tool to produce optimal designs of sizing new 

PV irrigation system under a comprehensive approach that considers crop, water and 

energy availability and network layout. 
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Keywords: MOPISS, photovoltaic irrigation, optimization, pipe diameters 

dimensioning, PV peak power, NSGAII, genetic algorithm 

5.1. Introduction 

Nowadays, the remarkable increase in energy consumption and the general 

concern about global warming has promoted the use of renewable energies in the 

irrigation agriculture sector. Related to this, photovoltaic (PV) technology offers a 

more sustainable alternative for the energy supply compared to traditional options, 

such as diesel generators and grid electricity (GIZ, 2016). This technology has a 

lower environmental burden due to the virtually zero environmental impacts 

associated to its operation (Mérida García et al., 2019). Furthermore, the period with 

the highest PV energy production usually coincides with the irrigation season for a 

wide variety of crops. Nevertheless, as the energy production levels rely on the 

instant irradiation (López-Luque et al., 2015) that is affected by the occurrence of 

clouds, the management of an irrigation network just powered by PV energy results 

much more complex. Thus, the variable power availability must be properly managed 

to fully satisfy the daily irrigation requirements of the different sectors of a network.  

For the optimal dimensioning of the PV irrigation system it should be considered the 

variability of the solar radiation throughout the irrigation season and during the day. 

Moreover, the hydrants location and the layout of the irrigation network determine the 

power demand of each sector of the irrigation network, conditioning the pumping 

power and the size of the PV plant. For that reason, the sizes of the pipes of the 

irrigation network and the size of the PV plant should be determined jointly.  

The search for optimal design solutions in the water distribution network 

sector has been widely studied by numerous authors. Tayfur (2017) summarized the 
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main characteristics of the most popular optimization methods used in water 

resources planning, engineering and management. Among them, the Genetic 

Algorithms (GA), Ant Colony (AC), Differential Evolution (DE), Particle Swarm (PS), 

Harmony Search (HS), Genetic Programming (GP) and Genetic Programming 

Expression (GPE) can be highlighted. Creaco and Franchini (2014) presented a 

procedure to find optimal solutions in the cost-reliability space for multi-objective 

design of looped water distribution systems. This work pointed out the computational 

and numerical efficiency of low-level hybrid optimization procedures for multi-

objective water network design. Most recently, Fernández García et al. (2017) 

presented an optimization methodology for the design and operational costs of 

pressurized irrigation networks, using the NGSA-II algorithm. Lapo et al. (2017) 

combined linear programming (LP) and GA in a hybrid model to optimize the pipe 

design, operating pressure at the head of the network, total investment cost and 

working shifts assigned to each hydrant. All these works focussed on the optimal 

design of the irrigation network, while none of them questions the availability and 

characteristics of the energy source. On the other hand, related to the adoption of PV 

technology in the irrigation sector, several works focused on the development of 

optimal sizing methods. The aim of these works was to determine the optimal peak 

power for the PV plant to satisfy crop irrigation requirements using the existing 

irrigation network (Bakelli et al., 2011; López-Luque et al., 2015). In order to reduce 

the dependence on climate factors, other works also focused on the optimal 

management of installations which incorporated some water/energy storage 

elements, as well as auxiliary support systems (e.g. diesel generator). In that way, 

Wissem et al. (2012), Reges et al. (2016) and Yahyaoui et al. (2016), studied the 

inclusion of batteries in the system. Later, Rodríguez-Gallegos et al. (2017) studied 
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the combination of the PV modules with both, a battery and a diesel generator. This 

PV-battery-diesel combination allowed reducing the overall system cost and control 

of the grid voltage, based on PS methods. In a similar way, the hybridization of the 

PV plant with other renewable energy supply systems, as wind or water turbines, was 

also evaluated by Ouachani et al. (2017); and Ramli et al. (2018). Another common 

application of PV technology in irrigation is the use of an intermediate water storage 

tank. This tank is located at a higher level to feed the irrigation system by gravity 

(Olcan, 2015; Kabalci et al., 2016; Ghavidel et al., 2016; Muhsen et al., 2018). This 

option is possible for relatively small plots, with a suitable height difference. These 

actions generally offer more flexibility to the system operation but have higher 

economic and, in some cases, higher environmental cost, due to material 

requirements. Nevertheless, Mérida García et al. (2018) proved that some crops, as 

olive orchard in Southern Spain, could be irrigated with a PV plant by a direct injection 

irrigation system, without storage elements. This was possible using a real time 

synchronization model, which searched for the best fit between the power production 

and irrigation requirements. Even so, most of the operating solar PV plants were 

designed to power existing irrigation systems that previously were powered by the 

grid. Thus, the design of these irrigation systems (pumps, pipes and irrigation 

sectoring) was developed to use the grid power and not the power from a solar 

energy source. Moreover, nowadays, the price of the PV technology is dropping and 

fostering the transformation of rain-fed farms to irrigated lands, allowing the use of 

pressurized irrigation in isolated areas.  

In this context, the objective of this work was to develop a methodology for 

the optimal sizing of the hydraulic network and the PV plant of an irrigation system 

with smart management, from a techno-economic point of view.  Thus, the sizing 
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process considers both hydraulic and energy criteria, in a comprehensive model, 

developed in MATLABTB (Pratap, 2010). The search of optimal solutions, based on 

economical and operational criteria, was carried out using a customized version of 

the Non-dominated Sorting Genetic Algorithm (NSGA-II) (Deb et al., 2002). This 

model includes a modified version of SPIM (Mérida García et al., 2018), a smart 

photovoltaic irrigation manager to operate  PV irrigation systems. Therefore, the 

novelty of this work relies on the joint sizing of the network pipes and the PV plant, 

so the irrigation system will work using efficiently the available water and solar 

energy. Finally, the developed model was applied to a real case study, placed in 

South Spain, comparing the original and optimized design solutions. 

5.2. Methodology 

5.2.1. Case study 

The case study is an experimental PV irrigation system that waters a 13.4-ha 

olive orchard in the University of Córdoba (South Spain). The trial plot is divided into 

different subplots according to the olive tree variety and water allocation (ranging 

from 1000 to 2000 m3ha-1), conditioning the layout of the irrigation network (Figure 

5.1). The irrigation system is composed of a 13-hydrants irrigation network grouped 

in 3 sectors, a submergible pump, directly powered by a PV plant, an inverter and 

the control system. The material of pipes was polyethylene (PE). The pump was 

located 1.35 km away from the irrigated field. The irrigation network was originally 

designed for conventional energy supply and the PV plant was installed afterwards, 

not considering simultaneously the joint design of the irrigation system and the PV 

plant. The total installation cost was € 80,309. 
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Fig. 5.1. Layout of the PV irrigation system of the University of Córdoba 

5.2.2. Problem definition 

The objective of this work was to develop a procedure to determine the 

diameters of the network pipes and the required PV peak power (PVPP) to minimize 

the investment cost of a PV irrigation system, ensuring its proper operation. The 

developed methodology was integrated in the algorithm MOPISS (Model for Optimal 

Photovoltaic Irrigation System Sizing). The model assumes the crop distribution on 
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the field as an initial constraint that conditions hydrants locations and the layout of 

the irrigation network that will not be modified through the optimization process. 

Moreover, hydrants operation is controled by individual electrovalves that could be 

operated remotely. 

The problem was defined as a multi-objective optimization issue, with two 

objective functions OF1 and OF2. These functions quantify the investment and 

operational cost of the irrigation system, including the hydraulic network and the PV 

plant. The use of PV energy does not entail operating cost and its maintenance cost 

are very small. For this reason, operation and maintenance cost have not been 

included in the problem statement. The first objective function (OF1) focused on the 

minimization of the investment cost of the irrigation system (pipes and pumps) (Eq. 

5.1): 

𝑂𝐹1 =  [∑ (𝑃𝐶∅  ∙  𝐿𝑝)
𝑝=𝑛
𝑝=1 +  𝐶𝑝]

𝑛𝑜𝑟𝑚
                       (5.1) 

where PCϕ is the unit cost of the commercial pipe diameters, Lp is the total length of 

each pipe type included in the network and Cp represents the pumping system cost, 

based on commercial information. This last cost was included after the pump power 

selection, defined after the sectors power demand calculation. OF1 values were then 

normalized, between 0 to 1, in order to be comparable with OF2 values.                                 

The second objective function (OF2) evaluated the PV plant cost and its capacity to 

provide enough energy to the irrigation network (Eq. 2):  

𝑂𝐹2 =  𝜌 ⋅  [𝑃𝑉𝑃𝑃 ∙ 𝑈𝐶]𝑛𝑜𝑟𝑚 +  𝜔 [
∑ ∑ (𝑅𝑊𝑉𝑠,𝑑− 𝐴𝑊𝑉𝑠,𝑑)𝑑=𝐼𝑆

𝑑=1
𝑠=𝑆
𝑠=1

∑ 𝑊𝐴𝑠=𝑆
𝑠=1

]
𝑛𝑜𝑟𝑚

+

 𝛾 [
𝑆𝑝𝑣

𝑆𝑐
 ∙ 100]

𝑛𝑜𝑟𝑚
                                                                                                           (5.2) 
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In that way, the first term of OF2 quantified the PV plant cost as the product 

between the PVPP (expressed in W) and a unit cost (UC), expressed in € per W of 

peak power. The PVPP depends on the system operation, and it is then traduced 

into the required number of PV modules and inverter dimensioning. To reduce its 

value, the network will be operated by sectors. The maximal number of operating 

sectors, S, will be described later. Thus, PVPP was estimated as a function of the 

sectors power demand, previously determined for each sectoring network alternative. 

This estimation was carried out using the hydraulic simulator Epanet (Rossman, 

2000), evaluating the pressure requirements for the most restrictive hydrant in each 

sector. The UC included the cost associated to the modules, the wiring, the inverter 

and the installation of all the elements of the PV plant. The second term evaluated 

the pumping capacity of the PV plant during the irrigation season (being IS its 

duration in days) to satisfy the irrigation requirements. This capacity is expressed as 

the ratio between the sum of the required and the applied water volumes difference 

(RWV and AWV, respectively) throughout the irrigation season and the total water 

allocation assigned to the sectors. All these values are expressed in m3. This 

evaluation was carried out using SPIM (Smart Photovoltaic Irrigation Manager) 

(Mérida García et al., 2018). SPIM defined the daily operation sequence of the 

network sectors according to their power demand, daily crop irrigation requirements 

and the instant radiation levels. Thus, at the end of the irrigation season, the model 

provides the total water volume applied to each sector and compares it with their 

water allocations. Finally, the third term of the equation represents the ratio between 

the PV modules surface (Spv) and the cultivated area (Sc). The value of OF2 was then 

also normalized, weighting each term with 𝜌, 𝜔 and 𝛾 coefficients. These weighting 

factors allowed the study of the influence of each term in the selection of the best 
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solutions. The model can be easily adapted to the specific characteristics of each 

project and user preferences. 

5.2.3. Hydrants sectoring 

As hydrants can operate independently, the maximal number of groups of 

hydrants that can work simultaneously, number of sectors, S, must be calculated 

before starting the optimization process. This figure depends on the available daily 

solar peak hours, for a specific location, and the daily average irrigation time for a 

specific crop (Eq. 5.3):  

𝑆 = [
∑ 𝑆𝑃𝐻𝑑

𝐷𝑚
𝑑=1  /𝐷𝑚 

𝑊𝐴 𝐶𝐷⁄

𝐼𝐷
 𝐷𝐹∙𝑁𝐸⁄

 ∙  10−3]
𝑚𝑖𝑛

                              (5.3) 

were SPH is the solar peak hours for day d, expressed as h⋅day-1; D is the total days 

for month m; WA is the monthly water allocation, in m3ha-1; CD is the crop density, 

expressed as plants⋅ha-1; ID represents the irrigation days of the month; DF is the  

emitter flow rate, in l⋅h-1; NE represents the number of emitters per plant and 10-3 an 

unit conversion factor. 

The SPH, which represents the daily number of hours with irradiance over 1 

kWm-2, was obtained as an average of historical irradiation records of agroclimatic 

stations. These solar peak hours determine the total hours in which the PV plant 

power production is equal or over its set peak power. Moreover, the average daily 

irrigation time was estimated considering the water allocation assigned to each 

sector, the irrigation scheduling strategy, the emitter flow (drip irrigation, in the case 

study), crop density, the number of emitters per plant and the total irrigation days per 

month. Once the daily available hours with enough irradiance and the average 
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irrigation time were evaluated for each month, the most restrictive results defined S 

value.  

Once S value was defined, hydrants, with its respective flow demand, were 

randomly assigned to each sector to stablish the different network operation 

configurations, represented in each chromosome. 

5.2.4. Multi-Objective Solution Algorithm 

The search procedure of optimal irrigation network and PV plant was based 

on the multi-objective genetic algorithm NSGA-II. The NSGA-II generates a series of 

chromosomes (population of possible problem solutions). The fitness of these 

solutions (combination of possible network sectoring, pipe diameters and PV plant 

size) is evaluated by the objective functions, OF. Once the initial population is 

generated, as will be described in section “Initial population”,  and evaluated, 

chromosomes are sorted based on the OF values, and those with highest fitness are 

selected to be combined by the crossover genetic operator or to be muted by the 

mutation operator (Deb et al., 2002) aimed at expanding the solutions search space. 

This process is repeated until the model complete the pre-fixed generations (gen). 

The last generation presents a set of possible optimal solutions, that minimize the 

OF values constituting the Pareto front (Deb et al., 2002). In this work, a customized 

version of the NSGA-II algorithm was applied to minimize OF1 and OF2, which flow 

chart is shown in Fig. 5.2. The modifications made on the genetic operators are 

detailed below. 
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Fig. 5.2. Flow chart for MOPISS algorithm. 

(pop) 
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5.2.4.1. Initial population:  

The initial population was integrated by a set of chromosomes (pop) with v 

variables, which value was randomly assigned responding to specific ranges, which 

must be previously defined. The number of variables v was H+P, the sum of the 

number of hydrants and pipes, respectively, that composed the network, represented 

in a type chromosome in Fig. 5.2. The value of the first H variables represents the 

sector of each hydrant (𝑆ℎ𝐻
), ranging from 1 to S. On the other hand, the following 

P variables corresponded to each pipe flow velocity in the network (𝑉𝑝𝑃
). In this case, 

the pipe velocity values were randomly assigned between a maximum (Vmax) and 

minimum (Vmin) velocity rates, which must be defined beforehand. These Vmax and 

Vmin are stablished according to the desired operating conditions in the water 

distribution network for each particular case, based on its size. Then, these velocity 

values are adjusted in the chromosome in the optimization process described below. 

The first H variables are discrete variables and the remaining P variables are 

continuous ones. 

5.2.4.2. Evaluation of the objective functions: 

The value for the previously detailed OF1 and OF2 were calculated for each 

chromosome. A first simulation of the network, including hydrants grouping in 

sectors, fixed in the chromosome, and hydrants flow, provided pipes flow rates. Pipes 

velocity, also fixed in the chromosome, and pipe flow rates data determined pipe 

diameters. These diameters were then adapted to the closest commercial ones, 

ensuring a logical progression. These logical progression entails that larger 

diameters are located closer to the pumping station while consecutive pipes must 

have equal or smaller diameters. After this adjustment, the irrigation network was 
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again simulated. This hydraulic analysis provided the real velocity rates for each pipe 

and nodes pressures, after the diameters adjustment. The chromosome is then 

updated, with the real velocity rates. The main steps of this process are represented 

in Fig. 5.3. Based on nodes pressure data, the sectors power demand is determined, 

as a function of the most pressure demanding hydrant in each sector. The sectors’ 

power demand was used in the calculation of OF1 (pump selection) and OF2, for 

PVPP calculation, operation of the PV plant during the irrigation season and size of 

the photovoltaic panels surface area. The PVPP was calculated based on the most 

power demanding sector of each chromosome, considering the corresponding 

engine and inverter efficiencies.  

 

Fig. 5.3. Schematic representation of the process for pipes diameter sizing and real pipes 
velocity determination. 

For the calculation of the second term of OF2, the daily irrigation requirements 

of the crop were previously estimated, based on the difference between the effective 



Integral model for the use of solar photovoltaic energy in irrigation 
 

106 
 

precipitation and crop evapotranspiration. Finally, the daily crop irrigation 

requirements were calculated for each irrigation sector, based on the hydrants 

organization, as well as the sectors’ water allocation. 

5.2.4.3. Modified genetic operators 

The genetic operators, crossover and mutation, of the NSGA-II were modified 

in order to ensure the generation of new child solutions different from parent 

solutions, keeping discrete and continuous variables in the right positions in the 

chromosomes. A specific coefficient determines the probability of being applied 

crossover/mutation processes over the set of parent chromosomes.  Thus, for 

crossover operator, a two-point crossover procedure was applied to each pair of 

parents, randomly selected. Crossover points were also randomly chosen, one in 

each section of the chromosome (corresponding to hydrants and pipes) (Fig. 5.4): 

 

Fig. 5.4. Schematic representation of the two-point crossover operator. 
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The mutation process was applied to a randomly selected parent, acting over 

a small portion of its variables, which position was randomly selected. Once the 

mutation positions were chosen, a new random value for the corresponding variable 

was assigned within the stablished ranges. 

5.3. Results and Discussion 

The developed methodology was applied to optimize the irrigation network 

and PV plant sizing for the case study irrigation system. In the current design of the 

network, hydrants  are grouped according to their location:  hydrants 1 and 2 in sector 

1 (S1), hydrants 3 to 8 in sector 2 (S2), while sector 3 (S3) was composed by the 5 

remaining hydrants (9 to 13). Thus, the sectors power and flow requirements were 

7.07, 6.77 and 13.35 kW and 9.67, 9.60 and 12.40 ls-1, for S1, S2 and S3, 

respectively. The pump power was 15 kW, so the dimension of the PV plant was 17.7 

kW. The optimization of pipes size, based on diameter selection, must consider the 

material of pipes. The selected material for this irrigation network was polyethylene 

(PE). Thus, commercial diameters, roughness and pipe thickness were selected 

according to the material and specific characteristics of the network. Finally, 

precipitation and reference evapotranspiration, for crop irrigation needs calculation, 

as well as irradiance data, for the evaluation of the PV system, of an average year 

were used to perform the simulation of the case study irrigation system. Moreover, in 

the crop irrigation needs calculations, the irrigation scheduling strategy, which in the 

case study was focussed on a controlled deficit irrigation, was also considered. 
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5.3.1. Sectoring alternatives. 

The estimation of the possible maximum number of sectors (S) that permits 

the satisfaction of the daily irrigation requirements was 3 in June, the most restrictive 

month for the case study analised. The average total solar peak hours were 6.75 h 

per day, and the average daily irrigation time was 2.08 h perday. The S value was 

fixed for the subsequent network designing process, matching the current number of 

network sectors  in the case study. Thus the 13 hydrants, with their corresponding 

flow demand and elevation, were randomly grouped into 1 to 3 sectors in each 

chromsome of the initial population. Nevertheless, after the optimization process all 

solutions in the Pareto front had their hydrants grouped in 3 sectors. 

5.3.2. Optimization process 

The optimal sizing of the irrigation network and PV plant for the case study 

was performed with a population size of 200 individuals (pop) and 100 generations 

(gen), as no significative changes were observed for a larger number of generations. 

Moreover, crossover and mutation probabilities were fixed at 90% and 10%, 

respectively. Each chromosome was conformed by 60 decision variables 

corresponding to the 13 hydrants (H) and 47 pipes (P) of the case study irrigation 

network. The first 13 variables, which possible values ranged between 1 to 3 

(maximum number of sectors), defined hydrants organization in sectors. On the other 

hand, the remaining 47 variables were the flow velocities of each pipe of the network. 

The flow velocity ranged between 0.5 and 1.85 ms-1, following the process of 

generation of the initial population, described in section “Initial population”. Then, pipe 

diameters, calculated from velocity values, were aproximated to the closest 

commercial diameters among a set of 22 possibilities, ranging from 32 to 630 mm 
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(28 to 555.2 mm of internal diameter). Then, the network was simulated, using the 

software Epanet (Rossman, 2000). Once the real flow velocity rates for pipes after 

the diameters adjustement were obtained, the chromosome information updated. 

The simulation also provided the sectors power requirements and PVPP, considering 

engine and inverter efficiencies of 0.8 and 0.95, respectively. The values of OF1 and 

OF2 per chromosome were normalized,  ranging between 0 to 1, to allow their 

comparison.   

Two scenarios for OF2 were analysed: 80-10-10% and 45-10-45%, for ⍴, 𝜔 

and 𝛾 weighting coefficients, respectively. In both scenarios 𝜔  gives a small weight 

to the no satisfaction of the required irrigation depths. This was decided after testing 

that the synchronization model always achieved good results for the satisfaction of 

the irrigation needs of the case study analized, as the sectors power demand was 

managed properly. Scenario 1 gave the largest weight to the first term, referring to 

the economic cost of the irrigation system, while Scenario 2 distributed the highest 

weights between the economic term and the one related to the photovoltaic surface.    

After the optimization process, the evolution of OF1 and OF2 values in each 

generation is shown in Fig. 5.5. Thus, it can be noted that depending on the weighting 

coefficients values, the evolution of the minimum values of both  OF were slightly 

different. The most significative reduction was shown in the first 10 generations for 

both OF. Then, only small reductions were appreciated in OF1 and OF2 up to 

generations 18 and 41, and 66 and 58, for scenarios 1 and 2, respectively. These 

figures show a fast stabilization of the minimum values and consequently, the 

achivement of optimal results. It was due to the boundary conditions stablished to 

manage the individuals generation, as the flow velocity in pipes, which were 
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generated within an adequate range, or the control in the distribution of diameters in 

the network, eliminating unlogical solutions. 

 

Fig. 5.5. Evolution of OF1 (left) and OF2 (right) throughout 100 generations for scenario 1 
and 2. 

On the other hand, the Pareto front for the last generation showed a series of 

possible optimal solutions, represented in Fig. 5.6 for both scenarios. In this particular 

optimization problem, a balance between the minimization of the two OF was 

essential, in order to achieve a solution with the lowest total cost of the system. 

Nevertheless, all solutions presented realistic designs from an hydraulic point of view 

because in the previous diameter selection the  extreme values were avoided  by 

constraining the pipe flow velocity within a fixed range. Thus, the OF results ranged 

from 0.27 to 0.32 and 0.27 to 0.37 for OF1 in scenario 1 and 2, respectively, while for 

OF2, these values ranged from 0.48 to 0.92 and 0.42 to 0.84 for scenario 1 and 2, 

respectively. In economical terms, these results corresponded to total costs values 

ranging between € 49,154 and € 61,402 for scenario 1, while solutions in scenario 2 

showed a total investment cost between € 48,955 and € 58,917. All solutions had  
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total costs under the cost of the original installation, (€ 80,309) as it is shown in Table 

5.1, which OF values were 0.60 for OF1 and 0.53-0.48 for OF2 in scenario 1 and 2, 

respectively.  

 

Fig. 5.6. Pareto front for OF1 and OF2 for generation 100 

Table 5.1 shows the total/ irrigation network/ PV plant lowest cost option (Op1, 

Op2 and Op3 respectively), obtained for both OF2 scenarios desagregated into the 

total investments cost, the irrigation system cost and the PV plant cost. It must be 

highlighted that the propossed optimal sizings presented a cost reduction between 

23.5% to 39.1%  in relation to the investment cost of the current system. A fraction 

of this reduction  was due to the drop in the investment cost of the irrigation network, 

which oscillated between 38.9% and 55.9%. Nevertheless, depending on the 

selected solution and its OF values, both the hydraulic and/or PV components of the 

investment cost, was a cheaper solution than the original design. This fact can be 

observed in Op 2, for both scenarios. In these cases, the total cost was lower than 

Op 1-3 

Op 2 

Op 3 Op 1 

Op 2 
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the original one due to a significative decrease in the irrigation network cost. The 

reduction in pipes diameter size reduced the investment cost, although involved 

higher power demands and, consequently, a larger PV plant, which increased its cost 

by a 100% and 83.9% for scenario 1 and 2, respectively. Even then, the irrigation 

network was significlantly cheaper than the current irrigation system. On the other 

hand, the most economical PV plant, represented by Op 3, showed an investment 

cost of € 14,835 and € 14,227 for scenario 1 and 2, which supossed 10.9% and 

14.6% cost reductions.  

Table 5.1. Economical costs and total investment cost reductions associated to the best 
solutions obtained related to the original design of the case study system. 

 

 

Total 
investment 

cost (€) 

Irrigation 
network 
cost (€) 

PV plant 
cost (€) 

Cost 
reductions** 

(%) 

Original 
design 80,309 63,649 16,659 - 

Scenario 
1 

Op 1-3* 49,154 34,319 14,835 38.8 

Op 2* 61,402 28,084 33,318 23.5 

Scenario 
2 

Op 1* 48,955 33,391 15,564 39.1 

Op 2* 58,917 28,274 30,643 26.6 

Op 3* 53,107 38,880 14,227 33.9 

*Options refer to: Op1 (the best solution related to total cost with both individual costs- 
irrigation network and PV plant cost- lower than the original system design), Op 2 (the best 
solution related to the irrigation network cost) and Op 3 (the best solution related to the PV 
plant cost). 
**Total investment cost reductions related to the original installation total investment cost. 

Table 5.2 collects information about the sectors power demand for the 

selected solutions, as well as the fullfilment of irrigation needs  and required PV 

surface area. Thus, it can be observed that all these options grouped the 13 hydrants 

in three sectors, with power demands between 10.0 and 26.6 kW per sector and 14.9 
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and 35 kW of PVPP. Moreover, all selected designs satisfied the irrigation needs in 

more than a 96%, requiring a PV modules area between 163.8 and 383.6 m2.   

Table 5.2. Sector power demand, PVPP of the PV plant, % irrigation requirements and 
required PV area for the best solutions. 

  PS1 
(kW) 

PS2 
(kW) 

PS3 
(kW) 

PVPP 
(kW) 

Irrigation 
requirements 

(%) 

PV area 
(m2) 

Scenario 
1 

Op 1* 11.2 11.9 10.9 15.7 96.73 172.2 
Op 2* 21.3 18.9 26.6 35.0 96.67 383.6 

 Op 3* 10.9 11.9 10.9 15.7 96.82 172.2 

Scenario 
2 

Op 1* 12.5 11.1 10.8 16.4 96.74 179.2 
Op 2* 22.4 19.0 24.6 32.3 96.53 354.2 
Op 3* 10.0 11.4 9.3 14.9 96.66 163.8 

*Options refer to: Op1 (the best solution related to total cost with both individual costs- 
irrigation network and PV plant cost- lower than the original system design), Op 2 (the best 
solution related to the irrigation network cost) and Op 3 (the best solution related to the PV 
plant cost). 

Finally, figure 5.7 represents the total pipe length per commercial diameter 

(internal) included in the irrigation network design for each selected solution. All these 

solutions combined between 5 to 6 different sizes of diameter. Moreover, it showed 

flow pipe velocity values in pipes between 0.96 and 2.34 ms-1, which was within the 

recommended values for the correct operation of these pipes. Moreover, these 

selected diameters oscillated between 28 to 123.4 mm, which represented an 

important reduction in the irrigation network cost, compared with the original design 

of the network, with diameters from 44 to 158.6 mm. Moreover, this figure also shows 

that the highest length was always represented by the largest diameter. This fact was 

due to the length of the drive pipe, which covered the distance between the pumping 

station and the irrigation field.       
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Op 1-3 Scenario 1                                                                       

 

Op 2 Scenario 1 

 

Fig. 5.7. Maximum and minimum flow velocities and total length for each pipe diameter 
(mm)  in the network design for solutions for both scenarios. 
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Op 1 Scenario 2                                                                             

 

 Op 2 Scenario 2 

 

Fig. 5.7. Maximum and minimum flow velocities and total length for each pipe diameter 
(mm)  in the network design for solutions for both scenarios. 
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Op 3 Scenario 2 

 

 

 

 

Fig. 5.7. Maximum and minimum flow velocities and total length for each pipe diameter 
(mm)  in the network design for solutions for both scenarios. 

5.4. Conclusions 

The MOPISS model provides the optimal size of pipe diameters and the PV 

plant dimensioning of a PV irrigation system. It has been applied to a real case study. 

The model considers the reduction of the total investment cost and the right operation 

of the system. The optimization is based on the sectorization of hydrants operation, 

the determination of the pipe diameters, ensuring adequate flow pipe velocity, and 

the PV plant dimensioning that can pump enough water to satisfy the irrigation 

requirements.  
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The model was applied to an actual operating PV irrigation system, showing 

a series of solutions which presented important savings, between 22.9 and 38.2%, 

compared with the original system design. The cheapest solution, in relation to the 

total cost, offered a design in which both, the hydraulic and photovoltaic components 

had balanced costs, although separately, none of them was the cheapest option. On 

the other hand, the cheapest irrigation network involved a higher investment in the 

PV plant. This solution could suggest an interesting option under an energy net 

balance scenario, in which the excess of PV energy generated (when the irrigation 

system is not working) could be sold to the electricity grid. In contrast, the cheapest 

PV solution entailed the smallest PV plant, with the reduction on the required surface 

for the PV modules installation and the corresponding reduction of the environmental 

impact derived from the modules production. All solutions satisfied the irrigation 

requirements over a 96%, which together with the control of the flow velocity in pipes, 

allowed the generation of adequate and cheaper system designs options. The results 

showed several possible optimal solutions, that can be prioritised according to the 

minimization of the total investment- irrigation network- or PV plant costs, depending 

on the specific characteristics of the project. 
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6. Conclusions 

▪ Photovoltaic energy is a very good alternative to traditional energy sources 

for energy supply in irrigation in areas with adequate solar radiation levels, 

offering a solution for isolated farms without electricity grid access. 

However, its high dependence on climatic variables requires new 

management tools. 

▪ The development of intelligent models for real-time management of 

photovoltaic irrigation by synchronising the power generated and that 

demanded by the different sectors which make up the network made 

possible to satisfy more than 96% of the irrigation requirements of the crop, 

in the case study analysed. These results prove the efficiency and 

autonomy of the system, which also allowed reducing the emission of 1.2 tn 

of CO2 eq. in an irrigation season. 

▪ Photovoltaic energy has a virtually zero environmental impact during the 

period of operation. However, the manufacturing process of photovoltaic 

modules requires a significant demand for materials and energy. Even so, 

the potential for global warming, acidification, depletion of fossil fuel 

resources and human toxicity linked to 1kWh of energy, for the photovoltaic 

energy supply option was significantly lower than the showed by traditional 

supply options (electricity grid and diesel generator). 

▪ The seasonality of irrigation notably affects the environmental impact linked 

to each kWh of useful photovoltaic energy. Thus, the possibility of exporting 

the surplus of photovoltaic energy produced and not consumed by the 

irrigation network to the electricity grid showed, for the case study analysed, 

an environmental burden for each kWh of energy used 6 times lower than 
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that determined for the irrigation option in which the photovoltaic plant is not 

connected to the electricity grid. 

▪ Photovoltaic energy as a source of energy supply for irrigation entails a 

higher initial investment than that corresponding to the use of traditional 

energy sources. However, the total cost (investment and operating costs) 

linked to the photovoltaic irrigation option for the selected case study 

resulted in cost reductions of 63% and 36% compared to the use of a diesel 

generator and the electricity grid, respectively. 

▪ The development of optimization tools for the dimensioning of the 

photovoltaic irrigation system integrating economic and operational aspects, 

as well as hydraulic and energetic variables, allows to obtain design 

solutions that contemplate the minimization of the total investment cost, 

assuring the correct operation of the system.    

New avenues of research: 

After the results obtained in this thesis, some of the possible future avenues of 

research are listed below: 

▪ The integration of the environmental aspects in the optimization models for 

the dimensioning of photovoltaic irrigation systems, such as life cycle 

assessment. 

▪ The adaptation of the dimensioning optimization for the photovoltaic 

irrigation system to crops with greater irrigation restrictions, evaluating a 

possible photovoltaic energy supply combined with other energy sources. 
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▪ The integration in the optimal dimensioning of photovoltaic irrigation system 

models of the assessment of the partial sale of the energy generated as a 

complementary economic activity to the agricultural farm. 

▪ The study of the possibility of photovoltaic energy supply in more complex 

irrigation networks, such as irrigation districts with on demand irrigation, 

considering a possible net balance scenario. 
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6. Conclusiones 

La energía fotovoltaica es una muy buena alternativa a las fuentes de energía 

tradicionales para el suministro energético en el riego en zonas con adecuados 

niveles de radiación solar, ofreciendo una solución para explotaciones aisladas de 

la red eléctrica. Sin embargo, su alta dependencia de las variables climáticas 

requiere nuevas herramientas de gestión. 

 El desarrollo de modelos inteligentes para la gestión en tiempo real del riego 

fotovoltaico mediante la sincronización de la potencia generada y la demandada por 

los distintos sectores que componen la red ha permitido satisfacer en más de un 

96% los requerimientos de riego del cultivo en el caso de estudio analizado. Estos 

resultados prueban la eficacia y autonomía del sistema, que además permitió reducir 

la emisión de CO2 eq. en 1.2 tn en una campaña de riego.   

 La energía fotovoltaica presenta un impacto ambiental casi despreciable 

durante el periodo de funcionamiento. Sin embargo, la etapa de fabricación de los 

módulos fotovoltaicos requiere una importante demanda de materiales y energía. 

Aun así, el potencial de calentamiento global, de acidificación, de agotamiento de 

recursos fósiles y de toxicidad humana vinculado a 1kWh de energía, para la opción 

de suministro energético fotovoltaico fue significativamente menor al mostrado por 

las opciones de suministro tradicionales (red eléctrica y generador diésel).   

 La estacionalidad del riego afecta notablemente al impacto ambiental 

vinculado a cada kWh de energía fotovoltaica útil. Así, la posibilidad de exportar a la 

red eléctrica el excedente de energía fotovoltaica producida y no consumida por la 

red de riego mostró, para el caso de estudio analizado, una carga ambiental para 
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cada kWh de energía aprovechado 6 veces inferior a la determinada para la opción 

de riego en la que la planta fotovoltaica permanece aislada de la red. 

 La energía fotovoltaica como fuente de suministro energético en el riego 

conlleva una mayor inversión inicial que la correspondiente al uso de fuentes de 

energía tradicionales. Sin embargo, el coste total (costes de inversión y 

funcionamiento) vinculado a la opción de riego fotovoltaico para el caso de estudio 

seleccionado resultó en un ahorro del 63% y 36% en comparación con el uso de un 

generador diésel y la red eléctrica, respectivamente. 

 El desarrollo de herramientas de optimización para el dimensionamiento del 

sistema de riego fotovoltaico que integran aspectos económicos y de operatividad, 

así como variables hidráulicas y energéticas, permite obtener soluciones de diseño 

que contemplan la minimización del coste total de inversión, asegurando un correcto 

funcionamiento del sistema. 

 

Nuevas vías de investigación: 

Tras los resultados obtenidos en esta tesis, a continuación, se recogen 

algunas de las posibles futuras vías de investigación: 

 Integrar los aspectos ambientales en los modelos de optimización del 

dimensionamiento de sistemas de riego fotovoltaico, como la evaluación del ciclo de 

vida. 
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 Adaptar la optimización del dimensionamiento del sistema de riego 

fotovoltaico a cultivos con mayores restricciones de riego, evaluando un posible 

suministro energético fotovoltaico combinado con otras fuentes de energía. 

 Integrar en los modelos de optimización del dimensionamiento del sistema 

de riego fotovoltaico la valoración de la venta parcial de la energía producida como 

actividad económica complementaria a la explotación agrícola.  

 Estudiar el posible abastecimiento energético fotovoltaico en redes de riego 

más complejas, como comunidades de regantes con organización del riego a la 

demanda, considerando un posible escenario de balance neto. 
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Appendix A. Middleware to operate Smart photovoltaic 

irrigation systems in real time. 

This chapter has been published entirely in the journal “Water”, R. González 

Perea, A. Mérida García, I. Fernández García, E. Camacho Poyato, P. 

Montesinos Barrios, J.A. Rodríguez Díaz (2019) 

Abstract. Climate change, water scarcity and higher energy requirements 

and electric tariff compromises the continuity of the irrigated agriculture. Precision 

agriculture (PA) or renewable energy sources which are based on communication 

and information technologies and a large amount of data are key to ensuring this 

economic activity and guaranteeing food security at the global level. Several works 

which are based on the use of PA and renewable energy sources have been 

developed in order to optimize different variables of irrigated agriculture such as 

irrigation scheduling. However, the large amount of technologies and sensors that 

these models need to be implemented are still far from being easily accessible and 

usable by farmers. In this way, a middleware called Real time Smart Solar Irrigation 

Manager (RESSIM) has been developed in this work and implemented in 

MATLAB
TM with the aim to provide to farmers a user-friendly tool for the daily 

making decision process of irrigation scheduling using a smart photovoltaic irrigation 

management module. RESSIM middleware was successfully tested in a real field 

during a full irrigation season of olive trees using a real smart photovoltaic irrigation 

system. 

Keywords: irrigation scheduling; precision agriculture; sustainable 
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irrigation; software; ICTs; hydraulic modelling. 

A.1. Introduction 

The increase in energy requirements and water scarcity, has led to a rise in 

the operating costs of irrigated agriculture (Corominas, 2010), aggravated by higher 

electricity tariff and fuel prices. Likewise, pressurized irrigation systems have 

greater environmental impact than gravity irrigation systems due to the use of energy 

(Fernández García et al., 2014; García Morillo et al., 2015). To minimise these 

adverse impacts, the use of precision agriculture (González Perea et al., 2017) and 

renewable energy sources is being promoted to improve the sustainability of irrigation 

agriculture. Both precision agriculture and the use of renewable energy sources 

require the use of a large amount of data from highly heterogeneous sensors as well 

as the use of information and communication technologies (ICTs) for their 

communication. In this way, several works have been developed, such as 

Reference (Hamidat et al., 2003), in which solar energy was applied to small-scale 

irrigation, covering daily water needs. The hybrid use of several renewable energy 

sources (wind/solar) have also been developed to meet irrigation energy needs and 

to increase the crop profitability (Vick and Almas, 2011; Mérida García et al., 2018) 

developed a Smart Photovoltaic Irrigation Manager (SPIM), which provides a daily 

irrigation scheduling for crops at plot scale, using photovoltaic (PV) solar energy to 

pump water to the irrigation network to meet crop irrigation requirements according 

to the available solar energy.  This model developed in MATLAB
TM synchronizes 

the photovoltaic solar energy to optimize the daily irrigation scheduling computing 

the daily irrigation requirements, the hydraulic behaviour of the irrigation network 
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establishing the optimum irradiance threshold per irrigation sector, the 

instantaneous photovoltaic power production from pyranometer sensor and the 

daily soil water balance. Bhattacharjee et al. (2019) developed a model to collect 

underground water using a submersible pump by a solar photovoltaic system in 

remote areas. The model included a solar charge controller connected to an inverter 

for the pump motor operation. Bouchakour et al. (2019) developed an algorithm 

based on fuzzy logic to improve photovoltaic water pumping system performance.   

All these models are based on data from a wide range of sensors, various web 

platforms such as climatic web platforms and commercial irrigation controllers 

(Mérida García et al., 2018). However, the volume and nature of the data used by 

these models introduces a significant challenge in the implementation of solar 

irrigation management tools in commercial fields which must operate in real time. 

In addition, a development trend in precision agriculture is standardisation (Wang et 

al., 2006), in order to achieve software sharing and interoperability of computer 

programs (Marakami et al., 2007) and provide to farmers a robust, scalable and 

adaptable tool to help the daily making decision process. Peres et al. (2011) worked 

in this context developing an autonomous intelligent gateway infrastructure for in-

field processing in precision viticulture. However, this model implements only the 

hardware, communication capabilities and software architecture of an intelligent 

autonomous gateway, designed to provide the necessary middleware between 

locally deployed sensor networks and a remote location within the whole farm 

without considering the implementations of smart photovoltaic irrigation models 

developed by other researchers. 

In this work, a new middleware called Real time Smart Solar Irrigation 
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Manager (RESSIM) has been developed to control the operation of a smart 

photovoltaic irrigation system in real time. The core of this middleware is a smart 

photovoltaic irrigation management module, developed in MATLAB
TM

, that handles 

the information received from the irrigation controller and climate web platforms. 

RESSIM has been developed under a user-friendly graphical user interface (GUI) with 

MATLAB
TM GUIDE and was applied for irrigation management of a commercial olive 

grove in southern Spain. 

A.2. RESSIM Design 

A.2.1. Model Description 

RESSIM is a platform which connect software modules, graphical user 

interface (GUI), databases (building and management) and remote connections with 

different data sources (irrigation controller and its linked sensors and web platforms). 

RESSIM links six modules (Fig. A.1): smart PV irrigation management, 

database, irrigation control, field sensing, agroclimatic information and GUI to make 

RESSIM a user-friendly middleware. These modules are described next. 
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Fig. A.1. Architecture of Real time Smart Solar Irrigation Manager (RESSIM). 

A.2. 1.1. Smart PV Irrigation Management Module 

The core of RESSIM is the smart photovoltaic irrigation management module 

known as Smart Photovoltaic Irrigation Manager (SPIM) (Mérida García et al., 2018). 

This model synchronizes the availability of photovoltaic energy with the energy 

demand of the different irrigation sectors to meet the daily crop irrigation needs. SPIM 

integrates several calculation modules to obtain the decision variables required for 

irrigation management. One of these variables is the daily crop irrigation needs, 

calculated from evapotranspiration and precipitation data and crop water 

requirements. The irrigation system is operated in sectors, thus hydraulic modelling 

techniques are used to estimate the power requirements of each one. The supplied 
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electric power depends on the energy production of the photovoltaic plant, estimated 

according to Reference (López-Luque et al., 2015). 

Additionally, in the SPIM model the soil is considered as a water storage tank, 

so the soil water balance is computed daily. Using this information and daily priority 

rules, the optimum operating sequence of the irrigation sectors can be established in 

real time. As only photovoltaic energy is used to power the system, the presence of 

clouds may prevent the system from operating long enough to meet the daily crop 

irrigation needs. When this is the case, soil water content is checked, and if the 

moisture content is enough to fill the irrigation deficit, soil water is assumed to satisfy 

the irrigation needs of that day. Otherwise, the irrigation time of the following day is 

increased to compensate for the irrigation deficit. 

Real-time information about climate type, soil moisture content, solar 

installation and the status of the system’s hydraulic devices (e.g., open valve, 

pressure head at the pumping station) is used to calculate all the elements described 

above. The information required by SPIM is obtained from the database module and 

the communication module with the climate web platform. A detailed description of 

the SPIM model can be found in (Mérida García et al., 2018). 

A. 2.1.2. Irrigation Controller 

In most farms, commercial irrigation controllers are used to apply the crop 

water requirements according to a predefined irrigation scheduling plan. Most 

commercial irrigation controllers are built over a database, “commercial database”, 

which is used to operate them (reading sensor measurements and sending orders to 
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actuators). Remote sensors are also included in the commercial irrigation controller 

as an external device and their measurements are recorded in the same database. 

Thus, commercial irrigation controllers are just an interpreter of its database through 

create, read, update and delete (CRUD) queries. These CRUD queries enable the 

irrigation controller to read the external sensors and give any orders to filters, electro 

valves, etc., which control the irrigation process. Likewise, the opening or closing 

process of all irrigation system elements (electro valves, filters...) are also managed 

by the irrigation controller through its database. Consequently, irrigation controller is 

just a listener of its database, where the status of each field sets its behaviour. 

Thus, managing the commercial database allows the irrigation controller and 

all their connected devices to be handled. Hence, in this work, the commercial 

irrigation controller was managed by RESSIM to target the commercial database 

through Structured Query Language (SQL) queries. 

A.2.1.3. Field Sensing Module and Remote Agroclimatic Data Module 

Two different ways to get and save information from field sensors were 

implemented in RESSIM. Most of the commercial irrigation controllers enable the 

integration of multiple sensors regardless of the transmission protocol. Measures 

from these sensors can be saved in its commercial database. Thus, RESSIM could 

read and operate these sensors through its database. For example, RESSIM 

managed in real time a pyranometer which was installed in the studied field. By 

RESSIM and the real time processing of pyranometer data, the smart PV irrigation 

management module could compute the instantaneous power available for irrigation 
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sectors. Alternatively, RESSIM could integrate other sensors, different from those 

initially included in the database. Thus, any other sensor, that can send information 

to a cloud repository, may be managed by the system. 

The remote agroclimatic data module allowed agro-climatic information 

required by the smart PV irrigation management module (SPIM, in this work) to be 

obtained. These data are collected from a public weather stations platform. This 

module, developed in MATLABTM, gets information from public websites by HTTP 

call-backs and sent it to RESSIM as JavaScript Object Notation (JSON) format. Then, 

this information was managed by RESSIM and sent to the smart PV irrigation 

management module. 

A.2.1.4. Database Module 

The database module was made up by two databases: commercial and open 

databases. The commercial one was a relational database which resides on a 

separate machine from the irrigation controller. This commercial database was 

accessible by TCP/IP connection and SQL server. Frequently, the irrigation controller 

database is private. Therefore, information about username, password, database 

name and port where the database was running was necessary for RESSIM. In this 

work, the commercial database was managed by CRUD functions from RESSIM. 

The open database was automatically created by RESSIM at the first-time 

execution. This database consisted of five relational tables and was developed in 

MATLABTM, using SQL server (Fig. A.2). The first table, “Farm’s Owner Table”, 

relates each user to their farm(s). Information about location and the number of 
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sectors that make up the irrigation network is required by SPIM. Thus, farm 

description is recorded in “Farm Description Table”. 

Several agroclimatic parameters, such as reference evapotranspiration, 

rainfall, temperature and solar radiation are required by SPIM. For each farm, these 

data are stored in “Agroclimatic Data Table”. On the other hand, the power demand 

of each sector of the irrigation network computed by SPIM   is saved in “Farm PV 

Power Table”. Finally, “Operating Sector Table” stores the daily sequential 

operating sectors of each farm as a Boolean variable (open/close). 

 

 

Fig. A.2. Architecture of the open database of RESSIM. 
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A.2.1.5. RESSIM Middleware and RESSIM GUI 

RESSIM software and RESSIM GUI was developed in MATLABTM and its flow 

chart is shown in Fig. A.3.  

 

Fig. A.3. Chart flow of RESSIM. 

Initially, RESSIM requires four connection parameters from the commercial 

database (IP, username, password and port). Then, the open database is 

automatically created and saved as a local database. After connection with the 

commercial database, which controls the irrigation controller, and once the open 
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database is built, information about farm description is demanded. Once the farm 

location is known, RESSIM automatically identifies the nearest agroclimatic stations, 

storing this information in the open database. 

After the initial setting, RESSIM determines the inputs/outputs, as well as 

SPIM’s variables, which are shown in the main screen of the GUI. At this point, 

RESSIM remains in a “listening mode” to both the GUI and SPIM model. When 

SPIM requires climatic information, it sends a  request through RESSIM (Fig. A.3, 

dotted line). Via HTTP callbacks, RESSIM obtains the climatic data from open 

websites and this information is sent back to SPIM. By the same token, the 

information received by field sensors, such as pressure head at pumping station 

or irradiance values, is obtained by RESSIM through SQL queries, by the 

connection between RESSIM software, the commercial database, RESSIM GUI 

and SPIM (Fig. A.3, dash line). 

Once the sequence of operating sectors (irrigation scheduling) is determined 

as described by (Mérida García, et al., 2018), this information is sent to the 

database module by RESSIM and stored in the open database, parallelly modifying 

the commercial database. Thus, the irrigation controller, which is connected to the 

commercial database, receives the length of the irrigation event of each sector in 

real time (Fig. A.3, dot and dash line). 

Finally, a friendly GUI (Fig. A.4) was designed to visualize the values of the 

main decision variables in real time and to interact with SPIM and the irrigation 

controller.  

Any information shown or managed by RESSIM GUI follows the path shown 



Integral model for the use of solar photovoltaic energy in irrigation 
 

 

 

 

140 
 

in Fig. A.3 with the bold dash line. The GUI was divided into seven containers: 

experimental farm, pumping station-operating sector, photovoltaic plant, irrigation 

season, water volume records, soil water balance and irradiance threshold per sector. 

The experimental farm container shows the farm’s layout highlighting the operating 

sector and the spatial hydraulic simulation of this sector in real time (pressure and 

flow for each emitter of the irrigation sector as well as for hydrant). 

Pressure head, in m, and flow applied, in m
3 h

−1
, by the pumping station is 

shown in the container labelled “Pumping station-operating sector”. Information 

related to the photovoltaic plant as irradiance, in W m
−2

, and photovoltaic power, in 

W, is shown in the “Photovoltaic plant” container. 

The “Irrigation season” container provides the beginning date of the irrigation 

season, the estimated flowering date and the real flowering date. When estimated 

and real flowering dates do not match, SPIM recomputes the irrigation scheduling. 

The “Water volume records” container provides the total amount of water applied to 

each irrigation sector, in m
3
, the irrigation target volume in this irrigation season per 

irrigation sector, in m
3
, the percentage of irrigation requirements which have been 

satisfied, in %, the date of the last irrigation event per irrigation sector and the 

estimated irrigation requirements for the following day. The real time value of the soil 

water content in each sector is displayed in the “Soil water balance container”. 
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Fig. A.4. RESSIM graphical user interface (GUI). 

The range of irradiance in which each sector operates, determined by SPIM, 

is shown in the “Irradiance threshold per sector container”. Finally, the current date, 

and start/stop button were in the upper-right corner of the GUI. 

A.3. Implementation of RESSIM in a Real Case Study 

RESSIM has been designed to be implemented to the most irrigation 

controllers which are based on a SQL database and most smart photovoltaic 

irrigation managers. The implementation of RESSIM just requires a PC with an 

internet connection to get the full potential of the tool. 

A test field of 13.4 ha located on the experimental farm of Cordoba University 
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(Southern Spain) was selected to test the proposed RESSIM middleware (Fig. 

A.5). 

 

 

Fig. A.5. Experimental farm of Cordoba University. 

The irrigation system of the experimental farm is fitted with an irradiance 

sensor,  a flow meter, a pressure meter and a soil moisture sensor, which are 

connected to a commercial irrigation controller, AGRONIC 4000 
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(https://www.progres.es/es/agronic4000). 

Historical climatic data (precipitation and evapotranspiration) were obtained 

from the open website of Andalusian weather stations 

(https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontControl

ler), while, forecasted and real time climatic data were obtained from a national 

open website (https://www.eltiempo.es/). 

RESSIM was applied for an entire irrigation season. Thus, Fig. A.6 shows the 

applied irrigation depth, the required irrigation depth and the irrigation correction by 

SPIM model during the irrigation season. Two days (16 April and 28 July, Julian days 

of the year 106 and 209, respectively) were selected and marked in Fig. A.6 by 

asterisk in order to discuss the results with RESSIM management. The irrigation 

scheduling for the two selected days is shown in Fig. A.7 a, b respectively. Both 

figures show the synchronization of the operating sectors of the irrigation network 

and the photovoltaic power generation determined by SPIM and managed by 

RESSIM. Fig. A.7a (Julian day of the year 106) shows the synchronization of the 

operating sector in a typical cloudy day while RESSIM management for a sunny day 

is shown in Fig. A.7b. The hard task to manage in real time (manually operate) the 

synchronization of the irrigation operation with the photovoltaic power generation 

highlights the utility of RESSIM in daily irrigation scheduling. 

 

https://www.progres.es/es/agronic4000
https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/
https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController
https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController
https://www.eltiempo.es/
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Fig. A.6. Irrigation scheduling with the smart photovoltaic irrigation manager (SPIM) and 
RESSIM management for a whole irrigation season. 

Two different times of the day were selected in Fig. A.7a, b (red asterisk), 11 

am and 12 am, respectively. For both selected time periods, RESSIM GUI is 

shown in Fig. A.8a, b respectively. S3 and S2 irrigation sectors were working in 

the selected instant, respectively. Fig. A.8a highlights the first day of the irrigation 

season in which S2 irrigation sector was working at 12:00 h. Thus, the total water 

volume applied until that day was 0.3%, 0.4% and 0.5% for the three irrigation 

sectors, respectively. The volume applied at the studied hour on that day (Julian 

day of the year 106) was 15.9 m3, 20.8 m3 and 39.6 m3 for S1, S2 and S3, 

respectively, and the total water volume required on that day was 48.7 m3, 41.8 

m3 and 60.7 m3, respectively. The estimated water volume for the following day 

(day of the year 107) was 52.3 m3, 44.9 m3 and 65.1 m3, for the three irrigation 

sectors, respectively. 
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Fig. A.7. Photovoltaic power generation, power threshold and operation sequence of 
sectors of the irrigation network in the Julian day of the year 106 (a) and 209 (b) of the 

irrigation seasons. 
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Fig. A.8. Screenshots of the RESSIM model on the Julian day of the year 106 (a) and 209 
(b). 
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For the day of the year 209 (Fig. A.8b), the percentage of water applied until 

that day was 73.2%, 73.3%, and 72.1% of the total water requirements of the 

irrigation season, for the three irrigation sectors, respectively. At that moment, the 

daily applied water volume for S1, S2 and S3 was 4479 m3, 3710 m3 and 5450 m3, 

respectively. According to SPIM model, the estimated water volume for the following 

day (Julian day of the year 210) was 28.3 m3, 24.9 m3 and 37.0 m3, for the three 

irrigation sectors, respectively. Both scenarios (Fig. A8a, b) show the high 

synchronization determined by SPIM and carried out by RESSIM between the 

operation of the irrigation sectors and photovoltaic power generation linked to 

irrigation requirements. 

Although the SPIM model could be run manually, the daily synchronization 

and the daily irrigation scheduling based on solar irrigation would be impossible 

without RESSIM middleware.  

A.4. Conclusions 

Due to the variability of power production during the day, the irrigation 

management with water pumped with PV energy is a complex task. As power 

production is variable, heterogeneous elements like sensors, countless web 

platforms and commercial irrigation controllers must be used co-ordinately. The 

integration of all these elements is essential to ensure the success of this technology, 

which is more complicated to manage than systems based on conventional energies 

where the availability of power is constant. 
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Thus, RESSIM is a friendly tool that facilitates the management of PV 

irrigation systems, since it gathers information from different data sources and 

models and automatically apply the previously calculated irrigation depths to all the 

sectors depending on the instant power production of the solar panels. 

 RESSIM was successfully tested in an experimental field for olive trees 

irrigation. The system managed automatically the solar irrigation system during one 

full irrigation season, without any major incident. 

The first version of the RESSIM model have allowed the optimum 

synchronization between the solar energy production and the irrigation requirements 

and the operation with the pumping station. By this optimal synchronization, the 

investment cost of the photovoltaic plant can also be reduced, optimizing the size 

and consequently reducing the greenhouse gases emissions. In future versions of 

the tool, dynamic models of crop growth, predictive models of daily water demand at 

farm level as well as the possibility of fitting the pumping station with variable speed 

drives will be implemented in order to improve the synchronization between the 

photovoltaic energy production and water demand both at farm and at water user 

association levels. 
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