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Simple Summary: The conservation status of a native fish species is often a key indicator of the
state of habitat alteration, which supports strong anthropogenic disturbance. Ecuador contains the
Guayas basin, the largest basin in the Pacific Ocean, which is a biodiversity reserve. However, there
is little information regarding the morphometric characterization of Brycon dentex and its variations
within this basin, although its plasticity has been proposed as an indicator of the maintenance of
biodiversity. The goal of this study was to analyze the effects of anthropogenic activity and habitat
modification on the morphological variation of Brycon dentex and to determine the usefulness of
discriminant analysis in the morphometric differentiation of three populations of Brycon dentex in
Ecuador. The Brycon dentex morphometric model could be used as a framework in conservation and,
thus, an indicator of habitat status by quickly detecting changes in fish shape.

Abstract: The Guayas, located in Ecuador, is the largest basin in the Pacific Ocean and has an in-
ventory of 123 native freshwater species. Most of these are endemic species that are threatened or
at-risk due to anthropogenic activity and the modification, fragmentation, and destruction of habitats.
The aim of this study was to determine the morphometric variation in three wild populations of
Brycon dentex in the Guayas basin rivers and their connections to fishing management and envi-
ronmental conditions. A total of 200 mature fish were captured, and 26 morphometric parameters
were measured. The fishing policies (Hypothesis 1) and environmental conditions (Hypothesis 2)
were considered fixed factors and were validated by t-tests. The morphological variation among the
three populations (Hypothesis 3) was validated through a discriminant analysis. Fishing policies
and resource management were found to generate morphological differences associated with body
development. In addition, the environmental conditions were found to influence the size and struc-
ture of Brycon dentex populations. The analyzed populations were discriminated by the generated
morphometric models, which differentiated Cluster 1 (Quevedo and Mocache rivers) with high
fishing pressure from Cluster 2 (Pintado river) with medium–low fishing pressure. Morphometric
differentiation by discriminant analysis is a direct and economic methodology that can be applied as
an indicator of diversity maintenance.
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1. Introduction

The ecological theory of diversification [1] and studies of wild populations explain
how changes in environmental factors could induce changes in behavior, morphology,
and physiology [2,3]. Selection pressure in new environments favors the divergence of
populations, and there is a strong link between environmental variations and the mor-
phological diversification of a population [2,4,5]. Furthermore, habitat modification may
result in changes in the composition, geographical spread, and population structure of a
species [6–8], while diversity is considered to be an indicator of ecosystem restoration [9].
In this sense, fishing policies in each country seek food sovereignty and the maintenance
of genetic resources and biodiversity through economic incentives and regulatory mea-
sures [10]. The construction of habitat conservation indicators in Latin America is complex
due to a lack of data and the absence of characterization and productive behavior stud-
ies [11]. The characterization of animal genetic resources covers all activities associated
with the identification and quantitative and qualitative descriptions of populations, as
well as the natural habitat and production systems to which they are adapted [12]. In
this sense, morphological analysis has been widely used for breed and population char-
acterization [13,14]. It has recently been used in comparative morphometric studies of
native freshwater species from Ecuador. It could also be useful for the implementation of a
livestock development program and as a restoration indicator. The evaluation of morpho-
logical variations in a native freshwater species living under different conditions within
the same habitat could help to identify the factors responsible for these differences [15].
According to Dauda et al. [16], this knowledge is key for the management of fisheries,
as having stocks with different life-history traits is essential to enhance stock manage-
ment programs [17]. A study by Ndiwas et al. [2] noted that the geographical spread of
a species across a broad range of environmental conditions is accompanied by equally
diverse morphological variations that are strongly correlated to the environmental condi-
tions. Many factors can cause morphological variations between populations, and they
are hard to identify [18]. Previous studies using geometric morphometrics to investigate
variations in fish have found differences based on sex [15], diet composition [19,20], the
geographic location of a population [21], and the habitat and water characteristics [3,22].
Morphometry is a cost-effective technique that is frequently used for the differentiation of
populations [13,23,24] and is employed to describe fish body shapes, delineate stock status,
discriminate between fish populations, and link ontogeny with functional morphology [18].
It is also necessary to collect actual biological information on fish such as data on their
ecology, evolution, behavior, and stock assessment [25,26] associated with diverse species,
breeds, and populations [27]. Thus, the characterization of native fish and the level of
diversity are essential for the development of conservation programs and knowledge of
morphometric characteristics. This constitutes the first step in the classification of animal
genetic resources [16,28].

Developing countries are home to most fish species in the world, although a large
proportion of fish species remain unassessed due to insufficient scientific studies. Ecuador,
with 951 native freshwater species, is considered to be a biodiversity reserve [29]. The fluvial
network of Ecuador is complex and diverse, and the Guayas river hydrographic basin (CHG),
covering 53,299 km2 (Figure 1), is the largest Pacific Ocean basin in South America [30].

Brycon dentex Günther 1860 (pez dama), from the Bryconidae family, is a native species
that is widely distributed in western Ecuador in different rivers of the CHG [31–33], in
the Tahuín dam near Peru [34], and in the North of Perú [35]. In a previous study, our
research group conducted a preliminary morphology characterization of Brycon dentex [36].
Morphologically, this species has a single dorsal fin and two bifurcations in the caudal
fin, a total length of 51 cm, and a powerful upper jaw. It is considered an omnivorous
species [33,37]. Sampling in natural environments has shown that it can reach sexual
maturity at lengths of 20–26 cm [37]. Its conservation status is of “least concern” (LC), and
it is included in the IUCN Red List.
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Figure 1. Guayas hydrographic basin (CHG). Site 1: Pintado river; Site 2: Quevedo river; Site 3: 

Mocache river (n = sample size). 
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Figure 1. Guayas hydrographic basin (CHG). Site 1: Pintado river; Site 2: Quevedo river; Site 3:
Mocache river (n = sample size).

The subject of our study, Brycon dentex, is widely spread across a broad geographical
range of ecological conditions accompanied by equally diverse morphological variations
in Ecuador. It is included on the IUCN Red List as LC, although there are insufficient
data for characterization. Brycon dentex has an omnivorous mode of feeding and a strong
ability to rapidly adapt to different environmental conditions. In addition to characterizing
Brycon dentex, it is of great interest to relate its morphological variability to biodiversity
maintenance. The variation among the stocks of river populations could be a consequence
of phenotypic plasticity in response to unusual hydrological conditions [2,17].

Ferrito et al. [38] and Mir et al. [39] conducted similar studies on other freshwater species,
and Dasgupta et al. [40] stated that morphological discrimination in various populations
are strongly influenced by habitat differences. Growth variations also occur in response to
different habitats [41]. Under the hypothesis that the morphological differences between
populations of native freshwater species could be used as bioindicators, the causes of these dif-
ferences were classified into anthropogenic and habitat modifications [42]. Knowledge in this
area can be used as a tool for both the smart and ecological management of resources [43,44].
In addition, there is a lack of knowledge about the morphological characterization of Brycon
dentex and the variation in the traits of different rivers in the Guayas basin. In this context,
this study aimed to contribute to the attainment of an adequate management ecosystem
equilibrium and the characterization of animal genetic resources.

Therefore, we investigated whether three wild populations of Brycon dentex in the CHG
have undergone significant morphological diversification and whether these differences
can be related to fishing management and environmental conditions. Knowledge of the
phenotypic variations in relation to environmental modifications could be used to identify
key factors for policy makers in terms of the development of both diversity conservation
programs and sustainable fishing practices.
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The general hypothesis of this study was that fishing policies, resource management,
and environmental conditions influence the differentiation of populations due to the
phenotypic plasticity of Brycon dentex. Subsequently, three hypotheses were formulated, as
displayed below:

Hypothesis 1. Fishing and resource management practices (such as fishing methods and pressure,
respect of the closure periods, land use, endogeneity level, and competition with native and non-
native species) influence the morphological variation of Brycon dentex in the CHG. The null
hypothesis (H0) was that there would be an equality of means between the populations of Brycon
dentex in the Pintado and Mocache rivers (H0: µ1 = µ3). In contrast, the alternative hypothesis
was that significant differences would exist due to fishing management practices (H1: µ1 6= µ3).

Hypothesis 2. The physical environmental conditions influence the morphological variation of
Brycon dentex. The null hypothesis (H0) was that there would be an equality of means between the
populations of Brycon dentex in the Quevedo and Mocache rivers (H0: µ2 = µ3). In contrast, the
alternative hypothesis was that significant differences would exist due to a change in environmental
conditions (H1: µ2 6= µ3).

Hypothesis 3. The fishing management and environmental conditions influence the morphological
variation of Brycon dentex in the CHG. The relationships among three populations were analyzed
through discriminant analysis, where three groups were identified: Population 1 (Pintado river) with
a medium fishing pressure and a low flow velocity, Population 2 (Quevedo river) with a high fishing
pressure and white water or water containing a high concentration of oxygen, and Population 3
(Mocache river) with a high fishing pressure and a low flow velocity.

2. Materials and Methods
2.1. Data Collection and Study Area

A stratified sample of 200 adult specimens from three populations of wild Brycon den-
tex—from the Pintado (population 1; sample size = 50), Quevedo (population 2; sample
size = 93), and Mocache (population 3; sample size = 57) rivers—was chosen. The non-
representative specimens of Brycon dentex with small size, fish of other species, mutilated,
and young individuals were immediately returned to the river. These areas are in the
CHG (Figure 1). The Pintado river is located in the northwest of Manabí province in the
“La manga del Cura” area, and it flows into the Daule-Peripa dam. The Pintado river
is born as a continuation of the Pupusá river and borders the canton of Carmen with
very slow waters, high turbidity, and little oxygenation. The water characteristics of the
Pintado River are shown in Table 1. These values are similar to those of the Mocache
river (pH, electric conductivity, and temperature). The river delimits a protected natural
area of tropical humid forest inhabited by native farmers called “montuvios”. The fishing
pressure on native species is medium–low, and resource management practices favor “land
sharing or wildlife-friendly agriculture”, so farmers in this area apply low-intensity, more
environmentally friendly agricultural practices [45]. The Quevedo river, which originates
in the foothills of the Andes mountain range in the mid–high area of the basin, contains
white, fast, and highly oxygenated waters and has a length of 163 km. The Mocache river
is located in the mid–low area of the Guayas delta basin and contains slow water, a low
oxygen level, and a high level of dissolved solids. Both rivers (Quevedo and Mocache),
located in the province of Manabí, have high fishing pressure for native species [46].

The physical attributes (pH, temperature, color, conductivity, turbidity, dissolved
oxygen, and total dissolved solids), chemical indicators (chlorides, alkalinity, nitrates, and
ammonium), and biological indicators (phytoplankton) of the water in the three rivers
show values within the recommended ranges for freshwater life [5,7,31]. Table 1 shows the
main water quality characteristics in the three rivers sampled.

The most commonly used types of fishing gear are hand-held lines with hooks (10%
of catches); cloth or tape mode nets (20%) with a length of 100–150 m, a height of 4–5 m,
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and a mesh light diameter of 3
4 –1 inch; trammels (30%) with a mesh size of between 2 and

3 1
2 inches; casts (35%) with a mesh size of between 1

2 and 1 inch; and others such as harpoon
hooks (5%). Manual riverbank throw nets, trammel nets, and fishing spears are the most
frequently used fishing methods in the Pintado river. By contrast, trawl lines, riverbank
manual throw nets, trammel nets, throw nets, and fishhooks are the most commonly used
methods in the Quevedo and Mocache rivers.

Table 1. Water characteristics in the three rivers of Guayas basin.

Indicators Pintado River 1 Quevedo River 2 Mocache River 3

pH 7.72 8.23 7.11
Electric conductivity (µS/cm) 161 95.3 265.54

Temperature (◦C) 25.6 19.2 26.11
Turbidity (NTU) 12.9 5.4 6.4

Total dissolved solids (mg/L) 110 96 133.5
Dissolved oxygen (OD, mg/L) 4.02 7.05 2.12

1 Gobierno Provincial de Manabí [47]. 2 Robin [48]. 3 Loor Castillo [49].

Balsas and canoes are ancestrally used by fishermen, while bongos (15–70 cv; measure-
ment of power where 1 cavallo vapore (cv) = 0.98632 horsepower (hp)) boats (25–50 cv), and
lanchas (30–180 cv) use motors from low to high strengths and are autonomous. Previous
research by Pacheco-Bedoya [50], FAO [51], MAGAP [52], and Ochoa Ubilla et al. [53] widely
analyzed the diverse traditional fishing tackle methods utilized in the CHG. Rural communi-
ties were found to use highly diverse fishing vessels. In the Pintado river, the bongo and boat
were identified as the most commonly used fishing vessels. In the Quevedo and Mocache
rivers, the balsa, canoe, bongo, boat, and lancha were identified as the most commonly used.

Brycon dentex specimens (weight > 56 g; body length > 12.38 mm) were caught by
fishermen between January and March 2019. The capture, transport, and stunning of
specimens were conducted following the recommendations of Gonzalez-Martinez et al. [13].
A veterinary practitioner supervised the animals’ welfare in each research step.

2.2. Body Measurements

Morphometric trait data were collected using an ichthyometer with graduated digital
calipers and tape with a precision of 0.01 mm. To avoid errors, the same researcher mea-
sured all fish starting from the left side, except for the widths and perimeters, following the
conventional method described by Diodatti et al. [54]. A total of twenty-six morphometric
measurements based on 23 landmarks and five meristic counts were obtained (Figure 2 and Ta-
ble 2), in agreement with the methodology used to assess native species in Ecuador [11,55,56].

Table 2. Morphometric measurements and meristic counts used to assess Brycon dentex in this study.

Measurement Description Acronym

Weight Total weight including the gut and gonads BW

Total length 1 Tip of the upper jaw to the top of the caudal superior end
of the caudal fin TL 1

Total length 2 Tip of the upper jaw to the top of the caudal inferior end of
the caudal fin TL 2

Standard length Tip of the upper jaw to the tail base SL

Head length From the front of the upper lip to the posterior end of the
opercula membrane HL

Eye diameter The greatest bony diameter of the orbit ED

Pre-orbital length Front of the upper lip to the cranial eye edge Pre-OL

Pre-dorsal fin length Front of the upper lip to the origin of the dorsal fin Pre-DL

Pre-pectoral fin length Front of the upper lip to the origin of the pectoral fin Pre-PcL

Pre-pelvic fin length Front of the upper lip to the origin of the pelvic fin Pre-PvL
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Table 2. Conts.

Measurement Description Acronym

Pre-anal fin length Front of the upper lip to the origin of the anal fin Pre-AL

Dorsal fin length From the base of the first dorsal spine to the base of the last
dorsal ray DFL

Dorsal fin ray length From the base to the tip of the fifth dorsal ray DFRL

Pectoral fin length From the base to the tip of the pectoral fin PcFL

Pelvic fin length From the base to the tip of the pelvic fin PvFL

Anal fin length From the base of the first anal spine to the base of the last
anal ray AFL

Anal fin ray length From the base to the tip of the last anal ray AFRL

Upper jaw length Straight line measurement between the snout tip and
posterior edge of maxilla UJL

Body perimeter 1 Body perimeter at the level of the first ray of the dorsal fin P1

Body perimeter 2 Body perimeter at the level of the first radius of the anal fin P2

Body perimeter 3 Body perimeter at the level of the last ray of the dorsal fin P3

Body width 1 Straight line measurement from side to side at the level of
the base of the first dorsal spine LC1

Body width 2 Straight line measurement from side to side at the level of
the base of the first anal spine LC2

Body width 3 Straight line measurement from side to side at the level of
the base of the last dorsal ray LC3

Body depth 1 Body depth at the level of the first ray of the dorsal fin AC1

Body depth 2 Body depth at the level of the first ray of the anal fin AC2

Body depth 3 Body depth at the level of the first radius of the caudal fin AC3

Dorsal fin rays Number of thorns in the dorsal fin DFR
DFR

Pectoral fin rays Number of thorns in the pectoral fin PcFR

Pelvic fin rays Number of thorns in the pelvic fin PvFR

Anal fin rays Number of thorns in the anal fin AFR

Caudal fin rays Number of thorns in the caudal fin CFR
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Figure 2. Locations of 23 anatomical landmark points showed in the left view of the Brycon dentex.
Landmark points: 1: highest cranial point of the upper pre-maxilla; 2: highest cranial point of the
lower pre-maxilla; 3: commissure of the mouth; 4: anterior edge of the eye; 5: posterior edge of the
eye; 6: end of the operculum; 7: origin of the pectoral fin; 8: end of the pectoral fin radius; 9: origin of
the first dorsal fin; 10: end of the dorsal fin; 11: origin of the second dorsal fin; 12: end of the second
dorsal fin; 13: dorsal origin of the caudal fin; 14: ventral origin of the caudal fin; 15: highest cranial
point of the caudal peduncle; 16: highest caudal point in the superior part of the caudal peduncle; 17:
highest caudal point in the inferior part of the caudal peduncle; 18: end of the anal fin; 19: origin of
the anal fin; 20: anal opening; 21: origin of the pelvic fin; 22: end of the pelvic fin radius; 23: nape,
highest caudal point of the head.
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2.3. Fulton Condition Coefficient (K)

The Fulton condition coefficient (K) is a widely used indicator of animal welfare in
fisheries and general fish biology studies to quantify variations in fish populations [57]. It
was calculated with the equation K = 100 × (BW/SL3), where BW is the total weight (g)
and SL is the standard length (cm).

2.4. Statistical Analysis

The morphometric characters were standardized in accordance with the work of El-
liot et al. [58]. The efficiency of the transformation-adjusted size was evaluated by testing
the correlation significance between each transformed variable and the standard length. The
Kolmogorov–Smirnov and Bartlett tests were performed before the analyses to verify the
normality and equality of the data variance (homoscedasticity). The KMO sampling adequacy
test showed a value of 0.6, while the Bartlett test showed a satisfactory probability value
(p < 0.001), thus indicating that the analysis was suitable [13,14]. The total length was obtained
by calculating the arithmetic mean of both total lengths due to the bifurcated caudal fin of this
species (Figure 2). Morphometric characteristics (original and adjusted) were compared by
Student t-tests (hypotheses 1 and 2), whilst meristic counts were compared with the Kruskal–
Wallis test. Sex was not considered as a fixed effect, since no significant differences between
males and females have been found previously. To contrast Hypothesis 3, the DISCRIM
procedure was used to perform a canonical discriminant analysis of size-adjusted geometric
morphometric data using the three populations as the grouping variable. The probabilities of
entering and staying in the model were both set at p < 0.05. The selection of the most discrimi-
nant variables was conducted by applying the F-Snedecor, Wilks’ lambda, and 1-Tolerance
methods. The correct assignment percentage was considered, and the Mahalanobis distances
are represented graphically as clusters. Statistica 12.0 for Windows software was used to
perform the statistical analyses (StatSoft, Tulsa, OK, USA).

3. Results

The fish in the Brycon dentex population were shown to have an average body weight
of 154.47 g; standard and total lengths of 15.65 and 21.46 cm, respectively; and an average
head length of 5.65 cm (Table 3). The morphometric traits had a medium level of homo-
geneity with low coefficients of variation. The Pearson correlation coefficients between
morphometric measures were high and significant (p < 0.05) (data not presented). The
highest weight and K condition factor were obtained in the Pintado river (172.61 g and
5.10, respectively), and the lowest were obtained in the Quevedo river (137.95 and 3.53 g,
respectively) (Table 3).

In relation to Hypothesis 1, the results of the morphometric comparisons between two
wild populations from the Pintado and Mocache rivers with different fishing management
practices are shown in Table 3 (A× C). There were no significant differences in body weight
or the condition factor between the two populations (p > 0.05). Eleven of the 25 morphome-
tric measures showed significant differences (p < 0.05) for the populations from the Pintado
and Mocache rivers (Pre-PvL, Pre-AL, DFRL, AFL, UJL, AC3, P1, P3, LC1, LC2, and LC3).
Regarding Hypothesis 2, Table 3 (B × C) shows the influence of environmental conditions
on morphological differentiation in populations of Brycon dentex. Significant differences
between the Quevedo and Mocache rivers were found for 10 morphometric variables: TL,
SL, HL, Pre-OL, Pre-DL, Pre-PcL, Pre-PvL, Pre-AL, AFL, and UJL.

Meristic traits based on the number of dorsal, pectoral, pelvic, anal, and caudal fin rays
showed mean values of 9.98, 10.41, 7.81, 29.39, and 19.01, respectively (data not presented).
Coefficients of variation were low. The river did not significantly (p > 0.05) affect the
meristic traits, with close values shown for the three populations.
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Table 3. Descriptive statistics for body measurements (original data) in three populations of Brycon dentex (Mean ± SE (CV, %)).

Parameter 1 All Pintado River
(A)

Quevedo River
(B)

Mocache River
(C)

p-Value

A × C B × C

BW 154.47 ± 5.78 (52.79) 172.61 ± 10.30 (41.78) 137.95 ± 8.43 (58.92) 165.82 ± 11.34 (51.61) 0.663 0.048

K 4.32 ± 0.17 (56.82) 5.10 ± 0.35 (48.50) 3.53 ± 0.22 (60.81) 4.93 ± 0.34 (51.78) 0.744 0.000

TL 21.46 ± 0.23 (15.41) 20.10 ± 0.46 (16.07) 22.52 ± 0.30 (13.02) 20.91 ± 0.45 (16.42) 0.217 0.003

SL 15.65 ± 0.16 (14.52) 15.20 ± 0.3 (13.62) 16.17 ± 0.22 (13.27) 15.2 ± 0.33 (16.35) 0.997 0.012

HL 5.65 ± 0.06 (16.03) 5.38 ± 0.11 (14.85) 5.90 ± 0.09 (15.40) 5.47 ± 0.12 (16.34) 0.605 0.005

ED 1.29 ± 0.02 (22.14) 1.27 ± 0.05 (25.59) 1.32 ± 0.03 (21.34) 1.27 ± 0.03 (20.35) 0.942 0.286

Pre-OL 1.19 ± 0.02 (19.94) 1.15 ± 0.04 (21.28) 1.23 ± 0.02 (17.57) 1.14 ± 0.03 (21.96) 0.801 0.020

Pre-DL 12.79 ± 0.14 (15.11) 12.28 ± 0.22 (12.45) 13.37 ± 0.20 (14.15) 12.29 ± 0.27 (16.81) 0.974 0.001

Pre-PcL 5.87 ± 0.08 (18.06) 5.76 ± 0.2 (24.42) 6.05 ± 0.09 (14.42) 5.68 ± 0.13 (16.98) 0.711 0.017

Pre-PvL 11.21 ± 0.12 (15.41) 11.02 ± 0.24 (15.11) 10.87 ± 0.16 (14.19) 11.93 ± 0.25 (15.72) 0.010 0.000

Pre-AL 15.39 ± 0.16 (14.53) 15.2 ± 0.32 (14.57) 14.90 ± 0.22 (14.11) 16.34 ± 0.29 (13.46) 0.009 0.000

DFL 2.54 ± 0.04 (22.18) 2.55 ± 0.11 (30.7.) 2.59 ± 0.05 (18.93) 2.45 ± 0.06 (17.69) 0.389 0.076

DFRL 3.52 ± 0.05 (19.13) 3.41 ± 0.07 (14.29) 3.47 ± 0.07 (20.65) 3.69 ± 0.09 (19.39) 0.024 0.075

PcFL 4.35 ± 0.05 (17.25) 4.20 ± 0.10 (16.1.) 4.47 ± 0.07 (16.09) 4.26 ± 0.11 (19.52) 0.703 0.096

PvFL 2.94 ± 0.04 (18.16) 2.79 ± 0.07 (16.86) 2.98 ± 0.05 (16.30) 3.00 ± 0.08 (21.21) 0.065 0.845

AFL 5.65 ± 0.1 (24.30) 5.06 ± 0.15 (21.27) 5.46 ± 0.15 (26.45) 6.44 ± 0.15 (17.23) 0.000 0.000

AFRL 2.51 ± 0.04 (24.09) 2.47 ± 0.08 (23.34) 2.56 ± 0.07 (24.73) 2.49 ± 0.08 (23.79) 0.866 0.492

UJL 1.02 ± 0.02 (27.92) 0.88 ± 0.02 (19.7) 1.11 ± 0.03 (25.23) 1.00 ± 0.04 (32.25) 0.024 0.036

AC1 5.89 ± 0.05 (12.04) 5.71 ± 0.13 (15.48) 5.99 ± 0.06 (9.59) 5.88 ± 0.1 (12.27) 0.280 0.292

AC2 5.44 ± 0.05 (12.93) 5.26 ± 0.14 (18.1) 5.53 ± 0.05 (9.00) 5.43 ± 0.1 (13.29) 0.314 0.303

AC3 2.37 ± 0.11 (66.14) 3.32 ± 0.41 (87.26) 2.05 ± 0.04 (18.96) 2.06 ± 0.05 (19.55) 0.002 0.896

P1 13.52 ± 0.19 (19.94) 12.35 ± 0.32 (18.17) 13.59 ± 0.26 (18.74) 14.41 ± 0.39 (20.48) 0.000 0.073

P2 13.99 ± 0.67 (67.41) 15.77 ± 2.64 (117.09) 13.52 ± 0.25 (18.11) 13.25 ± 0.4 (22.52) 0.313 0.556

P3 5.79 ± 0.06 (15.57) 5.29 ± 0.09 (11.32) 6.06 ± 0.09 (14.70) 5.77 ± 0.13 (16.68) 0.003 0.067

LC1 2.60 ± 0.03 (17.70) 2.38 ± 0.07 (20.06) 2.64 ± 0.04 (15.39) 2.74 ± 0.06 (17.15) 0.000 0.162

LC2 2.67 ± 0.04 (21.5) 2.40 ± 0.08 (24.70) 2.76 ± 0.05 (16.74) 2.75 ± 0.09 (23.81) 0.005 0.931

LC3 2.43 ± 0.04 (22.24) 2.13 ± 0.08 (25.00) 2.48 ± 0.05 (18.17) 2.58 ± 0.08 (22.74) 0.000 0.247
1 BW = body weight; K = Fulton’s factor; TL = total length; SL = standard length; HL = head length; ED = eye diameter; Pre-OL = pre-orbital
length; Pre-DL = pre-dorsal fin length; Pre-PcL = pre-pectoral fin length; Pre-PvL = pre-pelvic fin length; Pre-AL = pre-anal fin length;
DFL = dorsal fin length; DFRL = dorsal fin ray length; PcFL = pectoral fin length; PvFL = pelvic fin length; AFL = anal fin length;
AFRL = anal fin ray length; UJL = upper jaw length; AC1 = body depth 1; AC2 = body depth 2; AC3 = body depth 3; P1 = body perimeter 1;
P2 = body perimeter 2; P3 = body perimeter 3; LC1 = body width 1; LC2 = body width 2; LC3 = body width 3.

The discriminant function, obtained with 24 measurements, showed that were 14
(58.33%) variables were accepted in the model and 10 measurements (41.67%) were sig-
nificant (p < 0.05). According to the results of the F-Snedecor, Wilks’ lambda, and 1-Toler
methods, there were six major discriminant variables in the model (25%): the anal fin length
(AFL), body perimeter 3 (P3), body depth 3 (AC3), total length (TL), upper jaw length
(UJL), and pre-pelvic fin length (Pre-PvL) (Table 4). The relationships among discriminant
variables showed a specific morphology model for each group of Brycon dentex, with a
percentage of correct assignment of 68.84. The morpho-structural differences among the
three analyzed fish populations were visually obtained from morphometric measurements
through a graphical representation of Mahalanobis distances (Figure 3). There was a first
cluster grouping of specimens from the Quevedo and Mocache rivers, and there was a
second cluster made up of specimens from the Pintado river.
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Table 4. Discriminant functions for truss measurements in three populations of Brycon dentex.

Parameter 1 Wilks’ Lambda Partial Lambda F-Remove p-Level Toler 1-Toler

AFL 0.52 0.87 14.00 0.000 0.62 0.38
AC3 0.49 0.91 8.92 0.000 0.85 0.15
TL 0.49 0.91 8.74 0.000 0.74 0.26
P3 0.50 0.90 9.68 0.000 0.77 0.23

UJL 0.48 0.93 6.55 0.002 0.89 0.11
Pre-PvL 0.48 0.94 5.81 0.004 0.82 0.18
AFRL 0.47 0.95 4.80 0.009 0.72 0.28

Pre-DL 0.47 0.96 4.14 0.017 0.51 0.49
ED 0.47 0.95 4.32 0.015 0.64 0.36
P1 0.46 0.97 2.51 0.084 0.80 0.20
P2 0.45 0.99 1.02 0.363 0.63 0.37

Pre-PcL 0.45 0.99 1.09 0.338 0.63 0.37
LC3 0.47 0.96 3.94 0.021 0.19 0.81
LC2 0.46 0.97 2.89 0.058 0.20 0.80

1 TL = total length; ED = eye diameter; Pre-DL = pre-dorsal fin length; Pre-PcL = pre-pectoral fin length; Pre-PvL
= pre-pelvic fin length; AFL = anal fin length; AFRL = anal fin ray length; UJL = upper jaw length; AC3 = body
depth 3; P1 = body perimeter 1; P2 = body perimeter 2; P3 = body perimeter 3; LC2 = body width 2; LC3 = body
width 3.

Animals 2021, 11, x 10 of 16 
 

 

Figure 3. Clusters of Mahalanobis distances of Brycon dentex from three rivers. 

4. Discussion 

With a total average length of 21.46 cm, the Brycon dentex individuals caught in our 

study were smaller than those recorded by Revelo [59] (23.7 cm) and Revelo and Laaz [33] 

(23.3 cm). According to Ochoa Ubilla et al. [53], the fishing gear used and the fishing pres-

sure to which a river is subjected to determine both the frequency of capture and the size 

of the captured fish. 

The results of this study showed significant differences between rivers; however, a 

low standard error and low variability within each river were found. This indicates the 

presence of homogeneity due to a potentially shared morphological plasticity and parallel 

adaptation to similar habitat types [22]. The availability and diversity of fish are indicators 

of the degrees of human intervention and habitat modification [60]. There are many fac-

tors that can be used to understand the morphometric variations among the three Brycon 

dentex populations, including food availability, strong competition with other non-native 

species (Oreochromis spp.), overfishing through several fishing methods (riverbank man-

ual throw nets, trammel nets, and fishing spears), unsuitable fishing policies, land use, 

agricultural practices, and the destruction of Ecuador river habitats [6,8,45,61,62]. Moreo-

ver, food availability and pollution are conditioned by different abiotic parameters, in-

cluding current flow, turbidity, and dissolved oxygen concentration [61]. In the Quevedo 

river, Prado et al. [61] identified a high level of diversity for phytoplankton and a low 

diversity for zooplankton. However, the Mocache and Pintado rivers presented greater 

variability and a greater proportion of zooplankton, insects from Baetis spp., and larvae 

from Astyanax spp. [61]. Furthermore, in the Mocache river, the presence of Polymyxus 

coronalis has been related to eutrophic waters. 

Hypothesis 1, that fishing policies and resource management influence the morpho-

logical differentiation of Brycon dentex populations between the Pintado and Mocache riv-

ers, was accepted for 11 of the 25 variables. For the traits linked to the body development 

of both populations (depth, perimeter, and width of body), significant differences were 

found. The morphological differences in BW, K, TL, and SL between the Pintado and 

Mocache rivers were not significant. Contrary to expectations, there were no differences 

Figure 3. Clusters of Mahalanobis distances of Brycon dentex from three rivers.

4. Discussion

With a total average length of 21.46 cm, the Brycon dentex individuals caught in our
study were smaller than those recorded by Revelo [59] (23.7 cm) and Revelo and Laaz [33]
(23.3 cm). According to Ochoa Ubilla et al. [53], the fishing gear used and the fishing
pressure to which a river is subjected to determine both the frequency of capture and the
size of the captured fish.

The results of this study showed significant differences between rivers; however,
a low standard error and low variability within each river were found. This indicates
the presence of homogeneity due to a potentially shared morphological plasticity and
parallel adaptation to similar habitat types [22]. The availability and diversity of fish are
indicators of the degrees of human intervention and habitat modification [60]. There are
many factors that can be used to understand the morphometric variations among the three
Brycon dentex populations, including food availability, strong competition with other non-
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native species (Oreochromis spp.), overfishing through several fishing methods (riverbank
manual throw nets, trammel nets, and fishing spears), unsuitable fishing policies, land
use, agricultural practices, and the destruction of Ecuador river habitats [6,8,45,61,62].
Moreover, food availability and pollution are conditioned by different abiotic parameters,
including current flow, turbidity, and dissolved oxygen concentration [61]. In the Quevedo
river, Prado et al. [61] identified a high level of diversity for phytoplankton and a low
diversity for zooplankton. However, the Mocache and Pintado rivers presented greater
variability and a greater proportion of zooplankton, insects from Baetis spp., and larvae
from Astyanax spp. [61]. Furthermore, in the Mocache river, the presence of Polymyxus
coronalis has been related to eutrophic waters.

Hypothesis 1, that fishing policies and resource management influence the morpholog-
ical differentiation of Brycon dentex populations between the Pintado and Mocache rivers,
was accepted for 11 of the 25 variables. For the traits linked to the body development of
both populations (depth, perimeter, and width of body), significant differences were found.
The morphological differences in BW, K, TL, and SL between the Pintado and Mocache
rivers were not significant. Contrary to expectations, there were no differences in the size
and structure of the fish between these rivers (Hypothesis 1), most likely because the local
fishing regimes are closer than initially considered [29,47,59]. Brycon dentex populations
in the Pintado river were found to have greater body depths, and specimens from the
Mocache river had greater perimeters and widths. In the Pintado river, the fishing pressure
was low, as this area acts as a reservoir of native freshwater species and encourages the use
of environmentally friendly agricultural practices.

The differences between specimens in the rivers were influenced by the high fishing
pressure in some areas, the overfishing of native species in the Mocache river, and the
introduction of non-native species [29,46,59,63]. The role of non-natives species was not
tested in this study, although it has been studied widely. According to Canonico et al. [64],
the introduction of tilapia has had a large effect on native biodiversity, because tilapias
are fast-growing and tolerant of a range of environmental conditions. This species readily
adapts to changes in salinity levels and oxygen availability, can feed at different trophic
levels, and (under certain circumstances) can tolerate overcrowding. In addition, tilapias
are reproductively active for long periods—for most of the year in some places. They
have short reproductive cycles and have been observed to spawn year-round in the wild
with a higher frequency than most fish. They are also competitors with native species for
food and space, and, therefore, native fish have fewer resources for somatic growth than
at non-invaded sites. Hypothesis 2, which states that the differences in environmental
conditions between the Quevedo and Mocache rivers influence the size and structure of
Brycon dentex, was accepted in 12 out of 25 variables. Body weight and the condition
factor (K), which indicates the nutritional status of fish, were higher in the Mocache river
population (165.82 g and 4.93, respectively). In contrast, the total length, standard length,
and eye diameter were higher in specimens in the Quevedo river. Specimens of greater size
and with a greater hydrodynamic structure were found in the Quevedo river. These factors
enhance their ability to survive and give them speed during flight from predators [65].
In terms of variability interpretation, there are multifactorial causes [66], such as food
availability [33], seasonality [67], and the interaction between the two [68]. Therefore, the
different morphologies found for populations in the Quevedo and Mocache rivers might
be due to the fact that the Mocache river is slower, shallower, has greater turbidity, and
has a higher level of photosynthesis and oxidative reactions [6,31]. Phytoplankton and
zooplankton were identified as the most dominant foods [7]. Food availability seems to be
the most relevant factor in the Mocache river, because this fish is an opportunistic feeder
that switches from one diet to another according to food availability [19].

The three rivers showed differences in the morphology of Brycon dentex with factors
associated with the fragmentation and deterioration of the ecosystem and a high fish-
ing pressure existing in areas with the highest vulnerability level. According to Ochoa
Ubilla et al. [53], the native species fishing pressure in the Quevedo and Mocache rivers is
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very high due to the large number of fishing cooperatives and the high fishing effort during
the fishery season. The use of illegal fishing gear has also increased, thus contributing to the
rivers’ deterioration [37,59]. Our findings are in agreement with those of Youson et al. [69]
and Escanta-Molina and Jimenez-Prado [3], who related morphological differentiation to
increases in temperature, suspended solids, and water turbidity, as well as decreases in pH,
dissolved oxygen, and alkalinity. Ekaete [70] related morphology to the temperature and
the amount of oxygen that fish absorb through their gills, the type of vegetation cover in
the river, and the availability of food.

Hypothesis 3 was partially accepted. Though the discriminant model was accepted,
Mahalanobis distances only differentiated two groups. Six morphologic variables with
a high discriminant power were selected. The three analyzed Brycon dentex populations
were discriminated by the generated morphometric models. Melvin et al. [71] and Ujjania
and Kohli [43] pointed out the importance of using genetic and environmental interactions
to complement the morphology approach, although it is not always easy to explain the
causes of morphological differences between populations [72]. Surprisingly, the use of
Mahalanobis distances only allowed us to differentiate two groups based on the morpho-
structural model: Cluster 1 (Quevedo and Mocache rivers) with high fishing pressure and
Cluster 2 (Pintado river) with medium–low fishing pressure.

AFL, UJL, and Pre-PvL variables were common in the differentiation of both factors.
The AC3 and P3 traits were found to be associated with body development and the fishing
management factor. The TL variable was linked with size, structure, and the water charac-
teristics in each river. Native species tend to maintain a constant body mass and adaptively
respond to anthropogenic and environmental conditions. Brycon dentex specimens in the
Quevedo river (fast and highly oxygenated waters) are larger and narrower than those in
the other rivers. On the contrary, fish in warm, slow, and less oxygenated waters (Mocache
and Pintado rivers) respond by modifying their body development (width and deep).
These results agree with those of Cavalcanti et al. [73] and Olaya Carbó et al. [74]. The
CHG is made up of several fragile river ecosystems that are permanently subjected to risk
factors such as the modification, fragmentation, and destruction of habitats; the introduc-
tion of non-native species (Oreochromis spp.); overfishing; environmental contamination
(herbicides, heavy metals, etc.); the development of large-scale intensive forestry practices;
a loss of modification of the natural hydrological regime, including basin river connectivity;
and, finally, climate change [6,30,75,76]. Uncontrolled exploitation is a process that could
lead to dangerous situations in terms of fish extinction [3,31,33,37,59]. Anthropogenic
activities directly influence fishing policies, land use, and the indirect method of modifying
the limnological characteristics of different ecosystems [77]. The adequate regulation of
human activity, which contributes to the risk factors mentioned above, is essential for the
conservation of these ecosystems [10,60]. These factors have great importance in resource
conservation for the development of fisheries and sectorial policies [29,37,78].

Native freshwater populations are very sensitive to environmental changes and quickly
adapt to morphological changes [79]. Therefore, the discriminant model built for Brycon
dentex could be used as an indicator of habitat conservation and endogeneity degree [3,15,75].
The characterization carried out in this study was preliminary, since it only considered the
morphological aspects and investigated variations among different habitats in terms of fish
morphology. The ideal scenario would be to conduct studies with molecular markers to
identify genetic relationships among populations from different habitats and specimens
captured at different points, but, at the moment, little study on native species from Ecuador
has been done. Morphometric methodology is a direct, simple, and low-cost method, so its in
situ use is recommended in rural communities and developing countries [13]. It also could be
used to assess fishing pressure and the effectiveness of sustainable policies [33].

The interactions between factors were not considered in this research, nor were the
action mechanisms existing for each factor. Additionally, the characterization of Brycon
dentex lacked a genetic analysis of the species.
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5. Conclusions

The three populations of Brycon dentex in the CHG showed morphological differences
due to fishing management and environmental conditions. Both factors are considered to
be direct drivers of diversity maintenance.

The different fishing policies and resource management practices present in the stud-
ied rivers have generated morphological differences that are associated with body develop-
ment. Under the different environmental conditions present in the rivers, differences in
traits related to the size and structure of fish have primarily arisen.

The analyzed populations could be discriminated using the generated morphometric
model, showing that discriminant analysis is a useful way to differentiate populations. Six
morphometric measurements were found to have the greatest discriminant power and were
deemed to be appropriate for population discrimination. These variables were the anal fin
length, body perimeter 3, body depth 3, total length, upper jaw length, and pre-pelvic fin length.

The Brycon dentex morphometric model could be a useful framework for the conserva-
tion of the species, so it could indicate habitat status by quickly detecting changes in fish
shape. A very small number of easily obtained morphometric traits in each population
could be used to determine the biodiversity status, and this information could also be used
in the implementation of fishing management policies in Ecuador’s rivers. This model
could be extended for use in other rivers in Latin America.
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