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Abstract: Background: There exist several prediction equations for the estimation of resting energy 

expenditure (REE). However, none of these equations have been validated in the Chilean female 

population yet. The aims of this study are (1) to determine the accuracy of existing equations for 

prediction of REE and (2) to develop new equations in a sample of healthy Chilean women. Meth-

ods: A cross-sectional descriptive study was carried out on 620 Chilean women. The sample showed 

an age range between 18 and 73 years, a body mass index average of 28.5 ± 5.2 kg/m2, and a preva-

lence of overweight and obesity of 41% and 33.2%, respectively. REE was measured by indirect 

calorimetry (REEIC), which was used as the gold standard to determine the accuracy of twelve avail-

able REE prediction equations and to calculate alternative formulas for estimation of REE. Paired t-

tests and Bland–Altman plots were used to know the accuracy of the estimation equations with 

REEIC. At the same time, multiple linear regressions were performed to propose possible alternative 

equations. The analyses were carried out by age groups and according to nutritional status. Results: 

All the equations showed a tendency to overestimate REE, regardless of age or nutritional status. 

Overall, the Ireton-Jones equation achieved the highest mean percentage difference from REEIC at 

67.1 ± 31%. The alternative new equations, containing variables of body composition, reached a 

higher percentage of classification within ± 10% of REEIC. Conclusions: The available equations do 

not adequately estimate REE in this sample of Chilean women. Although they must be validated, 

the new formulas proposed show better adaptation to this Chilean sample. 
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1. Introduction 

Mortality due to non-communicable diseases (NCDs) has been increasing steadily in 

recent years. Currently, NCDs cause 41 million deaths per year, representing 71% of the 

total number of deaths worldwide [1]. These include those due to cardiovascular diseases 

(the world’s leading cause of death), cancer, respiratory diseases, and diabetes [2]. NCDs 

may increase mortality rates and decrease life quality by reducing disability-adjusted life 

years, life expectancy, and potential life years lost [3]. 

NCDs’ development is related to several cardiovascular risk factors (CRF) [4–6]. 

Among the CFR, overweight and obesity stand out. These conditions are considered as 

severe public health problems because of their high prevalence and impact on health at 

all life stages [7,8]. It should be noted that this problem is more prevalent in the female 
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than in the male population. In 2016, the prevalence of overweight was estimated at 39% 

in men and 40% in women, and the prevalence of obesity reached 11% in men and 15% in 

women [9]. For instance, between 1975 and 2016, worldwide, women suffering from obe-

sity increased from 69 to 390 million, while in men, this rate varied from 31 to 281 million 

[10]. This problem also impacts the economic and social aspects of families and national 

health systems [11]. 

For these reasons, early lifestyle interventions are essential to ensure good health. It 

is necessary to emphasize that diet plays a fundamental role in the development of NCDs 

[12]. Although improving food quality and controlling the percentages of macronutrients 

that provide daily energy is crucial, an essential element of any dietary approach aimed 

at body fat loss is the relationship between energy intake and expenditure (energy bal-

ance) [13]. A positive energy balance (energy intake > energy expenditure) leads to weight 

gain, so all recommendations on body fat loss include energy intake reduction and an 

increase in energy expenditure, primarily through physical activity, to ensure a proper 

energy flux [14,15]. To know the total energy expenditure (TEE) is fundamental to be able 

to adjust this relationship. TEE is composed of the thermic effect of activity, non-exercise 

activity thermogenesis, the thermic effect of food, and resting energy expenditure (REE) 

[15]. Of these four TEE components, REE represents the highest proportion, reaching be-

tween 60 and 70%, depending on the level of physical activity performed [16]. Therefore, 

to adjust the energy intake, it is necessary to estimate REE, for which there are various 

methods available such as direct and indirect calorimetry. However, access to the devices 

that allow their measurement is not easy because they are sophisticated equipment that 

requires specially trained staff and entails a high cost [17]. 

Alternatively, there are different prediction equations available that allow estimation 

of REE based on more accessible parameters (e.g., age, height, weight). In this sense, sex 

is an essential variable in estimating REE, and it is used in the most common predictive 

equations because women generally have a lower REE than men [18]. These equations 

allow for quicker and low-cost utilization without requiring trained personnel [19]. How-

ever, these formulas are not adapted to all populations, which leads to a lack of accuracy 

when their results are compared with data collected using a gold standard (e.g., indirect 

calorimetry) [20]. In addition to the lack of accuracy, the wide variety of equations avail-

able makes it difficult to choose the most appropriate one. 

Several studies have reported that these discrepancies may be increased depending 

on the characteristics of the study population (origin, altered metabolic state, pathologies) 

[21]. Two factors with a significant influence on the accuracy of the equations are age and 

body weight [22]. Considering age is very important because REE decreases as aging pro-

gresses [23]. In this sense, and given the significant variability of formulas (according to 

individuals’ age group and nutritional status) for the REE estimate [22,24], it is very com-

plex to extrapolate and standardize the results to allow comparisons between different 

populations. For this reason, researchers recommend using these formulas in populations 

with similar characteristics to those from which they were initially developed. If they are 

utilized in other populations with different characteristics, it is recommended to validate 

or adapt them to know or improve their accuracy [22–26]. 

Therefore, this study aims (1) to determine the accuracy of twelve already available 

equations for estimation of REE and (2) to develop new, more accurate equations in a 

sample of healthy Chilean women. 

2. Materials and Methods 

2.1. Design, Population, and Sample 

A cross-sectional descriptive study was carried out, including women who attended 

the nutrition consultation at the Healthy Life Centre (Concepción, Chile) between January 

2016 and June 2019, where indirect calorimetry was performed. The sample size was esti-

mated through Epidat 4.2. (Department of Health, Xunta de Galicia, Galicia, Spain). For 

(http://creativecommons.org/licenses

/by/4.0/). 
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the sample size calculation, the female population over 18 years of age in Chile was taken 

as a reference. The minimum sample size calculated was 537 subjects for a precision of 

4%, a power of 80%, a confidence level of 95% (α = 0.05), and an expected overweight 

prevalence of 33.7% [27]. 

Women over 18 years of age were included, and those with chronic pathologies that 

could affect REE (such as cancer, hyperthyroidism, or hypothyroidism) or who presented 

an error on indirect calorimetry (given by a coefficient of variation (CV, applied to the 

mean of VO2 and VCO2) over 10% or measurement time below 25 min) were excluded. 

From the initial sample of 653 women, 33 were dismissed. 

2.2. Antropometrics Measurements 

The independent variables collected were age (years) and anthropometric measure-

ments: weight (kg), height (cm), body mass index (BMI, kg/m2), body fat percentage 

(BF%), fat mass (FM, kg), fat-free mass (FFM, kg), and body water (BW, kg). 

The anthropometric measurements were collected following the recommendations 

of the manual of standardized anthropometry [28]. Since the calorimeter demands anthro-

pometric data (weight, height, and lean mass), the measurement was made before the in-

direct calorimetry study. For measuring height, a SECA 700 (Seca GmbH, Hambrug, Ger-

many) stadiometer and balance were used, with an accuracy of 0.1 cm. The height meas-

urement was made without shoes, with the feet together, heels, buttocks, and upper back 

touching the stadiometer, with the head in the plane of Frankfort, after a deep inspiration. 

We utilized the Tanita BC-418 (TANITA, Tokyo, Japan) with eight electrodes in the study 

of body composition. Body composition and weight were measured with light clothing 

and bare feet, removing metal objects such as earrings, watches, and bracelets. In addition, 

fasting (10–12 h), empty bladder, abstinence from alcohol or stimulant drinks, and no 

physical exercise 24 h before the day of the study were required for measurement. All the 

measures were taken by specialized personnel. Each measurement was repeated three 

times by the same assessor, and the average of the three value was calculated and used 

for further analysis. 

The nutritional status classification was made according to the BMI following the 

WHO’s recommendations: normal weight, 18.5 to <25 kg/m2; overweight, 25 to <30 kg/m2; 

obesity, 30 kg/m2 [29]. 

2.3. Indirect Calorimetry and Estimation Formulas 

REE (result variable) was measured using indirect calorimetry (gold standard). The 

modified Weir formula was used for its calculation, based on the oxygen consumed and 

the carbon dioxide produced [30]. 

REE (Kcal/day) = [(VO2 × 3.941) + [(VCO2 × 1.11)] × 1440  

REE was measured using the Ultima CCM device (MGC Diagnostics, Minnesota, 

USA), designed to measure indirect calorimetry through respiratory gases. Before the 

measurement, the flow and equipment were calibrated, controlling the environmental 

temperature (21.6 ± 0.7ºC), the humidity (48.3 ± 5.4%), and the room’s atmospheric pres-

sure. The measurements were made at 12 m above sea level. The REE measurement was 

made during the morning between 8:00 and 10:00 a.m. All women who underwent indi-

rect calorimetry followed a strict protocol in which they were instructed to do the follow-

ing: fast for 12 h, not to consume stimulant beverages, not to smoke, and not to perform 

physical activity in the 12 h before the test. Once the women arrived at the center for the 

assessment, they rested for 30 min. During calorimetry, participants were in the supine 

position with a face piece on, awake in the room. The process lasted 25 min, without con-

sidering the first five minutes of the REE measurement. The values’ average of the remain-

ing 20 min was used to compute REE. 

Further, we estimated REE (Kcal/day) through the formulas presented in Table 1. 
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Table 1. Estimation formulas for women. 

Harris–Benedict * [31] 655.096 + (9.5634 × weight) + (1.849 × height) – (4.6756 × age) 

Harris–Benedict modified by Roza * [26] 447.593 + (9.247 × weight) + (3.098 × height) – (4.330 × age) 

Mifflin St Joer * [32] (9.99 × weight) + (6.25 × height) – (4.92 × age) – 161 

Muller Ψ [33]  

Weight 

BMI of > 18.5 to 25 kg/m2 (0.02219 × weight) + (0.02118 × height) – (0.01191 × age) + 1.233 

BMI of > 25 to 30 kg/m2 (0.04507 × weight) – (0.01553 × age) + 3.407 

BMI  30 kg/m2 (0.05 × weight) – (0.01586 × age) + 2.924 

FFM 

BMI of > 18.5 to 25 kg/m2 (0.0455 × FFM) + (0.0278 × FM) – (0.01291 × age) + 3.634 

BMI of > 25 to 30 kg/m2 (0.03776 × FFM) + (0.03013 × FM) – (0.01196 × age) + 3.928 

BMI  30 kg/m2 (0.05685 × FFM) + (0.04022 × FM) – (0.01402 × age) + 2.818 

Owen * [34] 795 + (7.18 × weight) 

Ireton-Jones * [35] 
629 – (11 × age) + (25 × weight) – (609 × obesity)  

[obesity: present = 1; unpresented = 0] 

Cunningham * [36] 500 + (22 × FFM) 

Schofield * [37]  

18–30 years 14.818 × weight + 486.6 

30–60 years 8.126 × weight + 845.6 

60 years 9.082 × weight + 658.5 

Katch–McArdle * [38] 370 + (21.6 × FFM) 

Henry and Rees Ψ [39]  

18–30 years 0.048 × weight + 2.562 

30–60 years 0.048 × weight + 2.448 

Oxford * [40]  

18–30 years 10.4 × weight + 615 × height (m) – 282 

30–60 years 8.18 × weight + 502 × height (m) – 11.6 

60 years 8.52 × weight + 421 × height (m) + 10.7 

FM: fat mass; FFM: fat-free mass; BMI: body mass index. Unit of measurement: weight (kg); height (cm); FFM (kg), FM 

(kg); age (years); formulas with * (Kcal/day); formulas with Ψ (MJ/day). 

2.4. Ethical and Legal Aspects 

The study was carried out in compliance with the fundamental principles laid down 

in the Declaration of Helsinki (1964), the Council of Europe Convention on Human Rights 

and Biomedicine (1997), and the UNESCO Universal Declaration on the Human Genome 

and Human Rights (1997), as well as with the requirements laid down in Chilean legisla-

tion in the fields of biomedical research, the protection of personal data, and bioethics. 

The Bioethics Committee of the Vice-Rectory of Research of the University of Concepción 

approved the study protocol (October 2019; Code: 538-2019). 

2.5. Statistical Analysis 

The quantitative variables are presented with mean and standard deviation, and the 

qualitative values are shown with frequencies and percentages. 

To contrast the goodness of fit to a normal distribution of the data from the quantita-

tive variables, the Kolmogorov–Smirnov test with Lilliefors correction was applied. One-

way ANOVA for three means or more and the post hoc Bonferroni test were performed 

for the bivariate hypothesis contrast. Paired t-tests were performed to compare REEIC and 

REE estimated by the formulas. For the qualitative variables, the chi-square and Fisher 

exact tests were used when necessary. Pearson’s correlation coefficient (r) was applied to 

correlate REEIC with anthropometric variables and REEIC with REE estimated by the for-

mulas. The cut-off points established to assess the strength of association were: very weak, 
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0 to 0.19; weak, 0.2 to 0.39; moderate, 0.4 to 0.59; strong, 0.6 to 0.79; and very strong 0.8 to 

1.0 [41]. We performed Cohen’s d to study the size effect of the mean differences. 

Adjusted multiple linear regressions were performed to develop various predictive 

formulas that would fit with indirect calorimetry measurements. These regressions were 

developed following the stepwise regression backward method. This method begins with 

an equation that includes all the explanatory variables and extracts, one by one, the vari-

ables with the highest “p value,” until a final model is reached with all the significant 

explanatory variables (p < 0.05). To determine the models’ goodness of fit, we analyzed 

the standard error, the adjusted coefficient of determination, the F statistic, the collinearity 

analysis (computing the variance inflation factor (VIF) and the tolerance statistic), and the 

residuals. 

The concordance between REEIC and REE estimated by the equations was analyzed 

using Bland–Altman plots. In Bland–Altman plots, positive values show overestimation 

of equations and negative values show underestimation. Based on previous studies [25], 

we assessed the percentage difference between REE measured by the indirect calorimeter 

and that estimated by the equations (
|𝑅𝐸𝐸 − 𝑅𝐸𝐸𝐼𝐶|

𝑅𝐸𝐸𝐼𝐶
⁄ × 100). In addition, we studied 

the percentage of women whose estimated REE was within ± 10% of that measured by the 

gold standard. All the results are shown in the total sample, considering the nutritional 

status, according to the age groups traditionally stated in the literature (18 to <30 years, 30 

to <60 years, and 60 years). 

The probability of an α error below 5% (p < 0.05) was considered statistically signifi-

cant for all the hypothesis contrasts, and the confidence interval was calculated at 95%. 

For the statistical analysis, IBM SPSS Statistics 22.0 software (IBM, Chicago, IL, USA) was 

used. 

3. Results 

3.1. Description of the Sample 

The final sample consisted of 620 women. The women showed an age range between 

18 and 73 years. Following the BMI criteria, the prevalence of overweight (25 kg/m2) and 

obesity (30 kg/m2) was 41% (95%CI 37.1–45%) and 33.2% (95%CI 29.5–37.1), respectively. 

The mean CV was 4.9 ± 1.6%. 

Concerning the body composition, results show that BF% increased among the age 

groups, although this increase was not significant among the 18 to <30 years and 30 to <60 

years groups (mean difference (MD) = 1.6; p = 0.073). On the other hand, FM decreased 

significantly among the age groups, although the decrease was not significant among the 

30 to <60 years and 60 years groups (MD = 1.4; p = 0.419). All variables analyzed showed 

significant differences between the different nutritional states, except for: (i) age between 

25 to <30 and 30 kg/m2 (MD = 0.3; p = 1.000), (ii) height between 18.5 to <25 and 25 to <30 

kg/m2 (MD = 0.5; p = 1.000), and (iii) height between 25 to <30 and 30 kg/m2 (MD = 1.1; p 

= 0.194). Table 2 shows the characteristics of the sample by age and nutritional status ac-

cording to BMI. Table S1 shows size effects of each group comparison. 
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Table 2. Characteristics of participants according to age groups and nutritional status. 

  Age Groups Nutritional Status Groups 

Variables 
Total 

(n = 620) 

18 to <30 Years 

(n = 128) 

30 to <60 Years 

(n = 463) 

60 Years 

(n = 29) 
p ψ 

18.5 to <25 kg/m2 

(n = 160) 

25 to <30 kg/m2 

(n = 254) 

30 kg/m2 

(n = 206) 
P ω 

Age (years) 39.1 (11.4) 24.4 (3.3) 41.6 (8) 64.2 (3.7) <0.001 36.4 (10.4) 40.2 (11.1) * 39.9 (12.1) * <0.01 

Weight (kg) 74 (14.3) 75.7 (17.8) 73.4 (13.3) 75.4 (12.7) 0.253 59.8 (7.4) 71.5 (6) 88.1 (13.1) <0.001 

Height (cm) 160.9 (6.3) 162.6 (7) 160.7 (6.1) 157.2 (5.2) <0.001 161.7 (6.1) * 161.1 (6) *‡ 160 (6.9) ‡ <0.05 

BMI (kg/m2) 28.6 (5.2) 28.6 (6.6) 28.4 (4.8) 30.6 (5.6) 0.100 22.9 (2.6) 27.5 (1.4) 34.3 (3.9) <0.001 

BF% 37.9 (7.1) 36.4 (9.7) * 38 (6.2) * 41.7 (5.6) <0.01 29.7 (6.1) 37.8 (3.4) 44.4 (3.7) <0.001 

FM (kg) 28.8 (10.4) 29 (13.2) 28.6 (9.6) 32 (9.3) 0.227 18.1 (5.7) 27.1 (4) 39.4 (8.7) <0.001 

FFM (kg) 45.1 (5.1) 46.6 (5.9) 44.8 (4.8) * 43.4 (4.1) * <0.001 41.7 (3) 44.5 (3.8) 48.6 (5.6) <0.001 

BW (kg) 33 (3.6) 33.9 (3.8) 32.8 (3.6) * 31.8 (3) * <0.01 30.5 (2.2) 32.4 (2.4) 35.6 (4.1) <0.001 

BMI: body mass index; BF%: body fat percentage; FM: fat mass; FFM: fat-free mass; BW: body water. *‡ Bonferroni test: 

non-significant difference between means with same symbol. ψ Bivariate analysis for age groups. ω Bivariate analysis for 

nutritional status groups. 

3.2. Differences between REEs Measured by Indirect Calorimetry (REEIC) and Estimated by 

Twelve Available Formulas 

Tables 3 and 4 show the accuracy of the twelve equations in the total sample, accord-

ing to the age groups and the nutritional status of the women studied. For all three com-

parisons (total sample, according to age group, and nutritional status), the estimation 

equations tend to significantly overestimate what was measured through indirect calo-

rimetry, with percentage differences of more than 10% between REEIC and REE estimated 

by the equations. Tables S2 and S3 show size effects of each group comparison, and Table 

S4 shows the size effect of the paired t-test. 

Figure 1 shows that, in the total sample, all the equations tended to overestimate in 

women with lower REE, while they reduced and even underestimated when REE in-

creased. The equation proposed by Ireton-Jones [35] was the only one that overestimated 

independently of REEIC. Further, the mean of the differences between the calculated for-

mulas and REEIC was higher than 0 (Table 3), which confirms that, in general, the formulas 

tend to overestimate REE. 

In the whole sample and the three age groups analyzed, the Ireton-Jones [35] equa-

tion was the one that overestimated REE the most. In contrast, the equation proposed by 

Owen [34] showed the lowest overall overestimate (16.5 ± 24.1%), from 18 to <30 years 

(13.5 ± 23.1%) and 30 to <60 years (17.1 ± 24.2%). In women 60 years, the Mifflin St. Jeor 

[32] equation showed the smallest mean difference (11.9 ± 24.2%). 

Finally, the Katch–McArdle [38] equation achieved the highest proportion of classi-

fication within ± 10% in the total sample (39.5%) and in the 30 to <60 age group (40.4%). 

In groups from 18 to <30 years and 60 years, the Owen [34] (43.8%) and Mifflin St. Jeor 

[32] (37.9%) equations showed better classification percentages, respectively. According 

to the BMI categories (Table 4), the Ireton-Jones [35] equation held the greatest overesti-

mation across all nutritional status groups, and the Owen [34] equation the smallest. How-

ever, the Owen [34] equation only obtained the best classification percentage within ± 10% 

in the group with a BMI of 18.5 to <25 kg/m2 (33.8%). The Katch–McArdle [38] equation 

was more accurate in the other two BMI groups, with 37% (25 to <30 kg/m2) and 53.4% 

(>30 kg/m2). We have found discrepancies between most of the calculated equations and 

REEIC in women with normal weight, overweight, and 60 years. The correlations can 

explain these discrepancies because although significant, they were low (Tables 3 and 4). 
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Table 3. Resting energy expenditure (REE) (Kcal/day) by age groups.  

Variables 
Total 

(n = 620) 

18 to <30 Years 

(n = 128) 

30 to <60 Years 

(n = 463) 

60 Years 

(n = 29) 
p 

REEIC (Kcal/kg/day) 16.2 (2.9) 16.6 (3.2) 16.1 (2.8) 15.3 (2.6) 0.087 

REEIC 1182.5 (252.9) 1227.6 (288.5) 1171.9 (241.1) 1153.6 (256.9) 0.072 

Harris–Benedict 1476.3 (152.1) 1565.3 (173.1) 1459.8 (135.4) 1346.8 (123.4) <0.001 

Linear correlation 0.621 ** 0.699** 0.625 ** 0.242 

 

Mean difference  293.8 (198.4) 337.7 (208.1) 287.9 (188.8) 193.2 (256.7) 

95% CI of mean difference −95.1, 682.6 −70.2,745.7 −82, 657.9 −309.9, 696.3 

% of difference 29.3 (25.9) 32.3 (26.5) 28.9 (25.7) 21.8 (25.9) 

n and % within ± 10% of REEIC 107 (17.3) 16 (12.5) 85 (18.4) 6 (20.7) 

Harris–Benedict modified by Roza 1460 (150.2) 1545.4 (170.9) 1444.1 (134.3) 1334.6 (121.3) <0.001 

Linear correlation 0.621 ** 0.702 ** 0.624 ** 0.231 

 

Mean difference 277.4 (198.3) 317.9 (207.9) 272.2 (189.5) 181 (257.5) 

95% CI of mean difference −111.3, 666.1 −89.5, 725.3 −98.3, 642.8 −323.7, 685.7 

% of difference 27.9 (25.6) 30.7 (26) 27.5 (25.4) 20.7 (25.8) 

n and % within ± 10% of REEIC 119 (19.2) 20 (15.6) 93 (20.1) 6 (20.7) 

Mifflin St. Jeor 1390.3 (173) 1491.3 (193.7) 1371.9 (155) 1238.1 (137.3) <0.001 

Linear correlation 0.615 ** 0.701 ** 0.618 ** 0.211 

 

Mean difference 207.8 (200.3) 263.7 (205.8) 200 (189.7) 84.5 (264.6) 

95% CI of mean difference −184.8, 600.3 −139.6. 667.1 −171.8, 571.8 −434, 603 

% of difference 21.5 (24.2) 25.8 (24.6) 20.9 (24) 11.9 (24.2) 

n and % within ± 10% of REEIC 205 (33.1) 33 (25.8) 161 (34.8) 11 (37.9) 

Owen 1325.5 (102.9) 1338.4 (128.1) 1322.3 (95.6) 1321.3 (87.7) 0.285 

Linear correlation 0.610 ** 0.694 ** 0.593 ** 0.233 

 

Mean difference 143 (207) 110.8 (219.8) 150.4 (199.7) 167.7 (251.4) 

95% CI of mean difference −262.6, 548.7 −320, 541.7 −241.1, 541.9 −325, 660.4 

% of difference 16.5 (24.1) 13.5 (23.1) 17.1 (24.2) 19.7 (26) 

n and % within ± 10% of REEIC 243 (39.2) 56 (43.8) 181 (39.1) 6 (20.7) 

Cunningham 1493.2 (111.7) 1525.8 (129.7) 1486.6 (105.7) * 1455.3 (89.6) * <0.001 

Linear correlation 0.632 ** 0.726 ** 0.596 ** 0.515 ** 

 

Mean difference 310.7 (201.8) 298.2 (213.8) 314.7 (197.2) 301.7 (224.3) 

95% CI of mean difference −84.9, 706.2 −120.7, 717.2 −71.9, 701.3 −137.9, 741.3 

% of difference 31.3 (27.1) 29.5 (26.2) 31.7 (27.1) 31.7 (30.1) 

n and % within ± 10% of REEIC 90 (14.5) 20 (15.6) 67 (14.5) 3 (10.3) 

Muller (Weight) 1461.5 (159) 1539.7 (184.7) 1446.2 (144.8) 1360.3 (126) <0.001 

Linear correlation 0.630 ** 0.706 ** 0.622 ** 0.286 

 

Mean difference 279 (196.4) 312.1 (205.1) 274.3 (188.7) 206,6 (251.8) 

95% CI of mean difference −106, 663.9 −89.8, 714.1 −95.6, 644.2 −286.8, 700.1 

% of difference 27.8 (25.5) 30 (25.5) 27.7 (25.5) 22.9 (25.8) 

n and % within ± 10% of REEIC 118 (19) 21 (16.4) 92 (19.9) 5 (17.2) 

Muller (Fat-free mass) 1448.8 (143.8) 1516 (170.2) 1434.9 (131.4) * 1377.4 (112.2) * <0.001 

Linear correlation 0.647 ** 0.717 ** 0.625 ** 0.624 ** 

 

Mean difference 267.4 (193.2) 294.5 (202.1) 262.7 (189.4) 223.8 (206.4) 

95% CI of mean difference −111.3, 646 −101.5, 690.6 −108.5, 633.8 −180.7, 628.3 

% of difference 27 (25.4) 28.7 (25.3) 26.8 (25.5) 24.1 (24.7) 

n and % within ± 10% of REEIC 131 (21.2) 21 (16.7) 104 (22.5) 6 (20.7) 

Ireton-Jones 1843.4 (294.1) 2009.5 (281.1) 1817.6 (277.3) 1524.7 (209.2) <0.001 

Linear correlation 0.398 ** 0.528 ** 0.379 ** −0.088  
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Mean difference 661 (302) 781.9 (276.8) 645.7 (290.5) 371.1 (345.3) 

95% CI of mean difference 69, 1253 239.3, 1324.5 76.4, 1215.1 −305.6, 1047.9 

% of difference 61.5 (37.5) 70 (35.9) 60.6 (37.5) 38.6 (35.1) 

n and % within ± 10% of REEIC 25 (4) 1 (0.8) 21 (4.5) 3 (10.3) 

Schofield 1471 (170.7) 1608 (264.4) 1442.3 (108.2) 1324.2 (110.9) <0.001 

Linear correlation 0.565 ** 0.694 ** 0.593 ** 0.233 

 

Mean difference 288.5 (210.4) 380.5 (217.4) 270.4 (197.1) 170.6 (255) 

95% CI of mean difference −124, 701 −45.6, 806.6 −115.9, 656.8 −329.2, 670.4 

% of difference 28.9 (26.6) 35 (27) 27.7 (26.3) 19.8 (25.7) 

n and % within ± 10% of REEIC 123 (19.8) 17 (13.3) 99 (21.4) 7 (24.1) 

Katch–McArdle 1345.1 (109.6) 1377.1 (127.3) 1338.6 (103.7) * 1307.9 (88) * <0.001 

Linear correlation 0.632 ** 0.726 ** 0.596 ** 0.515 ** 

 

Mean difference 162.6 (202.3) 149.6 (214.7) 166.7 (197.6) 154.3 (224.6) 

95% CI of mean difference −233.9, 559.2 −271.1, 570.3 −220,6, 554.1 −285.9, 594.6 

% of difference 18.2 (24.2) 16.8 (23.4) 18.5 (24.3) 18.4 (27.1) 

n and % within ± 10% of REEIC 245 (39.5) 50 (39.1) 187 (40.4) 8 (27.6) 

Henry and Rees 1439.1 (166.7) 1480.6 (204.7) 1427.6 (152.8) - <0.001 

Linear correlation 0.627 ** 0.694 ** 0.593 ** - 

 

Mean difference 255.1 (197.1) 253 (207.7) 255.7 (194.3) - 

95% CI of mean difference −131.2, 641.4 −154.1, 660.2 −125.1, 636.5 - 

% of difference 25.7 (25.5) 24.7 (24.8) 26 (25.7) - 

n and % within ± 10% of REEIC 146 (24.7) 32 (25) 114 (24.6) - 

Oxford 1413.6 (150.9) 1505.3 (201.9) 1395.6 (122.6) 1297.1 (110.5) <0.001 

Linear correlation 0.602 ** 0.704 ** 0.596 ** 0.199 

 

Mean difference 231.1 (201.9) 277.8 (205) 223.7 (194.7) 143.5 (258.6) 

95% CI of mean difference −164.7, 626.9 −124, 679.5 −157.9, 605.2 −363.4. 650.4 

% of difference 23.8 (25.1) 26.8 (24.7) 23.4 (25.1) 17.4 (25.5) 

n and % within ± 10% of REEIC 167 (26.9) 29 (22.7) 131 (28.3) 7 (24.1) 

REEIC: resting energy expenditure measured by indirect calorimetry; CI: confidence interval; * non-significant difference 

between means with the same symbol. Linear correlation: Pearson ś correlation between REE measured by indirect calo-

rimetry and REE estimated by equations; ** p < 0.001; without symbol: non-significant; Mean difference: paired t-test be-

tween REE estimated by equations and REE measured by indirect calorimetry; % of difference: (
|REE-REEIC|

REEIC
⁄ × 100); 

n and % within ± 10% of REEIC: number and percentage of women with REE estimated by each formula within ± 10% of 

REEIC; mean difference and 95% CI of mean difference are shown in Kcal/day; ¶ mean difference not statistically significant; 

all mean differences without a symbol are statistically significant (p < 0.01). 

Table 4. Resting energy expenditure (Kcal/day) by nutritional status 

Variables 
18.5 to <25 kg/m2  

(n = 160) 

25 to <30 kg/m2  

(n = 254) 

30 kg/m2 

(n = 206) 
p 

REEIC (Kcal/kg/day) 17.7 (3) 16 (2.6) 15.1 (2.6) <0.001 

REEIC 1054.4 (185.2) 1142.8 (198) 1331.1 (285) <0.001 

Harris–Benedict 1352.1 (78.3) 1448.7 (91.7) 1606.8 (157) <0.001 

Linear correlation 0.259 ** 0.359 ** 0.623 ** 

 

Mean difference 297.7 (181.5) 306 (185.9) 275.7 (223.9) 

95% CI of mean difference −58, 653.4 −58.5, 670.4 −163, 714.4 

% of difference 32.1 (23.8) 30.7 (25.3) 25.5 (28) 

n and % within ± 10% of REEIC 15 (9.4) 42 (16.5) 50 (24.3) 

Harris–Benedict modified by Roza 1340.3 (80.7) 1433.7 (93.6) 1585.1 (156.5) <0.001 

Linear correlation 0.272 ** 0.364 ** 0.624 ** 
 

Mean difference 285.9 (180.8) 291 (185.6) 254 (223.7) 
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95% CI of mean difference −68.5, 640.3 −72.8, 654.7 −184.5, 692.5 

% of difference 30.9 (23.4) 29.3 (25) 23.8 (27.6) 

n and % within ± 10% of REEIC 17 (10.6) 43 (16.9) 59 (28.6) 

Mifflin St. Jeor 1264 (102.6) 1362.4 (117.4) 1522.8 (184.8) <0.001 

Linear correlation 0.286 ** 0.365 ** 0.621 ** 

 

Mean difference 209.6 (184.3) 219.6 (189.7) 191.7 (223.5) 

95% CI of mean difference −151.7, 570.9 −152.2, 591.5 −245.2, 629.7 

% of difference 23.2 (21.9) 22.7 (23.9) 18.6 (26.2) 

n and % within ± 10% of REEIC 41 (25.6) 82 (32.3) 82 (39.8) 

Owen 1221.7 (46) 1308.2 (43.1) 1427.5 (93.8) <0.001 

Linear correlation 0.242 ** 0.380 ** 0.592 ** 

 

Mean difference 167.4 (179.7) 165.5 (185.9) 96.4 (241.6) 

95% CI of mean difference −184.9, 519.6 −198.9, 529.8 −377.1, 569.9 

% of difference 19.5 (22.3) 18.2 (23.2) 12 (25.9) 

n and % within ± 10% of REEIC 54 (33.8) 93 (36.6) 96 (46.6) 

Cunningham 1417.9 (66.6) 1478.3 (83.6) 1570.2 (122.2) <0.001 

Linear correlation 0.389 ** 0.395 ** 0.642 ** 

 

Mean difference 363.5 (170.7) 335.5 (181.9) 239.1 (226.8) 

95% CI of mean difference 28.8, 698.1 −21.1, 692.1 −205.5, 683.6 

% of difference 38.5 (25.4) 33.4 (25.9) 23 (27.6) 

n and % within ± 10% of REEIC 7 (4.4) 25 (9.8) 58 (28.2) 

Muller (Weight) 1324.6 (64.5) 1435.1 (82) 1600.4 (173) <0.001 

Linear correlation 0.293 ** 0.372 ** 0.621 ** 

 

Mean difference 270.2 (177.4) 292.4 (184) 269.2 (223.4) 

95% CI of mean difference −77.4, 617.9 −68.2, 653 −168.7, 707.1 

% of difference 29.4 (23.1) 29.5 (25) 24.9 (27.7) 

n and % within ± 10% of REEIC 19 (11.9) 47 (18.5) 52 (25.2) 

Muller (Fat-free mass) 1330.2 (59.7) 1417.8 (61.2) 1579.3 (160.3) <0.001 

Linear correlation 0.446 ** 0.336 ** 0.635 ** 

 

Mean difference 275.8 (167.4) 277.2 (183) 248.7 (221.6) 

95% CI of mean difference −52.3, 603.8 −81.5, 636 −185.6, 683 

% of difference 29.9 (23.3) 28.2 (24.9) 23.4 (27.3) 

n and % within ± 10% of REEIC 17 (10.6) 56 (22.2) 58 (28.3) 

Ireton-Jones 1714.1 (178) * 1974 (208.1) 1783.2 (381.3) * <0.01 

Linear correlation 0.243 ** 0.358 ** 0.621 ** 

 

Mean difference 668.8 (223.6) 831.2 (230.1) 452.1 (302.7) 

95% CI of mean difference 221.6, 1098 380.2, 1282.2 −141.1, 1045.3 

% of difference 67.1 (31) 77.6 (35.5) 37.4 (32) 

n and % within ± 10% of REEIC 2 (1.3) 0 (0) 23 (11.2) 

Schofield 1329.3 (74.5) 1439.1 (84) 1620.5 (188.7) <0.001 

Linear correlation 0.230 ** 0.282 ** 0.510 ** 

 

Mean difference 274.9 (183.1) 296.4 (192) 289.4 (249) 

95% CI of mean difference −83.9, 633.7 −80, 672.7 −198.6, 777.3 

% of difference 29.9 (23.9) 30 (25.8) 26.7 (29.5) 

n and % within ± 10% of REEIC 20 (12.5) 49 (19.3) 54 (26.2) 

Katch–McArdle 1271.2 (65.4) 1330.5 (82) 1420.7 (120) <0.001 

Linear correlation 0.389 ** 0.395 ** 0.642 ** 

 

Mean difference 216.8 (170.8) 187.7 (181.9) 89.6 (227.4) 

95% CI of mean difference −117.9, 551.5 −168.8, 544.2 −356.1, 535.3 

% of difference 24.2 (22.8) 20 (23.3) 11.2 (24.8) 

n and % within ± 10% of REEIC 41 (25.6) 94 (37) 110 (53.4) 



Nutrients 2021, 13, 345 10 of 20 
 

 

Henry and Rees 1274.6 (71.1) 1410.5 (71.3) 1605.1 (154.4) <0.001 

Linear correlation 0.351 ** 0.367 ** 0.601 ** 

 

Mean difference 222 (164) 264.4 (185.9) 270 (229.9) 

95% CI of mean difference −99.5, 543.5 −99.9, 628.7 −180.6 (720.5) 

% of difference 24.4 (21.7) 27 (25.2) 25.2 (28.6) 

n and % within ± 10% of REEIC 40 (25.8) 57 (23.7) 49 (25.1) 

Oxford 1293.2 (84.5) 1388.9 (90.7) 1537.6 (159.8) <0.001 

Linear correlation 0.292 ** 0.345 ** 0.580 ** 

 

Mean difference 238.9 (179.7) 246.1 (187.1) 206.5 (232.2) 

95% CI of mean difference −113.4, 591.1 −120.7, 612.9 −248.7, 661.7 

% of difference 26.2 (22.5) 25.3 (24.5) 20.2 (27.2) 

n and % within ± 10% of REEIC 33 (20.6) 60 (23.6) 74 (35.9) 

REEIC: resting energy expenditure measured by indirect calorimetry; CI: confidence interval. * Non-significant difference 

between means with the same symbol. Linear correlation: Pearson ś correlation between REE measured by indirect calo-

rimetry and REE estimated by equations; ** p < 0.001; Mean difference: paired t-test between REE estimated by equations 

and REE measured by indirect calorimetry; % of difference: (
|REE-REEIC|

REEIC
⁄ × 100); n and % within ± 10% of REEIC: 

number and percentage of women with REE estimated by each formula within ± 10% of REEIC; mean difference and 95% 

CI of mean difference are shown in Kcal/day; all mean differences are statistically significant (p < 0.01). 
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Figure 1. Bland–Altman graphs for resting energy expenditure equations using indirect calorime-

try as the gold standard. 
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3.3. New Equations for the Estimation of REE 

Table 5 shows the bivariate correlations between REEIC and the different anthropo-

metric variables. In the total sample, the 30 kg/m2 group and the three age groups, 

weight, FFM, and FM showed a moderate to strong correlation. In the normal weight and 

overweight groups, the correlation, although significant, was lower. 

Table 6 presents several estimation formulas for the whole sample, depending on age 

and nutritional status. The equations that do not require the measurement of body com-

position showed an overestimation close to 3%, being lower in the group of 18 to <25 kg/m2 

(2.7 ± 18.2%). The computed equations showed that about 50% of the women in the study 

obtained an estimation of their REE within ± 10% of REE measured by indirect calorime-

try. On the other hand, the formulas based on body composition data provided more ho-

mogeneity in the estimation (the 95% CI of the mean difference is closer) and higher clas-

sification percentage within ±10%, except in the group of 60 years and with a BMI from 

18 to <25 kg/m2. 

Table 5. Linear correlations between REEIC (Kcal/d) and independent variables. 

Variables Age Weight Height BMI BF% FM FFM BW 

Total 

REEIC −0.143 ** 0.625 ** 0.281 ** 0.529 ** 0.415 ** 0.561 ** 0.632 ** 0.628 ** 

18.5 to <25 kg/m2 

REEIC −0.039 0.417 ** 0.310 ** 0.265 ** 0.210 ** 0.334 ** 0.389 ** 0.393 ** 

25 to <30 kg/m2 

REEIC −0.144 * 0.380 ** 0.330 ** 0.147 * 0.085 0.239 ** 0.395 ** 0.339 ** 

30 kg/m2 

REEIC −0.326 ** 0.592 ** 0.420 ** 0.436 ** 0.175 * 0.481 ** 0.642 ** 0.642 ** 

18 to <30 years 

REEIC 0.089 0.694 ** 0.311 ** 0.595 ** 0.525 ** 0.638 ** 0.726 ** 0.736 ** 

30 to <60 years 

REEIC −0.159 ** 0.593 ** 0.278 ** 0.498 ** 0.381 ** 0.528 ** 0.596 ** 0.594 ** 

60 years 

REEIC −0.211 0.650 ** −0.100 0.660 ** 0.591 ** 0.656 ** 0.515 ** 0.518 ** 

REEIC: resting energy expenditure measured by indirect calorimetry; BMI: body mass index; BF%: body fat percentage; 

FM: fat mass; FFM: fat-free mass; BW: body Water; * p < 0.05; ** p < 0.01. 
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Table 6. Proposed formulas for resting energy expenditure estimation. 

Based on Age, Weight, and Height 

Group β 
Equations 

Components 
pψ 

β 

Standardized 

R2 Ad-

justed 

Standard Error 

of Estimation 
pω 

Mean Difference 

(95%CI) 

% of Differ-

ence (SD) 

% within ± 10% 

of REEIC 

Total 

495.015 Constant – – 

0.411 194.1 <0.001 
0 (193.8) 

−379.8, 379.8 
3.1 (20.6) 50.2 −3.312 Age (years) <0.001 −0.149 

11.044 Weight (kg) <0.001 0.627 

Age 

18 to <30 years 
378.163 Constant – – 

0.477 208.5 <0.001 
0 (207.7) 

−407.1, 407.1 
3.1 (20.6) 47.7 

10.741 Weight (kg) <0.001 0.694 

30 to <60 years 

−136.460 Constant – – 

0.356 193.4 <0.001 
0 (193) 

−378.3, 378.3 
3.2 (20.9) 50.3 10.206 Weight (kg) <0.001 0.564 

3.479 Height (cm) <0.05 0.088 

60 years 
159.660 Constant – – 

0.401 198.8 <0.001 
0 (195.3) 

−382.7, 382.7 
3 (19) 51.7 

13.182 Weight (kg) <0.001 0.650 

Nutritional Status 

18 to <25 kg/m2 

462.849 Constant – – 

0.195 166.2 <0.001 
0 (165.2) 

−323.8, 323.8 
2.7 (18.2) 51.9 −3.308 Age (years) <0.05 –0.185 

11.904 Weight (kg) <0.001 0.474 

25 to <30 kg/m2 
245.434 Constant – – 

0.141 183.4 <0.001 
0 (183.1) 

−358.8, 358.8 
3 (20.1) 49.2 

12.553 Weight (kg) <0.001 0.380 

30 kg/m2 

466.087 Constant – – 

0.387 224.3 <0.001 
0 (223.2) 

−437.5, 437.5 
3.6 (22.8) 45.1 −4.583 Age (years) <0.01 – 0.195 

11.896 Weight (kg) <0.001 0.545 

Based on Age, Fat Mass, and Fat-Free Mass 

Group β 
Equations 

Components 
p 

β 

Standardized 

R2 Ad-

justed 

Standard Error 

of Estimation 
p 

Mean Difference 

(95%CI) 

% of Differ-

ence (SD) 

% within ± 10% 

of REEIC 

Total 

95.215 Constant – – 

0.429 190.6 <0.001 
0 (190.1) 

−372.6, 372.6 
3.1 (20.4) 51.4 

−2.172 Age (years) <0.01 –0.098 

6.430 FM (kg) <0.001 0.266 

21.866 FFM (kg) <0.001 0.426 

Age 18 to <30 years 
−429.459 Constant – – 

0.524 199.1 <0.001 
0 (198.3) 

−388.7, 388.7 
2.9 (19.2) 54.7 

35.538 FFM (kg) <0.001 0.726 
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30 to <60 years 

13.446 Constant – – 

0.379 190 <0.001 
0 (189.6) 

−371.7, −371.7 
3.2 (20.8) 51.3 5.608 FM (kg) <0.001 0.222 

22.265 FFM (kg) <0.001 0.444 

60 years 
−257.714 Constant – – 

0.238 224.2 <0.01 
0 (220.2) 

−431.6, 431.6 
4 (24.5) 58.6 

32.501 FFM (kg) <0.01 0.515 

Nutritional Status 

18 to <25 kg/m2 

145.198 Constant – – 

0.181 167.7 <0.001 
0 (166.6) 

−326.5, 326.5 
2.8 (18.7) 51.9 7.070 FM (kg) <0.01 0.216 

18.724 FFM (kg) <0.001 0.306 

25 to <30 kg/m2 

143.325 Constant – – 

0.131 181 <0.001 
0 (180.3) 

−353.4, 353.4 
3 (20) 51.6 7.046 FM (kg) <0.05 0.146 

18.196 FFM (kg) <0.001 0.300 

30 kg/m2 

−2.251 Constant – – 

0.433 214.6 <0.001 
0 (213.6) 

−418.5, 418.5 
3.4 (22.1) 51.9 −3.961 Age (years) <0.01 –0.169 

30.661 FFM (kg) <0.001 0.597 

FM: fat mass; FFM: fat-free mass; % within ± 10% of REEIC: number and percentage of women with REE estimated by each formula within ± 10% of REEIC; ψ p value of component; ω p value for 

model. 
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4. Discussion 

The purpose of the study was to determine the accuracy of twelve already existing 

equations for REE estimation in a sample of healthy Chilean women. In addition, we de-

veloped several equations for this sample stratified by age and nutritional status to pro-

vide alternatives that health care professionals can use depending on their tools available 

(e.g., based on anthropometric or body composition values). 

The prevalence of overweight and obesity among participants was 41% and 33.2%, 

respectively. These rates are similar to those shown by the Chilean National Health Sur-

vey (36.4% and 33.7%) [27]. All the equations analyzed tended to overestimate REE, with 

it being greater in those participants with lower REE. Further, while REE increases, a grad-

ual reduction in this overestimation can be observed, reaching underestimations in the 

highest values. In the literature, the results between different research are not consistent. 

Although some authors evidenced a similar trend to that shown in our population [42,43], 

Anjos et al. [25] found that REE calculated in women following the Schofield [37], Henry–

Rees [39], and Harris–Benedict [31] equations was higher than that measured by the indi-

rect calorimeter, regardless of age group and BMI. Galgani et al. [44] evidenced that these 

equations showed a higher percentage of overestimation than underestimation. However, 

they achieved, globally, higher accuracy than that obtained in our results. Willis et al. [45] 

argued that the Mifflin St. Jeor [32] and Harris–Benedict [31] equations overestimated 

REE, something observed in our results, while Owen’s [34] formula underestimated it. In 

summary, the literature shows significant variability in the accuracy of the available for-

mulas, mediated by various factors [46]. 

One of the most studied is the influence of the nutritional status, according to BMI, 

on REE. In this regard, the main problem found is that the authors recommend different 

formulas depending on the reference population, making standardization difficult. Our 

results show how REEIC increased significantly among the normal weight (1054.4 ± 185.2 

Kcal/day), overweight (1142.8 ± 198 Kcal/day), and obesity (1331.1 ± 285 Kcal/day) groups 

and, in general, the accuracy of the REE estimation increased with the rise in BMI. Simi-

larly to our results, Jesus et al. [47] showed that the accuracy of the equations studied was 

higher among people with higher BMI. Of the analyzed equations, that proposed by Owen 

[34] in the normal weight group (18 to <25 kg/m2) and the Katch–McArdle equation [38] 

for the overweight (25 to <30 kg/m2) and obesity (30 kg/m2) groups were the ones that 

obtained the best classification within ± 10%, with 33.8%, 37%, and 53.4%, respectively. 

Although the classification improved in the overweight and obesity groups in com-

parison to normal weight group, it remained low due to the wide bias shown. Poli et al. 

[48], in their work on women suffering from obesity, reported similar results, finding a 

low agreement between what is predicted by the equations and what is measured by in-

direct calorimetry and concluding that the Harris–Benedict [31] and FAO/WHO equations 

offered the highest accuracy. Namazami et al. [49] recommended using the Mifflin St. Jeor 

[32] equation in women with normal weight and overweight (especially in overweight, 

where this formula has shown greater accuracy). Finally, Amaro-Gahete et al. [22,24], in 

their research focused on young and middle-aged adults, concluded that it was necessary 

to choose a different formula for each nutritional status. 

Another variable that influences REE, and which a large part of the equations ana-

lyzed considers, is age. Our findings show that predictive capacity also varies depending 

on the age group studied. In this regard, the Owen [34], Katch–McArdle [38], and Mifflin 

St. Jeor [32] equations achieved a higher proportion of correct classification in the 18 to 

<30 years, 30 to <60 years, and 60 years groups, respectively. However, as with BMI, 

previous studies reported significant heterogeneity in recommending formulas based on 

population age [22,24,25]. 

These facts reveal that it is very complicated to establish which equation should be 

used in each clinical setting. This difficulty is linked to significant inter-population varia-

bility, which can be influenced by aspects such as the geographical origin [50]. In this 
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sense, the equations analyzed were developed in samples with specific characteristics, 

which means that their predictive capacity decreases when testing their validity in other 

places. Various research has shown that REE varies according to ethnic group, mainly due 

to physical characteristics (abdominal fat, percentage of body fat, fat-free mass, etc.) [51–

53]. For instance, Spaeth et al. [54] showed that the African-American population had a 

lower REE than the Caucasian population. Some authors consider that race is essential 

when developing estimation formulas to improve the nutritional approach, especially in 

those that do not include body composition variables [55,56]. This omission could explain 

part of the lack of accuracy of some equations, since the ethnic groups present in the Chil-

ean population, and their characteristics, are different from the populations in which the 

equations were generally developed (Europe, United States, etc.) [57,58]. In this sense, 

when population-specific equations are developed, it is possible to improve REE estima-

tion [25,59]. For instance, in the adaptation carried out in our population, all the proposed 

formulas reduced the bias and the mean percentage difference. In addition, the classifica-

tion percentage within ± 10% was also increased. Wahrlich et al. [59] achieved a higher 

correct percentage of classification in women than we found in our results (77.5% vs. 

51.4%) when they validated the formula proposed by Anjos et al. in a tropical urban pop-

ulation. However, their sample size was smaller, and the population characteristics were 

distinct. 

In a study carried out in the Mexican population, the researchers developed an equa-

tion that improved REE estimation. However, no accuracy analysis was shown, so it is 

difficult to determine its real predictive capacity [60]. 

Cruz et al. [61], in a study of the Spanish population, achieved an R2 of 0.230 among 

those with a BMI of  25 kg/m2 using sex, age, and weight as independent variables. In 

our case, an R2 of 0.141 was reached in the group of 25 to <30 kg/m2. This rate reached 

0.387 in the group of 30 kg/m2 with the same variables and larger sample size. 

On the other hand, our results show less variability explained by the proposed for-

mulas among women with normal weight and overweight. In these cases, it is possible 

that other sources of variation such as hormonal aspects, the performance of resistance 

training, or alterations that are not usually controlled in protocols, such as modifications 

of sleep patterns or quality, could alter the measurement of REEIC [54,62,63]. 

From our perspective, the wide variety of proposed equations should not be a prob-

lem for its use. For instance, all of them could be incorporated into a mobile health appli-

cation (mHealth) where values of the variables that any clinical professional manages in 

their particular clinical setting (with or without body composition analysis) could be in-

troduced [64]. Finally, the app could use different equations—according to the data intro-

duced—and show the estimated REEs, the formulas used, their accuracy, and the confi-

dence margins for each one. The evidence clarifies that REE estimation is fundamental for 

adequate management of patients who need to regulate their energy balance through di-

etary interventions. Therefore, these tools would facilitate their implementation when the 

necessary equipment is not available due to high costs [65,66]. 

4.1. Limitations and Strenghts 

To our knowledge, there is not a study of this type in the Chilean population, so there 

is no possibility of comparing results. This research’s main limitations derive from the fact 

that it only considers healthy females without knowing their ethnicity. 

Further, the range of the percentage of women within ± 10% of REEIC was between 

47.7 and 58.6% depending on age and nutritional status. This percentage means that there 

is still a very high proportion (nearly half of the women) where their estimated REE is 

>10% different from their REE measured by indirect calorimetry. For this reason, it would 

be advisable to use calorimetry, if possible, to measure REE the first time a patient comes 

in for consultation. Subsequently, in following consultations (if a measurement is not pos-

sible), health professionals could use the equations, considering the estimation’s error. 



Nutrients 2021, 13, 345 17 of 20 
 

 

Nevertheless, the equations developed present a higher accuracy than those published in 

the literature, at least in healthy Chilean women. 

Future studies should focus on some particular conditions seen in women that might 

influence energy expenditure, such as polycystic ovary syndrome, postpartum, or breast 

cancer [67–69]. Further, urinary nitrogen introduction would allow a more accurate meas-

urement of resting energy expenditure through calorimetry. Finally, since this work has 

only focused on comparing equations in this specific population and showing that more 

accurate equations can be developed, the formulas must be validated in a different sample 

with similar characteristics but from the same population to ensure their accuracy. 

5. Conclusions 

The available equations for REE estimation are not accurate enough for application 

in Chilean adult women, regardless of age or nutritional status, so it is impossible to rec-

ommend and standardize its use. This study has shown that it is possible to develop more 

accurate equations adapted to this population’s characteristics, presenting greater accu-

racy than what is measured by indirect calorimetry. Finally, this research makes available 

different equations as alternatives to indirect calorimetry when it is impossible to perform 

it. However, only when and if the formulas are validated would it be possible to make use 

of them. The fact that the different formulas proposed are based on different variables also 

offers choosing one or another (being aware of each one’s estimation errors), depending 

on the tools or data to which health care professionals have access. 
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