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Abstract: Approximately 23% of metastatic castration-resistant prostate cancers (mCRPC) harbor
deleterious aberrations in DNA repair genes. Poly (ADP-ribose) polymerase (PARP) inhibitors
(PARPi) therapy has shown improvements in overall survival in patients with mCRPC who harbor
somatic and/or germline alterations of homology recombination repair (HRR) genes. Peripheral
blood samples are typically used for the germline mutation analysis test using the DNA extracted
from peripheral blood leucocytes. Somatic alterations can be assessed by extracting DNA from a
tumor tissue sample or using circulating tumor DNA (ctDNA) extracted from a plasma sample. Each
of these genetic tests has its own benefits and limitations. The main advantages compared to the
tissue test are that liquid biopsy is a non-invasive and easily repeatable test with the value of better
representing tumor heterogeneity than primary biopsy and of capturing changes and/or resistance
mutations in the genetic tumor profile during disease progression. Furthermore, ctDNA can inform
about mutation status and guide treatment options in patients with mCRPC. Clinical validation and
test implementation into routine clinical practice are currently very limited. In this review, we discuss
the state of the art of the ctDNA test in prostate cancer compared to blood and tissue testing. We also
illustrate the ctDNA testing workflow, the available techniques for ctDNA extraction, sequencing,
and analysis, describing advantages and limits of each techniques.

Keywords: circulating tumor DNA; prostate cancer; metastatic castration-resistant prostate cancer;
homology recombination repair genes; BRCA1; BRCA2; ATM; PARP inhibitors

1. Introduction

In 2015, The Cancer Genome Atlas Research Network reported findings from 333 primary
prostate cancers which resulted in the identification of 19% of primary tumors with muta-
tions in DNA repair genes, including 3% in the homologous recombination repair (HRR)
gene, BRCA2 [1]. Exome sequencing of 150 metastatic biopsies found that 23% of metastatic
prostate cancers carry alterations in the genes critical for DNA repair, again, involving
homologous recombination repair genes (BRCA2, ATM, and BRCA1), as well as mismatch
repair genes (MLH1 and MSH2) [2]. Alterations in these genes include base pair substitu-
tions, deletions, insertions, copy number variations (CNV), and selected rearrangements [3].
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Men with germline mutations are more likely to harbor intraductal/ductal histology (48%
vs. 12%, p < 0.01) and lymphovascular invasion (52% vs. 14%, p < 0.01), while neither
prostate cancer family history nor other cancers in a given family were statistically asso-
ciated with a positive germline test [4,5]. Genomic testing in advanced PCa patients is
currently recommended in a specific setting (Table 1) [6–9].

Table 1. Recommendations for germline and somatic genomic testing in advanced PCa.

Recommendations Germline Testing Tumor Testing

NCCN [6]

Recommend germline testing for any patients with PCa
and Ashkenazi Jewish ancestry or strong family history of
cancer and for all patients with high-risk localized or
metastatic PCa

Recommend tumor testing for HRRm
and consider tumor testing for MSI/MRR
alterations for all M1 patients
Consider testing at earlier stages

ESMO [7]

Germline testing for BRCA2 and other DDR associated
with cancer predisposition syndromes is recommended in
patients with a family history of cancer and should be
considered in all patients with metastatic prostate cancer

Consider tumor testing for HRR genes
and MMR defects (or MSI) in patients
with mCRPC

EAU [8,9]

Consider germline testing for patients with:

• metastatic PCa;
• high-risk PCa and a family member diagnosed with

PCa at the age <60 years;
• multiple family members diagnosed with

castration-sensitive PCa at the age <60 years or a
family member who died from PCa;

• family history of high-risk germline mutations or a
family history of multiple cancers on the same side
of the family

All metastatic patients should be offered
somatic genomic testing for HRR and
MMR defects, preferably on metastatic
carcinoma tissue, but testing on primary
tumor may also be performed.
Alternatively, but still less common,
genetic testing on circulating tumor DNA
(ctDNA) is an option

The rationale behind genetic testing of PCa patients is that metastatic castration-
resistant PCa (mCRPC) with DNA repair genes alteration may be a potential candidate
for target therapy with PARP inhibitors. Recent trials with PARP inhibitors in patients
with mCRPC have demonstrated significant improvements in overall survival (OS) in
patients harboring germline and/or somatic alterations in DNA repair genes compared to
enzalutamide and abiraterone.

In brief, the PROfound study is a Phase 3 multicenter trial aimed at evaluating the
PARP inhibitor olaparib in men with mCRPC who had disease progression while receiving
a new hormonal agent (e.g., enzalutamide or abiraterone). Men who had an alteration in
genes involved in the homologous recombination repair pathway were divided in two
cohorts: cohort A (245 patients) with at least one alteration in BRCA1, BRCA2, or ATM, and
cohort B (142 patients) with an alteration in any of the 12 other HHR genes. In cohort A,
significant improvement in median rPFS (7.4 vs. 3.6 months) and in OS (19 vs. 14 months)
were reported. In cohort B, the median duration of OS was 14.1 months with olaparib and
11.5 months with control therapy [10,11]. Exploratory gene-by-gene analysis presented at
ASCO 2021 showed that for BRCA-mutated patients, ORR was 43.9% vs. 0% and median
OS was 20.1 vs. 14.4 months for olaparib and enzalutamide or abiraterone, respectively.
Concerning the other genes analyzed, olaparib monotherapy also resulted in a higher ORR
in patients with alterations in CDK12 (5.9% vs. 0%) but not ATM (10.0% vs. 10.0%), and
no significant difference in rPFS or OS was reported among patients with ATM or CDK12
alterations [12].

The TRITON2 was a Phase II study of rucaparib in mCRPC patients with HRR gene
alterations [13]. Fifty-two percent of the 98 patients had a confirmed PSA response (≥50%
decrease from the baseline) and 44% of the 57 patients with measurable disease had a
confirmed RECIST partial (22 patients) or complete response (three patients). A greater
PSA response rate was observed in patients with a BRCA2 alteration. Furthermore, in this
trial, limited radiographic/PSA responses to PARP inhibition were reported in men with
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alterations in ATM, CDK12, or CHEK2, while responses have been confirmed in other DDR
genes such as PALB2, FANCA, BRIP1, and RAD51B [14].

These results led to an FDA approval of two PARP inhibitors in 2020, olaparib and
rucaparib, for mCRPC with DNA repair gene alterations. These drugs represent the first
approval in the history of PCa therapy that requires a specific molecular biomarker for
select patients. Molecular testing can be performed on whole blood, on formalin-fixed
paraffin-embedded (FFPE) tumor tissue, or circulating tumor DNA extracted from plasma
samples [15].

2. Tissue Testing vs. Whole Blood Testing

The main difference between tissue and blood-based testing is the type of mutation
detected. Blood testing is used to detect significant genomic rearrangements to assess
familiar risk and it is feasible in one hundred percent of the cases; however, it does not
identify mutations of somatic origin. Tissue testing can detect both somatic and germline
mutations [16]. Patients with a detected tissue mutation are referred to germline testing
to determine if the mutation is germline or somatic. Germline testing requires genetic
counselling, similarly to blood testing [15].

The advantages of blood testing are the ease of obtaining samples, minimal invasive-
ness, and repeatability. Tissue testing can be performed on prostate samples (both biopsies
and surgical specimens) and on metastatic deposits. In the latter case, obtaining tissue from
a metastatic site is an invasive procedure characterized by high cost and morbidity for
patients. Moreover, in the specific case of PCa patients, bone is a frequent site of metastasis.
DNA extracted from a bone biopsy, if undergone through a decalcification process, can be
qualitatively very poor and molecular test is likely to fail [16].

DNA quality is another important parameter to consider when choosing the best-
performing test. It depends on purity of the sample and fragmentation of DNA. DNA
quality is high in blood and variable in FFPE tissue [17]. Factors that can lower DNA quality
are in common with other molecular tissue tests, i.e., presence of necrosis, high infiltration
of inflammatory cells, aging-related degradation, poor fixation in formalin, cauterized
tissue [18]. Nonetheless, the reliability of tumor testing in diagnosing or excluding germline
mutations is questionable. A recent study reported that in patients with no germline
pathogenic BRCA1/2 mutation, tumor tests were 100% concordant with no false positive
results. However, in patients who harbored a germline pathogenic BRCA1/2 mutation,
only 70% of these germline mutations were identified with tumor testing, while 30% of
germline mutations were missed, due to either technical or interpretative errors [19].

3. Biology of ctDNA

Circulating cell-free DNA (cfDNA) in blood acquired from plasma using a simple
blood test provides repeated serial access to tumor DNA as a minimally invasive “liquid
biopsy.” Liquid biopsy includes cell-free nucleic acid, circulating tumor cells, extracellular
vesicles, metabolites, and proteins [20–22].

The total amount of circulating DNA found in blood plasma is called circulating free
DNA and it accounts for the total DNA released by normal and tumor cells. It can be
present in healthy subjects and its concentration can be increased in case of stroke, trauma,
myocardial infarction, and autoimmune disease [23–25]. Concentration of cfDNA is much
higher in advanced cancer patients compared to healthy individuals [26,27].

Circulating tumor DNA refers only to the plasma DNA that originates specifically
from tumors, primary site, metastases, and even circulating tumor cells. It can represent
from 0.01% up to 90% of the total free DNA. Its concentration differs between patients
depending on location, size, vascularity of the tumor, cancer stage, cellular turnover, and
response to therapy. The level of ctDNA correlates with disease progression and is higher
in metastatic tumor than in localized diseases [28–31].

Circulating cell-free DNA can be released by cells through passive release or active
secretion. The first way occurs through cell death that can happen by apoptotic process
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or necrosis. The two ways differ in the length of DNA fragments. During apoptosis, the
enzymatic cleavage of DNA produces DNA fragments that are still wrapped around single
nucleosomes and the length plus linker is around 166 base pairs. In case of necrosis, larger
fragments are shed into the circulation up to one thousand base pairs [32]. A small fraction
of ctDNA originates from CTC by passive release. A minority of ctDNA is released by
active secretion of extracellular vesicles, such as exosomes and prostasomes containing
pieces of DNA around 150–250 bp [33].

4. Circulating Tumor DNA in Prostate Cancer

Tissue testing is currently the principal test used for the analysis of tumor genomic
profiles. However, concerning PCa patients, in the main trials in which tissue testing was
performed before enrollment, about 30% of tests failed due to pathology review failure,
DNA extraction failure, or failure after DNA extraction [11,34–36]. Consequently, the
possibility of assessing molecular alterations using ctDNA is gaining attention in the
clinical and laboratory community [37].

Shedding of ctDNA differs between untreated patients, androgen deprivation (ADT)-
treated patients, and mCRPC patients. Plasma-extracted cfDNA sequencing was successful
in 52/53 patients with de novo metastatic castration-sensitive PCa. Before ADT initiation,
74% of the patients had detectable ctDNA, while in the patients who received ADT prior to
blood collection, only 59% had detectable ctDNA. The ctDNA fraction was significantly
lower than among treatment-naïve patients (mean, 6.7% vs. 23%; median, 1.0% vs. 11%;
p = 0.02). The reduction in the ctDNA fraction was more pronounced after one week of
ADT [38,39]. No relationship between the ctDNA fraction and PSA, Gleason grade, or age
was reported.

A CtDNA fraction above 30% was strongly associated with poor response to therapy
with enzalutamide or abiraterone even after adjustment for other clinical prognostic factors.
Cell-free DNA concentration changes after PARP inhibitor therapy are predictive biomark-
ers of response; indeed, a ≥50% fall in cfDNA concentration after eight weeks of therapy
was independently associated with longer OS.

Compared to ctDNA, tissue testing may miss tumor evolution through therapy and
tumor heterogeneity, especially if the tumor test is performed on the primary tumor
site. Circulating tumor DNA can be used to detect resistance mutations and is better
representative of tumor heterogeneity.

Concordance between tissue testing and ctDNA has proven to be very high for what
concerns the detection of deleterious alterations in BRCA1 or BRCA2 with a positive percent
agreement of 88% and negative percent agreement of 95%. Some discordance is expected
based on biological differences and sampling times between tumor tissues and plasma
samples [11]. The concordance results stratified by variant show that positive agreement is
high for substitutions and indels, 92% and 95%, respectively, while it is much lower for
rearrangements and copy number loss. The negative agreement is almost 100% [40].

A retrospective study conducted in mCRPC patients profiled with a 70-gene cfDNA
NGS panel (Guardant 360™) reported≥ one alteration in 94% of 514 patients. A higher num-
ber of ctDNA alterations was associated with shorter time to treatment failure (HR = 1.05,
p = 0.026) in patients treated with chemotherapy or androgen inhibitors. Serial ctDNA
profiling of 64 patients revealed the evolution of alterations in AR, BRCA1, and BRCA2
following therapy [41].

The most recent and largest study on ctDNA in advanced PCa demonstrated high
concordance between alterations identified by liquid and tissue biopsy and, moreover,
proved the added value of liquid biopsy [42]. Out of the 3334 plasma samples from
patients with mCRPC (including 1674 screening samples from TRITON2/3), 94% had
detectable ctDNA (median ctDNA fraction, 7.5%; interquartile range, 0.8–34%). In 79.5%
of all the patients, liquid biopsy identified at least one genomic alteration predicted to
have deleterious/oncogenic effects on protein function: Tp53 (46%), AR (42%), BRCA2
(7.5%), BRCA1 (1.4%), PI3K/AKT/mTOR (14%), WNT/β-catenin pathway genes (17%),
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RAS/RAF/MEK (5%), MSI-H status (1.4%). Regarding BRCA mutations, concordance
between tissue and ctDNA, 67 (8.0%) BRCA1/2 alterations were detected concordantly in
tissue and liquid biopsy, 5 (0.6%)—exclusively in tissue biopsy, and 20 (2.4%)—exclusively
in liquid biopsy. Of the five patients with BRCA alterations detected only in tissue biopsy,
four had a ctDNA fraction below 1%. The 20 cases detected only in ctDNA analysis may
represent alterations acquired after tissue specimen collection. In presence of a germline
BRCA alteration, ctDNA analysis was able to detect it in 100% of the cases. It is worth
noticing that in the near future, other genetic alterations such as mutations in AR or in
PIK3CA/AKT1/PTEN should be included in molecular analysis since target therapy is
currently under investigation (Table 2) [34,35,43–46].

Table 2. Summary of the recently published papers that used ctDNA sequencing for the detection of HRR alterations
in PCa.

Study Objective No. of Samples Method Results

Wyatt, A, et al. J Natl
Cancer Inst 2017 [40]

To compare ctDNA
alterations with the
matched tissue and
quantify the concordance

45 samples at the time
of metastatic
tissue biopsy

Targeted sequencing
across 72 clinically
relevant genes

75.6% had a ctDNA proportion
greater than 2% of the total cfDNA;
all the somatic mutations
identified in matched metastatic
tissue biopsies were concurrently
present in ctDNA; concordance of
88.9% for individual gene CNA

Vandekerkhove, G., et al.
Eur Urol 2019 [38]

To determine ctDNA
abundance at de novo
mCSPC diagnosis

53 mCSPC

Targeted sequencing
strategy capturing
the exons of 73 PC
driver genes

Median ctDNA fraction was 11%
(range, 0–84%) among the
untreated patients but was lower
(1.0%; range, 0–51%) among the
patients after ADT; concordance
for mutation detection in the
matched samples was 80%

Sonpavde, G., et al.
Cancer 2019 [41]

To evaluate association
between cfDNA
alterations and outcomes
and evolution with
therapy in
mCRPC patients

514 mCRPC Guardant360 assay

94% had ≥1 ctDNA alteration,
higher numbers of ctDNA
alterations, AR alterations, and
amplifications of MYC and BRAF
were associated with worse
failure-free survival and/or OS

Matsubara, N, et al. 2021
JCO [46]

PROfound trial, cohort A
(BRCA/ATM
alteration-positive by
tissue testing)

181 mCRPC FoundationOne
Liquid CDx assay

139/181 (76.8%) patients had a
ctDNA result reported; 111/139
(79.9%) patients reported a
BRCA/ATM GA; and 28/139
patients did not have either due to
lack of ctDNA shedding from the
tumor or ctDNA levels below the
sensitivity of the assay

Tukachinsky, H., et al.
Clin Cancer Res 2021 [42]

To evaluate the landscape
of GA detected in ctDNA
and assess concordance
with tissue-based CGP

3334 patients
with mCRPC

FoundationOne
Liquid CDx assay

94% had detectable ctDNA with a
median ctDNA fraction of 7.5%; of
the 72 patients with BRCA1/2
mutations detected in tissue
biopsy, 67 (93%) were also
identified by ctDNA (100% for
germline variants); in 20 patients,
BRCA1/2 GA were identified
using ctDNA but not tissue testing

GA: genomic alterations; ctDNA: circulating tumor DNA; mCSPC: metastatic castration-sensitive prostate cancer; mCRPC: metastatic
castration-resistant prostate cancer; CPG: comprehensive genomic profiling; CNA: copy number alterations; ADT: androgen
deprivation therapy.

5. Pros and Cons of ctDNA Testing

Both somatic and germline mutations can be detected by ctDNA testing. As for blood
testing, advantages of ctDNA are the readiness in obtaining samples and repeatability
during therapy or progression of disease. Turnaround time is largely in favor of ctDNA
testing, 1–2 weeks, compared to around one month for tissue and 2–4 weeks for blood
testing [47–49].
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The main drawbacks of ctDNA are DNA quantity and quality [50]. DNA quantity
is usually very low, depending on the fraction of tumor DNA in cell-free DNA. Lower
concentrations are reported, particularly at early stages, in localized tumors, where the
amount of DNA shedding is a minimal part of the whole cfDNA [51].

A negative result does not rule out the presence of a mutation in the patient’s tumor.
In this case, patients should be referred to an FDA-approved tumor tissue test, if feasible.
In case of the gene alterations reported, the test does not distinguish between germline
and somatic ones. If a reported alteration is suspected to be germline, confirmatory testing
should be considered in the appropriate clinical context.

For specific ctDNA tests, false positive rate has been evaluated in healthy controls. The
detection rate for unique short variants resulted to be around 0.82%. Across 30,622 short
variants, 58 variants had a detection rate of greater than 5%. A false positive result may be
derived by non-tumor somatic alterations, such as clonal hematopoiesis of indeterminate
potential (CHIP) [52,53]. Genes with alterations that potentially derive from CHIP include,
but are not limited to, the following: ASXL1, ATM, CBL, CHEK2, DNMT3A, JAK2, KMT2D
(MLL2), MPL, MYD88, SF3B1, TET2, TP53, and U2AF1 [54–56].

The level of ctDNA is critical for the performance of the test. The ctDNA fraction can
vary during therapy and closely correlate with the tumor response. It is recommended
that blood samples be drawn shortly before chemotherapy or at least two weeks after the
previous treatment (Table 3) [57].

Table 3. Benefits and limitations of tissue, ctDNA, and blood-based HRR gene tests.

Tissue ctDNA Blood

Types of mutations
detected Somatic and germline Germline only

Sample quality DNA quantity: medium
DNA quality: low

DNA quantity: low
DNA quality: variable

DNA quantity: high
DNA quality: high

Turnaround
times (TAT) ~2–8 weeks ~1–2 weeks ~2–4 weeks

Genetic counselling Patients with a positive mutation are referred for germline testing
to determine whether the mutation is somatic or germline Requires counselling

Testing benefits

Gold standard for
tumor analysis
High clinical sensitivity
Archival tissue for tumor
histology (Gleason scoring
and/or ISUP grading may
already be available and
provides an option for testing)

Easy to obtain samples
Better representative of tumor
heterogeneity and metastatic
deposits than primary biopsy
Minimally invasive and
easily repeatable

Easy to obtain samples
Assesses familial risk
Analysis feasible in 100% of cases
Minimally invasive and
easily repeatable
Blood testing is currently used to
detect significant genomic
rearrangements

Testing limitations

May miss within-tumor
genetic heterogeneity
Obtaining samples from
metastases is an invasive
procedure and may
be challenging
Around 31% of tests fail due to
pathology review failure, DNA
extraction failure, or failure after
DNA extraction

Low concentrations of
circulating ctDNA
Highly sensitive tests
are required
May result in false positives
Testing is limited by the
availability of an adequate
amount of ctDNA,
particularly at early stages

Does not identify patients with
mutations of somatic origin or
capture the potentially changing
genetic profile of disease
progression
Does not detect HRRm of
somatic origin

6. Workflow of ctDNA Testing

The practical workflow can be described in three steps: plasma sample preparation,
ctDNA extraction, ctDNA analysis.
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6.1. Sample Collection, Plasma Separation, and Storage

Preparation of cfDNA samples involves sample collection, plasma separation, and
storage. Sample collection consists in a venipuncture and requires a minimum of 2 mL
of plasma. Blood can be collected in EDTA tubes or cfDNA-stabilizing tubes that are
tubes with special preservatives that can be used for long-term storage and when plasma
separation is not performed in a short time after blood collection [58,59].

When using EDTA tubes, separation of plasma from blood should be performed in a
short time since the half-time of ctDNA is only about two hours in standard EDTA tubes,
whereas with stabilizing tubes, plasma separation can be delayed. Plasma separation
is obtained by simply centrifuging whole blood twice: once to separate plasma and the
second time to remove cells and cell debris [60,61].

With a Streck tube, steady cfDNA quality can be obtained after up to one week of
storage, independently of the temperatures [62]. However, even with these special tubes,
an increased level of DNA has been reported after seven days of storage at 4 ◦C and room
temperature [63,64].

The increase in DNA levels is due to the release of DNA from blood cell lysis, in
particular, from white blood cells, and this can impair the performance of the test since
tumor DNA present in plasma is diluted in non-tumor DNA [65,66].

6.2. DNA Extraction

There are various methods that can be used to extract cfDNA [67]:

• The magnetic enrichment method is one of the most used; it is based on positively
charged magnetic beads that bind the negatively charged phosphate backbone of
DNA. It is ideal for automation of high-throughput processing as they eliminate the
need for centrifugation and other time-consuming steps, and it is more efficient in the
recovery of short ctDNA fragments as compared to the silica-based membrane and
conventional methods [68].

• The phenol chloroform method is a conventional method of extraction and ensures a
higher yield compared to other DNA extraction kits. However, DNA purity is lower,
resulting in a lower efficiency of downstream analysis [69].

• Silica column-based enrichment uses the affinity of DNA molecules to the silica
membrane to bind DNA; it is fast, easy to perform, and economical. This method is
the principle of Qiagen extraction kits and it is characterized by high recovery but
partial loss of small fragments [70].

• In the polymer mediated-enrichment, DNA is captured by a polymer that is then
centrifuged and dissolved in a special buffer. This technique reduces the sample
volume; however, lower DNA yields are obtained compared to other methods.

Automated cfDNA extraction has been less evaluated than manual approaches. Be-
sides high throughput and low hands-on time, the use of automated methods reduces vari-
ability and the risk of sample-to-sample contamination, though they generate somewhat
lower cfDNA yields than manual extraction [71,72]. Recently, results from a comparison
study on four commercially available (semi-)automated cfDNA extraction protocols have
been published [73]. The same plasma samples were processed with Qiagen, Promega,
Thermo, and Stratec extraction methods in order to evaluate their suitability for further
NGS analysis. Concentrations and total amounts of cfDNA were highest for Qiagen
(filter-based) and Promega (bead-based) protocols, showing the best read length profiles
after sequencing.

6.3. DNA Sequencing and Analysis

After DNA extraction from plasma, the next step is DNA sequencing. Isolated DNA
fragments are thus converted to the library by ligation to sequencing adapters containing
specific sequences designed to interact with the NGS platform, either the surface of the
flow cell (Illumina) or beads (Ion Torrent). The next step involves clonal amplification
of the library by either cluster generation (Illumina) or microemulsion PCR (Ion Torrent).
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The final step generates the actual sequence via the chemistries for each technology. One
difference between the two technologies is that Illumina allows sequencing from both ends
of the library insert (i.e., paired-end sequencing).

6.3.1. Targeted vs. Untargeted Approach

According to the purpose of DNA analysis, two types of approach are possible: a
targeted approach and a genome-wide approach. The targeted approach requires detailed
information about the tumor genome and lower concentrations of input cfDNA. The
targeted approach is extremely sensitive, as mutations can be detected at an allele frequency
as little as 0.01%, highly specific, easier to interpret and implement in routine clinical
practice, fast, and cost-effective.

On the other hand, in the untargeted or genome-wide approach, all the codifying parts
of the genome (whole exome sequencing) or even the whole genome is sequenced and
analyzed. This strategy has the ability to identify novel changes during tumor treatment
and does not require prior information about the primary tumor genome. Nevertheless,
high concentrations of ctDNA are required for reliable reconstruction of tumor-specific
genome-wide changes, the sensitivity ranges from 5 to 10%. Nowadays, it is still an
expensive technique with long turnaround times that requires skilled bioinformaticians for
data analysis and interpretation [74].

In the case of PCa, for therapeutic purposes, a targeted approach is recommended
since a panel of genes is sufficient to cover the current indications of PARP inhibitors and
potentially biomarker-driven therapy (AKT, PTEN, PI3KCA) [28,75,76]. The preferred
method to perform the PCa gene panel is a next-generation sequencing (NGS)-based
platform [77]. While in some tumors PCR-based approach is still an option, when it comes
to BRCA genes, NGS methods are more appropriate. Different types of mutations and
alterations have been found so far, ranging from deletion, insertion, missense, and stop
codon mutation to significant rearrangements [78,79]. New variants are continuously
identified and a variable number, up to 20%, of variants of unknown significance (VUS)
has been reported in the literature.

Targeted NGS panels can range from hotspot panels focused on individual codons to
more comprehensive panels that include the coding regions of hundreds of genes. Targeted
panels can be specific for therapy selection while extensive panels can be adopted for
research purpose (Figure 1).

In the targeted approach, it is essential to enrich our sample of our target of interest,
and this can be done with an enrichment method capable of capturing selective genomic
regions of interest for NGS. The two enrichment methods are hybridization-based or
amplicon-based.

In the hybridization method, DNA is hybridized to single-stranded oligonucleotides
that are called probes or baits designed to target a specific region of interest. The probes
capture the DNA of interest and can be recovered using streptavidin-coated magnetic
beads since they are biotinylated. Amplicon-based enrichment uses primers designed
to target a specific region of interest that is amplified by PCR, generating thousands of
amplicons. To each amplicon, an adaptor with a unique identifier is attached to further
amplify DNA in parallel single-plex reactions.
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6.3.2. Targeted NGS Techniques

Targeted NGS techniques used for ctDNA analysis currently adopted are cancer per-
sonalized profiling by deep sequencing (CAPP-Seq) and tagged amplicon deep sequencing
(TAM-Seq). In the first technique, ctDNA is detected using “selectors” (specific probes) that
selectively capture a set of exonic and intronic regions known to be recurrently affected in
a particular cancer type [80].

Hybridization of “selectors” consisting of biotinylated DNA oligonucleotides that are
complementary to previously defined recurrent mutated areas of interest is followed by
deep sequencing. Deep sequencing is considered the first approach to detect mutations at
an allele frequency as low as <0.2% by sequencing the target regions with high coverage
(>10,000×) [81–83]. The main disadvantages of deep sequencing are the extremely high
read depth that is required in order to detect mutations at low allele frequency and the
resulting high sequencing costs.

In TAm-Seq (tagged amplicon deep sequencing), special primers to amplify a specific
region of interest are designed. It is based on a two-step amplification process: the primers
are first used to bind to the template during the preamplification step to amplify the
original signal; then, the templates undergo individual amplification for purification. In
this phase, a microfluidics system is used to attach adaptors with a unique identifier to each
amplicon to further amplify DNA in parallel single-plex reactions. TAm-seq can identify
mutations ~2% MAF with a sensitivity over 97%; the enhanced version of TAm-Seq named
eTAm-Seq™ can detect MAF as low as 0.25% with a sensitivity of 94% [84,85].

To improve sensitivity of NGS, further techniques have been developed. In this
context, it is worth mentioning Safe-Seq and Duplex-Seq.

Safe-Seq assigns a unique identifier (UID) to each template molecule before ampli-
fication. Amplification of each uniquely tagged template molecule creates UID families
so that many daughter molecules with an identical sequence are generated. If a mutation
preexisted in the template molecule used for amplification, that mutation should be present
in every daughter molecule containing that UID. On the other hand, if a mutation does not
appear in most of the same UID-connected sequences, it is likely to be induced by other
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errors. In this way, Safe-Seq reduces sequencing errors at least 70-fold and has a sensitivity
as high as ~98% for detecting tumor mutations [86,87].

Contrary to conventional sequencing technologies that sequence only a single strand of
DNA, duplex sequencing examines both strands of DNA and scores mutations only if they
are present on both strands of the same DNA molecule as complementary substitutions.
DS uses adapters ligated onto the template to uniquely tag each DNA fragment in a plasma
cfDNA sample. PCR amplification creates fragment families characterized by unique
combinations of barcodes at both the 5′ and 3′ ends. A true variant will appear in all the
reads within a family, while polymorphisms within a family represent sequencing and
amplification errors that can be identified and removed by generating consensus sequences.
As the two strands are complementary, true mutations are found at the same position in
both strands (duplex consensus sequences) whereas PCR or sequencing errors result in
mutations in only one strand and can thus be discounted as technical errors [88,89].

Both Safe-Seq and Duplex-Seq are characterized by a very low error rate due to duplex
tagging and tags with unique identifiers. However, this strategy needs a relatively higher
depth of sequencing to ensure adequate representation of each family and specialized
informatics pipelines.

7. NGS ctDNA Testing Validation in the Laboratory

It is necessary to validate the ctDNA test according to the guidelines released by the
Blood Profiling Atlas in Cancer Consortium (BloodPAC). The Consortium released a series
of general protocols for analytical validation of NGS-based ctDNA assays [90]. As for
any other test, conventional parameters need to be addressed: reference range, limit of
blank (LoB), limit of detection (LoD), limit of quantification (LoQ), analytical accuracy,
reproducibility, interfering substances, and specimen stability. This procedure is aimed at
developing a range of global standards to harmonize clinical laboratory practices, ensure
robustness, and define the level of stringency or the workflow challenges presented in
the development of highly sensitive ctDNA-based NGS tests. Indeed, unlike tissue-based
tests, ctDNA testing is characterized by a low concentration of the analyte (down to several
mutant molecules per 10-mL blood collection tube) and thus requires an increased use of
contrived specimens for validation. Moreover, presence of non-tumor-derived mutations
as an endogenous analyte, i.e., of germline or CHIP mutations, poses another challenge.

8. Conclusions and Future Directions

Genomic testing in advanced PCa patients is currently recommended in specific
settings. Molecular diagnostics should be performed by a certified (accredited) institution
using a standard NGS procedure. Whole blood, tissue, ctDNA testing each have their
own benefits and limitations. Genetic testing using ctDNA is a valid option as proven by
multiple clinical trials and it received approval by the FDA in 2020. Moreover, longitudinal
ctDNA testing can be performed to detect new alterations, even the resistance mutations
that can emerge during disease progression. Tissue testing alone may not be sufficient
and can fail in 30% of cases, whereas ctDNA testing can be performed as an alternative
to tissue tests or even as a complementary test. Combined use of ctDNA and primary
tissue is ideal for assessing the molecular subtype and pave the way for targeted therapy
implementation in a precision oncology context. Third-generation sequencing technologies
such as PacBioScience and Oxford Nanopore allow capturing sequence information during
the replication process of the target DNA. These technologies can also help to detect
intermediate large chromosomal aberrations which are of deep impact for PCa prognosis
and seem to contribute to a progressive and stem cell-like phenotype of PCa [91,92].

These new technologies require minimal sample processing, therefore, smaller instru-
ments have been being designed over the years until the recently commercialized portable
gene sequencer of the size of a USB flash drive that can be used readily by connecting to a
laptop [93]. However, the main drawback is the high error rate of these sequencers. In the
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future, the improvements of these systems along with the decrease of their costs will allow
generating more comprehensive and easy-to-read data.
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