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Abstract. A Lorentz manifold (M, g) is said to be a conformally stationary spacetime

if it is endowed with a globally defined conformal timelike vector field K, whereas it is

a pp-wave when there is a globally defined parallel lightlike vector field K on M . The

study of rigidity and non-existence results for spacelike hypersurfaces with constant

mean curvature in these spaces has been considered in the last years by several authors.

In this note we unify some known techniques and results related to both problems by

considering spacelike hypersurfaces in a spacetime (M, g) endowed with a globally

defined conformal causal vector field. This wide family of Lorentz manifolds not only

includes previous cases, but it also includes new families of spacetimes.
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1. Introduction

The concept of symmetry is essential in Physics. In General Relativity a symmetry

in a spacetime, or an infinitesimal symmetry, is given by the existence of a global

Killing vector field, or more generally a conformal vector field. In fact, as an important

problem in General Relativity is the search of exact solutions of Einstein’s equations,

the assumption of the existence of an (a priori) infinitesimal symmetry on the spacetime

constitutes an effective method in the search for such solutions, see for instance [8, 9].

Observe that different causal characters can be assumed for the infinitesimal symmetry

of the spacetime. In fact, the timelike choice leads to the class of conformally stationary

spacetimes (see [1]). Otherwise, when considering a parallel lightlike vector field we

get the family of pp-wave spacetimes, (see for instance [15, Section 24.5]). However,

the same causal character for the infinitesimal symmetry is not always assumed, as

happens with spacetimes like the Schwarzschild, the Reissner-Nordströms, or even the

Kerr spacetime (in this last one the Killing vector field becomes even spacelike in some

regions, see [10, Chapter 5] for details).

Another possibility to look for exact solutions to the Einstein’s equations is to

generate new solutions from one already known, which can be made via a conformal

transformation of the spacetime. This technique was first considered by Brinkmann

in [4], so we will refer to it as the Brinkmann program (see Remark 3.1). In particular,

it seems natural to study spacetimes whose metric is conformal to the metric of a pp-

wave.

Furthermore, spacelike hypersurfaces of constant mean curvature and in particular

maximal hypersurfaces, that is spacelike hypersurfaces whose mean curvature is

identically zero, are an important subject of study in General Relativity, since they play

a relevant role for the initial value problem as initial hypersurfaces where the constraint

equations can be split into a linear system and a nonlinear elliptic equation (see [7] and

references therein). A summary of other reasons justifying the study of CMC spacelike

hypersurfaces can be found in [11].

Aĺıas, Romero and Sánchez considered in [1] compact, constant mean curvature,

spacelike hypersurfaces immersed in a conformally stationary spacetime, and obtained

several uniqueness and non-existence results making use several integral formulae. More

recently Camargo, Caminha, de Lima and Velásquez extended in [5] the study to

the case of complete, not necessarily compact, hypersurfaces in conformally stationary

spacetimes, and in particular in general Robertson-Walker spacetimes. Some years ago,

Pelegŕın, Romero and Rubio have considered in [13] compact spacelike hypersurfaces

immersed in a pp-wave.

In this short note, we extend the above results to the case of complete parabolic

spacelike hypersurfaces of constant mean curvature immersed in a wide class of

spacetimes, those admitting a conformal causal vector field. Moreover, we also obtain

results for the non-parabolic case under some mild regularity hypotheses. Finally, we

analyse the restricted case of closed conformal vector fields, where our results can be
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sharpened even further.

2. Setting up

Along this note, let (M, g) be an (n + 1)-dimensional (n ≥ 2) spacetime admitting a

globally defined causal conformal field K ∈ X(M), where as usual by causal we mean

that K do not vanish anywhere and g(K,K) ≤ 0. Let us recall that K is conformal

if and only if LKg = 2%g for a certain function % ∈ C∞(M), where L denotes the Lie

derivative. As it has been remarked before, in the case where K is everywhere timelike

(M, g) is known in the literature as a conformally stationary spacetime, and in the case

where K is a parallel lightlike vector field (M, g) is known, following [15, Section 24.5],

as a pp-wave spacetime

Let x : Sm →Mn+1, m < n+1, be an isometrically immersed spacelike submanifold

in M . As usual we will identify any point p ∈ S with its image x(p) ∈ M , any vector

v ∈ TpS with dxp(v) ∈ Tx(p)M and we will denote also by g the metric induced on S

from (M, g).

Let us denote by X
M

(S) the set of vector fields on M along S. Observe that any

vector field V ∈ X
M

(S) admits a unique decomposition

V = V > + V ⊥,

such that V > ∈ X(S) and V ⊥ ∈ X⊥(S), i.e. for any p ∈ S it holds Vp ∈ TpS and

V ⊥p ∈ T⊥p S. Besides that, given any V ∈ X
M

(S) we can define the operator

divS (V ) :=
∑
i

g
(
∇Ei

V,Ei
)
, (1)

where ∇ stands for the Levi-Civita connection on M and {Ei}mi=1 is a local orthonormal

frame of S, i.e., each Ei is a local section of the vector bundle TS. It is worth pointing out

that the operator divS is well-defined since it is independent of the chosen orthonormal

frame. Let us also recall that for any X ∈ X(S) and ξ ∈ X⊥(S) the classical Weingarten

formulae for spacelike submanifolds asserts that

∇Xξ = −AξX +∇⊥Xξ, (2)

where ∇⊥Xξ = (∇Xξ)
⊥ and Aξ : TS → TS denotes the shape operator of S with respect

to ξ. Thus, considering {Nj}n+1−m
j=1 ⊂ T⊥S a local orthonormal frame of local sections

of the normal vector bundle of S in M , from (1) and (2) we easily obtain

divS(V ⊥) =
∑
i,j

εj g
(
V ⊥, Nj

)
g
(
∇Ei

Nj, Ei
)

= −g
(
V,m ~H

)
,

where εj = g(Nj, Nj) and ~H is the mean curvature vector field of x. Hence,

div
(
V >
)

= divS (V ) + g
(
V,m ~H

)
,
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div being the divergence operator on S.

In particular, if the submanifold S is closed (i.e. compact without boundary),

making use of the Gauss theorem we obtain the following integral formula,∫
S

{
divS (X) + g

(
X,m~H

)}
dVg = 0 . (3)

where dVg is the Riemannian volume element of (S, g).

From now on, we will restrict ourselves to the case where S is in fact an (immersed)

spacelike hypersurface in M . Under this assumption, there exists a unique timelike

normal vector field N globally defined on S with the same time-orientation as K. We

will refer to N as the future-pointing Gauss map of S. As it is well-known, the mean

curvature function of S with respect to N is given by H = − 1
n
tr(A), where A = AN .

This choice on the sign of H guarantees that ~H and N have the same time-orientation

wherever H(p) > 0. Then, taking X = K and recalling that K is conformal, the integral

formula (3) reads ∫
S

{%+Hg (K,N)} dVg = 0 . (4)

We can now state a first non-existence result, which is a direct generalization of [1,

Proposition 2.1],

Proposition 2.1. Let (M, g) be a spacetime endowed with a globally defined conformal

causal field K with non-positive (non-negative, respectively) conformal factor %, then

there do not exist any closed spacelike hypersurface S in M with H > 0 (H < 0,

respectively).

Proof. The proof follows directly from (4) by observing that g(K,N) < 0 on S.

As an immediate consequence, we get the following result,

Corollary 2.2. Let (M, g) be a spacetime endowed with a globally defined Killing causal

vector field, then the only closed spacelike hypersurfaces S in M such that its mean

curvature function does not change sign are maximal. In particular, there are no closed

spacelike hypersurfaces with signed mean curvature in a stationary spacetime or in a

pp-wave but the maximal ones.

From now on, our aim is to generalize our results to a wider family of not necessarily

compact spacelike hypersurfaces. In order to do it, let us now focus on the distinguished

function Φ ∈ C∞(S) given by

Φ(p) = −g(K(p), N(p)).

Because of our choice of N it holds Φ ≥ 0 on S. Let us observe that in the case where

K is timelike Φ measures the hyperbolic cosinus of the hyperbolic angle determined by

N and K. Furthermore, we can obtain the following expression for its Laplacian, ∆Φ,
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Lemma 2.3. Let (M, g) be a spacetime endowed with a globally defined conformal causal

field K, S a spacelike hypersurface in M and N its future Gauss map. Then, the function

Φ = −g(K,N) satisfies

∆Φ = −Φ
(
tr(A2) + Ric(N,N)

)
+ ng(N,∇%)− ng(K>,∇H)− n%H, (5)

where Ric and ∇ stand for the Ricci operator and the gradient in M , respectively.

The proof of Lemma 2.3 is a tedious but straightforward computation which follows

from the Codazzi equation and the fact of K being conformal. We will omit the proof

since it is analogous to the one in the case of (M, g) being a conformally stationary

spacetime (see for instance [1] and [2, Proposition 3.1]) or in the case where it is a

pp-wave (see [13, Section 3]). In order to adapt the proof to our more general situation,

we only have to realize that it is enough by asking K to be causal. In fact, it does not

necessarily keep the same causal character along S.

3. On the geometry of complete spacelike hypersurfaces

Let us show in this section several results for not necessarily closed spacelike

hypersurfaces in (M, g), obtained mainly as an application of (5). On the one hand, we

will assume that the spacetime obeys the timelike convergence condition (TCC). Let us

recall that a spacetime satisfies TCC when the Ricci tensor acting on timelike vector

fields is always non-negative, i.e. Ric(Z,Z) ≥ 0 for any timelike field Z ∈ X(M). From

a physics point of view TCC is a relevant energy condition in General Relativity, which

is traduced in the fact that, on average, gravity attracts. On the other hand, we will

also ask the hypersurface to be parabolic. A complete Riemannian manifold is said to

be parabolic if any subharmonic function bounded from above is necessarily constant.

Let us observe that compact manifolds are a particular case of parabolic ones.

Theorem 3.1. Let (M, g) be a spacetime satisfying TCC. Assume that M admits a

globally defined conformal causal vector field K such that at any point either ∇% is a

future causal vector field or it vanishes. Then, every maximal parabolic hypersurface

S immersed in M must be totally geodesic. Moreover, the vector field ∇% vanishes

identically on the maximal hypersurface.

Proof. From the assumptions of the theorem and (5) it immediately follows that ∆Φ ≤ 0.

Since S is parabolic Φ should be constant, and consequently ∆Φ = 0. Then all the terms

in the right hand side of (5) should also vanish, and in particular tr(A2) = 0 and ∇% = 0

on S.

Remark 3.1. Some observations are in order:

(i) Note that Theorem 3.1 can be slightly generalized to the case of constant mean

curvature spacelike hypersurfaces whose mean curvature H satisfies %H ≥ 0 on the

hypersurface. Beside, let us observe that the assumption on ∇% is trivially satisfied

in the homothetic case, i.e., when the conformal factor is constant.
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(ii) Previous result follows in particular if we assume that (M, g) is either a conformally

stationary spacetime or a pp-wave. Observe that, in particular, for stationary space-

times or pp-waves (where K is actually a Killing vector), the conformal factor %

vanishes.

(iii) Regarding the case of pp-waves, it is worth pointing out that it is easy to construct

non-trivial pp-waves which admits parabolic spacelike hypersurfaces as it is shown

in the following example. Let (M, g) be a Lorentzian (n+ 1)-dimensional manifold

where M is given by the product Σ× S1 ×R, endowed with the Lorentzian metric

g = g
Σ

+ 2dαdv +H(x, α)dα2,

(Σ, g
Σ
) being a (complete) parabolic Riemannian (n− 1)-manifold, S1 the unitary

sphere, α an angular coordinate on S1 and v ∈ R. Let us note that the vector

field ∂
∂v

is a global parallel lightlike vector field on M , and taking into account that

the Riemannian product of a parabolic with a compact Riemannian manifold is

parabolic, we obtain that M admits a parabolic spacelike hypersurface, as long as

H is positive.

(iv) Finally, notice that following the Brinkmann program and given a pp-wave

spacetime (M, g), we can obtain a spacetime with a non-necessarily parallel

conformal lightlike vector field. Indeed, it is enough to consider the family of

spacetimes (M, g̃), where the metric g̃ is conformal to the original metric g.

Furthermore, under a suitable choice of the conformal metric g̃, every parabolic

spacelike hypersurface in (M, g) is again a parabolic spacelike hypersurface in (M, g̃)

(see [14] for details). As a direct consequence, there is a great family of spacetimes

admitting a lightlike conformal vector field where our result holds.

Theorem 3.1 has a bunch of nice consequences. On the one hand, and from the

proof of Theorem 3.1, it follows that under the assumption of TCC, Ric(N,N) = 0

over any maximal parabolic hypersurface. Hence, we can obtain non-existence results

by hardening the TCC condition. In this sense, let us remind that a spacetime is said

to satisfy the ubiquitous convergence condition (UCC) if Ric(Z,Z) > 0 for any timelike

vector field Z. UCC is a stronger energy condition than TCC which roughly means a real

presence of matter at any event of the spacetime. Replacing the timelike convergence

condition by UCC in the previous result, we get:

Corollary 3.2. Let (M, g) be a spacetime satisfying UCC and assume it admits a

globally defined conformal causal vector field K such that at any point either ∇% is a

future causal vector field or it vanishes. Then there does not exist any maximal parabolic

hypersurface in M . In particular, there do not exist maximal parabolic hypersurfaces

immersed in a stationary spacetime or a pp-wave obeying UCC.

On the other hand, the result is directly applicable for the case of gravitational

waves, a particular subfamily of pp-waves obtained when we ask them to be a vacuum

solution (i.e. Ricci flat). Recall that these spacetimes are physically represent purely
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gravitational radiation propagating along certain null rays (for details, see [3, Chapter

13]).

Corollary 3.3. Let (M, g) be a gravitational plane wawe spacetime, then every constant

mean curvature parabolic spacelike hypersurface in M must be totally geodesic.

Finally, when considering complete, non-parabolic spacelike hypersurfaces, we need

the following technical result, obtained by Caminha, of a well-kwown result by Yau [16].

Given M a Riemannian manifold, let L1(M) be the space of Lebesgue integrable

functions on M and divM the divergence operator on M , then [6, Proposition 2.1]

states that

Proposition 3.4. Let X be a smooth vector field on a complete, noncompact, oriented

Riemannian manifold Σ, such that divΣ(X) does not change sign on Σ. If |X| ∈ L1(Σ),

then divΣ(X) = 0 on Σ.

As a consequence of Proposition 3.4 we can get the following theorem,

Theorem 3.2. Let (M, g) be a spacetime satisfying TCC, which admits a globally defined

conformal causal vector field K such that at any point ∇% is a future causal vector field

or it vanishes and let S be a complete spacelike hypersurface in M with constant mean

curvature such that |∇Φ +HK>| ∈ L1(S). Then S is totally umbilical.

Proof. From the fact of K being conformal and taking into account that K> =

K + g(K,N)N , it easily follows that

div(K>) = n%+ ΦnH,

which jointly with (5) yields

div(∇Φ +HK>) = −Φ(tr(A2)− nH2 + Ric(N,N)) + ng(N,∇%). (6)

From the assumptions of the theorem and Proposition 3.4 div(∇Φ + HK>) = 0, so all

the terms in the right hand side in (6) should also vanish. In particular tr(A2)−nH2 = 0.

Thus, S is a totally umbilical hypersurface.

3.1. Spacetimes admitting a closed conformal causal vector field

As a final subsection of this note, let us sharpen Theorem 3.1 by assuming geometrical

conditions which ensures that ∇% is a future causal vector field. For this, let us assume

that (M, g) admits a conformal vector field K which is closed, i.e., its metrically

equivalent 1-form K[ is closed. Observe that, when this conformal vector field is

timelike, (M, g) belongs to an important subfamily of the class of conformally stationary

spacetimes since, among other properties, they can be foliated by spacelike hypersurfaces

of constant mean curvature. Moreover, since the the conformal vector field is (at least)

locally a gradient, there exists for all point p ∈ M an open neighbourhood endowed

with a time function.
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When K is a closed conformal causal vector field, the conformal factor % associated

with the conformal vector field is such that

∇VK = % V

for all V ∈ X(M). Hence, it follows that

d ‖K‖2 = 2%K[ .

In particular, the 1-form %K[ is exact, so

d% ∧K[ = 0,

and thus d% = λK[ for a certain smooth function λ. Therefore ∇% is always a causal

vector field and, in order to fulfill the requirements of Theorem 3.1, we only need to

ensure that it is future-directed, i.e. λ ≥ 0. In this sense, observe that if we consider

now V a spacelike vector field, it follows that‡

g
(
RKVK,V

)
= % g (V, [K,V ])−

(
g
(
∇K%V, V

)
− g

(
∇V %K, V

))
= −K(%) g(V, V ) + V (%) g(K,V )

= − λ
(
g(K,K) g(V, V )− g(K,V )2

)
.

As K is causal and V spacelike, the plane Kp ∧ Vp ⊂ TpM is timelike, and so,

(g(K,K) g(V, V )− g(K,V )2) is negative. Therefore, in order to ensure that λ ≥ 0,

we only need to assume that for each point p ∈ M there exists a timelike plane with

non-positive sectional curvature. This follows for instance if the TCC is satisfied.
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