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Abstract: Sunflower plants (Helianthus annuus L.) in a CO2-enriched atmosphere (eCO2) were used 

herein to examine the developmental and physiological effects of biofertilization with mycorrhizae 

(Rhizophagus irregularis). The eCO2 environment stimulated colonization using R. irregularis mycor-

rhizal fungi, as compared to plants grown under ambient CO2 conditions (aCO2). This colonization 

promotes plant growth due to an increased nutrient content (P, K, Mg, and B), which favors a greater 

synthesis of photosynthetic pigments. Biofertilized plants (M) under eCO2 conditions have a higher 

concentration of carbon compounds in their leaves, as compared to non-biofertilized eCO2 plants 

(NM). The biofertilization (M) of sunflowers with R. irregularis decreased the C/N ratio, as compared 

to the NM plants, decreasing the hydrogen peroxide content and increasing the antioxidant enzyme 

activity (catalase and APX). These results suggest that sunflower symbiosis with R. irregularis im-

proves the absorption of N, while also decreasing the plant’s oxidative stress. It may be concluded 

that biofertilization with mycorrhizae (R. irregularis) may potentially replace the chemical fertiliza-

tion of sunflower plants (H. annuus L.), resulting in more environmentally friendly agricultural 

practices. This information is essential to our understanding of the mechanisms influencing the C 

and N dynamic in future climate change scenarios, in which high CO2 levels are expected. 
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1. Introduction 

Sunflowers are the fourth most important oilseed crop in the world. They have a high 

tolerance to drought, making them an ideal alternative for producers in semiarid regions 

[1]. Yield decrease in sunflowers is due mainly to biotic and abiotic stress factors. The 

breeding of new cultivars that are resistant to stress factors is a priority for both conven-

tional and modern (biotechnological) breeding. 

One of the main problems faced by farmers today is decreased production due to 

damage caused by natural alterations to the environment. Recently, this problem has been 

exacerbated by climate change, causing major modifications to ecosystems as a result of 

extreme climate-related phenomena, such as droughts, snowstorms, floods, heat waves, 

cyclones, and so forth. [2]. These phenomena lead to stressful situations for plants, result-

ing in millions of euros of losses every year, as approximately 50% of the annual crop 

production potential is lost [2,3]. 

The continuous emission of greenhouse gases (GHGs), mainly CO2, is a major cause 

of climate change, resulting in planetary temperatures that have increased from 2.5 to 7 

°C during this century [4]. The anticipated effects of this increase make it necessary to 

improve our knowledge of the effects of high CO2 on plant metabolism during distinct 
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developmental phases. This knowledge will allow for the development of tools and strat-

egies that may improve the adaptive capacity of plants under unfavorable environmental 

conditions, increasing their production while reducing environmental costs [5]. 

The use of nitrogenous fertilizers on crops also results in an increase in GHGs such 

as NxO, thus contributing to environmental contamination [6]. Biofertilizers may be a rel-

evant strategy to combat the environmental impact of nitrogenous fertilizers. Biofertilizers 

are preparations containing microorganisms (fungi, bacteria, and algae) that are applied 

to the soil or directly to the plant’s root in order to act as a full or partial substitute for 

chemical fertilizers [7,8]. They offer beneficial effects for the plant’s growth [9,10]. 

Biofertilization with fungi is based on the mutualistic and symbiotic associations of 

fungi with certain plant roots, specifically the so-called mycorrhizae. Over 90% of all plant 

species make these associations, which offer benefits to the plant as well as the fungi [10–

12]. Fungi may be classified into three groups: endomycorrhiza, ectomycorrhiza, and ec-

tendomycorrhiza. Endomycorrhiza are responsible for the formation of arbuscular my-

corrhizae (AM) [10]. The symbiosis of plants with AM fungi is well known and quite ex-

tensive, occurring in 85% of all land plant species [10,13]. This symbiosis is known to have 

numerous benefits [14], including the mitigation of abiotic stress in plants [15,16]. 

AM play a fundamental role in the global carbon cycle [17,18], since they can use up 

to 20% of the plant’s photoassimilates under ambient CO2 conditions [19], and they slowly 

deposit organic compounds such as chitin, glomalin, and other organic materials that pro-

tect plants, promoting soil aggregate formation [20]. A high CO2 level stimulates the use 

of photoassimilates by the AM, favoring their growth [21]. This suggests that, in terms of 

the soil, a higher level of carbon sequestration may be achieved through mycorrhizae sym-

biosis in future scenarios of high levels of CO2 [22]. Most studies to date have indicated 

that high CO2 levels will lead to increased mycorrhizae colonization, as well as changes in 

arbuscular mycorrhizae communities [23,24]. 

Therefore, the main objective of this study is to use distinct analytical techniques to 

determine whether sunflowers (Helianthus annuus L.) that have been biofertilized with 

fungi (Rizophagus irregularis) may partially substitute chemical fertilizers to achieve an op-

timal C/N ratio in plants that have grown in different environmental conditions and which 

have been altered by climate change. Prior studies have revealed that high levels of at-

mospheric CO2 and elevated temperatures [25–27] may alter the C/N ratio in plants, 

thereby inducing the senescence process. As such, achieving a balanced C/N ratio through 

biofertilization with mycorrhizae may reduce the need for chemical fertilization, resulting 

in more environmentally friendly agricultural practices. 

2. Results 

2.1. Mycorrhizal Colonization and Growth Parameters 

First, we determined the percentage of successful R. irregularis colonization in the 

sunflower (H. annuus L.) roots in distinct treatments. In this study, no mycorrhizal coloni-

zation was observed in sunflowers that were not provided with AM inoculum. The inoc-

ulated sunflower plants showed 40% and 48% mycorrhizal root colonization under aCO2 

and eCO2 conditions, respectively (Table 1). Plants grown under eCO2 conditions had a 

higher biomass than those grown under aCO2 conditions. Biofertilization with R. irregu-

laris increased the leaf and stem dry weight and leaf area in both CO2 treatments (aCO2 

and eCO2) (Table 1). 

Table 1. Percentage root colonization and growth parameters of sunflower plants inoculated (M) or not inoculated (NM) 

with R. irregularis (AM) and ambient (a CO2) and elevated CO2 treatments (eCO2). Data are means ±SE. Different letters 

show significant difference among the treatments according to Tukey’s test (P 0.05). ** P  0.01, * P  0.05, NS = not signif-

icant. 

    Root colonization Leaf dry weight Stem dry weight Leaf area 

    (%) (mg plant−1) (mg plant−1) (cm2) 
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aCO2     

 NM ND 940 ± 31.5a 913 ± 2.6a 15.9 ± 0.36a 

 
M 40.5 ± 0.48b 1213 ± 36.1b 1190 ± 23.5b 17.9 ± 0.44b 

eCO2     

 NM ND 1438 ± 31.7c 1398 ± 22.6c 21.85 ± 0.32c 

 M 47.8 ± 0.83d 1634 ± 40.2d 1564 ± 24.7d 25.56 ± 0.28d 

      

Source of variation    

AM  ** ** ** ** 

CO2  ** * ** ** 

AM x CO2 ** NS NS NS 

2.2. Leaf Sugar, Protein, C-N Content, and Nutrient Accumulation  

In the sunflowers, was observed that when grown under eCO2 conditions, the con-

tent of starch and total soluble sugars (TSS) increased as compared to plants grown under 

aCO2 conditions. Moreover, when fertilized with R. irregularis, their carbon compound 

levels increased in both treatments (eCO2 and aCO2). On the other hand, we also verified 

that mycorrhizal symbiosis increased the total protein concentration in the leaves for both 

the aCO2 and eCO2 conditions (Table 2). In sunflower leaves, we observed that the per-

centage of C in the leaf (leaf C%) did not vary between treatments; however, the percent-

age of N in the leaf (leaf N%) was lower in plants grown under eCO2 conditions, although 

biofertilization with R. irregularis increased the percentage of N in the plant. As a result, 

the C/N ratio was higher in plants grown under eCO2 conditions, especially NM plants 

(Table 2).  

Table 2. Concentration of starch, total soluble sugar (TSS) and proteins (TSP); percentages of carbon (C) and nitrogen (N), 

C/N ratio in leaves of sunflower inoculated (M) or not inoculated (NM) with R. irregularis (AM) and ambient (aCO2) and 

elevated CO2 treatments (eCO2). Data are means ±SE. Different letters show significant difference among the treatments 

according to Tukey’s test (P 0.05). ** P  0.01, * P  0.05, NS = not significant. 

    Starch TSS  TSP Leaf C Leaf N C/N 

    (mg g−1 DW) (mg g−1 DW) (mg g−1 DW) (%) (%)   

                

aCO2          

 NM 30.5 ± 0.53a  258.2 ± 0.61a 30.7 ± 0.44a 39.6 ± 0.61a 1.42 ± 0.04a 27.9a 

 M 126.6 ± 1.38b 261.5 ± 0.41b 35.6 ± 0.36b 40.5 ± 0.20a 1.80 ± 0.44b 22.5b 

eCO2          

 NM 108.7 ± 1.92c 270.6 ± 0.45c 31.8 ± 0.49a 41.9 ± 0.37a 1.21 ± 0.32c 34.9c 

 M 308.7 ± 2.24d 285.7 ± 0.16d 38.7 ± 0.47d 40.1 ± 0.45a 1.45 ± 0.28ad 27.6ad 

          

Source of variation        

AM  ** ** ** NS * ** 

CO2  ** ** ** NS * ** 

AM x CO2 ** ** NS NS NS NS 

The nutrient content (P, K, Mg, Fe, and B) was determined in plant leaves grown 

under eCO2 and aCO2 conditions (N and NM). Levels of P, K, Mg, and B were higher in 

the plant leaves that were grown under eCO2 conditions, as compared to those grown 

under aCO2 conditions. An additive effect was observed in the mycorrhized plants in the 

uptake of these nutrients. However, no variations in Fe content were observed (Table 3). 

Table 3. P, K (%) B and Fe, B (mg kg−1) concentrations in leaves of sunflower inoculated (M) or not inoculated (NM) with 

R. irregularis (AM) and ambient (aCO2) and elevated CO2 treatments (eCO2). Data are means ±SE. Different letters show 

significant difference among the treatments according to Tukey’s test (P 0.05). ** P  0.01, * P  0.05, NS = not significant. 

    P K Mg Fe B 

    (%) (%) (%) (mg kg−1) (mg kg−1) 

              

aCO2       

 NM 0.12 ± 0.004a 0.463 ± 0.008a  0.18 ± 0.004a 39.6 ± 0.61a 12.3 ± 0.20a 
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M 0.20 ± 0.012b 0.511 ± 0.004b 0.26 ± 0.008b 40.5 ± 0.20a 14.2 ± 0.24b 

eCO2      

 
NM 0.17 ± 0.008c 0.494 ± 0.004c 0.23 ± 0.016c 41.9 ± 0.36a 12.9 ± 0.36c 

 M 0.25 ± 0.004d 0.540 ± 0.024d 0.31 ± 0.012d 40.1 ± 0.45a 17.1 ± 0.20d 

       

Source of variation     

AM  ** * * NS ** 

CO2  ** * ** NS ** 

AM x CO2 NS NS NS NS * 

2.3. Photosynthetic Pigments 

The plants grown under eCO2 conditions had lower chlorophyll a and b and carote-

noid content than those grown under aCO2 conditions. However, biofertilization with R. 

irregularis increased the photosynthetic pigment content in both CO2 treatments (aCO2 and 

eCO2). We observed that, when biofertilized (M), the total chlorophyll content increased 

by 19.3% in plants grown under aCO2 conditions and by 61.6% in plants grown under 

eCO2 conditions (Table 4). 

Table 4. Chlorphyll a, chlorophyll b, total Chl content, Chl a/b and carotenoids in leaves of sunflower inoculated (M) or 

not inoculated (NM) with R. irregularis (AM) and ambient (aCO2) and elevated CO2 treatments (eCO2. Data are means ±SE. 

Different letters show significant difference among the treatments according to Tukey`s test (P 0.05). ** P  0.01, * P  0.05, 

NS = not significant.  

    Chlorophyll a Chorophyll b Total Chl content Chl a/b  Carotenoids 

    (mg g−1 DW) (mg g−1 DW) (mg g−1 DW) ratio (mg g−1 DW) 

              

aCO2          

 NM 5.45 ± 0.03a 1.50± 0.01a 6.95 ± 0.04a 3.63± 0.004a 1.72± 0.012a 

 M 6.40± 0.04b 1.89± 0.02b 8.29 ± 0.060b 3.38± 0.005b 2.01± 0.016b 

eCO2          

 NM 4.13± 0.03c 1.08 ± 0.02c 5.21 ± 0.050c 3.82± 0.005c 1.42± 0.008c 

 M 6.65± 0.085d 1.77 ± 0.01d 8.42 ± 0.098d 3.75± 0.013d 2.44± 0.012d 

          

Source of variation        

AM  ** ** ** ** ** 

CO2  ** ** ** NS ** 

AM x CO2 * ** ** NS ** 

2.4. Enzyme Activities of Antioxidant Systems and Hydrogen Peroxide Content 

H2O2 content, antioxidant enzyme activity, catalase, and ascorbate peroxidase (APX) 

in sunflower plant leaves were examined under eCO2 and aCO2 conditions for both my-

corrhized and non-mycorrhized plants. Figure 1 shows that sunflower plants grown un-

der eCO2 conditions had higher levels of H2O2 than those grown under aCO2 conditions. 

However, when the plants were inoculated with AM, the hydrogen peroxide levels de-

creased by 27% in the aCO2 plants and by 10% in the eCO2 plants. We also noted an in-

crease in catalase and peroxidase activities, as compared to non-mycorrhized plants, for 

both CO2 treatments (aCO2 and eCO2).  
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Figure 1. H2O2 content (A), catalase (B) and APX (C) activities in leaves of sunflower inoculated (M) or not inoculated 

(NM) with R. irregularis and ambient (aCO2) and elevated CO2 treatments (eCO2). Data are means ±SE. Different letters 

show significant difference among the treatments according to Tukey’s test (P 0.05). **P  0.01, *P  0.05, NS = not signifi-

cant. 

3. Discussion 

To verify how biofertilization with mycorrhizae (R. irregularis) physiologically and 

metabolically affects sunflower plants (H. annuus L.) in a CO2-enriched atmosphere, first, 



Plants 2021, 10, 937 6 of 12 
 

 

the percentage of successful root colonization by the AM fungal (R. irregularis) was deter-

mined. Table 1 shows that it increased under elevated atmospheric CO2 concentrations. 

This is in line with results found for other plants; most studies have indicated that a high 

level of CO2 leads to increased mycorrhizae colonization, in addition to changes in the 

arbuscular mycorrhizae communities [20,23,24,28,29]. The increased AM fungi coloniza-

tion in plants grown under elevated CO2 conditions may have been due to an increased 

plant demand for nutrients and enlarged root biomass caused by greater C assimilation 

[24]. However, some studies have reported no response or even a decrease in root AM 

levels in plants grown under high CO2 concentrations [12,28]. The extent to which eCO2 

impacts the crop–AM association remains unclear [10,16]. It has been proposed that dif-

ferences in AM fungi, plant species, and experiment duration could have caused these 

discrepancies [11,24]. Table 1 also shows that the leaf dry weight, stem dry weight, and 

leaf area values for the sunflowers increased under eCO2 conditions, with biofertilization 

having an additive effect on the biomass increase. It has been reported that AM fungi can 

promote plant growth under eCO2 conditions, due to the enhanced nutrient uptake and 

improved photosynthetic rate of the host plant. Therefore, AM fungi have more pho-

toassimilates from the host plant than under aCO2 conditions, resulting in the increased 

growth of extra-radical hyphae and greater mycorrhizal respiration [30].  

Sunflower plants grown under eCO2 conditions (NM) demonstrated a significant in-

crease in starch and soluble sugar content, as well as in the C/N ratio (Table 2). These 

results are consistent with previous research on sunflower [26] and soybean [31] plants 

grown in high CO2 environments. Although it was assumed that, initially, some species 

would require greater assimilation of nitrogen to maintain growth under elevated CO2 

conditions [32], it has been revealed that under these growth conditions, nitrate assimila-

tion by the plant decreases. This has been verified in sunflower plants, and appears to be 

the result of the effect on key enzymes in the metabolism of nitrogen, both at a transcrip-

tional (glutamine synthetase 1-GS1and glutamine synthetase 2-GS2) and a post-transla-

tional (nitrate reductase-NR, GS and glutamate dehydrogenase-GDH) level [27]. When 

sunflower plants grown under eCO2 and aCO2 conditions were inoculated with R. irregu-

laris (Table 2), it was verified that colonization increased the starch and soluble sugar lev-

els. However, a lower C/N ratio was observed. Therefore, it is evident that colonization 

by R. irregularis improves the content of nitrogen in the sunflower plant leaf (H. annuus 

L.). An increased nitrogen content has also been observed in plants grown under high CO2 

levels, and those mycorrhized with AM fungi [30,31]. These results indicate that bioferti-

lization with mycorrhizae (R. irregularis) may replace the chemical fertilization of sun-

flower plants (H. annuus L.), leading to more environmentally friendly agricultural prac-

tices. This symbiosis may mitigate the effects of climate change, decreasing the excess of 

CO2 and preventing nitrogen from being a limiting factor with regard to plant growth 

[33]. 

In sunflower plant leaves grown under eCO2 conditions (NM) (Table 3), we found 

that nutrient uptake (P, K, Mg, and B) significantly increased as compared to plants grown 

under aCO2 conditions (NM). However, no variations were observed in Fe content. 

Bagheri et al. [34] observed a positive role of AM symbiosis in Zn and Mn uptake, while 

the acquisition of immobile metal nutrients (Fe and Cu) was not affected. Recently, it has 

been demonstrated that, in sunflower plants [35] grown in mediums with deficient Fe, 

mycorrhization with AM mitigates the deficiency symptoms through increased efficiency 

of H+-ATPase activity. When the plants are biofertilized with R. irregularis, nutrient avail-

ability improves, since AM promotes plant rooting due to the improved development of 

the root system, thereby increasing water and nutrient uptake [36,37]. The high ambient 

CO2 level improves plant growth, but limitations of P lead to decreased growth, especially 

of the stems. Both factors, however, when applied individually, increase root growth and 

exudation, and promote mycorrhizae association [38]. Mycorrhizae not only promote 

plant growth, since they provide the essential nutrients P, K, Mg, and B, but also protect 

plants from stressful environmental conditions [39]. 



Plants 2021, 10, 937 7 of 12 
 

 

De la Mata et al. [26] demonstrated that when sunflower plants were grown under 

high CO2 conditions, the content of photosynthetic pigments (chlorophyll a and b and 

carotenoids) decreased as compared to plants grown under ambient CO2 conditions, as 

we have verified in this study (Table 4). However, the significant increase in chlorophyll 

levels that has been found in mycorrhized plants (aCO2 and eCO2) may be related to the 

increased P and Mg uptake observed in these plants (Table 3), as reported by Lin et al. 

[40] in Leymius chinensis seedlings. On the other hand, it is also known that the mycorrhi-

zation of plants leads to a segregation of substances such as cytokinins, which favor the 

development of chloroplasts and increase chlorophyll levels [29,41]. Carotenoids act as 

light-harvesting pigments and play a major role in protecting chlorophyll and membranes 

from destruction by quenching triplet chlorophyll and removing oxygen from the excited 

chlorophyll–oxygen complex [42]. Therefore, the reduction in carotenoids may have major 

consequences in terms of chlorophyll. 

ROS are continuously produced unintentionally in plants by means of various meta-

bolic reactions, and plant cells are equipped with antioxidants and scavenging enzymes 

to keep them low under normal growth conditions [43]. Plants have evolved an elaborate 

antioxidant system which helps to scavenge endogenously produced ROS [44]. The scav-

enging of ROS is achieved through the action of different enzymatic and nonenzymatic 

compounds, including catalase, APX, superoxide dismutase, glutathione reductase, and 

the enzymes of the ascorbate–glutathione pathway. Nonenzymatic mechanisms include 

compounds, such as glutathione, ascorbic acid and α-tocopherol, capable of directly scav-

enging several ROS [45]. In sunflower plants under eCO2 conditions (M and NM), oxida-

tive stress was increased, favoring the production of ROS, as observed by the high level 

of hydrogen peroxide contained in the leaves compared to plants grown under aCO2 con-

ditions (M and NM). However, when the plants were inoculated with R. irregularis, a sig-

nificant decrease in hydrogen peroxide content was observed, and there was an increase 

in the levels of catalase and APX (eCO2 and aCO2) (Figure 1). The decrease in catalase and 

APX activities in eCO2 plants may it be related with the observed reduction in the N level 

(Table 2) [26]. In Arabidopsis and soybean [46] plants, it has been shown that elevated CO2 

causes oxidative stress as a result of the increase in protein carbonylation. Plants have 

developed various antioxidative strategies to flush out these toxic components. The en-

hancement of antioxidant defenses increases tolerance to different abiotic factors [47]. The 

AM plants showed reduced hydrogen peroxide levels, thus demonstrating their ability to 

counteract damage [48]. Chen et al. [49] verified that AM symbiosis in Zea mays L. could 

decrease the accumulation of ROS and reduce the damage of oxidative stress. The activi-

ties of catalase and peroxidase of AM inoculated maize were higher than those of non-

AM plants. In Digitaria eriantha plants that were subjected to abiotic stress, arbuscular my-

corrhizal symbiosis regulated physiology and performance under these conditions, with 

antioxidants and jasmonates participating in this process. AM plants consistently showed 

higher catalase and APX activity [47]. AM has demonstrated that not only do they confer 

greater resistance in plants in the face of abiotic and biotic stress, but they also supply 

plants with the capacity to recover from the negative impacts of adverse phenomena. My-

corrhizae have been identified as significant anti-stress agents in agricultural systems [50]. 

4. Materials and Methods 

This work examined modifications in the development and metabolism of sunflow-

ers (H. annuus L.) grown under enriched CO2 conditions (eCO2) and inoculated with AM 

fungi (R. irregularis) (M), as compared to control sunflowers grown under eCO2 conditions 

with no inoculation (NM). We also used control plants grown under ambient CO2 condi-

tions (aCO2) with (M) and without (NM) inoculation. Sunflower (H. annuus L.) seeds from 

the isogenic cultivar HA-89 (Semillas Cargill, SA, Seville, Spain) were surface-sterilized in 

1% (v/v) hypochlorite solution for 15 min. After rinsing in distilled water, the seeds were 

imbibed for 3 h and subsequently sown in plastic trays containing a 1:1 (v/v) mixture of 

perlite and vermiculite, until root emergence. Then, they were moved to pots containing 
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a sterile substrate made of peat (pH 6)/washed sand/vermiculite (1/1.5/1.5) (v/v/v) [29]. 

The pot experiment was carried out under both aCO2 (400 μL/L) and eCO2 (800 μL/L) 

conditions. Plants under aCO2 and eCO2 conditions were inoculated with 1 g of R. irregu-

laris sp. inoculum (Symbiom, 60,000 spores per 60 g) (M) or with 1 g of compost without 

spores (AMF-Free Carrier Symbiom) (NM). The seeds were germinated and plants were 

grown in controlled-environment cabinets (Sanyo Gallenkam Fitotron, Leicester, UK) fit-

ted with an ADC 2000 CO2 gas monitor with a 16-h photoperiod (400 µmol/m2/s) of pho-

tosynthetically active radiation supplied by “cool white” fluorescent lamps, supple-

mented by incandescent bulbs, and a day/night regime of 25/19 °C and 70/80% relative 

humidity. The plants were irrigated daily with water. Samples of leaves (aged 48 days) 

were collected 2 h after the onset of the photoperiod. Whole leaves were excised and 

pooled in two groups. One group was used to take growth parameters and nutrient anal-

yses. The other group was immediately frozen in liquid nitrogen and stored at –80 °C. The 

frozen plant material was ground in a mortar pre-cooled with liquid N2, and the resulting 

powder was distributed into small vials that were stored at –80 °C until the enzyme activ-

ity and metabolite were quantified. 

4.1. Mycorrhizal Analyses  

For the measurement of mycorrhizal colonization, a fraction of the roots was care-

fully washed, cut into 1 cm segments, cleared in 10% KOH at 90 °C for 20 min, acidified 

in 2% HCI for 5 min, and stained with 0.01% acid fuchsin in lactophenol [51]. Mycorrhizal 

colonization was determined via microscopic calculation. The results are expressed as the 

percentage of successfully colonized root segments [52]. 

4.2. Growth Parameters 

Leaf and stem dry weight was determined after drying the plant material in the oven 

at 80 °C until the weight was constant. Leaf area (image analysis software, Image-Pro Plus) 

measurements were taken. 

4.3. Nutrient Analysis in Leaves 

A total of 100 g of leaves were collected and dried at 60 °C for 24 h, and subsequently 

finely powdered. An analysis of total C and N was performed in a EuroVector EA 3000 

elemental analyzer (EuroVector SpA, Via Tortona 5, Milan, Italy) with an automatic injec-

tor, provided by the NIR/MIR Spectroscopy Unit at the University of Cordoba, which is 

part of the Central Service for Research Support (SCAI). The analyses of the remaining 

elements (P, K, Mg, Fe, and B) were performed by digestion with HNO3/H2O2 in an Ul-

traCLAVE Microwave. P concentration was determined by the molybdate blue method, 

using spectrophotometry [53]. B and Fe were determined by atomic absorption spectrom-

etry. K and Mg concentrations were determined by flame photometry.  

4.4. Biochemical Determinations in Leaves 

Frozen material was homogenized with cold extraction medium (4 mL/g) consisting 

of 50 mM Hepes-KOH (pH 7), 5 mM MgCl2, and 1 mM EDTA. The homogenates were 

filtered through four layers of cheesecloth, and centrifuged at 28,710 g at 4 °C for 15 min. 

The supernatant was collected and stored at 4 °C for total soluble sugar (TSS) and total 

soluble protein (TSP) determinations. The pellet was used to determine starch, which was 

estimated after an iodine reaction [54]. Leaf TSS was analyzed with the anthrone reagent 

method. Absorbance was measured using a spectrophotometer at 620 nm [55]. Leaf TPS 

was measured with the Bradford protein dye-binding method [56], using bovine serum 

albumin (BSA). Pigments were determined in plant extracts by HPLC, according to the 

method of Cabello et al. [57].  

  



Plants 2021, 10, 937 9 of 12 
 

 

4.5. H2O2 Determination, Extraction, and Assay of Antioxidant Enzymes in Leaves 

For H2O2 determination, 1 g of leaf material was ground with 10 mL of cold acetone 

in a cold room and passed through Whatman filter paper. H2O2 was determined by the 

formation of the titanium–hydroperoxide complex, according to the method of Mukherjee 

and Choudhuri [58]. 

Enzyme extracts were prepared by freezing a weighed amount of leaf samples in 

liquid nitrogen to prevent proteolytic activity, followed by grinding in a 0.1 M phosphate 

buffer at pH 7.5 containing 0.5 mM EDTA and 1 mM ascorbic acid at a 1:10 (w/v) ratio. 

The homogenate was passed through four layers of gauze, and the filtrate was centrifuged 

at 15,000 x g for 20 min. The resulting supernatant was used as an enzyme source. 

Catalase activity (CAT, E.C.1.11.1.6) was estimated by the method of Aebi [59]. The 

reaction mixture contained 50 mM potassium phosphate (pH 7) and 10 mM H2O2. After 

the enzyme was added, H2O2 decomposition was monitored via absorbance at 240 nm (= 

43.6/(mM cm)). 

Ascorbate peroxidase activity (APX, E.C.1.11.1.11) was measured using Nakano and 

Asada’s method [60]. The reaction mixture contained 50 mM phosphate buffer (pH 7), 1 

mM sodium ascorbate, and 25 mM H2O2. After the addition of the enzymatic extract to 

the mixture, the reaction was monitored via absorbance at 290 nm (= 2.8/(mM cm)). 

4.6. Statistical Analysis 

The results are presented as the means ± SE of three independent experiments, per-

formed sequentially, using duplicate determinations in each experiment. Data were sub-

mitted to a two-way ANOVA (inoculation whith R. irregularis and CO2 level). Pairwise 

comparisons of means were performed using Turkey’s test, and statistically significant 

differences were obtained at p < 0.05. 

5. Conclusions 

Sunflower plants (H. annuus L.) in a CO2-enriched atmosphere (eCO2) were used to 

examine the effects of biofertilization with R. irregularis (M) on a physiological and meta-

bolic level. This colonization was found to promote plant growth due to an increased nu-

trient content (P, K, Mg, and B), which favors a greater synthesis of photosynthetic pig-

ments. Biofertilized plants (M) under eCO2 conditions had a higher concentration of car-

bon compounds in their leaves, as compared to non-biofertilized eCO2 plants (NM). The 

biofertilization (M) of sunflowers with R. irregularis decreased the C/N ratio as compared 

to the NM plants, as well as decreasing the hydrogen peroxide content and increasing the 

antioxidant enzyme activity (catalase and APX). These results suggest that sunflower 

symbiosis with R. irregularis improves the absorption of N, while also decreasing the 

plant’s oxidative stress. This is relevant for future scenarios in which atmospheric CO2 

concentrations are expected to increase. Furthermore, it will allow us to verify whether or 

not biofertilization with R. irregularis may potentially replace chemical fertilization in sun-

flowers, promoting environmentally friendly agricultural practices. This is a further step 

towards the goal of understanding the mechanisms influencing the C and N dynamic in 

future scenarios of climate change, where high CO2 levels are expected. 
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