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Featured Application: The inter-annual variability of rainfall distribution in the Mediterranean 
region has an important impact on the vegetative cycle of dryland pastures and, consequently, 
on the availability of animal feed in extensive regime. The results of this study show the practical 
interest of spectrometry and of remote sensing as expeditious tools for monitoring pasture 
quality and support farm management decisions in terms of animal supplementation needs in 
the critical periods. 

Abstract: Pasture quality monitoring is a key element in the decision making process of a farm 
manager. Laboratory reference methods for assessing quality parameters such as crude protein (CP) 
or fibers (neutral detergent fiber: NDF) require collection and analytical procedures involving 
technicians, time, and reagents, making them laborious and expensive. The objective of this work 
was to evaluate two technological and expeditious approaches for estimating and monitoring the 
evolution of the quality parameters in biodiverse Mediterranean pastures: (i) near infrared 
spectroscopy (NIRS) combined with multivariate data analysis and (ii) remote sensing (RS) based 
on Sentinel-2 imagery to calculate the normalized difference vegetation index (NDVI) and the 
normalized difference water index (NDWI). Between February 2018 and March 2019, 21 sampling 
processes were carried out in nine fields, totaling 398 pasture samples, of which 315 were used 
during the calibration phase and 83 were used during the validation phase of the NIRS approach. 
The average reference values of pasture moisture content (PMC), CP, and NDF, obtained in 24 tests 
carried out between January and May 2019 in eight fields, were used to evaluate the RS accuracy. 
The results of this study showed significant correlation between NIRS calibration models or spectral 
indices obtained by remote sensing (NDVIRS and NDWIRS) and reference methods for quantifying 
pasture quality parameters, both of which open up good prospects for technological-based service 
providers to develop applications that enable the dynamic management of animal grazing. 

Keywords: spectrometry; Sentinel-2; pasture quality index; normalized difference vegetation index; 
normalized difference water index; supplementation; decision making 
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1. Introduction 

Montado is a highly complex agro–forestry–pastoral ecosystem due to the particular climate and 
soil conditions and the synergies between animals, trees, and pastures. In addition, the 
Mediterranean climate presents two very distinct dry and wet seasons accentuated by an increasing 
inter-annual irregularity [1]. Consequently, dryland pasture quality and productivity fluctuate 
greatly over time as a result of the seasonal distribution of rainfall [2]. Therefore, it is important to 
highlight the fact that decisions (e.g., about soil amendment or fertilization, dynamic grazing, and 
livestock feed supplementation) have to be made in a context of great unpredictability [1]. 
Understanding seasonal changes in pasture nutritive value can enhance ruminant production 
systems and management [3]. 

The value of pasture is a combination of not only pasture production but also its nutritional 
quality [3]. Decisions on supplementation are based on assessments of pasture quantity and quality. 
The quantification of pasture quality can be done by using measurable parameters, such as crude 
protein (CP) content and neutral detergent fiber (NDF) content [4]. Animal growth and development 
are favored by a high CP content and a low NDF content, which are usually associated with early 
stages of pasture development. During the spring, pastures tend to lose quality. The inter-annual 
variability of rainfall distribution has an important impact on the dryland pasture vegetative cycle, 
to the point that supplementation needs, which are normal in the critical summer period, can be 
anticipated by one to two months (in late spring) in years of reduced spring precipitation [5]. CP 
levels below maintenance requirements (9.4% of dry matter in adult sheep [6]) require the use of feed 
supplements, hence the interest of regular monitoring of evolution of these pasture parameters. As a 
result, farm managers heavily rely on the monitoring of the pasture quality for making decisions 
related to animal management. The conventional method for assessing CP and NDF consists of 
collecting representative samples and carrying out laboratory analysis. However, this methodology 
is not practical because it requires demanding field work and access to a specialized laboratory 
(cutting, collection, and analytical procedures). This results in a lengthy and often expensive process 
that is not practical for a busy farm manager [7]. Consequently, there is a demand for fast procedures 
that can monitor pasture variables and provide farmers with timely information. Proximal sensing 
(PS) and remote sensing (RS) are relatively recent technologies that measure certain plant and other 
indices, with particular interest in the use of the normalized difference vegetation index (NDVI), and 
they have gained widespread acceptance in agriculture [1,8]. 

In recent years, near-infrared spectroscopy (NIRS) technology, based on the absorption of the 
electromagnetic spectrum (radiation at wavelengths between 780 and 2500 nm), has been used in the 
pharmaceutical, petrochemical, agricultural, and food processing industries, among others [9]. 
Particularly, it has had a wide range of applications in agriculture, such as real-time pasture 
management [3], the prediction of the chemical composition of feeds [10], the detection of plant 
protein content [11], and the prediction of grape and wine quality [12]. NIR spectroscopy requires 
little or no sample preparation [9], thereby offering a simple, rapid, and reliable way to substitute 
some routine laboratory procedures and providing a fingerprint of sample composition. Briefly, 
energy in the NIR range is directed at the sample, and the reflected energy is measured by the 
instrument. However, this non-destructive technique requires a calibration procedure using some 
reference methods. The combination of NIR spectroscopy and multivariate data analysis 
(chemometrics or computational chemistry) provides calibration models that correlate the spectral 
response of a sample with its compositional profile [12,13]. It is also common knowledge that a NIR 
spectra obtained from forage samples have absorption bands that are correlated with specific 
compounds. The spectra regions between 1650–1670 and 2260–2280 nm are correlated with C–H 
bonds in lignin and cellulose [14], and the 2100–2200 nm region absorption bands are correlated with 
protein functional groups [15]. 

Though the NIR spectroscopy technique has been widely used in Europe to measure feed quality 
and to predict the nutritional value of forage [16], few studies related to its application in dryland 
biodiverse pastures of the Mediterranean region can be found, thus highlighting the interest of this 
work. 
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On the other hand, in recent years, satellite data have been increasingly deployed for RS 
applications due to their ready access, low cost, and geographic scale [8]. Satellite images can provide 
synoptic information on vegetation characteristics of large areas [17]. RS, based on the correlation 
between vegetation indices obtained from satellite-images and some crop characteristics, is becoming 
an increasingly appealing technology [7]. The NDVI is related to high levels of chlorophyll, which is 
correlated with vegetative vigor and, consequently, with high CP levels [18]. These indices that are 
associated with more traditional indicators provide farmers with the information needed for 
formulating the most appropriate strategy for management and feeding of the livestock [19]. Over 
the past few years, there has been a notorious improvement in the optical resolution of satellite 
images, providing now a 10–30 m pixel resolution and a five-day repeat cycle [1]. Therefore, RS 
techniques may progressively develop into important tools for the monitoring and management of 
such complex ecosystems while allowing for, when necessary, the reconstruction of historical trends 
through the use of satellite image time series [7]. Nonetheless, the use of optical satellite imagery 
requires a clear, cloud-free sky that may not always be the case during the rainy season in temperate 
and rainy regions. In the Montado, as in other forestry ecosystems, there is an added limitation due 
to lack of visibility of the plants located under the tree canopies. This limitation of RS-based methods 
creates an opportunity for the use of PS to monitor the understory vegetation [5,20]. These two 
methods can be used in a complementary way, with PS providing a greater resolution and access to 
the understory even on cloudy days [5]. 

Figure 1, based on data published by Serrano et al. [1], shows the interest of NDVI measurement 
(by RS or PS) as an indicator of the seasonal evolution of pasture quality over the vegetative cycle 
and of the inter-annual variability that might result from the precipitation pattern. The three years 
under consideration in this study showed different patterns of rainfall distribution (Figure 1a): 
2015/16 with regular rainfall distribution, 2016/17 with a relatively dry spring, and 2017/18 with a 
very rainy spring. Considering the NDVI reference value of 0.6 (Figure 1b), which was a sudden and 
significant decrease, the pasture CP consequently contents fell below the animal maintenance [1], it 
is evident that animal supplementary feed is required between the end of spring and the beginning 
of autumn, and it can last between four and six months. This inter-annual variability reinforces the 
interest in having expeditious tools to support farmers in the dynamic management of animal 
grazing. 

The purpose of this study was to evaluate two technological and expeditious approaches (Figure 
2) for estimating and monitoring the evolution of the quality parameters in Mediterranean pastures 
during the 2018 and 2019 growing seasons: (i) NIRS combined with multivariate data analysis and 
(ii) RS using images provided by Sentinel-2 satellite to calculate the NDVI and the normalized 
difference water index (NDWI). 
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Figure 1. Season accumulated rainfall in the meteorological station of Mitra (Évora, Portugal) (a) and 
evolution of the normalized difference vegetation index (NDVI) at the experimental field (b) between 
September and August over three years: 2015/16, 2016/17, and 2017/18. 
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Figure 2. Schematic representation of the experimental methodology used in this study. 

2. Materials and Methods 

This work frames the results of several projects conducted by this research team to monitor the 
pasture in the Montado ecosystem in nine experimental fields (Figure 3). The characteristics of the 
experimental fields used in this study are presented in Table 1. These are typical biodiverse dryland 
pastures that usually grow under a low density plantation of Holm oak or Cork oak, and they are 
mainly used for grazing by sheep or cattle in a rotational or permanent basis. The following data were 
used: (i) pasture moisture content (PMC), CP, and NDF in experimental field “MIT_1,” collected 
between February and December 2018; (ii) PMC, CP, and NDF in 8 experimental fields (“AZI,” 
“CUB,” “GRO,” “MIT_2,” “MUR,” “PAD,” “QF,” and “TAP”) collected in May 2018 (“MIT_2,” “QF,” 
and “TAP”) and between January and February 2019; (iii) PMC, CP, NDF, the NDVI, and the NDWI 
in 8 experimental fields (“AZI,” “CUB,” “GRO,” “MIT_2,” “MUR,” “PAD,” “QF,” and “TAP”) 
collected between January and May 2019. 
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Figure 3. Location of the experimental fields in Portugal. 

Table 1. Characteristics of the experimental fields used in this study. 

Site Coordinates Pasture Type Predominant 
Trees Animal Species 

“AZI” 38°6.2′ N; 
8°26.9′ W 

Permanent; biodiverse 
(predominance of composites) 

Holm oak and 
Cork oak 

Sheep in rotational 
grazing 

“CUB” 39°10.0′ N; 
6°44.6′ W 

Annual; biodiverse 
(mixture of grasses and 

legumes) 

Holm oak and 
Cork oak 

Cattle in rotational 
grazing 

“GRO” 
37°52.3′ N; 
7°56.7′ W 

Permanent; biodiverse 
(predominance of 

composites) 
Holm oak 

Cattle in rotational 
grazing 

“MIT” 

(1) 38°32.2′ N; 
8°01.1′ W; 

(2) 38°31.8′ N; 
8°0.9′ W 

Permanent; biodiverse 
(mixture of grasses and 

legumes) 
Holm oak 

(1) Sheep in 
permanent grazing 

(2) Cattle in 
rotational grazing 

“MUR” 
38°23.4′ N; 
7°52.5′ W 

Annual; biodiverse 
(mixture of grasses and 

legumes) 

Holm oak and 
Cork oak 

Sheep in 
permanent grazing 

“PAD” 38°36.4′ N; 
8°8.7′ W 

Permanent; biodiverse 
(predominance of 

composites) 
Holm oak Cattle in permanent 

grazing 

“QF” 
40°16.4′ N; 
7°25.9′ W 

Permanent; biodiverse 
(mixture of grasses and 

legumes) 
Eucalyptus 

Sheep and cattle in 
rotational grazing 
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“TAP” 
39°9.5′ N; 
7°31.9′ W 

Permanent; biodiverse 
(mixture of legumes) 

Holm oak and 
Cork oak  

Cattle, sheep or 
pigs in rotational 

grazing 

2.1. Evaluation of Near Infrared Spectroscopy (NIRS) Approach 

2.1.1. Pasture Sample Collection and Chemical Processing 

Three hundred and ninety eight composite pasture samples were collected between February 
2018 and February 2019 in nine different fields in four districts of Portugal (Beja, Évora, Portalegre, 
and Castelo Branco; see Figure 3). The sampling process consisted of defining, at each point, a 0.5 × 
0.5 m area (through a metal quadrat), cutting the pasture at 5–10 mm above ground level, and then 
preserving each sample in a numbered plastic bag. Each composite sample resulted from three 
representative sub-samples. Once in the laboratory, the pasture sample was weighed to establish total 
biomass, dried in an oven 72 h at 65 °C, and weighed again to establish PMC (in %). Then, these 
samples were ground using a Perten instruments mill equipped with 1 mm sieve. CP and NDF were 
analyzed according to standard methods and expressed in percentage on a dry weight basis [21], 
constituting the CP and NDF reference values: (i) nitrogen content was analyzed with the Kjeldahl 
method, a colorimetric determination in a Bran + Luebbe autoanalyzer with a factor of conversion to 
CP of 6.25 (method no. G-188-97 Rev 2, Bran + Luebbe, Analyzer Division, Norderstedt, Germany); 
(ii) the NDF content was analyzed according to the Goering and Van Soest [22] method in a fibered 
digester (Foss Tecator AB, Sweden). The pasture quality index (PQI; Equation (1)) was then calculated 
based on the ratio of these two parameters: 

NDF
CPPQI =  (1) 

2.1.2. Sample Spectra Acquisition and Processing 

Spectroscopic measurements were made in all samples using an FT-NIR spectrometer (MPA, 
Opus Bruker, Germany). Dried and ground pasture samples were placed on integrating sphere, and 
spectra was collected in diffuse reflectance mode at room temperature of 20 °C in a small circular cup 
of 20 mm diameter. Reflectance data (R) were measured as log 1/R (absorbance data) at a 1 nm 
interval, and NIR spectra data were obtained. Five spectra were collected from each sample, and an 
average spectrum was used for further mathematical processing and chemometrics analysis. Spectra 
data were obtained in the entire near infrared region of 12,500–3600 cm−1 (800–2777 nm) after a total 
of 32 scans with a scanner velocity of 10 kHz and an average resolution of 16 cm−1, with a receiver 
gain function with the lowest gain setting defined as 1 [23]. Each spectrum constituted 1137 points, 
which means that the first 20 values of each spectrum were discarded because large parts of the 
spectral noise could be found below 3741 cm−1 (2673 nm). Background signal was corrected before 
each set of 20 samples. 

2.1.3. Statistical Analysis 

The Opus v. 7.5 software (Bruker Optik GmbH, Germany) was employed for spectral data 
collection, and FT-NIR spectra were exported to the Unscrambler software (version 10.5.1, Camo, 
ASA, Oslo, Norway) for chemometrics analysis, calibration, and external validation models. 
Prediction models were developed using partial least square regression (PLSR) algorithm, 
considering an independent validation sample set for the chemometrics analysis [24]. In order to 
obtain the best predictive model, for PLSR, samples were split in two sets: a training set (calibration) 
with 79% of the samples (315 samples of six fields collected between February and December 2018; 
day of the year (DOY) 39–135) and a test set, with the rest of the samples (83 samples of eight fields 
collected between January and February 2019; DOY 10–50) used as an external and independent 
validation set of the NIRS calibration models. In order to test the model robustness, two different 
years were considered for calibration and validation sets. 
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To find the most accurate model to quantify CP, NDF, and the PQI in pastures, the calibration 
process was performed on the raw spectra data and after the application of some mathematical 
algorithms to remove any irrelevant information. Some pre-processing techniques, like standard 
normal variate (SNV), normalization and normalization followed by SNV (normalization and SNV) 
were applied to raw spectra and the best prediction model was selected. Calibration and validation 
models were developed based on principal components analysis. The quantitative measure for the 
predictive accuracy from each model was evaluated using coefficient of determination (R2; an 
excellent indicator of the accuracy and robustness of a model), root mean square error (RMSE; 
Equation (2)) for the calibration and external validation data sets, and the residual predictive 
deviation (RPD; Equation (3)), which corresponds to the ratio between standard deviation (SD) of the 
results obtained by reference method and the corrected mean error of the prediction of the validation 
(SEP bias). The value of RPD is usually used as an indicator of the quality of a calibration model. 
Values of RPD higher than 2, 3, or 5 are recommended, respectively, for screening purposes, 
prediction, and quality control [25,26]. 

n

)ME( 2
i

n

1i
i

RMSE
−

= =  
(2) 

RMSE
SDRPD =  (3) 

where n is the number of observations and Ei and Mi are the estimated and observed (measured) 
values, respectively. 

2.2. Evaluation of Remote Sensing (RS) Approach 

2.2.1. Pasture Sample Collection and Chemical Processing 

Pasture sampling was carried out between January and May 2019 (DOY between 10 and 145) in 
eight experimental fields with area of approximately 25 ha (Figure 3). In each of these fields, nine 
composite samples were taken at three different times in geo-referenced areas without trees, 
corresponding to 10 × 10 m pixels of Sentinel-2 imagery for a total of 216 samples (3 dates × 8 fields × 
9 samples). The sampling process and the subsequent chemical analysis took place as described above 
to obtained PMC, CP, NDF, and the PQI. 

2.2.2. Sample Spectra Acquisition and Processing 

Reflectance was measured by remote sensing (Sentinel-2). These data were downloaded from 
Copernicus data for the nine geo-referenced pixels in each experimental field. Two remote sensing 
indices were generated from different surface reflectance bands: the NDVIRS (B4: 665 nm and B8: 842 
nm, with a 10 m spatial resolution; see Equation (4) [27]) and the NDWIRS (B8A: 865 nm and B11: 1610 
nm, with a 20 m spatial resolution; see Equation (5) [28]). The “Sen2Cor 2.3” processor (implemented 
on Sentinel Application Platform from European Space Agency) was used for atmospheric correction. 

4B8B
4B8BNDVIRS +

−=  (4) 

 
(5) 

These indices were extracted on the date without clouds closest to the corresponding pasture 
collection and were subject to a maximum deletion of 8 days between two dates (pasture sampling 
and Sentinel-2 data extraction). 

11BA8B
11BA8BNDWI RS +

−=
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2.2.3. Statistical Analysis 
The statistical treatment of these results was performed using the ‘MSTAT-C’ software, version 

6.0 (MSTAT-C, Michigan State University, MI, USA) with a significance level of 95% (p < 0.05) and 
consisted of an analysis of regression between average pasture parameters and indices based in 
satellite imagery: (i) CP, NDF, and the PQI versus the NDVIRS and (ii) PMC versus the NDWIRS. 

3. Results 

3.1. Evaluation of Near Infrared Spectroscopy (NIRS) 

Table 2 shows PMC, CP, and NDF values of pasture samples at each location and each sampling 
date, determined with the reference method and used in the calibration and external validation 
models. The first requirement to obtain a good calibration model is to have a wide variation of the 
chemical composition of a set. The average values of these parameters (PMC between 62.5% and 
89.1%; CP between 10.4% and 24.3%; and NDF between 29.4% and 60.2%) are characteristic for 
dryland pastures during the growing season (autumn, winter, and spring). The variation ranges of 
these parameters showed, on the other hand, that the samples used in this study are representative 
of the inherent variability of biodiverse pastures of different fields in different phases of the 
vegetative cycle. 

Table 3 shows statistics for calibration and external validation of prediction models developed 
using PLSR to correlate NIRS absorbance spectra with the invasive quality measurements (CP, NDF, 
and the PQI). Four regression models were developed using the listed mathematical procedure (raw 
spectra, normalization, SNV, and normalization and SNV). This table shows that the PLSR models 
selected for CP, NDF, and PQI quantification in pasture samples exhibited a small difference between 
RMSE from the calibration and RMSE from the external validation models. 

Figure 4 shows the optimized spectra of NIRS, considering several pre-processing methods, for 
CP, NDF, and the PQI. These are typical absorbance pasture spectrums. Considering that the main 
goal of this study was to obtain predictive models to quantify CP, NDF, and indirectly, pasture 
quality (PQI), the pasture raw spectra region selected in this study was defined as that within the 
wavenumber region from 4000 to 9000 cm−1 (2500–1111 nm). 

Considering that an accurate model should have a high RPD, a high R2, a low RMSE, a low 
average difference between predicted and actual values (bias) [29], and a small difference between 
RMSE from calibration and external validation models [30], when evaluating all pre-processing 
methods used to evaluate CP, NDF, and the PQI in pasture samples, the best results were obtained 
using: 

(i) The “raw spectra” procedure for CP prediction model due to the highest RPD (4.0) and R2 (0.844) 
and the lowest RMSE (1.622) and bias (0.057) of the external validation model (Table 3). 

(ii) The “normalization and SNV” pre-processing for the NDF prediction model due to the highest 
RPD (2.4) and R2 (0.826) and lowest RMSE (4.200) of the external validation model (Table 3). 

(iii) The “raw spectra” procedure for the PQI prediction model due to the highest RPD (3.2) and R2 
(0.808) and lowest RMSE (0.066) and bias (0.009) of the external validation model (Table 3). 

Figure 5 shows measured vs. predicted values for CP, NDF, and the PQI, in calibration and 
validation phases. It is visible that the range of the calibration and validation sets was similar for all 
parameters, which contributed to a good representativeness of the whole group of samples. 
According to the coefficients of determination and the predicted vs. reference values, the CP model 
had the higher prediction capability and the NDF model had the lowest, which is in accordance with 
other studies [31]; nevertheless, these results showed that NIRS calibration models provided 
significantly identical data to reference methods to quantify CP, NDF, and the PQI.  
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Table 2. Pasture moisture content (PMC), crude protein (CP), and fiber (NDF) reference values of 
calibration phase and external validation phase. 

PHASE DOY Samples PMC (%) CP (%) NDF (%) 
(field) (year) (n) Mean± SD Range Mean ± SD Range Mean ± SD Range 

CALIB. (2018)        
MIT_1 39 24 77.5 ± 7.8 55.6–86.1 18.7 ± 4.9 8.7–25.3 34.3 ± 11.9 18.6–58.9 

 66 24 82.2 ± 5.2 66.7–88.9 18.3 ± 4.7 8.3–27.0 36.4 ± 10.4 17.4–52.6 
 99 24 84.6 ± 2.4 79.6–88.6 13.2 ± 3.7 8.3–25.5 40.3 ± 7.1 31.3–52.6 
 122 24 82.7 ± 2.8 73.3–87.1 15.2 ± 3.2 10.2–24.1 46.8 ± 7.1 33.0–60.3 
 155 24 68.5 ± 5.7 54.2–77.8 10.5 ± 2.4 7.3–15.9 60.2 ± 3.4 51.7–66.4 
 266 6 89.1 ± 5.0 85.9–93.9 20.5 ± 1.0 19.3–21.8 58.8 ± 3.0 53.0–61.3 
 295 35 86.2 ± 2.7 77.8–90.8 24.3 ± 8.8 13.4–52.3 50.5 ± 7.0 28.5–64.5 
 310 35 79.0 ± 6.0 58.5–87.8 16.8 ± 5.1 7.7–31.6 51.8 ± 10.1 28.9–71.1 
 345 35 82.5 ± 5.6 66.7–88.7 18.4 ± 5.2 13.9–30.0 47.7 ± 8.1 34.2–62.1 

MIT_2 130 24 83.7 ± 2.7 77.9–87.1 12.1 ± 1.9 8.9–15.5 51.4 ± 3.6 45.7–58.0 
 135 12 83.9 ± 2.5 79.1–86.9 11.5 ± 1.6 9.6–14.9 50.1 ± 4.1 43.2–57.4 

TAP 130 24 80.4 ± 3.3 72.9–83.4 10.4 ± 1.7 7.7–14.0 49.0 ± 6.7 41.1–66.1 
QF 135 24 72.6 ± 3.7 65.8–77.8 12.8 ± 3.4 7.3–19.1 46.7 ± 7.1 35.1–58.3 

VALID. (2019)        
CUB 10 12 82.2 ± 2.8 77.8–86.5 20.9 ± 4.7 15.3–28.3 29.4 ± 5.4 17.7–37.4 
AZI 25 12 71.0 ± 6.5 55.3–79.6 13.0 ± 2.2 10.0–18.9 53.1 ± 5.2 45.8–65.8 
GRO 25 12 62.5 ± 6.2 50.0–70.2 11.9 ± 1.1 10.1–13.3 59.9 ± 3.0 55.7–64.2 
MUR 45 15 79.7 ± 3.1 72.9–85.3 11.9 ± 2.3 8.8–17.5 44.3 ± 4.3 37.6–53.0 
MIT_2 45 8 82.4 ± 2.6 80.2–86.8 17.0 ± 3.8 12.9–24.6 39.6 ± 5.6 30.7–44.9 
PAD 55 8 72.8 ± 4.6 63.9–80.0 13.9 ± 5.5 8.4–22.4 52.1 ± 8.8 35.6–60.4 
TAP 50 8 75.7 ± 4.9 68.3–81.7 10.7 ± 2.0 7.1–13.5 52.2 ± 5.1 41.5–59.0 
QF 50 8 72.8 ± 8.8 57.9–83.3 12.4 ± 3.0 9.1–16.5 48.2 ± 12.6 32.4–67.3 

CALIB.—calibration phase; VALID.—validation phase; DOY—day of the year; SD—standard 
deviation; PMC—pasture moisture content; CP—crude protein; and NDF—neutral detergent fiber. 

Table 3. Statistics for calibration and external validation models for CP, NDF, and the PQI using near-
infrared spectroscopy (NIRS) spectra and partial least squares regression (PLSR)  

Spectral Pre-Processing LV Calibration External Validation 
  R2 RMSE R2 RMSE Bias RPD 

CP        
Raw spectra * 5 0.874 1.882 0.844 1.622 0.057 4 

SNV 4 0.866 1.894 0.653 2.473 −0.877 3 
Normalization 4 0.837 1.973 0.817 1.978 0.586 3.4 

Normalization and SNV 5 0.902 1.632 0.753 2.16 −0.421 3.1 
NDF        

Raw spectra 7 0.618 6.261 0.607 6.979 4.453 1.9 
SNV 7 0.834 4.061 0.802 4.868 0.426 2.1 

Normalization 7 0.807 4.446 0.818 4.742 2.015 2.4 
Normalization and SNV * 7 0.828 4.163 0.826 4.2 0.701 2.4 

PQI        
Raw spectra * 3 0.791 0.071 0.808 0.066 0.009 3.2 

SNV 7 0.829 0.079 0.768 0.079 −0.010 2.6 
Normalization 7 0.746 0.1 0.747 0.12 −0.024 1.7 

Normalization and SNV 7 0.83 0.078 0.736 0.083 −0.015 2.5 
LV—latent variables; SNV—standard normal variate; R2—coefficient of determination; RMSE—root 
mean square error; RPD—residual predictive deviation; and Bias—average difference between 
predicted and actual values. * selected pre-treatment. 
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Figure 4. Optimized NIR spectra in the wavenumber region 3594 to 12,358 cm−1 (2782 to 809 nm) for 
(a) CP, (b) NDF, and (c) the PQI. 
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CP, (b) NDF, and (c) the PQI. 
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3.2. Evaluation of Remote Sensing (RS) 

Table 4 shows the average PMC, CP, NDF, and PQI reference values of pasture samples and the 
NDVIRS and the NDWIRS at each of the eight experimental fields and each of the three sampling dates. 
The pattern, in general, showed a decrease in PMC and CP and an increase in NDF as the vegetative 
cycle of the pasture advanced (increase of the DOY). The PQI, being a ratio between CP and NDF, 
tended to decrease with the evolution of the vegetative cycle. This similarity of temporal patterns of 
the parameters related to pasture quality (PMC, CP, and the PQI) and spectral indices obtained by 
remote sensing (the NDVIRS and the NDWIRS) was reflected in the significant correlation between (a) 
the PQI and the NDVIRS (R2 = 0.77; p < 0.01) and (b) between PMC and the NDWIRS (R2 = 0.72; p < 0.01) 
(Figure 6). This evolution showed, however, the site-specific variability function of precipitation 
regimes, which determines the soil moisture availability, the true driver of productivity in dryland 
pastures of the Mediterranean region [2]. 

Table 4. Average PMC, CP, NDF, and PQI reference values and NDVI and NDWI values based on 
satellite imagery. 

Field 
DOY 
(2019) 

PMC 
(%) 

CP 
(%) 

NDF 
(%) PQI NDVI NDWI 

AZI 25 71.0 13.0 53.1 0.248 0.566 0.154 
 90 70.2 9.2 56.8 0.164 0.611 0.183 
 120 67.5 7.9 59.3 0.136 0.392 0.036 

CUB 10 82.2 20.9 29.4 0.755 0.771 0.487 
 80 77.6 13.0 39.6 0.335 0.670 0.364 
 135 66.6 9.4 61.2 0.155 0.437 0.112 

GRO 25 62.5 11.9 59.9 0.199 0.609 0.050 
 105 69.2 11.4 54.9 0.211 0.600 0.100 
 135 54.9 10.2 62.0 0.168 0.600 −0.150 

MIT_2 45 82.4 17.0 39.6 0.446 0.697 0.325 
 90 78.5 15.9 38.4 0.440 0.700 0.321 
 125 80.5 11.1 51.1 0.221 0.622 0.337 

MUR 45 79.7 11.9 44.3 0.273 0.683 0.328 
 90 76.3 11.6 43.7 0.276 0.620 0.415 
 125 73.3 10.1 56.4 0.182 0.643 0.368 

PAD 55 72.8 13.9 52.1 0.288 0.685 0.325 
 90 73.7 13.2 39.4 0.336 0.666 0.346 
 125 78.5 14.6 50.6 0.291 0.668 0.282 

QF 50 72.8 12.4 48.2 0.288 0.584 0.172 
 110 79.2 13.2 53.2 0.253 0.582 0.207 
 145 67.2 10.2 51.8 0.202 0.550 −0.027 

TAP 50 75.7 10.7 52.2 0.209 0.572 0.152 
 105 79.2 11.3 44.3 0.268 0.582 0.290 
 145 69.9 6.9 65.0 0.127 0.365 0.052 

DOY—day of the year. 
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Figure 6. Relationship between (a) the PQI and the remote sensing NDVI (NDVIRS); (b) PMC and the 
remote sensing NDWI (NDWIRS) over sampling times (between January and May 2019) and locations 
(8 experimental fields). Data are the average values of sampling pixels in each time and site location. 
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that were the most important regions associated with the presence of lignin and cellulose. On the 
other hand, Bagchi et al. [11] found that the region around 6798–6535 cm−1 (1471–1530 nm) 
corresponded to the absorbance band of protein in molecules. Additionally in the CP calibration 
model, it was observed in this study that the spectra within 4003–7800 cm−1 (2498–1282 nm) were the 
most important regions that contributed to the performance of the models. These results indicated 
that aforementioned wavenumbers may play important roles in modeling protein content in pasture 
samples. 

As mentioned in the Results section, in terms of pre-processing methods used to evaluate CP, 
NDF, and the PQI in pasture samples, the best results were obtained using, respectively, the “raw 
spectra,” the “normalization and SNV,” and the “raw spectra” procedures. Additionally Garcia and 
Cozzolino [31] found similar R2 values for CP quantification, denoting the high capacity of NIRS to 
predict this parameter in a wide range of forages and pastures. An RPD greater than 3 is an indicator 
of good quality of calibration model for prediction of CP [25,26]. On the other hand, successful 
calibrations have also been made for the prediction of NDF with similar predictive accuracy and 
using the same spectral region in other plant species (grasses, cereal, and straws) [15]. The lower 
calibration accuracy of NDF models, relatively to CP models, might reflect some variability in the 
reference method due to high starch content on the forage and pasture samples [31], as fiber is a more 
complex component of forages that protein [32]. An RPD greater than 2 is an indicator of a calibration 
model for the screening purposes of NDF [25,26] that suggests that more work needs to be done to 
build a more robust model. Regarding the PQI, as this parameter is a ratio between CP and NDF, an 
intermediate behavior would be expected. An calibration model with an RPD greater than 3 can be 
used as routine analysis in the prediction of the PQI [25,26,33]. 

The small difference observed in this study between the RMSE from the calibration and the 
RMSE from the external validation models selected for CP, NDF, and PQI quantification in pasture 
samples (Table 3) was similar to that obtained by Aleixandre-Tudo et al. [30], who indicated robust 
and accurate calibrations. Models are robust when prediction accuracy is relatively insensitive to 
unknown changes of external factors. Additionally, according to Fagan et al. [34] ,a model is 
considered good enough to monitor the quality of individual samples when the R2 is around 0.90 and 
the RDP is greater than 3. The R2 (0.80–0.90) and the RPD (2.4–4.0) obtained in this study indicated 
that there were very little differences between reference and predicted values of CP, NDF, and the 
PQI [11]. In general, R2 increased as more information was added to the database, which means that, 
although these results are encouraging, more accurate models will be built in the future that enable 
the chemical and nutritional analysis of feed stuffs in a non-destructive and inexpensive way. 

4.2. Evaluation of Remote Sensing (RS) 

As discussed in the Introduction, historical time series of an NDVIRS enable one to follow the 
evolution of vegetative vigor and, therefore, the quality of pasture throughout the year. The 
significant correlations obtained in this work between the PQI and the NDVIRS (R2 = 0.77; p < 0.01) 
confirmed previous studies. According to Gu et al. [35], the NDVI has been recognized as an excellent 
proxy for both the chlorophyll content and the intracellular spaces of plant leaves [36]: in general 
terms, higher NDVI values are indicative of greater vigor and photosynthetic activity, whereas lower 
NDVI values are associated with stress phenomena that result in decreased presence of chlorophyll 
and wilting or senescence of the leaves. The nonlinear behavior of this relationship seems to indicate 
the lower sensitivity of the NDVI to variations in the quality of pasture (PQI) in periods of more 
feeble vegetative vigor (NDVI values of approximately 0.4–0.6; Figure 6a), an aspect to be further 
explored in future works. Serrano et al. [1] observed significant correlations between the NDVI and 
pasture quality parameters, showing that this index can be used to develop a system of alarms that 
can inform a farm manager of the need for providing supplementary feed to the animals. 

On the other hand, the significant correlation between the NDWIRS and PMC was in agreement 
with the observations of Sanchez-Ruiz et al. [37], who indicated that the spectral signature of 
vegetation in NIR and SWIR (short-wave infrared) bands can be related with the plant water status. 
The NDWIRS, known as a “water index” [28,35], has shown sensitivity to changes in leaf water 
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content. By using the NDWIRS, the amount of leaf material can be known in order to estimate 
vegetation dryness [38]. 

These results show the practical interest of the satellite-derived indices (as the NDVIRS and the 
NDWIRS) in the site-specific management of the Montado ecosystem, namely to provide the farmer 
with the information needed to intensify this production system in a climate change scenario [1]. The 
RS-based models can more accurately assess ecosystem services when their indicators mainly depend 
on green vegetation, such as for erosion prevention and the provision of forage [17]. 

This RS approach has the great advantage of not requiring displacement to the field to collect 
information, unlike the NIRS approach. However, it is affected by the presence of clouds, which are 
very common in this region in the period of greatest vegetative development of the pasture (spring); 
an additional limitation is the inaccessibility under the trees, a characteristic element of this ecosystem 
that induces specific microclimates, influencing soil fertility and productivity, as well as the quality 
of pasture [39]. Thus, there seems to be a high potential for future research studies to evaluate the 
complementarity between NIRS approach (especially based on proximal and portable technology 
(PS)) and RS for monitoring and supporting pasture and grazing management in the Montado 
ecosystem. 

5. Conclusions 

The development and productivity of dryland pastures mainly depend on the distribution of 
precipitation throughout the year and on its combination with the air temperature. The important 
inter-annual variability of rainfall, characteristic of the Mediterranean region, places agricultural 
decision-makers in a scenario of great unpredictability regarding the availability of food for animals 
in an extensive regime. The results of this study showed significant correlation between NIRS 
calibration models or spectral indices obtained by remote sensing (the NDVIRS and the NDWIRS) and 
reference methods for quantifying pasture quality parameters. They demonstrated the practical 
interest of spectrometry and of remote sensing as expeditious and complementary tools for 
monitoring pasture quality and supporting farmer management decisions in terms of animal 
supplementation needs in the critical period between the end of spring and the beginning of autumn 
in southern Portugal. Though these are already very interesting results and with immediate practical 
applications, clearly reducing the time and means needed to process pasture samples and obtain 
quality parameters, we believe that it is still possible (i) to improve the robustness of the NIRS 
calibration models in estimating pasture quality attributes, possibly by resorting to a greater number 
of pasture samples; (ii) contribute to the practical implementation of NIRS technology with the use 
of portable spectrophotometers that enable direct field sampling (green sampling), thus eliminating 
the need for sample preparation; and (iii) the use of historical time series of the NDVI, the NDWI, or 
others indices obtained by satellite imagery relative to several years to create a database that allows 
small technology-based enterprises to provide alert services to the livestock farming management, 
constituting effective systems for the holistic evaluation and monitoring of Montado ecosystem. 
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