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considered, but also the combined effect of various sec-
ondary genes that can influence different pathways
directly or indirectly related to the disease. The prime
hypothesis is that splitting genomic cancer data into
two subsets, that is, cases and controls, will allow us to
determine which genes, and their expressions, are asso-
ciated with different cancer types. The possibilities of the
proposal are demonstrated by analyzing RNA-Seq data
for six different types of cancer: breast, colon, lung,
thyroid, prostate, and kidney. Some of the extracted in-
sights were already described in the related literature as
good cancer bio-markers, while others have not been
described yet mainly due to existing techniques are biased
by prior knowledge provided by biological databases.
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1 | INTRODUCTION

Cancer is the second most common cause of death worldwide, and its incidence is estimated to
be 20 million new cases per year by 2035." This disease causes social and health costs that the
least developed countries cannot afford. Although classic studies on the disease mainly focused
on formulating a prior hypothesis to be contrasted,” the advent of new technologies and the
possibility to perform profound analysis on genomic data have given rise to numerous research
progresses to fight the disease.” Motivated by recent advances, new methodologies mainly
based on a holistic approach have been developed,” not requiring the formulation of any
previous hypothesis and avoiding, therefore, any bias in the analysis. However, the persona-
lization of treatments in cancer is not still a straightforward issue and has to face different
challenges. First, it includes similar phenotypes and, at the same time, distinct molecular
profiles. Hence, two patients sharing the same cancer type may have completely different
genetic profiles, mainly due to the dissimilarity of genes affecting different signalling pathways.
Second, any statistical data analysis suffers from both thousands of genes to consider and class
imbalance, adding complexity to the subsequent analytical process.

Current genomic cancer studies are generally carried out by a standardized workflow” that
includes a first exploratory analysis with visualization methods to take a first look at the data
distribution. Then, a feature selection procedure is carried out through traditional methods
such as principal component analysis® followed by a differential expression analysis to test
which genes are expressed differentially between cases and controls. Sometimes, subsequent
studies of co-expression networks’ or biclustering® are applied to such genes. Some authors’ are
replacing this differential expression analysis with new methodologies such as gene set analysis
(GSA) to consider functional relationships at a gene level. GSA, however, requires previous
knowledge usually taken from reputable biological databases such as Gene Ontology'® and
Kyoto Encyclopedia of Genes and Genomes."' Results produced through the standardized
workflow are finally enriched through enrichment analysis methods to obtain insights about
affected functional pathways. This widely accepted workflow, however, includes several
downsides to be highlighted: (i) gene blocks produced by GSA techniques are based on the
information provided by reputable biological databases; (ii) impossibility to obtain high-order
relationships, so the information provided is not accurate at all."?

The boom of data mining has produced some studies for early cancer detection using
machine learning methods."” In this regard, early melanoma diagnosis through image analysis
has been performed recently through Deep Learning techniques.'* Breast cancer prediction by
considering risk factors also was done with alluring results.”> The same type of cancer on
Nigerian women'® was analysed by considering classic classification methods such as Naive
Bayes and J48. The above studies do not need any biological database as input, and they can
consider high-order relationships. However, none of these studies focused on descriptive data
mining techniques, which are essential to provide more actionable and understandable in-
sights. Be able to denote which genes are responsible for producing each type of cancer is key to
design the treatment accurately. Hence, this paper aims to propose a descriptive analysis based
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on emerging pattern mining (EPM).'” This data mining task searches discriminative patterns or
elements in data which frequency increases significantly from a data subset to another. Our
prime hypothesis is that splitting genomic cancer data into two subsets, that is, cases and
controls, will allow us to determine which genes, and their expressions, are associated with
each cancer type. The final aim is to address all the open challenges of the well-known and
standardized workflow, producing understandable and actionable insights that help with the
discovery of new and accurate forms of cancer treatment. The contribution of this study work
can be summarized as follows:

« A methodology based on EPM to produce high-order relationships and considering the
whole set of genes. This methodology enables to determine variables that are involved in the
signalling pathways affected in the disease.

« Unlike the well-known standardized workflow, which requires information that is given by
reputable biological databases, the proposed methodology starts from scratch. No previous
knowledge or information is required, and therefore, it produces unbiased insights.

« A highly useful post-processing technique is considered for the specific problem of cancer.
It enables filtering out redundant results typically produced by descriptive analysis,
improving the actionability of the extracted knowledge as a result.

The proposed methodology is applied to different real scenarios related to varied cancer
types. Six case studies based on RNA-Seq data taken from The Cancer Genome Atlas (TCGA)"*
has been considered. The obtained results demonstrate the usefulness of the proposal and how
it faces all the existing challenges. Some of the extracted insights were already described in the
related literature as good cancer bio-markers, while others have not been described yet mainly
due to existing techniques are biased by prior knowledge provided by biological databases.

The rest of the article is structured as follows: Section 2 presents the EPM task and some
studies about cancer. Section 3 describes the proposed methodology. Section 4 performs an
exhaustive analysis on RNA-Seq data to describe several cancer types. Finally, some lesson
learnt are outlined in Section 5, and some brief conclusions are pointed out in Section 6.

2 | PRELIMINARIES AND RELATED WORK

This section presents the EPM task and some primary definitions. Different cancer analyses
considering classic biological workflows and new methods based on data mining are outlined.

21 | EPM

In data analysis, the major element to study is the pattern as it provides important knowledge to
consider in the data domain. A pattern P is a set of items related somehow in a database Q that
describes the behaviour of the observed data. Formally speaking, a pattern P is denoted as
P C I € O where I is the set of n items {ij, iy, ..., iy} included in a database Q. The pattern mining
task'’ aims to find the whole set of patterns appearing at least in a fraction of database records. To
this end, the metric most commonly used to set the fraction of data records to analyse is the support
or frequency. In absolute terms, the support or frequency of a pattern P defines the number of data
records in which P is present. This metric can also be defined in relative terms, considering the
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percentage of data records in which P is present. Data records are commonly known as transac-
tions, and T defines the collection of all transactions present in Q. Formally, it is denoted as
T = {4, t,, ..., t}. Hence, the support of a pattern P in a database Q is formally defined as follows:

IVteT:PCt,tCI|

Support (P, Q) = T

€8]

The concept of supervised descriptive pattern mining (SDPM) appeared sometime later to
retrieve patterns having a property of interest.”” Many novel and interesting techniques appear
under the umbrella of SDPM, including emerging patterns, contrast sets mining, subgroup dis-
covery, and class association rules, among others. Focusing on the EPM task, it was described'” as
the seek for discriminative patterns which support or frequency, analysed on two different groups
or data sets, significantly increases from one data set (group) to another. In other words, EPM aims
at discovering patterns that clearly describe or distinguish two sets. Formally speaking, let I be the
set of different items gathered from two data sets ; and Q,. Let these data sets to be represented in
a binary tabular form (an item may be or not in data) and let T = {t, t;, ..., 1} be the group of
transactions or data records such asV t! € T : t! C I € Q. An emerging pattern is a pattern P C T
which frequency (support) vary considerably with respect to the frequency of the pattern P in data
set Q,. The metric generally used to measure the interest of such type of patterns is the Growth
Rate (GR), which defines the ratio between the frequency of a pattern P in a data set Q; and its
frequency in another data set Q, (see Equation 2).

Support (P, Q1)

GR(P) = .
) Support (P, Q,)

()

Depending on the GR value, the EPM task groups the patterns on different categories'”:
minimal, maximal, essential, noise-tolerant, generalized noise-tolerant, chi, and so forth. From
all the above, one of the most widely used is the jumping emerging pattern (JEP).'” A JEP is a
pattern that appears at least once in a data set Q;, but it does not appear in another data set Q,.
As a result, a JEP presents a GR value of infinity, and it is extremely useful to describe the
exclusive characteristics of each data set.

2.2 | Cancer studies

The study of cancer has been the main focus of research in recent years, and many research
studies have produced a clear workflow in bioinformatics. This subsection describes classic and
current standardized workflows in bioinformatics. Additionally, some key contributions using
data mining techniques on cancer are outlined.

2.2.1 | Biomedical analysis

Classic research studies on any disease and, more specifically, in cancer, formulate an initial
hypothesis to be contrasted. Thanks to the first microarray chips, many advances were made in
cancer, and research analyses enabled to avoid any bias. Thus, existing methods were re-
defined, from the first models based on the Student's ¢ tests*” to more advanced linear models.”
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Nevertheless, the use of microarrays has several key disadvantages when performing omic
studies: (a) pre-designed probes are required, so new transcripts, gene fusions, single nucleotide
variants, and small insertions or deletions could not be detected; (b) a microarray is restricted
by light signal saturation in both low and high signal conditions; (c) there are problems in
detecting rare or low expression genes.

The emergence of RNA-Seq technology”' solved the above limitations. The main ad-
vantage is this technology can detect new transcripts that might serve as biomarkers, mainly
because it does not require pre-designed probes for hybridization. Additionally, it does not
present the signal saturation problems that microarrays have. Thanks to this alluring
technology, many research studies have been performed following a standardized work-
flow.” Such a workflow begins with an initial exploratory data analysis. Subsequently, dif-
ferential expression analysis is carried out to test which genes are expressed differentially
between cases and controls. Those genes are sometimes analysed by means of co-expression
networks’ or biclustering” techniques. Some authors’ are replacing this differential ex-
pression analysis with new methodologies such as GSA to additionally consider functional
relationships at a gene level. However, it is important to remark that GSA requires previous
knowledge usually taken from reputable biological databases such as Gene Ontology'’ and
Kyoto Encyclopedia of Genes and Genomes."' Finally, results produced through the stan-
dardized workflow are enriched through enrichment analysis methods to obtain insights
about affected functional pathways. Even when the previous is a widely accepted workflow,
it suffers from two main limitations: (i) reputable biological databases are required by GSA
techniques; (ii) high-order relationships cannot be obtained.

2.2.2 | Data mining approaches

Triggered by the boom of data mining, several approaches have been applied to cancer studies.
Most of those applications focus on predictive models to detect cancer at early stages.'” Thus,
trending Deep Learning techniques are being used to effectively detect melanoma through
image analyses.'* Additionally, breast cancer prediction was addressed by classic techniques'®
such as Naive Bayes and J48. The accuracy of the final prediction for each type of cancer has
been recently tested'” through approaches based on support vector machines, k-nearest
neighbour and best first trees. Oral cancer has also been the object of study, and Kalaiarasai
et al.”> compared the performance of several prediction models in this regard.

Additional research studies to predict different types of cancer paid attention to the way
insights are provided to the users. Thus, they combined some descriptive techniques
to produce accurate but understandable classifiers, a task known as associative
classification.”® Alagukumar et al.”* proposed to build a classifier based on association rule
mining. More recently, Vengateshkumar et al.”> also proposed a methodology based on
boolean association rules to build a classifier. In any of such algorithms, authors used a first
feature selection process employing statistical ¢ tests. Additionally, EPM was considered to
form accurate classifiers in cancer prediction, considering acute lymphoblastic leukaemia.”®
Some authors analysed gene expression profiles associated with the stage of colon cancer in
microarray data.”” They discretized microarray data with an entropy-based method by
partitioning the gene expression values into intervals of disjunctive real values for which the
entropy value is minimal. Changes in expression levels have also been studied through
emerging patterns to produce accurate classifiers.”
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Even when predictive purposes have coped with most of the research studies on cancer
through data mining techniques, descriptive tasks are becoming increasingly important. In a
recent article, Vengateshkumar et al.”” proposed an association rule mining approach to de-
scribe relationships in microarray data. In this approach, the authors considered statistical
inference methodologies based on t tests, assuming a normal data distribution, and leading to
the adding of bias in the study.

3 | AN APPROACH BASED ON EPM

The application of EPM to cancer analysis is of high interest due it enables to describe features
that differentiate two groups of patients requiring no additional knowledge or previous
hypothesis. Unlike existing research studies, mainly based on building accurate classifiers,
producing useful descriptive information is vital to promote new and right cancer treatments.
In this regard, this section presents an EPM approach (Figure 1 illustrates the general
workflow) to describe properly genes and expression levels related to different cancer types.
The proposal includes four main procedures as it is described below.

Algorithm 1 Pseudocode for gene selection procedure

Input RNA-Seq data including two groups of patients
Output Differentially expressed genes (deg set)

1: procedure DIFFERENTIAL GENE EXPRESSION ANALYSIS

2: for each gene g in RNA-Seq data do

3 if CPM < 1 in both groups then

4 Remove g from RNA-Seq data

5 end if

6: end for

7: nGenes « calculate the number of genes in RNA-Seq data

8: if nGenes > 0 then

9 normData < Perform a TMM normalization on RNA-Seq data using edgeR

10: deg « Take differentially expressed genes from normData using tests and FDR <= 0.05

11: end if

12: return deg

13: end procedure

Differential ) SRR Emerging
expression analysis Discretization Pattern Mining

Filtering

Target Genes Transformed Patterns No redundant
Data Data

FIGURE 1 Proposed cancer analysis workflow
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The first procedure (see Algorithm 1) is responsible for seeking genes with a significant
differential expression between the two groups of patients (tumoral and healthy). In this
first procedure, as it is a common practice in genomic analyses,’ it is primordial to mini-
mize the error made in the estimation of altered genes, avoiding the extraction of variables
that do not contribute at all to cancer. There is no sense in analyzing genes that are
expressed in none of the groups, so a predefined threshold based on counts for each million
mapped reads (CPM) is considered (see Algorithm 1, Lines 3-5). A read is a raw RNA
sequence obtained by sequencing machines and may be composed of multiple segments.
We assume that a gene is relevant if it has at least 1 CPM across the samples of any of the
conditions. Then, the proposed procedure performs a trimmed mean of M values (TMM)
normalization®’ (see Algorithm 1, Line 9) to account for the variation in the total number of
gene counts between samples of interest. A differential expression analysis, widely con-
sidered in RNA-Seq data analysis, is then performed (see Algorithm 1, Line 10). It takes a
false discovery rate (FDR) of 0.05, a value widely accepted in bioinformatics.”’ This
FDR value means a maximum of 5 false positives is allowed from 100 genes declared as
differentially expressed. Finally, the set of differentially expressed genes is returned (see
Algorithm 1, Line 12) and used as input data in the subsequent procedure.

It should be highlighted that the proposed gene selection procedure does not present the
bias commonly considered in other approaches.””** Unlike those approaches based on classic
feature selection procedures® (entropy or correlation-feature selection), the proposed proce-
dure considers any of the genes involved in secondary pathways and does not neglect secondary
genes that contribute to the overall state of the main and/or secondary pathways. Additionally,
the proposed procedure does not consider classic statistical ¢ tests, which might lead to any bias
due to the use of normal data distribution. On the contrary, the proposed method follows a
negative binomial distribution since RNA-Seq data are mainly based on counts (negative or
decimal values cannot exist).

Algorithm 2 Pseudocode for discretization procedure

Input Differentially expressed genes (deg set)
Output Discretized data (deg’ set)

1: procedure DISCRETIZATION

2: deg’ < Transposed deg data

3: for each gene g in deg’ set do

4: g < Discretize g expression values into 5 bins

5: end for

6: return deg’

7: end procedure

The second procedure (see Algorithm 2) performs a discretization on the expression
count levels of the genes. First, the input data set (differentially expressed genes obtained in
the previous procedure, see Algorithm 1) is transposed by taking genes as columns and
samples as rows (see Algorithm 2, Line 2). The procedure discretizes the expression count
level of each gene into five different labels corresponding to the equitable division of the
interquartile range of their expression levels: EH (extremely high), H (high), M (medium),
L (low), and EL (extremely low). This step is optional since data may be already discretized
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beforehand (manually or following a completely different methodology). Finally, the dis-
cretized set of genes deg’ is returned (see Algorithm 2, Line 6), so it is used as input data in
the following procedure.

Algorithm 3 Pseudocode for the extraction of EPs

Input Discretized set of genes (deg’ set)
Output All JEPs for each group G (JEF;)
1: procedure FREQUENT ITEMSET MINING (LCM ALGORITHM)
2:  for each group G in deg’ set do
3 X < samples from deg’ belonging to group G > Generate a sub-data set X for each group G
4 P«g > The set of all frequent patterns of the group G
5 JEP; « @& > A set of all JEPs of the group G
6: P « LCM algorithm on X; using a as minimum support value
7 for each frequent pattern p in P do
8 if p is JEP then
9 JEP; « JEP; U p
10: end if
11: end for
12: end for
13: return JEF;, X
14: end procedure

The third procedure corresponds to an EPM process. It takes the discretized gene expression
counts as input and divides them into two sub-data sets: cancer and healthy patients. Then, the
procedure extracts all the frequent patterns from each sub-data set by considering a minimum
support threshold «, which is predefined by the user (see Algorithm 3, Line 4). Once all
patterns are obtained, the procedure seeks JEP on each group or sub-data set (see Algorithm 3,
Lines 5-9). Thus, the algorithm analyses intrinsic patterns related to cancer as well as intrinsic
patterns for healthy patients. In other words, the procedure obtains descriptive insights from
both groups, thus reinforcing the obtained results.

Algorithm 4 Pseudocode for reduce redundant data
Input JEFR;, X,
Output Res > Set of representative JEPs of a given group G.

1: procedure FILTER REDUNDANT DATA
JPE; « Sort JPEg by support
for each set of solutions S C JPE; having the same support do
JPEg « JPEG\S
S « Sort S by length (from larger to shorter)

end for
Res <« @

2
3
4
5
6: JPEG < JPEg U S > Add S at the same position it was originally (support ranking)
7
8
9:  p « Take the first element from JEP;

(Continues)
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10: X < mark records covered by p

11: Res < ResUp

12: for each p in JEP;do

13: if p covers at least % new unmarked records then

14: Res < ResU p

15: X¢ < mark records covered by p
16:  end if

17: end for

18: return Res
19: end procedure

The frequent itemset mining approach included in this third procedure (see Algorithm 3,
Line 6) is the well-known LCM (linear closed itemset mining) algorithm."? This algorithm is
the one that best performs in the frequent itemset mining task, and it was the winner of the
widely recognized FIMI 2004 competition. It owes its efficiency and speed to the combination
of several ideas that greatly optimize the searching procedure, especially in dense data. The
algorithm performs transaction projections, database reduction methods, an efficient frequency
counting structure and a hypercube decomposition method. Frequency counting is carried out
through a scheme called occurrence deliver, in which the algorithm uses a list of buckets
where each bucket stands for a frequent singleton in the database. After a first sweep on the
database, the algorithm establishes the order of the singletons in an increasing support way.
Once the projections are performed, the buckets are restarted and re-scan the conditional
database produced by the projections to fill the buckets. This frequency counting method
allows the algorithm to analyse databases efficiently because the database becomes smaller and
smaller with each projection, and resetting and refilling the buckets is not expensive.
Additionally, the use of the hypercube decomposition method, also known as perfect extension
pruning, provides even more advantage over other approaches belonging to the state-of-the-art.
More specifically, given a itemset G and an item g,g € G, if G and G U g have the same
frequency in the database, then g is a perfect extension of the itemset G. This method is a great
gain in performance because once the perfect extensions are detected, they are reported and
excluded from the recursion.

The fourth and final procedure (see Algorithm 4) aims to reduce the number of re-
dundant results, typically provided by descriptive tasks. Due to obtained solutions can be
rather large, mainly because of the number of genes to be analysed, this procedure searches
for redundancy to return a representative set of solutions (patterns). The resulting set
should include features describing any patient (desirably all of them) with a small and,
therefore, understandable set of solutions. In this regard, the procedure first ranks solutions
according to the support or frequency quality measure (see Algorithm 4, Line 2) and, if
there is a tie, then solutions are ranked by length (from larger to shorter) as it is shown in
Lines 3-7, Algorithm 4. The top pattern from this ranking is taken, and data records
covered by it are marked (see Algorithm 4, Lines 9-11). This process is repeated, pattern by
pattern, till all data records are covered, or there is no pattern to select (see Algorithm 4,
Lines 12-17). The procedure considers an overlapping threshold 8, previously defined by
the user. This threshold denotes that at least f% of new unmarked records should be
covered. The resulting set of patterns depends, to a large extent, on the data distribution.
Groups of patients with dissimilar or uncommon characteristics will require a large number
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of patterns to represent the observed data set. On the other hand, as usually happens in this
type of diseases, patients are expected to share phenotype or similar characteristics, not
requiring a large set of solutions to represent the whole set of patterns.

4 | CASE STUDIES BASED ON DIFFERENT CANCER
TYPES

This section aims to illustrate the use and usefulness of the proposed approach based on
emerging patterns. Six case studies are analysed to discover new biomarkers, gene asso-
ciations and biological functions most affected in different cancer types, some of them
already studied by dissimilar methodologies.'”'"'®** The hypothesis is the feasibility to
discover novel insights that help with a better understanding of the disease as well as
knowledge already described in the literature. RNA-Seq data for six different types of
cancer are analysed: breast (BRCA), colon adenocarcinoma (COAD), lung adenocarcinoma
(LUAD), thyroid carcinoma (THCA), prostate adenocarcinoma (PRAD) and kidney (KICA).
Data are taken from The Cancer Genome Atlas (TCGA)'® repository (data are publicly
available at https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga). Data are in RSEM format and only contain paired samples (cancer vs
healthy samples). Results are finally analysed through a functional enrichment analysis,
considering GO terms and KEGG pathways from the Gene Ontology'’ and KEGG'' biolo-
gical databases. A further literature review has been carried out.

4.1 | BRCA analysis

Breast cancer is the most common type of cancer among women (men may also suffer from it
but in an extremely low percentage)." It is, therefore, one of the most important types of cancer
nowadays, presenting a terrific impact on society. In this case study, a real data set comprising
224 paired samples and 20,531 genes is analysed through the proposed approach.

The first procedure reduces the number of genes to 11,738 (those with a significant dif-
ferential expression between the two groups of patients). This set of genes are then discretized
into five labels (already described in the second procedure of the proposed approach), and an
EPM algorithm is finally applied (third procedure). We considered a minimum threshold
support value equal to 30% and 35% for each database condition, obtaining a total of 167,239
and 486,708 interesting patterns for cancer and healthy groups, respectively. Since this large
number of solutions is hardly understandable for an expert, a filtering process is then applied
(the fourth procedure of the proposed approach). As a result, the resulting set is reduced to 15
in cancerous group (see Table 1), and 15 in healthy group (see Table 2). These two sets of
solutions can represent 87.5% and 83.93% of the whole set of patients. Some of such patterns or
solutions are described below through a functional enrichment analysis, confirming the im-
portance of the extracted insights.

The analysis of the first pattern (ID 1, Table 1), and focusing on the GO terms, revealed that
all the genes except for C12orf48, play a crucial role in the cell cycle and usually act as
oncogenes in the breast or related cancers.’ The thorough revision of the specialized literature
in the field revealed that C120rf48 generally encodes a PARP-1 binding protein called PARPBP,
which function is the inhibition of the DNA repair mechanism through homologous
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TABLE 1 Final set of patterns obtained from the cancerous group of patients

Coverage
ID Patterns (% of data)

1 CCNB1 = EH, CDK1 = EH, KIF23 = EH, NUSAP1 = EH, CCNB2 = EH, MELK = EH, 30.36
NCAPG = EH, BUB1B = EH, NCAPH = EH, C120rf48 = EH

2 TPX2 = EH, CDK1 = EH, BUB1 = EH, KIF23 = EH, FANCI = EH, CCNB2 = EH, 32.14
NCAPG = EH, SGOL1 = EH, BUBI1B = EH, C120rf48 = EH

3 CDK1 =EH, SPC25 =EH, ERCC6L = EH, BUB1 = EH, SMC4 = EH, SGOL1 = EH, 34.82
CENPI = EH, BUB1B = EH, NCAPH = EH, ARHGAP11A =EH

4 GPD1 =EL, FABP4 = EL, CIDEC = EL, ADH1A = EL, TUSC5 = EL, ADH1B = EL, 52.68
ADIPOQ = EL, CIDEA =EL

5 CCNBI1 = EH, KIF11 = EH, KIF23 = EH, MELK = EH, NCAPG = EH, SGOL1 = EH, 54.46
NCAPH =EH, CDC7=EH

6 ANLN = EH, CENPE = EH, EXO1 = EH, CCNA2 = EH, ASPM = EH, MCM10 = EH, 57.14
PLK4 = EH, MND1 = EH

7 FABP4 =EL, ADH1A = EL, ADH1B = EL, ADIPOQ = EL, CIDEA = EL, MEOX1 = EL 58.93

8 LDB2 = EL, CXorf36 = EL, MMRN2 = EL, ECSCR = EL, MYCT1 = EL, CLEC14A = EL 61.61

9 LDB2 = EL, GNG11 = EL, CXorf36 = EL, CD34 = EL, MYCT1 = EL 64.29
10 AQP7 = EL, FABP4 = EL, C140rf180 = EL, TUSC5 = EL, CIDEA = EL 66.07
11 FAP =EH, COL5A2 =EH, VCAN = EH, COL1A2 =EH, ADAM12 =EH 80.36
12 C1QTNF6 = EH, COL5A2 = EH, COL5A1 = EH, COL1A1 = EH, COL1A2 =EH 82.14
13 ERCC6L = EH, RACGAP1 = EH, ECT2 = EH, SGOL1 = EH, CASC5 =EH 83.93
14 LDB2 = EL, CXorf36 = EL, CD34 = EL, ERG = EL 85.71
15 C1QTNF6 = EH, COL5A1 = EH, COL1A1 = EH, OLFML2B = EH 87.50

Note: The labels next to the genes refer to gene expression values: extremely low (EL), low (L), medium (M), high (H) and
extremely high (EH).

recombination. Several studies pointed out the upregulation of C120rf48 in several types of
cancer such as hepatocellular cancer.” Such studies also suggested its possible role as an
oncogene as well as within the cell cycle. As a result, it is possible to assert that C120rf48
participates in the cell cycle in breast cancer and could share a common regulatory framework
with the genes that belong to the pattern with ID 1. This is a clear example of the potential of
using pattern mining techniques within the proposed framework, not requiring any previous
knowledge or hypothesis to reach excellent and unknown insights.

Pattern with ID 8 (see Table 1) is another interesting result to be considered. Genes
included in this pattern were already detected in a recent study,’” denoting a relationship
with endothelial functions. Interestingly, the biological function of CXorf36 remains un-
derstudied, while that of CLEC14A appears to be the promotion of angiogenesis activities
and cancer migration.”® This gene expression signature should be considered in future
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TABLE 2 Final set of patterns obtained from the adjacent tissue group of samples

Coverage
ID Patterns (% of data)

16 TNS1 = EH, SORBS1 = EH, HSPB6 = EH, KCNIP2 = EH, AOC3 = EH, C7orf41 = EH, 35.71
CAT = EH, PLXNA4 = EH, PLIN1 = EH, AQP7 =EH, FZD4 = EH, TMEM37 = EH,
TLN2 = EH, HEPN1 = EH, AIFM2 = EH, MOSC1 = EH, PCDH9 = EH, ACO1= EH

17 HSPB6 = EH, KCNIP2 = EH, AOC3 = EH, LIPE = EH, GYG2 = EH, AQP7 = EH, 37.50

GPD1 = EH, TMEM37 = EH, HEPN1 = EH, AIFM2 = EH, CIDEC = EH,
PNPLA2 =EH,

TYRO3 = EH, SGCG = EH, ALDH2 = EH
18 TNS1 =EH, MYOM1 = EH, ACACB = EH, C7orf41 = EH, SIK2 = EH, AQPEP = EH, 39.29

CAT =EH, ACVRIC = EH, PLIN1 = EH, AIFM2 = EH, FERMT2 = EH,
LOC283392 =EH

19 LPL = EH, AQP7 = EH, MLXIPL = EH, SLC7A10 = EH, MOSC1 = EH, CIDEC = EH, 41.07
LGALS12 = EH, ADIPOQ = EH
20 C7orf4l = EH, AKAP12 = EH, MMD = EH, FERMT2 = EH, ECM2 = EH, ITSN1 =EH, 42.86

C2CD2 =EH

21 TNS1 = EH, ACACB = EH, PLXNA4 = EH, Cl4o0rf49 = EH, HEPACAM = EH 44.64
22 FRMD1 = EH, PNPLA2 = EH, NMB = EH, VEGFB = EH 46.43
23 LIPE = EH, GPD1 = EH, TUSC5 = EH, CIDEA = EH 48.21
24 KIF4A = EL, CEP55 = EL, IQGAP3 =EL 62.5

25 CAV1 =EH, CAV2 =EH, KLB = EH 64.29
26 IQGAP3 =EL, KIF18B =EL 66.96
27 CHRDL1 = EH, PCOLCE2 = EH 69.64
28 SLC25A39 = EL, TIMM17B = EL 79.46
29 FAM13A = EH, CDC14B = EH 82.14
30 GPAM =EH, DGAT2 =EH 83.93

Note: The labels next to the genes refer to gene expression values: extremely low (EL), low (L), medium (M), high (H) and
extremely high (EH).

research studies as a possible mechanism for developing antiangiogenic therapies in breast
cancer.

Finally, it is also important to highlight the pattern with ID 17 (see Table 2), which gen-
erally represents the specific functions of the healthy tissue group. Some of the genes belonging
to this pattern (LIPE, GYG2, AQP7, GPD1, CIDEC and PNPLA2) implies the deregulation of
lipid metabolism in cancer (these genes are found with a low level of expression in breast
cancer samples compared to healthy samples). The lack of lipases in breast cancer is associated
with alternative means of obtaining energy from tumour cells such as glucose and glutamine
metabolism. These results are similar to some found in literature’’: the downregulation of lipid
metabolism through the absence of lipases and free fatty acids as well as low activity of PPAR-y
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signalling are key events in the formation of various types of cancer such as liposarcomas. Note
that some genes within this pattern, for example, HSPB6, have been already linked to tumour
suppressors due to their low expression in breast cancer.”® However, it is quite interesting to
note that no interaction nexus has been described yet between the genes related to lipid
metabolism and the rest of the genes in the pattern.

4.2 | COAD analysis

Colon adenocarcinoma is a type of cancer that comes into origin in those cells that are re-
sponsible for producing the mucus that lubricates both the colon and rectum. It is the most
frequent type of colon cancer, accounting for 95% of cases and the third most common type of
cancer in both men and women (producing around 9% of all cancer deaths).' More than 90% of
colorectal cancer occurs from the age of 50 onwards, whereas the average age of diagnosis is 72.
This case study analyses a real data set comprising 52 paired samples and 20,531 genes through
the proposed approach.

The first procedure reduces the number of genes to a total of 8,642 differentially expressed
genes. Then, the gene values are discretized (second procedure), and the EPM algorithm is
finally run on the discretized data (third procedure). In this case study, a pattern is frequent if it
appears in at least 40% of the records in the cancer group, and 42% in the healthy group. A total
of 132,638 and 9,013,927 patterns were obtained for the cancerous and healthy group, re-
spectively. The filtering process described in the fourth procedure reduced the set of patterns to
5 for the cancerous group (see Table 3), and 5 for the healthy group (see Table 4). As a result,
considering just 5 patterns, it is feasible to describe any patient belonging to the cancerous
group. 5 additional patterns are taken to describe 80.77% of the samples in the healthy group.
Some of these patterns are described below through a functional enrichment analysis.

TABLE 3 Final set of patterns obtained from the cancerous group of patients

Coverage
ID Patterns (% of data)

1 NBLA00301 = EL, LMOD1 = EL, GPM6A = EL, SYNM = EL, KCNMBI = EL, CNN1 = EL, 42.31
UCHLI1 = EL, HAND2 = EL, DACT3 =EL, C7=EL, PDLIM3 = EL, SLITRK3 = EL,
RERG = EL, CHRDL1 = EL, NAP1L3 = EL, HSPB7 = EL, MGP = EL

2 PHF14 = EH, UTP20 = EH, BAZ1B = EH, RBAK = EH, AVL9 = EH, TNPO3 = EH, 69.23
TRRAP = EH, TGFBRAP1 = EH, RNASEN = EH

3 CDK5RAP1 = EH, DDX27 = EH, ASXL1 = EH, TM9SF4 = EH, PHF20 = EH, 80.77
POFUT1 =EH,

NCOAG6 = EH, SULF2 =EH

4 CDH11 = EH, ZNF469 = EH, ITGA11 = EH, MMP14 = EH, MFRP = EH, COL8A1 = EH, 88.46
PLXDC1 =EH

5 ZBTB33 = EH, RBMX2 = EH, EMD = EH, ENOX2 = EH, VBP1 = EH, TMEM187 = EH 100.00

Note: The labels next to the genes refer to gene expression values: extremely low (EL), low (L), medium (M), high (H) and
extremely high (EH).
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TABLE 4 Final set of patterns obtained from the healthy group of samples

Coverage
ID Patterns (% of data)

6 PDZD4 = EH, FAM129A = EH, PYGM = EH, ARLA4D = EH, GPM6A = EH, HSPB6 = EH, 42.31
KCNIP3 =EH

7 ATP11A = EL, PLXNA1 = EL, XPO4 = EL, RRP1B = EL, RBM19 = EL, PFAS = EL, 65.38
AHCTF1 =EL

8 CIRH1A = EL, GARS = EL, NOP58 = EL, LYAR = EL, DCUN1D5 = EL, METTL1 = EL, 73.08
NAA15=EL

9 RAD18 =EL, PYCR1 = EL, NUF2 = EL, CDCA4 = EL, KIF18A = EL, SHCBP1 = EL, 76.92
TRAIP = EL

10 EXOSC8 = EL, CCDC59 = EL, SNRPE = EL, SNRPD2 = EL, TOMMS6 = EL, 80.77
GEMING6 = EL,

POLR2G =EL

Note: The labels next to the genes refer to gene expression values: extremely low (EL), low (L), medium (M), high (H) and
extremely high (EH).

Let us first focus on the pattern with ID 1 (see Table 3), which comprises 17 genes with a low
level of expression in cancer samples. The enrichment analysis and the subsequent bibliographical
review”” described that some of these genes are related to altered functions in cancer such as poor
cell differentiation (CHRDL1, MGP and HAND2) and migration (GPM6A, SYNM, CNN1, HAND2,
PDLIM3, RERG, CHRDL1 and MGP). Both functions are intimately related since undifferentiated
cancer cells tend to have a greater capacity for growth and migration.™

Another interesting pattern is the one with ID 4 (see Table 3), which is composed of
structural genes related to angiogenesis and cell adhesion processes. Alterations of these genes
have been described in disturbing cell adhesion between cancer cells and the extracellular
matrix. They are also known for their interaction with tyrosine kinase receptors that promote
the proliferation of cancer cells and their differentiation.”” MFRP, the only gene that does not
have an annotated structural function, is upregulated in several cancers and could activate the
Wnt pathway by increasing signalling of cell proliferation, migration and angiogenesis."'

Finally, it is also interesting to highlight the pattern with ID 10 (see Table 4), most of its genes
(SNRPE, SNRPD2, GEMIN6 and POLR2G) presenting functions in the splicing of the mRNA
through the spliceosome. Mutations in the spliceosome components may cause aberrant splicing of
mRNAs with oncogenic properties.”” Moreover, deregulation in the levels of expression of its
structural components is related to the most aggressive phenotypes of cancer.

4.3 | LUAD analysis

Lung cancer is the most commonly diagnosed type of cancer and the one with the highest
mortality rate." Among their subtypes, lung adenocarcinoma is the most common one, and it
represents around 40% of all lung cancers, affecting even nonsmoking people. The present case
study analyses a real data set comprising 114 paired samples and 20,531 genes.



ET AL. 15
TRASIERRAS Wl LEY

The gene set was first reduced to a total of 10,074 genes with significant differential ex-
pression between the two groups of patients. Then, all these genes were discretized into five
labels, and the EPM algorithm (third procedure) was applied to obtain patterns that appear in
at least 35% (cancer group) and 36% (healthy group) of the records. As a result, we obtained
66,423 and 43,730 solutions for the cancerous and healthy group, respectively. To overcome the
high number of feasible solutions, we applied the proposed filtering procedure, reducing the set
of patterns to 11 for the cancerous samples (see Table 5) and 23 for the healthy group (see
Table 6). The extracted patterns were able to represent 100% of all the samples for both groups.
Finally, a functional enrichment analysis is carried out on the resulting set to increase the
interpretability of the results.

The analysis of the extracted patterns, and especially patterns with ID 1, 2 and 3, Table 5,
reveals upregulation of genes belonging to the cell cycle, mitosis, and structural functions
related to microtubules. Focusing on the largest pattern (ID 1), the functional enrichment
analysis and a subsequent literature review revealed that any of the genes included in this
pattern are essential in the cell cycle and mitosis. Additionally, genes within the pattern with
ID 4 (see Table 5) belong to the focal-adhesion-PI3K-Akt-mTOR signalling pathway. It relates
many crucial aspects of cell growth and survival that are constitutively activated.*

On the other hand, genes included in patterns belonging to the samples with healthy tissue
also revealed altered functions in cancer. For example, pattern with ID 13 (see Table 6) includes
genes that encode for proteasome components (PSMB4, PSMC4 PSMB3) as well as genes

TABLE 5 Final set of patterns obtained from the cancerous group of patients

Coverage
ID Patterns (% of data)
1 DLGAP5 = EH, TPX2 = EH, KIF20A = EH, KIF2C = EH, CDCA8 = EH, HMMR = EH, 36.84
KIF23 =EH, TTK = EH, SKA3 = EH, CDCA5 = EH, KIFC1 = EH, SKA1 = EH,
Cl50rf42 = EH, AURKB = EH
2 TOP2A = EH, CDC6 = EH, STIL = EH, CKAP2L = EH, KIF15 = EH, KIFC1 = EH, 40.35

SKA1 =EH, NCAPG2 = EH, LMNB1 = EH, ATADS5 = EH, BRCA1 = EH
3 KIF23 = EH, CCNA2 = EH, SPC25 = EH, PLK4 = EH, RAD51 = EH, RACGAP1 = EH, 43.86
FAMS54A = EH, C150rf23 = EH

4 THBS2 = EH, COL5A2 = EH, COL1A1 = EH, COL3A1 = EH, COL5A1 = EH, 57.89
COL1A2=EH
5 CCNB1 = EH, BUBI1B = EH, KIF11 = EH, PRC1 = EH, ARHGAP11A = EH 61.40
6 RBM28 = EH, NOL10 = EH, NUP85 = EH, XPO1 = EH 64.91
7 GIMAP6 = EL, STARDS = EL, TLR4 = EL, RABSB =EL 85.96
8 C1QA =EL, C1QB =EL, IFI30 = EL 92.98
9 ITLN2 = EL, SLC6A4 = EL 94.74
10 MGC29506 = EH, TNFRSF17 = EH 98.25
11 EPM2A =EL, FAM13B =EL 100.00

Note: The labels next to the genes refer to gene expression values: extremely low (EL), low (L), medium (M), high (H) and
extremely high (EH).
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TABLE 6 Final set of patterns obtained from the adjacent tissue group of samples

ID
12

13

14

15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Patterns

PPIB = EL, SEC13 =EL, METTL11A = EL, PSMC4 = EL, PFDN2 = EL, HM13 = EL,
P4HB = EL, YIF1A = EL, ROMO1 = EL, EIF5A = EL, JTB=EL, CALR = EL,

PMM2 = EL, TMED9 = EL

TPI1 = EL, PSMB4 = EL, CCT3 = EL, METTL11A = EL, PSMC4 = EL, RAG1AP1 = EL,
NHP2 =EL, PSMB3 = EL, ERGIC3 = EL, CYC1 = EL, ALDOA = EL, SEPX1 =EL,
EIF4A3 =EL

PSMB4 = EL, CCT3 = EL, ILF2 = EL, METTL11A = EL, MRPL3 = EL, SNRPD2 = EL,
ERGIC3 = EL, EIF3I = EL, CYC1 = EL, EIF4A3 =EL

PSMB4 = EL, KRTCAP2 = EL, SNRPG = EL, RAG1AP1 = EL, HSPE1 = EL, SSBP1 = EL,
CHCHDS8 = EL, TIMM10 = EL, TMED9 = EL

HMGAI1 =EL, HM13 = EL, GAPDH = EL, DOLPP1 = EL, SRPRB = EL, ECE2 =EL,
MRTO4 = EL

FARSB = EL, CCT3 =L, Cl4orfl66 = EL, MRPL3 = EL, DAP3 = EL, BTF3L4 = EL
PDIA6 = EL, ILF2 = EL, HM13 = EL, DDOST = EL, HSPE1 = EL, MRPL24 = EL
MRPS12 = EL, DOLPP1 = EL, ALG3 =EL, SLC25A39 = EL, FLAD1 = EL

CLNS1A = EL, GPR89A = EL, DAP3 = EL, PRMT3 = EL, MRPL30 = EL

APEX1 = EL, PPP1R14B = EL, NPM3 = EL, PYCR1 =EL

IMP4 =EL, ALDOA = EL, GPI = EL, P4HB = EL

FARSB = EL, MRPL9 = EL, AAMP = EL, VPS72=EL

FGFR4 = EH, RNF182 = EH, LRRN3 = EH, CCDC48 = EH

PAICS = EL, ALG8 = EL, CCT6A =EL

COPG = EL, HSP90B1 = EL, STK39 = EL

LIMS2 = EH, SH2D3C = EH, USHBP1 = EH

FIGF = EH, SGCA = EH, C1QTNF7 = EH

GFPT1 =EL, XPR1 =EL

SLC35F2 = EL, CTHRC1 = EL

GPR172A = EL, SLC1A5=EL

POLG2 =EL, DDX12 = EL

ADRB2 =EH, STX11 =EH

RAMP3 = EH, RGS9 = EH

Coverage
(% of data)

35.09

38.60

40.35

42.11

43.86

45.61
47.37
49.12
50.88
52.63
54.39
56.14
78.95
80.70
84.21
87.72
89.47
91.23
92.98
94.74
96.49
98.25

100.00

Note: The labels next to the genes refer to gene expression values: extremely low (EL), low (L), medium (M), high (H) and
extremely high (EH).
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related to glucose metabolism (TPI1, RAG1AP1, and ALDOA) with a low level of expression in
healthy samples. According to our data samples, these genes are upregulated in lung adeno-
carcinoma. CCT3 is a coding gene for a molecular chaperone with a role in protein folding that
is upregulated in several cancers and promotes greater proliferation.”* Several cooperation
functions have been reported between the chaperones and the proteasome, which may be
linked to the degradation of tumour suppressor proteins in cancer.

4.4 | THCA analysis

Thyroid cancer is the eleventh most commonly diagnosed cancer in 2018." Although the
incidence of this cancer has increased in recent years, its death rate remains practically the
same, and its prognosis is, in general, really favourable. This case study analyses a real data set
comprising 118 paired samples and 20,531 genes through the proposed approach.

The total amount of genes is first reduced to 9244 genes, considering a differential ex-
pression analysis between the two groups. A discretization process and the EPM algorithm are
carried out (second and third procedures), extracting a total of 258,536 patterns from the cancer
group and 6370 patterns from the healthy group. Patterns obtained in both groups had to
overcome a minimum support threshold of 30% to consider them as frequent. The filtering
procedure is then applied to all these patterns to keep the most representative ones. As a result,
14 patterns can cover 100% of the samples that suffer from cancer (see Table 7), whereas
17 patterns can explain 96.61% of the healthy samples (see Table 8). Finally, a functional
enrichment analysis is carried out on the whole set of discovered patterns (31 in total).

Focusing on the genes belonging to pattern with ID 7 (see Table 7), it is remarkable that
many of the genes, such as CD47," have been already studied in the specialized literature and
were described as oncogenes. The enrichment analysis also revealed that several genes play a
crucial role during the MAPK signalling cascade (NOD1, PDESA and TGFA). As for the pattern
with ID 10 (see Table 7), the functional enrichment analysis and the literature revision proof
that its genes (RHOBTB3, RNF144A and USP31) are involved in ubiquitination processes,
which deregulation can cause tumorigenesis.*’

Finally, the pattern with ID 21 (see Table 8) gathers a set of genes that encode proteins with
zinc finger domains that have been involved in transcription regulation. Interestingly,
KIAA1383, also known as MAP10, is a cell cycle regulator that promotes microtubule stability.
Several studies have already reported its low level of expression in cancer.”” Many proteins that
play crucial functions during the cell cycle have expression patterns that are usually regulated
at the transcriptional level.*”

4.5 | PRAD analysis

Prostate cancer is the most common cancer in men (especially in older men), existing
1,276,106 new cases and 358,989 deaths in 2018." More specifically, the adenocarcinoma of
the prostate is the most common type of prostate cancer (90% of prostate cancers). This
case study analyses a real data set comprising 100 paired samples and 20,531 genes through
the proposed approach.

First, the set of genes is reduced to 7899 genes, that is, those having a significant differential
expression between the two groups. Then, the set of genes is discretized into five different
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TABLE 7 Final set of patterns obtained from the cancer group of patients

Coverage

ID Patterns (% of data)

1 CDH6 = EH, ITGA2 = EH, RUNX1 = EH, TUBB3 = EH 35.59

2 CD55 =EH, SLPI = EH, ANXA2 = EH, ANXA2P2 = EH 45.76

3 TCF7L1 = EL, PKNOX2 = EL, FLRT1 =EL 54.24

4 DOCK9 = EH, CDC42BPG = EH, PTPRF = EH 64.41

5 EPS8 = EH, IGF2BP2 =EH, LLGL1 =EH 67.80

6 MGAT4B = EH, CTSA = EH, PI4K2A = EH, MAPKAPK3 = EH, ARL6IP5 = EH, 69.49
RABGGTB = EH, LACTB2 = EH, GLRX3 = EH

7 TGFA = EH, SHROOM4 = EH, EPS8 = EH, NOD1 = EH, PDE5SA = EH, 71.19
NRP2 = EH, MED13 = EH, CD47 =EH

8 S100A13 = EH, C19orf53 = EH, GNPTG = EH, ARF5 = EH, POLR2I = EH, 84.75
CHMP2A = EH, RPS24 = EH

9 DNAH7 = EL, POLI = EL, THAP9 = EL, RSPH4A = EL, GPAM = EL 86.44

10 TTL = EH, RHOBTB3 = EH, RNF144A = EH, SNX30 = EH, USP31 = EH 838.14

11 DOCK9 = EH, ZMAT3 = EH, COL8A1 = EH, ASCC3 =EH, IGF2R =EH 89.83

12 OSR1 =EL, PODN = EL, DCN = EL, TMEM119 = EL, WISP2 = EL 96.61

13 LCN2 =EH, ST14 = EH, FTH1 = EH, LACTB2 = EH, GLRX3 =EH 98.31

14 DCN =EL, FBLN2 = EL, PRELP = EL 100.00

Note: The labels next to the genes refer to gene expression values: extremely low (EL), low (L), medium (M), high (H) and
extremely high (EH).

labels, and the EPM algorithm is run. In this case, the minimum support thresholds considered
were 32% for the cancer samples and 34% for the healthy ones. After the third step, 56,988 and
40,854 patterns were obtained for both groups. Then, to reduce the number of solutions and
keep the most representative ones, the filtering procedure was applied. In this way, the set of
cancer samples was reduced to 21 patterns (see Table 9), whereas the set of patterns from the
healthy samples was reduced to 15 representative patterns (see Table 10). These solutions
explain 90% of both groups. For a better functional interpretation, a functional enrichment
analysis is applied to these sets of patterns.

Among all the obtained patterns, it is interesting to focus first on the pattern with ID 3 (see
Table 9). In this pattern, based on the functional enrichment analysis, 9 of the 14 genes it
includes are related to cell proliferation. Among them, ID1, SMARCD3, CTF1, TP63 and
ALDH3AL1 enrich the term positive regulation of cell regulation and the regulation of cell
proliferation. These genes have appeared with a low level of expression in tumour samples from
our prostate cancer study. In particular, TP63 is an already known tumour suppressor which
expression is undetectable in prostate adenocarcinoma.”’ Additionally, ID1 and SMARCD3
have been found upregulated in prostate cancers.” However, the obtained results present these
genes with a low-level expression in tumour cells. These results could be due to the combined
activity of the rest of the genes in the pattern, giving rise to cancer. It is interesting to note the
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TABLE 8 Final set of patterns obtained from the adjacent tissue group of samples

Coverage
ID Patterns (% of data)
15 FGFR10P = EH, RPS6KA5 = EH, IRF6 = EH, WDR47 = EH, RBMXL1 = EH, 30.51
SLC38A2=EH
16 NARG2 = EH, CPNE3 = EH, SNURF = EH, IPO8 = EH, SMARCA2 = EH, 45.76
SLMAP = EH
17 Cllorf30 = EH, TAF3 = EH, SLC10A7 = EH, RANBP10 = EH, RGO9MTD3 = EH, 50.85
SHPRH = EH
18 CPNE3 = EH, FAM82B = EH, FAM35A = EH, SMARCA2 = EH, RABL3 =EH 54.24
19 FAM126B = EH, FBXL3 = EH, ASPH = EH, GABPA = EH, DCUN1D1 = EH 55.93
20 ZFP62 = EH, LOC653501 = EH, TTC30B = EH, C80orf48 = EH, ZNF285 = EH 61.02
21 LOC653501 = EH, ZNF658 = EH, ZNF214 = EH, ZNF230 = EH, KIAA1383 =EH 62.71
22 ZNF2 = EH, SENP8 = EH, ZNF396 = EH, ZNF346 = EH, LOC158572 = EH 64.41
23 C4orf38 = EH, ZKSCAN3 = EH, ZNF658 = EH, FLRT2 = EH, ZNF396 = EH 66.1
24 TNFRSF1B = EL, GPRIN1 = EL, RUNXI1 = EL, ST8SIA4 = EL 76.27
25 TGFBI = EL, TNFRSF1B = EL, RUNX1 = EL, ST8SIA4 =EL 77.97
26 PODN = EH, MFAP4 = EH, PID1 = EH, ANKRD35=EH 81.36
27 MFAP4 = EH, FEZ1 = EH, PID1 =EH 83.05
28 QDPR = EH, FAM165B = EH, NGFRAP1 = EH 84.75
29 RHOC =EL, UBTD1 = EL, MPG =EL 93.22
30 CLTA =EL, CD63 = EL, PLA2G16 = EL 94.92
31 LRRN4CL = EH, F10 = EH, ANKRD35 = EH 96.61

Note: The labels next to the genes refer to gene expression values: extremely low (EL), low (L), medium (M), high (H) and
extremely high (EH).

presence of GSTP1 in the pattern, which downregulation is very common in prostate cancer
(about 80% of cases’'). Hence, this pattern suggests an interaction that could require further
research studies.

Another interesting pattern is the one with ID 12 (see Table 9), which involves genes related
to the pathway Wnt. Among them, RNF213, CHDS, and UBE20 have been already studied™
and marked as related to such a pathway. The rest of the genes (TMEM48 and PPFIA1) might
reveal any kind of functional implication in the pathway.

The pattern with ID 14 (see Table 9) contains altered genes in erythroleukemia cells, a
variety of acute leukaemia. Also, two of its genes, ARID1A and NRIP1 are associated with
signalling carried out by the androgen receptor pathway, one of the main mutated signalling
pathways in prostate cancer. This signalling pathway regulates multiple cellular events such as
proliferation, apoptosis, migration, invasion and differentiation.’”

Finally, the genes included in the pattern with ID 23 (see Table 10) are related to dys-
functions in muscle contraction. Muscle contraction dysfunction is a prevalent phenomenon in
a wide variety of cancers regardless of stage or nutritional status,” and the following genes
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TABLE 9 Final set of patterns obtained from the cancer group of patients

ID

10
11
12
13
14
15
16
17
18
19
20
21

Patterns

CTF1 =EL, RND2 = EL, ST6GALNAC2 =EL

CTF1 =EL, RND2 =EL, PCDH7 = EL

GSTP1 =EL, CTF1 = EL, SLC2A9 = EL, GJA1 = EL, S100A16 = EL, ALDH3A1 = EL,
SMARCD3 = EL, ID1 = EL, NGFR = EL, ITGB4 = EL, TP63 = EL, TPRG1 = EL,
GPX2 =EL, PDPN =EL

XYLB = EH, UBE20 = EH, ZNF253 = EH, DNAJC16 = EH, ZNF828 = EH,
ARID1A = EH,

SMCRS8 = EH, TMEM48 = EH, CKAP5 = EH, ZBTB44 = EH, CELF1 = EH, SPTLC2 = EH,

C10orf46 = EH

GSTP1 = EL, SLC2A9 = EL, S100A14 = EL, ALDH3A1 = EL, SMARCD3 =EL,
WFDC2 =EL,

UBE2QL1 =EL, ID1 = EL, PHYHIP = EL, ST6GALNAC2 = EL, GPX2=EL,
NIPAL4 =EL,

ITGB4 =EL

ZNF664 = EH, UBE20 = EH, PAXIP1 = EH, UBAP2 = EH, SYNJ2 = EH, ZNF253 = EH,
GRSF1 = EH, CKAP5 = EH, ZBTB33 = EH, ADNP = EH

EFNBI1 =EL, ETNK2 = EL, CAV2 = EL, EFEMP2 = EL, TCF7L1 = EL, ANO1 = EL,
SOX15 =EL, FBXO17 = EL, GAS6 = EL, DKK3 = EL

SLC2A9 = EL, ALDH3A1 = EL, TPRG1 = EL, GPX2 = EL, GIB5 =EL, GJB4 =EL,
CSTA =EL, TP63 = EL, NTN4 = EL

CSRP1 =EL, ACTC1 = EL, MPP2 = EL, JPH4 = EL, SRD5A2 = EL, TMEM35 =EL,
HRNBP3 =EL

HSPB8 = EL, MPP2 = EL, KY = EL, LDB3 = EL, PGM5P2 = EL, ATP1A2 =EL
LAMB3 = EL, GPR87 = EL, CHST9 = EL, TRIM29 = EL, KRT5 = EL, LOC642587 = EL
UBE20 = EH, TMEM48 = EH, RNF213 = EH, CHD8 = EH, PPFIA1 = EH
SERPINB1 =EL, ID1 = EL, TPRG1 = EL, FHL2 = EL, NGFR = EL

RFFL = EH, UBE20 = EH, NRIP1 = EH, ARID1A = EH, CELF1 = EH

ANGPT1 = EL, TPM1 = EL, POPDC2 = EL, PRICKLE2 = EL

MYO10 = EH, ZNF609 = EH, RREB1 = EH

SNAP25=EL, ALDH1A2 =EL, CCBE1 =EL

PLS3 = EL, ELF4 = EL, ANTXR1 = EL

KY =EL, LDB3 =EL, CCBE1 =EL

SERPINB1 = EL, MECOM = EL, AMIGO2 = EL

LARS = EH, POLR1A = EH, ANKHD1-EIF4EBP3 = EH

Coverage
(% of data)

36.00
38.00

40.00

56.00

58.00

60.00

62.00

64.00

66.00

68.00
70.00
72.00
74.00
76.00
78.00
80.00
82.00
84.00
86.00
88.00

90.00

Note: The labels next to the genes refer to gene expression values: extremely low (EL), low (L), medium (M), high (H) and
extremely high (EH).
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TABLE 10 Final set of patterns obtained from the adjacent tissue group of samples

Coverage
ID Patterns (% of data)
22 TMSB15A = EL, SYNGR2 = EL, RABEP2 = EL, C19orf46 = EL, MPST = EL, 36.00

STRA13 =EL,
ATP6V1G1 = EL, SPDEF = EL
23 MYL9 = EH, CNN1 = EH, KCNMB1 = EH, CSRP1 = EH, TPM1 = EH, TAGLN = EH, 58.00

TPM2 =EH
24 CNN1 =EH, ACTG2 = EH, CSRP1 = EH, TPM1 = EH, DBNDD2 = EH 60.00
25 MYL9 = EH, GEFT = EH, TPM1 = EH, TAGLN = EH, TPM2 = EH 62.00
26 CCDCS82 =EH, IL15=EH, SEPT10 = EH, HMGN4 = EH, CHURC1 = EH 70.00
27 CNN1 =EH, MYL9 = EH, GCOM1 = EH, CSRP1 = EH 72.00
28 CCDCS82 =EH, VAMP3 = EH, CHURC1 = EH, HMGN4 = EH 74.00
29 FAM76A = EH, IL15=EH, KLHDC1 = EH, CCDCS82 = EH 76.00
30 HEBP2 = EL, C20rf79 = EL, TMSB15A = EL 78.00
31 GSTZ1 = EL, POLD4 = EL, SLC35C2 = EL, PRKCZ = EL, BAIAP2 = EL 80.00
32 HEBP2 = EL, STRA13 = EL, H2AFJ = EL, NECAB3 =EL 82.00
33 TGFB1I1 = EH, PDLIM7 = EH, HAPLN2 = EH, TAGLN = EH 84.00
34 DDAH1 =EL, ADM2 = EL, GNPNAT1 = EL 86.00
35 RPS2 = EL, EEF1G = EL, CENPM = EL 88.00
36 PLBD1 = EH, UNC5B = EH, KSR1=EH 90.00

Note: The labels next to the genes refer to gene expression values: extremely low (EL), low (L), medium (M), high (H) and
extremely high (EH).

have been related to that: MYL9, KCNMB1, TPM1, TAGLN, TPM2 and CNN1. CNN1 is also a
tumour suppressor that encodes an actin-binding protein that stabilizes the actin filamentous
systems.’” Also, in String,”® the protein encoded by the last gene in the pattern (CSRP1) appears
as having a predicted interaction with all the other genes in the pattern.

4.6 | KICA analysis

Renal cell cancer is the most common type of kidney cancer. The incidence of kidney cancer
was recently estimated to be 403,262 new cases and 175,098 deaths in 2018." Age, race, and
gender play a role in the disease. This kind of cancer is more common in men between the ages
of 60 and 80. This case study analyses a real data set comprising 72 paired samples and 20,531
genes through the proposed approach.

First, the number of genes is reduced to 10,815 genes with a significant differential ex-
pression among the two groups. The set of genes is then discretized into 5 labels, and the EPM
algorithm is run by considering minimum support thresholds of 32% and 38% for cancer and
healthy data sets, respectively. After that, the total number of frequent patterns obtained from
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TABLE 11 Final set of patterns obtained from the cancer group of patients

ID

9
10

Patterns

FXYD4 = EL, BSND = EL, ATP6V1G3 =EL

PLA2G4F = EL, BSND = EL, ATP6V1G3 = EL

FXYD4 = EL, BSND = EL, LOC389493 = EL

FXYD4 = EL, RAB25 =EL, ATP6V1G3 =EL

SEPT1 = EH, CD2 = EH, CD3E = EH, SIT1 = EH, IL2RG = EH, KIAA0748 = EH
RALYL = EL, HEPACAM?2 = EL, FOXI1 = EL, ATP6V1G3 = EL
CA10=EL, AGR2 =EL, LOC389493 = EL

EPB41L5 = EL, MSI2 = EL, KIAA0564 = EL, ZNF844 = EL, C90rf80 = EL
ECSCR =EH, CDH5 = EH, PCDH12 = EH, CD34 =EH

LRBA = EL, TMEM184C = EL, C90rf80 = EL

Coverage
(% of data)

51.39
56.94
59.72
68.06
77.78
80.56
83.33
86.11
93.06
95.83

Note: The labels next to the genes refer to gene expression values: extremely low (EL), low (L), medium (M), high (H) and
extremely high (EH).

the cancerous group was 81,299, and 43,380 from the healthy group. Then, to improve the
interpretation of experts, this set of patterns was reduced by the proposed filtering procedure,
resulting in a set of 10 patterns (see Table 11) from the cancer group, and 5 from the healthy
group (see Table 12). These representative patterns can represent 95.83% and 90.28% of the

TABLE 12 Final set of patterns obtained from the adjacent tissue group of samples

ID
11

12

13

14

15

Patterns

TMEM30B = EH, ERMP1 = EH, SRGAP3 = EH, COBLL1 = EH, MPP7 = EH,
EHF = EH,

KLHL14 = EH, ILDR1 = EH, TSPYL5 = EH, GRHL2 = EH, CDH1 = EH, CDKL2 = EH,
ESRP1 = EH, Clorfl16 = EH, TLR5 =EH

HSPA2 = EH, AIF1L = EH, Cl4orf4 = EH, MAL = EH, HOXB9 = EH, UXS1 = EH,
HOXB5 = EH, SLC29A2 = EH, HOXB8 = EH, CNP = EH, GLTP = EH, MRPS6 = EH,
RECQL5 =EH

SLC7A8 = EH, ENPP6 = EH, XPNPEP2 = EH, SLC22A8 = EH, ALDOB =EH,
DAO =EH,

SUSD2 =EH

ESRRB = EH, SIM2 = EH, SYT7 = EH, NATSL = EH, FLJ42875 = EH,
LOC25845=EH

CLIC5=EH, PTPRO =EH, WT1 =EH

Coverage
(% of data)

38.89

41.67

79.17

81.94

90.28

Note: The labels next to the genes refer to gene expression values: extremely low (EL), low (L), medium (M), high (H) and
extremely high (EH).
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whole set of patients. Some of these patterns are described below after the application of a
functional enrichment analysis.

Taking the aforementioned results, the functional enrichment analysis and literature
review into account, it is possible to assert that several patterns are highly related to
functions involved in cancer. For example, the patterns with ID 5 and 9 (see Table 11) refer
to enriched biological processes related to the development of the immune response and
angiogenesis. Specifically, in the pattern with ID 5, we only obtain a single gene which
function is not directly linked to the development of T lymphocytes, that is, SEPT1.”” SEPT1
is used in cytokinesis and the maintenance of cell morphology, and it promotes the mi-
gration of cancer cells when it is upregulated. Additionally, the deregulation of the immune
system is known in several types of cancer.

Another interesting pattern, the one with ID 11 (see Table 12), is composed of genes
involved in processes of regulation of the transport of proteins and organization of cellular
unions. These genes are found with a higher level of expression in healthy samples indicating
that they are downregulated in tumour samples. Further research studies’® revealed that genes
contained in the pattern such as EHF, Clorfl16, ILDR1, and ESRP1 are related to migration
and invasion processes in cancer. At the same time, ESRP1 may be intimately related to those
genes that mediate cell binding functions. Some splice variants regulated by ESRPs genes are
related to cytoskeleton reorganization and cell adhesion.™

5 | LESSON LEARNT

Emerging patterns is a powerful descriptive analysis technique that can be used in the study of
cancer. Most existing cancer studies are based on binary comparisons (cancer samples vs.
healthy samples) which is the aim of this technique. According to the study carried out, the
discriminatory power of this technique enables to search for simple gene relationships that can
be easily detected within the use of computers. More interesting is the feasibility to find high-
order relationships that produce interactions not described yet. The proposed approach, which
is based on EPM, has enabled alluring results to be obtained when it was applied to several
types of cancer. Some discovered genes have been described individually in cancer, while
others have a known interaction or participate in the same biological processes. Other genes,
however, have not been associated with cancer yet, no study demonstrates their interaction
with other genes of the discovered pattern, or they are poorly studied.

A really interesting insight was discovered with pattern {LDB2=EL, CXorf36 =EL,
MMRN2 = EL, ECSCR=EL, MYCT1 =EL, CLEC14A = EL}, belonging to the breast cancer
analysis. Most of the genes involved with a low expression level in this pattern are well-known
for their relationship with cell death avoidance processes. The gene LDB2, however, does not
have a recorded interaction with the rest of the genes in the pattern. Something similar hap-
pens with gene CXorf36 (also called DIPK2B), which function remains poorly studied. It is,
therefore, necessary to perform further research studies on these genes, which might be of vital
interest to the function and possible interaction of these genes as supposed tumour suppressors.

Another alluring solution is determined by the pattern PSMB4 = EL, KRTCAP2 =EL,
SNRPG =EL, RAG1AP1=EL, HSPE1=EL, SSBP1=EL, CHCHD8=EL, TIMMI10=EL,
TMED9Y = EL, discovered in the lung adenocarcinoma analysis. Some of these genes such as the
components of the proteasome have been reported to mediate functions that promote the
development of cancer. In contrast, the role of genes such as KRTCAP2, RAG1AP1 and TMED9
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remains unexplored in lung cancer. Therefore, it is of high interest to perform a further
investigation on these genes to reveal the existence of some nexus of interaction between them
that would allow the development of new therapies in cancer.

Another interesting pattern that may require further study is LOC653501 = EH,
ZNF658 = EH, ZNF214 = EH, ZNF230=EH, KIAA1383 = EH, obtained in thyroid cancer
study. This pattern groups together several genes corresponding to zinc finger proteins that are
known to act as transcriptional activators. These proteins were reported in cancer studies, but
the underlying mechanisms by which it influences cancer need further studies. Depending on
their binding to different partners, zinc finger proteins may mediate the opposite function.
In this case, those genes that encode these proteins are upregulated in thyroid cancer, and they
are also related to MAP10. The functions of MAP10 include cell division and positive regulation
of cytokinesis, both of which are involved in cancer progression. The obtained results suggested
a possible interaction nexus between zinc finger protein genes and MAP10 that could be
intimately linked to the development and progression of thyroid cancer. However, the me-
chanisms by which this interaction occurs should be reviewed in future research.

These are just some examples of insights extracted by the proposed workflow. Really
interesting set of genes were described in the case studies. Not only unknown genes were obtained
from these case studies but also well-known interactions among genes that demonstrate that the
proposed methodology works well. For example, some of the genes belonging to the set {LIPE,
GYG2, AQP7, GPD1, CIDEC, PNPLA2} are known by their implication in the deregulation of lipid
metabolism in cancer. Deregulation in lipid metabolism is commonly associated with alternative
means of obtaining energy from tumour cells, such as glucose metabolism.

6 | CONCLUSIONS

In this study, a new approach for cancer analysis based on the use of emerging patterns is
proposed. The proposal includes four different procedures that are specifically designed to deal
with RNA-Seq data on cancer. The approach enables the extraction of useful and highly
interpretable knowledge from data belonging to several types of cancer without requiring any
kind of starting hypothesis or previous knowledge. Also, the proposed approach has the ad-
vantage of using high order relationships without being restricted to pair-wise correlations or
restricted by assuming homoscedasticity, allowing a more powerful descriptive analysis without
the introduction of biases commonly assumed by other techniques. The proposed approach has
been evaluated on different real scenarios related to varied cancer types. Six different case
studies based on RNA-Seq data taken from The Cancer Genome Atlas (TCGA) were analysed.
The obtained results have demonstrated the usefulness of the proposal. Some of the extracted
insights were already described in the specialized literature as good cancer bio-markers, while
other results have not been described yet due to some existing techniques are biased by bio-
logical databases. More specifically, among the results, we found some genes relate to the
deregulation of the cell cycle in breast cancer, a phenomenon described in the literature and
that certifies the adequacy of this approach. On the other hand, not widely studied genes have
been discovered to be involved in the disease. Associations of genes such as KRTCAP2,
RAGI1AP1 and TMED?9 have been detected along with other genes related to the development
of cancer through the proteasome in lung adenocarcinoma while CXorf36 and LDB2 could be
new biomarkers related to cell death avoidance functions. For all the above reasons, EPM, and
more specifically, the proposed approach should be considered in genomic data studies, not
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only by its potential for the detection of new biomarkers but also because it can be really useful
in the data exploratory analysis.

Finally, it is mandatory to highlight that future research works may extend the use of EPM
to multiple diseases such as liver, kidney, heart, mental, or any medical application where two
groups need to be compared. This methodology is also feasible to apply to the analysis of
additional diseases such as tropical diseases (malaria) since it compares healthy with unhealthy
groups. The present research work can also be extended to consider not only two groups to be
compared but multiple ones through a methodology named contrast set mining.
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