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Abstract

We introduce a new family of Galilean spacetimes, which are relevant in the context of
a generalized Newton-Cartan Theory. We study its geometrical structure and analyse the
completeness of its inextensible free falling observers. This sort of spacetimes constitutes
the local geometric model of a much wider family of spacetimes admitting certain confor-
mal symmetry. Moreover, we find some sufficient geometric conditions which guarantee
a global splitting of a Galilean spacetime as a Galilean Generalized Robertson-Walker
spacetime.
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1 Introduction

General Relativity is so far the most accurate and successful theory to describe the space-time
structure and the gravitational phenomena. The evolution of the universe on a large scale was
aptly described in the first half of the 20th century by means of the Robertson-Walker cos-
mological models (or fairly, Friedmann-Lemâıtre-Robertson-Walker models). These models
assume that the matter distribution and the “space relative to the family of observers com-
movil with the matter” are homogeneous and isotropic. These hypothesis may be weakened
in order to describe a universe in a more accurate scale. With this objective, much more re-
cently, new cosmological models have been introduced, as the Generalized Robertson-Walker
(GRW) spacetimes [2]. This kind of relativistic spacetimes have been intensively studied from
a mathematical perspective (see, for instance, [14], [15], [9], [11], [5].)
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However, the geometric formulation of the Newtonian’s Gravitation, firstly postulated by
E. Cartan [7],[8], after the appearance of the Einstein’s General Relativity Theory, is still of
interest and significant for several reasons.

On one hand, it formulates the classical Newtonian gravitation as a covariant theory and
shows that certain results previously considered as characteristic or singular of the theory of
Relativity are shared by the (geometric) gravitational Newton-Cartan Theory. In fact, the
Newtonian gravity also arises as a consequence of the curvature of a connection in the space-
time, which does not come from any semi-Riemannian metric. Moreover, in the geometric
formulation of Newtonian’s Gravity Theory, the spacetime structure is dynamical in the sense
that it participates in the unfolding of physics rather than being a fixed backdrop against
which it unfolds.

On the other hand, it allows to establish from an accurate and intrinsic way the well
known claim about the Newtonian theory of Gravitation is a certain “limit” of the theory of
Relativity.

Another important question is that a geometric approach enables possible generalizations
of Newtonian Theory, via the assumption of certain symmetries on Galilean spacetimes (see
Section 2), which are the geometrical “arena” for the Newton-Cartan gravitation. So, in [12]
the author studies the symmetry imposed on a Galilean spacetime by the cosmological princi-
ple, obtaining the Galilean model analogous to the relativistic Robertson-Walker spacetimes.
The notion of symmetry is clearly basic in Physics. On a geometrical spacetime model,
symmetry is usually based on the assumption of the existence of a one-parameter group of
transformations generated by a Killing or, more generally, by a conformal vector field (see,
[17]).

In this work, we introduce a new family of Galilean geometrical models, which generalize
the non relativistic Robertson-Walker spacetimes, in the same way that GRW spacetimes
generalized the Friedmann-Lemâıtre-Robertson-Walker spacetimes: the Galilean Generalized
Robertson-Walker (GGRW) spacetimes (Sect. 3). A GGRW spcetime possesses an infinitesi-
mal symmetry given by the existence of a timelike irrotational conformally Leibnizian vector
field. Several geometrical properties and physical interpretations for this family of spacetimes
are given in Section 3, as the possible existence of singularities or the completeness of its free
falling observers.

Section 9 is devoted to the study of Galilean spacetimes wich admits a timelike irrotational
conformally Leibnizian vector field (ICL). We show that a ICL Galilean spacetime must be
locally a GGRW spacetime (Sect. 4). Finally, Section 13 is devoted to face the following
kind of splitting problems: under what geometrical assumptions an ICL spacetime globally
decomposes as a GGRW spacetime.

2 Set up

Recall that a Leibnizian structure on a (non relativistic) spacetime M1 is a pair (Ω, g) con-
sisting of a differential 1-form Ω ∈ Λ1(M), nowhere null (Ωp 6= 0, ∀p ∈ M) and a positive
definite Riemannian metric g on its kernel. Specifically, let us denote by An(Ω) = {v ∈
TM , Ω(v) = 0} the smooth n-distribution induced on M by Ω. If we denote by Γ(M) the set

1M is a smooth connected manifold of any dimension m = n+ 1 ≥ 2.
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of smooth vector fields on M , we may construct the subset Γ(An(Ω)) = {V ∈ Γ(TM) / Vq ∈
An(Ω), ∀p ∈M}. So, the map

g : Γ(An(Ω))× Γ(An(Ω)) −→ C∞(M), (V,W ) 7→ g(V,W ),

is smooth, bilinear, symmetric and positive definite. Hence, M is endowed with a sub-
Riemannian structure defined on the bundle An(Ω), i.e., the annihilator of the degenerate
metric Ω⊗ Ω (see [3] and [4], for details).

Points of M are usually called events. The Euclidean vector space (An(Ωp) , gp) is called
the absolute space at p ∈ M , and the linear form Ωp is the absolute clock at p. A tangent
vector v ∈ TpM is named spacelike if Ωp(v) = 0 and, otherwise, timelike. Additionally, if
Ωp(v) > 0 (resp. Ωp(v) < 0), v points out the future (resp. the past).

An observer in a Leibnizian spacetime M is a timelike future unit smooth curve γ : J −→
M , i.e., its velocity γ′ satisfies that Ω(γ′(s)) = 1 for all s ∈ J . The parameter s is called the
proper time of the observer γ. A vector field Z ∈ Γ(TM) with Ω(Z) = 1 is called a field of
observers, this is, its integral curves are observers.

When the smooth distribution An(Ω) is integrable (equivalently, if the absolute clock Ω
satisfies Ω∧dΩ = 0), the Leibnizian spacetime (M,Ω, g) is said to be locally sincronizable, and
making use of the Frobenious Theorem (see [16]), it may be foliated by a family of spacelike
hypersurfaces {Fλ}. In this case, it is well-known that each p ∈M has a neighbourhood where
Ω = f dt, for certain smooth functions f > 0, t, and the hypersurfaces {t = constant} locally
coincides with a leaf of the foliation F . Thus, any observer may be synchronized through
the “compromise time” t, obtained rescaling its proper time. In the more restrictive case
dΩ = 0, then the Leibnizian spacetime (M,Ω, g) is called proper time locally synchronizable,
and one has, locally, Ω = dt. Now, observers are synchronized directly by its proper time (up
to a constant). When Ω is exact, Ω = dt for some function t ∈ C∞(M), called the absolute
time function. In this case, any observer may be assumed to be parametrized with t. Notice
that the notion of (local and global) synchronizability is intrinsic to the Leibnizian structure,
applicable for every observer, in contrast to the relativistic setting, where the analogous
concepts have meanings only for fields of observers.

According to [4], a field of observers is called Leibnizian if the stages Φs of its local flows
are Leibnizian diffeoemorphisms, that is, they preserve the absolute clock and space, i.e.,

Φ∗sΩ = Ω, and Φ∗sg = g.

On the other hand, the inertia principle must be codified through a connection on the
spacetime. However, a Leibnizian structure has not a canonical affine connection associated.
Then, it is required to introduce a compatible connection with the absolute clock Ω and the
space metric g, i.e., a connection ∇ such that

(a) ∇Ω = 0 (equivalently, Ω(∇XY ) = X(Ω(Y )) for any X,Y ∈ Γ(TM)).

(b) ∇g = 0 (i.e., Z(g(V,W )) = g(∇ZV,W ) + g(∇ZW,V ) for any Z ∈ Γ(TM) and V,W
spacelike vector fields).

Such a connection is named Galilean. A Galilean spacetime (M,Ω, g,∇) is a Leibnizian
spacetime endowed with a Galilean connection ∇. In addition, ∇ is said symmetric if its
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torsion vanishes identically (Tor∇(X,Y ) = ∇XY −∇YX− [X,Y ] ≡ 0). From a physical point
of view, a symmetric connection is desirable since is completely determined by its geodesics,
i.e., by the free falling observers of M . From now on, we will only consider symmetric Galilean
connections on the spacetime.

Given two Galilean spacetimes (M,Ω, g,∇) and (M ′,Ω′, g′,∇′), a diffeomorphism F :
M −→M ′ is said to be Galilean if F ∗Ω′ = Ω, F ∗g′ = g and F ∗∇′ = ∇, i.e., ∇′dF (X)dF (Y ) =
∇XY .

For each fixed field of observers Z on a Galilean spacetime (M,Ω, g,∇), the gravitational
field induced by ∇ in Z is given by the spacelike vector field G = ∇ZZ. The vorticity or
Coriolis field of Z is the 2−form ω(Z) = 1

2Rot(Z), defined as

ω(Z)(V,W ) =
1

2

(
g(∇V Z,W )− g(∇WZ, V )

)
∀V,W ∈ Γ(An(Ω)).

The main result of [4, Th.5.27] claims that, for a fixed field of observers Z on a Leibnizian
spacetime (M,Ω, g) with dΩ = 0, the set of all symmetric Galilean connections is bijectively

mapped onto
(

Γ(TM),Λ2(An(Ω))
)

. Each symmetric Galilean connection ∇ is mapped to(
G(Z),Rot(Z)

)
. Thus, the gravitational field and the vorticity of a field of observers deter-

mine a unique symmetric Galilean geometry of the spacetime.

Additionally, a Leibnizian field of observers Z in a Galilean spacetime (M,Ω, g,∇) is
named Galilean if it is affine for ∇, that is, LZ∇ = 0, where L denotes the Lie derivative.
Finally, a Galilean spacetime is said Newtonian if the (symmetric) connection ∇ restricted to
the spacelike vectors is flat, and it admits an irrotational Galilean field of observers. This kind
of spacetimes has traditionally represented the classical (non relativistic) geometric model of
gravity.

3 Galilean Generalized Robertson-Walker spacetimes

In this section we introduce a new family of Galilean geometric models, which are the classical
version of the relativistic Generalized Robertson-Walker spacetimes defined in [2].

Definition 1 Let I ⊆ R be a real interval, (F, h) a n-dimensional connected Riemannian
manifold, and f ∈ C∞(I) a smooth positive function on I. A Galilean spacetime (M,Ω, g,∇)
is called Galilean Generalized Robertson-Walker spacetime (GGRW) if M = I×F , Ω = dπI ,
g is the restriction to the bundle An(Ω) of the following (degenerate) metric on M ,

g = (f ◦ πI)2 π∗Fh, (1)

where πI , πF are the canonical projections onto the open interval I and the fiber F respectively,
and ∇ is the only symmetric Galilean connection on M such that

∇∂t∂t = 0, and Rot ∂t = 0, (2)

where ∂t = ∂/∂t is the global coordinate vector field associated to t := πI .

The vector field ∂t defines a field of observers inM (Ω(∂t) = 1), which we will call commovil
observers, by the similarity with the relativistic Robertson-Walker spacetimes. Then, the
conditions (2) in above definition mean that commovil observers are free falling and they do
not rotate.
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Example 2 Let us consider a GGRW with I = R and F = Rn endowed with the usual
Euclidean metric. If f(t) = constant, then the Galilean connection coincides with the standard
flat connection of the affine space Rn+1. In addition, the commovil observers satisfy the
necessary conditions to assure the Newtonian character of this spacetime.

3.1 Some physical interpretations

From a physical viewpoint, a GGRW spacetime can model a universe (large-scale) composed
by matter (galaxies) only subjected to the proper gravity action. Their trajectories are
identified with the integral curves of the geodesic vector field ∂t. The cosmological principle
leads to a spatially homogeneous and isotropic universe2, in such a way that its evolution is
only produced by means dilatations and contractions with scale factor f(t) depending only
on the absolute time t. This situation is modelled by a (non relativistic) Robertson-Walker
spacetime, namely, a GGRW with fiber F a Riemannian manifold with constant sectional
curvature (see, [12]). However, although the hypothesis of spatial homogeneity and isotropy
is reasonable as a first approximation of the large scale structure of the universe, it could not
be appropriate when we consider a more accurate scale. This fact motives the introduction
of this new family of Galilean spacetimes.

On the other hand, for each event p ∈ M , we may parametrize I × {p} by γp(t) = (t, p),
being γp a commovil observer in ∂t. Set q ∈ M , q 6= p. The absolute distance between
two instantaneous observers γp and γq in Ft = {t} × F is given by the Riemannian distance
in Ft. In particular, when f has positive derivative, the “spaces Ft are expanding” (or,
alternatively, the distance between commovil observers is increasing). Conversely, if f ′ < 0,
the separation between commovil observers is decreasing. When f(t) = 1 (or constant) the
commovil observers are relatively statics.

Notice that this family of spacetimes allows us to describe many scenarios. For instance, if
we consider I = R, N compact and f(t) = 1

1+t2
, the commovil observers measure an expanding

universe during the time interval (−∞, 0), and contracting for t ∈ (0,+∞). There is no
physical singularities, but the distances between two arbitrary observers can be arbitrarily
small for |t| big enough.

But we can also find GGRW spacetimes with physical singularities. Indeed, consider
I = (−a, a) and f(t) =

√
a2 − t2, a > 0. Since lim

t→±a
f(t) = 0 and lim

t→±a
f ′(t) = ±∞, we deduce

that the model has a Big Bang singularity at t = −a and a Big Crunch at t = a. The reader
may compare this model with the spatially closed Friedmann models [13, Chap.2].

In a Newtonian spacetime, the Poisson equation relates the density of mass of the universe
with its intrinsic geometry, in an analogous way that Einstein equations in the relativistic
setting,

Ric = 4πG%Ω⊗ Ω. (3)

Here, Ric is the Ricci tensor of ∇, G the universal gravitational constant, and % the density
of mass (the only source of the gravitational field).

2A Leibnizian spacetime (M,Ω, g) (with integrable distribution An(Ω)) is said to be spatially homogeneous
if for any p, q ∈M located in the same leaf of the foliation, there exists a Leibnizian diffeomorphism carrying p
into q. Analogously, M is called spatially isotropic at an event p ∈M if, for any spacelike vectors v, w ∈ TpM ,
there is a Leibnizian diffeomorphism ψ such that dψ |p (v) = w.
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If we admit that this equation is also true for the GGRW spacetimes, we get

(i) (F, h) must be Ricci-flat.

(ii) Ric(∂t, ∂t) = −n f ′′

f = 4πG%. 3

Notice that, from (ii), we immediately deduce that density of mass % must be constant at
each instant, and the scale factor f must satisfy f ′′(t) ≤ 0 for all t ∈ I.

Corollary 3 If in a RRGW spacetime the Poisson equation holds and f is not constant, then
I 6= R. In fact,

(i) if there exists t0 ∈ I such that f ′(t0) > 0, then −∞ < Inf(I),

(ii) if there exists t0 ∈ I such that f ′(t0) < 0, then Sup(I) <∞.

Notice that this result implies that if a GGRW spacetime satisfies the above assumptions,
then is not geodesically complete (the integral curves of ∂t cannot be complete, see the follow-
ing subsection), i.e., a Big Bang or a Big Crunch happens. We remark that this consequence
is identical for the relativistic GRW spacetimes (see, [13, Chap. 12]).

3.2 Completeness of free falling observers in a GGRW spacetime

We now proceed to analyze when the inextensible free falling trajectories in a GGRW space-
time are complete. Physically we are looking for geometric assumptions that guarantee that
every free falling observers lives forever.

First, we obtain an analogous result to the geodesic normalization lemma in semi-Riemannian
manifolds.

Lemma 4 Let γ be a geodesic in a GGRW spacetime. Then, Ω(γ′) is constant along the
trajectory of γ.

Proof. Since ∇γ′γ′ = 0, using (a) it is directly obtained that 0 = Ω(∇γ′γ′) = γ′(Ω(γ′)).
�

The relevant cases correspond with Ω(γ′) = 0 or 1. The first one (Ω(γ′) = 0) means that
γ is spacelike and contained in a leaf Ft of the foliation of Ω. As ∇ coincides with the Levi-
Civita connection of (Ft, f(t)2 h), the completeness of this kind of geodesics is equivalent to
the geodesic completeness of (F, h). Thus, from now on we will deal with free falling observers
(γ geodesic with Ω(γ′) = 1).

Theorem 5 A GGRW spacetime is geodesically complete if and only if I = R and the fiber
(F, h) is (geodesically) complete.

Proof. Let γ(s) = (θ(s), σ(s)) be a free falling observer. Since Ω(γ′) = 1, we can write

γ(t) = (t, σ(t)), and γ′ = ∂t + σ′,

where σ′ is the horizontal lift of σ′ from F to M . Consequently, using that ∂t is geodesic and
[∂t, σ′] = 0, we have

0 = ∇γ′ γ′ = ∇σ′ σ′ +
2f ′

f
σ′. (4)

3To compute Ric(∂t, ∂t), formula (8) of the following section has been used.
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Since ∇σ′ σ′ = ∇σ′σ′, and taking into account that F is homothetic to each leaf of F (and
homothecies preserve the connections), the completeness of Eq.(4) is equivalent to the com-
pleteness of

∇hσ′σ′ +
2f ′

f
σ′ = 0, (5)

where ∇h is the Levi-Civita connection of h. As f ∈ C∞(R), a straightforward application of
[6, Th.2] gives the completeness of the inextensible solutions of the non-autonomous Eq.(5),
and the proof is ended.

�

4 Irrotational conformally Leibnizian spacetimes

In this section we present a wider family of Galilean spacetimes which locally exhibit the
structure of a GGRW spacetime. As a previous step, we introduce the concept of conformally
Leibnizian field of observers, generalizing the well-known notion of Leibnizian observer.

Definition 6 Let (M,Ω, g) be a Leibnizian spacetime. A vector field X is called spatially
conformally Leibnizian vector field if the Lie derivative of the absolute space metric satisfies

LXg = 2λ g, (6)

for some smooth function λ ∈ C∞(M). If X additionally verifies

LXΩ = 2λΩ, (7)

for the same conformal factor λ, then X is named conformally Leibnizian vector field.

Note that a conformally Leibnizian vector field is Leibnizian if and only if the conformal
factor λ is identically zero [4].

Remark 7 Condition (6) may be also expressed as

X(g(V,W )) = λ g(V,W ) + g([K,V ],W ) + g([K,W ], V ), ∀V,W ∈ Γ(An(Ω)).

Analogously, assumption (7) is equivalent to

dΩ(X,Y ) + Y (Ω(X)) = λΩ(Y ), ∀Y ∈ Γ(TM),

and means that distribution An(Ω) is invariant along the flow of vector field X. So, if this
distribution is integrable, the flow of X carries each leaf of the foliation to other one.

The following result shows that the GGRW spacetimes admit a timelike conformally Leib-
nizian vector field.

Proposition 8 Let (M = I × F,Ω = dt, g,∇) be a GGRW spacetime with scale factor
f ∈ C∞(I). Then, the vector field K := (f ◦ πI) ∂t is irrotational and conformally Leibnizian
and, consequently, satisfies the identity

∇XK = (f ′ ◦ πI)X, ∀X ∈ Γ(TM). (8)
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Proof. Let V,W be spacelike vector fields. A straightforward computation shows

Rot(K)(V,W ) = (f ◦ πI) Rot(∂t)(V,W ) = 0.

Consider a fixed point (t0, p) ∈M , and v, w ∈ TpF . Hence,

L
∂t
g |(t0,p)

(
(0, v), (0, w)

)
= η′(0),

where η(s) = g |(t0+s,p)

(
dΦs(0, v), dΦs(0, w)

)
, and Φs : M →M is the flow of the vector field

∂t, (t, q) 7→ (t+ s, q). Thus, dΦs(0, v) = (0, v) for all s ∈ R, and it follows

η(s) = f2(t0 + s)h(v, w).

As consequence, we have

L
∂t
g =

(2f ′

f
◦ πI

)
g.

Finally, taking into account that V (f ◦ πI) = 0 for any spacelike vector field, it holds that

LKg = 2 (f ′ ◦ πI) g, (9)

and K is spatially conformally Leibnizian with conformal factor λ = f ′ ◦ π.

From (9) and the irrotational character of K we obtain

g(∇V K,W ) = (f ′ ◦ πI) g(V,W ), ∀V,W ∈ Γ(An(Ω)).

Now let us consider X ∈ Γ(TM), which may be expressed at a point p as

X |p= % ∂t |p +
∑
i

µi vi, µi ∈ R,

where {vi}i is an orthonormal basis of
(
An(Ωp), gp

)
. Therefore,

∇XK |p= Ω(∇XK)p ∂t |p +
∑
i

gp(∇Xp
K, vi) vi.

Making use of ∇
∂t
∂t = 0, some computations give

∇XK |p= Xp(f ◦ πI) ∂t |p +(f ′ ◦ πI)(p)
∑
i

µivi = (f ′ ◦ πI)X |p,

and we obtain (8). From this equality, the conformally Leibnizian character of K is easily
deduced.

�

Definition 9 Let (M,Ω, g,∇) be a Galilean spacetime, whose absolute clock is closed (dΩ =
0). If M admits a timelike vector field K ∈ Γ(TM) satisfying

∇XK = ρX, ∀X ∈ Γ(TM), (10)

M is said Irrotational Conformally Leibnizian spacetime (ICL).
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Remark 10 Notice that condition (10) directly implies that K is conformally Leibnizian and
Rot(K)(V,W ) = 0, for all spacelike vector fields V,W .

As a first consequence of definition 9, we obtain that functions Ω(K) and ρ are constant
on each leaf of the foliation induced by Ω.

Lemma 11 Let (M,Ω, g,∇) be a ICL spacetime with irrotational conformally Leibnizian
vector field K and conformal factor ρ. Then

V
(
Ω(K)

)
= 0 and V (ρ) = 0, ∀V ∈ Γ(An(Ω)).

Proof. From (10) and (a), we have that

V
(
Ω(K)

)
= Ω(∇KK) = ρΩ(V ) = 0

and ρ =
K
(

Ω(K)
)

Ω(K) , for any spacelike vector field V . Finally, since [V,K] is spacelike, we have

V (ρ) =
1

Ω(K)
K
(
V (Ω(K)

)
= 0.

�

We have just seen that each GGRW is an ICL spacetime. Next theorem ensures that any
ICL spacetime is locally a GGRW spacetime.

Theorem 12 Let (M,Ω, g,∇) be an ICL spacetime. For each p ∈ M , there exist an open
neighbourhood of p, U , and a Galilean diffeomorphism Ψ : N −→ U , where N is a GGRW
spacetime.

Proof. Let Z = 1
Ω(K)K be the field of observers associated to K, and let Φs be its (local)

flow. Fixed a point p ∈M , we take a neighbourhood Up in the leaf Fp of the foliation induced
by Ω passing through p. Consider I ∈ R, 0 ∈ I, a suitable interval such that the flow Φs is
well-defined and one-one. Then, we may define the map

Ψ : I × Up −→M, (s, q) 7−→ Φs(q),

which satisfies,

dΨ |(s,q) (1, 0) = Z |Φs(q), dΨ |(s,q) (0, v) = dΦs |q (v),

for all (s, q) ∈ I × Up and v ∈ TpUp. Now, identifying πI ≡ t and ∂t ≡ (1, 0), and taking into
account that the flow of Z preserves Ω, we have

Ω
(
dΨ(∂t)

)
= Ω(Z) = 1 = dt(∂t),

and
Ω
(
dΨ |(s,q) (0, v)

)
= Ω

(
dΦs |q (v)

)
= Φ∗sΩ |q (v) = Ωq(v) = 0.

As a consequence, Ψ∗Ω = dt, and each level set of t corresponds with certain open set U ∩Fa
of some leaf of the foliation F induced by Ω.
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On other hand, condition (10) implies that K is conformally Leibnizian and making use
of Lemma 11, we get

LZg(V,W ) =
2 ρ

Ω(K)
g(V,W ), ∀V,W ∈ Γ(An(Ω)).

Now, let us consider v, w ∈ TpUp. Last equation may be rewritten as

lim
ε→0

1
ε

[
gΦs+ε(q)

(
dΦs+ε(v), dΦs+ε(w)

)
− gq

(
dΦs(v), dΦs(w)

)]
= 2ρ

Ω(K)

(
Φs(q)

)
g
(
dΦs(v), dΦs(w)

)
.

If we denote by

η(s) := Ψ∗g |(s,q)
(
(0, v), (0, w)

)
= g
(
dΦs(v), dΦs(w)

)
,

and taking into account Lemma 11, the following differential equation holds

η′(s) =
2ρ

Ω(K)

(
Φs(p)

)
η(s).

Thus, defining the function

f(s) := exp

(∫ s

0

ρ

Ω(K)

(
Φl(p)

)
dl

)
, (11)

we conclude that Ψ∗g = f2(t) gp, i.e., the induced metric on I × Up is like (1), with h = gp
and scale factor equal to (11).

Finally, we check that Z is an irrotational and geodesic vector field. From (10),

Rot(Z)(V,W ) = g(∇V Z,W )− g(∇WZ, V )

= 1
Ω(K) [g(∇VK,W )− g(∇WK,V )] = 0,

for all V,W ∈ Γ(An(Ω)). By using Lemma 11, a straightforward computation gives that
∇ZZ = 0. Since there is only one connection ∇ on M , it must be the induced one by means
of Ψ, (Ψ−1)∗∇GGRW , from the GGRW spacetime(

I × Up, dπI , (f ◦ πI)2 π∗Up
gp,∇GGRW

)
.

Therefore, Ψ is a Galilean diffeomorphism, and the proof is complete.
�

5 Global GGRW decompositions

We know that an ICL spacetime is locally a GGRW spacetime. Now, our aim here consists in
to look for additional assumptions on the geometry of an ICL spacetime, which lead to a global
splitting as a GGRW spacetime. This type of question has been yet discussed several times
in the relativistic setting (see for instance, [5], [10], [11] and [1]), i.e., under what conditions
on the geometry of a relativistic spacetime, this admits a global decomposition as a warped
product space or, in particular, as a GRW spacetime.
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Theorem 13 A Gailean spacetime
(
M,Ω, g,∇

)
, whose 1-form Ω is exact, admits a global

decomposition as a GGRW spacetime if and only if it is an ICL spacetime with a timelike
irrotational conformally vector field K, such that the flow of the associated field of observers,
Z := 1

Ω(K)K, is well defined and onto in a domain I × F for some interval I ⊆ R and some
leaf of the foliation F induced by Ω.

Proof. Since Ω is exact, Ω = dT for some absolute time function T ∈ C∞(M). Hence, the
leaves of the foliation are exactly the level sets of T , Ft = {q ∈M : T (q) = t}. We fix a leaf
F0 of the foliation induced by Ω. Denoting by Φs the global flow of Z, we can build the same
application of Th.12,

Ψ : I ×F0 −→M, (t, p) 7−→ Φt(p),

that is onto by hypothesis. In order to prove the injectivity, we only need to check that each
integral curve of Z intersect to each leaf of F only once.

We proceed reasoning by contradiction, and we suppose that an integral curve of Z, γ,
cut twice the same leaf Fb, b ∈ R. In that case, there are two values s1, s2 ∈ I, s1 < s2, such
that (T ◦ γ)(s1) = (T ◦ γ)(s2). Because of the real function T ◦ γ : I −→ R is smooth, the
Rolle Theorem applies, and there exists s∗ ∈ (s1, s2) such that

d

ds
(T ◦ γ)(s∗) = 0, ⇐⇒ dT

(
Z
(
γ(s∗)

))
= 0.

But this is a contradiction, because Z is a field of observers.

Making use of the bijectivity of Ψ, together with the local result shown in Th.12, we
conclude the proof.

�

Remark 14 (i) Note that the hypothesis on the absolute clock Ω automatically holds when
the spacetime is simply connected. (ii) Note that the assumption on the flow of Z trivially
holds when Z is complete.

Taking into account the previous Remark, we can assert

Corollary 15 Let
(
M,Ω, g,∇

)
be an ICL spacetime with timelike irrotational conformally

Leibnizian vector field K. If the absolute clock Ω is exact and 1
Ω(K)K is complete, then M

globally splits as a GGRW spacetime.

To end this work, we present a global splitting result when the spacetime is spatially
compact, that is, when the leaves of the spacelike foliation are compact.

Theorem 16 Let
(
M,Ω, g,∇

)
be an ICL spacetime with Ω exact. If the leaves of the foliation

induced by Ω are compact, then M is a GGRW spacetime.

Proof. Let Φ : D −→ M be the maximal local flow of the associated field of observers Z
and p ∈ M a point located in a leaf Fp of the induced foliation. For each q ∈ Fp, there
exist a neighbourhood Uq on Fp and interval Ip such that Φ is defined in Ip × Up. Since Fp
is compact, it can be written as Fp = ∪q∈AUq, with A a finite set. Taking I = ∩q∈AIq, we
conclude that the flow Φ is well defined in a domain I ×Fp, being I an interval (a, b).

Assume that I is the maximal interval where Φ : I × F −→ M is defined. We are going
to see that I is also the maximal definition interval of each integral curve with initial value
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in F . Suppose there exists p0 ∈ F such that Φ(·, p0) is defined in (a, b + ε). Since all leaves
of the foliation are compact, we can take δ > 0 such that (−δ, δ) × FΦ(b,p0)

⊂ D. Thus, it is
possible to define the extension flow,

Φ(t, q) =

{
Φ(t, q) if t ∈ (a, b),

Φ
(
t− b+ δ

2 ,Φ(b− δ
2 , q)

)
if t ∈ (b− δ, b+ δ).

This is a contradiction.

Finally, we have to prove that Φ : I × F −→ M is onto. Consider a point q in the
complementary of Φ(I × F) and take the maximal interval J where Φ : J × Fq −→ M is
defined. The set Φ(I × F) ∩ Φ(I × Fq) must be empty; if a point q0 was in the intersection,
then the integral curve of Z passing through q0 could be defined on an interval bigger than I.
But this contradicts the maximality of I. Hence, taking into account that Φ(I × F) and its
complementary are open in M and M is connected, we conclude that Φ(I × F) = M . The
same arguments of Th.13 serves to end the proof.

�
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[8] E. Cartan, Les variètés a conexion affine (suite), Ann. Ec. Norm. Sup., 41 (1924),
325–412.

[9] J.L Flores, M. Sánchez, Geodesic connectedness and conjugate points in GRW space-
times, J. Geom. Phys., 36 (2000), 285–314.

[10] J.L. Flores, The Riemannian and Lorentzian splitting theorems, Atlantis Trans. Geom.,
Springer 1 (2017), 1–20.

12



[11] M. Gutierrez and B. Olea, Global decomposition of a Lorentzian manifold as a Gener-
alized Robertson-Walker spacetime, Diff. Geom. Appl., 27 (2009), 146–156.
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