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Simple Summary: The treatment of oral squamous cell carcinoma (OSCC) represents a significant
problem worldwide. Among cancers with the highest incidence, OSCC renders one of the worst
prognoses. Therefore, novel prognostic biomarkers and therapeutic tools to tackle OSCC are urgently
needed. Somatostatin-analogues (SSA) are an invaluable therapeutic option in the treatment of
several cancers. We aimed to determine the expression levels of all somatostatin-receptors (SSTs) in
OSCC, compared to adjacent healthy control tissues, to analyze the relationship of SSTs expression
with key clinical and histopathological data, and to explore the direct in vitro effect of different SSAs
on OSCC cancer cells. Our findings highlight a potential role of SST2 as a good prognostic biomarker
for recurrence and metastasis in OSCC and unveil that SSA exerts antitumoral effects on OSCC cells,
providing a relevant clinical conclusion, which should be soon tested for their use in humans.

Abstract: Oral squamous cell carcinoma (OSCC) incidence has increased by 50% over the last
decade. Unfortunately, surgery and adjuvant radiotherapy and chemotherapy are still the mainstream
modality of treatment, underscoring the need for alternative therapies. Somatostatin-analogues (SSA)
are efficacious and safe treatments for a variety of tumors, but the presence of somatostatin-receptors
(SSTs) and pharmacological effects of SSA on OSCC are poorly known. In this study, we demonstrated
that SST2 and SST3 levels were significantly higher in OSCC, compared to adjacent healthy control
tissues. SST2 expression was associated with less regional metastasis and a lower recurrence rate.
Moreover, SST2 was elevated in OSCC and associated with histopathological good prognosis factors,
such as high peritumoral inflammation, smaller depth of invasion, and expansive vs. infiltrative
front of tumor invasion. Importantly, treatment with different SSA (octreotide, lanreotide, and
pasireotide) significantly reduced cell-proliferation in OSCC primary cell cultures. Altogether, this
study demonstrated that SST2 is overexpressed in OSCC vs. healthy tissues and could represent a
novel prognostic biomarker, since its expression is associated with tumors that show better prognostic
factors and less recurrent rate. Moreover, our data unveil clear antitumoral effects of SSAs on OSCC,
opening new avenues to explore their potential as targeting therapy to OSCC.

Keywords: somatostatin receptors; oral cavity cancer; head and neck; biomarkers; somatostatin
analogues; therapeutic tool
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1. Introduction

Oral squamous cell carcinoma (OSCC) continues to be an aggressive disease and a
worldwide challenge [1]. Depending on risk factors, surgery and adjuvant radiotherapy
+/− chemotherapy remain the mainstream modality of treatment for local or advanced
disease [2]. Despite all efforts, OSCC five-year survival-rate still accounts for 60% of
patients [2–4]. Therefore, novel prognosis biomarkers and therapeutic targets for OSCC are
urgently needed.

Neuroendocrine differentiation has been found in some tumors not considered to be
of neuroendocrine origin, including SCC of the lung and esophagus [5], and more recently
in the head and neck region [6–8]. In this regard, somatostatin (SST) is a well-known
inhibitory neuropeptide that is produced in different central and systemic locations [6,9,10].
SST inhibitory actions are mediated through their so-called SST receptors (SSTs), which are
widely distributed in normal and tumor tissues, and regulate, among other activities, cell
proliferation, differentiation, and angiogenesis in many tumor types [11]. This property
allows them to play a valuable role in tumor imaging (SST-scintigraphy or octreotide
scan) [12]. In this sense, tumors cells typically express more than one SST-subtype, being
the most frequently expressed SST2 subtype, and thus the most important target [13–16].
Consequently, synthetic SST analogues (SSAs) represent an attractive therapeutic target to
treat the SST-positive tumor pathologies controlling hormone hypersecretion and tumor
growth [17–19].

Our current understanding of the presence of SSTs on OSCC is quite scarce and unclear.
These limited studies have shown that the relative immunohistochemical expression of
some SST-subtypes are altered in malignant lesions in the larynx, compared to benign
regions [7,8], and in tumor samples of the head and neck area, compared to normal
oropharyngeal mucosa specimens (obtained during uvulopalatopharyngoplasty) from
other patients [6]. However, to the best of our knowledge, no molecular analyses have
been performed to analyze quantitatively, in a side-by-side manner, the expression levels
(copy number) of all SSTs subtypes in OSCC samples, compared to healthy tissue (control;
within the same patient) using quantitative PCR. Moreover, to date, the direct effects of
SSAs on primary OSCC human cell cultures have not been tested.

Therefore, based on the information mentioned above, the objectives of this study
were: (1) to quantitatively analyze the expression profile of SSTs in OSCC vs. adjacent
healthy tissues obtained within the same patient in a well-characterized cohort of patients;
(2) to assess the putative in vivo association between the expression of all SSTs in the tumor
and relevant clinical/histopathological data parameters (stage, histological grade, tumor
invasion, presence of metastasis, recurrence, overall survival, etc.); and (3) to explore and
compare, side-by-side, the direct antitumor effects of different SSAs (octreotide, lanreotide,
and pasireotide) in primary OSCC human cell cultures.

2. Materials and Methods
2.1. Patients Data and Samples Collection

The Ethics Committee of the Reina Sofia University Hospital (Cordoba, Spain) ap-
proved the study, which was conducted in accordance with the Declaration of Helsinki
and national and international guidelines and approved by the Ethics Committee of the
Reina Sofia University Hospital (Cordoba, Spain, Approval # 70180004). Written informed
consent was obtained from all the patients. A prospective observational case–control study
was performed with 37 patients diagnosed with oral cavity SCC (lip, tongue, floor of the
mouth, buccal mucosa, upper and lower gingiva, retromolar trigone, and hard palate).
Patients were followed up for at least 24 months after surgery. Clinical variables were
obtained from the clinical chart. Specifically, stage (I/II/III/IV), histological grade (G1,
G2, G3), tumor pT stage (pT1, pT2, pT3, pT4), cervical metastasis or pN (pN (pN0, pN1,
pN2a, pN2b, pN2c, pN3), depth of invasion (DOI), perineural (PNI) or lymphatic/vascular
invasion (LVI), peritumoral inflammation (PTI), pattern of tumor invasion, lymph nodes
size and extranodular extension (ENE+) were recorded. Some variables, such as Stage,
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DOI, pT, pN, and PTI were divided in subcategories (pN × 4: pN0, pN1, pN2, pN3;
DOI × 3:DOI × 3, <5 mm, 5–10 mm, >10 mm) or in dichotomous categories (Stage × 2:
I + II/III + IV; pT × 2:pT1pT2/pT3 + pT4; pN × 2: pN0 + pN1/pN2 + pN3;
pN − (pN0)/pN + (pN1, pN2, pN3); PTI × 2: absent + low/moderate + severe) to allow
better analysis. Disease overall survival (OS) and OS rate at 24 months were calculated. OS
was defined as the period between the diagnosis and death. Disease-free survival (DFS)
was defined as the period between the primary surgery and the first recurrence, the last
examination, or death. Three patients, who died before six months due to perioperative
complications, were classified as “lost data” for recurrence analysis. Overall recurrence
rate (RR), local recurrence, regional recurrence, local and regional combined, and distant
metastasis were calculated.

OSCC tumor tissue samples (case) were obtained from the surgical specimen after
resection. Healthy adjacent tissue samples (control) were obtained within the same patient
from the buccal mucosa with a distance from the tumor greater than 2 cm. Then, both
specimens were immediately deposited in cold culture medium and transported to the
laboratory. The control sample and a fragment of the tumor tissue were frozen at −80 ◦C for
subsequent RNA isolation, retrotranscription, and expression analysis by quantitative real-
time PCR (see below). When possible, the remaining tumor tissue was used to perform cell
cultures (see below). It should be mentioned that the tissue sample was always obtained in
a safe and ethical manner and did not interfere with the pathologist’s work in any case.

2.2. RNA Isolation and Retrotranscription (RT)

Total RNA from all samples was extracted at the same time using the RNase-Free
DNase Set (Qiagen, Limburg, The Netherlands), according to manufacturer instructions, as
previously reported [20,21]. The amount of RNA recovered and its purity was determined
using the Nanodrop One Spectrophotometer (Thermo Fisher Scientific, Madrid, Spain).
One µg of total RNA was retrotranscribed to cDNA with the First-Strand Synthesis kit
(MRI Fermentas, Hanover, MD, USA) using random hexamer primers in a 20 µL volume,
as previously reported [22].

2.3. Quantitative Real-Time PCR (qPCR)

qPCR reactions were performed using the Brilliant III SYBR Green QPCR Master
Mix (Stratagene, La Jolla, CA, USA) in the Stratagene Mx3000p system and specific (and
validated) primers for each transcript of interest, as previously reported [17]. For each
reaction, 10 µL of SYBER Green, 8.4 µL of Water, 0.3 µL of Forward and Reverse Primers
(10 µM) and 1µL of the sample (50 ng of cDNA) were used. The qPCR was made according
to the following program: 1 cycle at 95 ◦C for 3 min, 40 cycles of denaturing (95 ◦C for
20 s) and annealing/extension (61 ◦C for 20 s), and a last cycle, where final PCR products
were subjected to graded temperature-dependent dissociation (55 ◦C to 95 ◦C increasing
0.5 ◦C/30 s) to verify that only one product was amplified. Specifically, human transcripts
for SST receptors (SST1, SST2, SST3, SST4, SST5) were used, as previously reported [17].
To control for variations in the amount of RNA used in the reverse transcription reaction
and the efficiency of the reverse transcription reaction, the expression level (copy number)
of each SST transcript was adjusted with a normalization factor calculated from actin-
beta, hypoxanthine-guanine phosphoribosyltransferase 1, and glyceraldehyde 3-phosphate
dehydrogenase expression levels (used as housekeeping genes), as reported previously [23].
In this sense, samples were run in the same plate, against a standard curve for each of the
transcripts analyzed to estimate absolute mRNA copy number of each transcript and a
No-RT sample as the negative control. Additionally, products were run on a 2% agarose
gel and stained with RedSafe (iNtRON, ABC Scientific, Glendale) to confirm that only one
band was amplified, and no primer dimers were formed. An aliquot of the PCR products
was then purified using the MinElute PCR Purification kit (Qiagen) and the purified PCR
products were then sequenced to confirm target specificity.
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2.4. Primary OSCC Cell Culture

OSCC tissues were placed after surgery in sterile cold PBS 1× (Omega Scientific,
Tarzana EEUU) with 1% antibiotic-antimycotic solution and immediately dispersed into
single cells under sterile conditions by enzymatic and mechanical disruption and cultured
onto tissue culture plates in serum-containing medium. Specifically, samples were minced
into 1–2 mm3 pieces with a sterile scalpel and washed twice with PBS 1×. Then, pieces
were incubated in culture medium supplement with Dispase (Invitrogen, Carlsbad, CA,
USA) and Collagenase I (Invitrogen) for 30–60 min shaking at 37 ◦C (up to 2 h). The
dispersed cell suspension was centrifuged and washed twice. Cell incubation continued
with 5 mL of 0.05% Trypsin-EDTA (Sigma-Aldrich, Madrid, Spain) for 5 min at 37 ◦C,
following of incubation with 15 mL of DNase I (Promega, Madrid, Spain) for 5 min at 37 ◦C,
with siliconized pipette agitation every 5 min. Cells were filtered through a nylon gauze
of 130-µm mesh (to avoid fibroblast contamination) and dissociated into individual cells
by repeated smooth tipped siliconized glass Pasteur pipette aspiration. Finally, RBC lysis
(BioLegend, London, UK) treatment was used to eliminate possible red cell contaminations.
Cell number and viability (always higher than 95%) were determined by the trypan blue
dye exclusion method (American Type Culture Collection, Manassas, VA, USA) in a
Neubauer Chamber. Cells suspension were seeded in RPMI 1640 (ThermoFisher Scientific)
medium supplemented with 10% fetal bovine serum (FBS), 1% antibiotic-antimycotic, and
2 mM L-glutamine in plates previously coated with poly-L-lysine to enhance cell adherence.

2.5. Cell Proliferation Assay

Cells were plated in 96-well plates at the density necessary to obtain a ~75% cell
confluence in the control groups at the end of the experiment (10.000 cells/well). Twenty-
four-hour later, serum-free medium was added for 24 h. Then, cells were incubated for
3 h in 10% Alamar Blue reagent/serum-free medium, and Alamar Blue reduction (basal
cell viability) was determined in a FlexStation3 system (Molecular Devices, Sunnyvale,
CA, USA) plate reader, exciting at 560 nm and reading at 590 nm. After this, different
SSAs [first generation (octreotide and lanreotide; with high-affinity binding to SST2 and
SST5) and second generation (pasireotide; a multireceptor-targeted SST with high affinity
for SST1, SST2, SST3, and SST5) at 10−7 M (dose previously reported to exert the most
potent antitumor actions in different endocrine-related tumors [24,25])], and vehicle-treated
controls were added to wells (at least 4 wells/treatment) in 5% FBS medium for 24, 48 and
72 h. Alamar Blue reduction was measured every 24 h, as previously reported [26]. All
assays were repeated a minimum of three times on independent days.

2.6. Statistical and Bioinformatical Analysis

All data are expressed as mean ± SEM. Statistical analysis was performed using SPSS
(IBM, New York, NY, USA) and GraphPad Prism (La Jolla, CA, USA). Normality was
assessed using Shapiro or Kolmogorov-Smirnov test and by visual inspection of the shape
of histograms. We evaluate data heterogeneity of variance using the Kolmogorov-Smirnov
test to compare the difference between the means of the gene’s expression levels in tumor
tissue and healthy tissues within the same patient. Consequently, parametric (Student t) or
nonparametric (Mann-Whitney U) tests were implemented. For differences among two
groups, One-Way ANOVA analysis was performed to explore statistical differences.

Survival curves were calculated by Kaplan–Meier analysis, and the log-rank test
was used to compare OS and Recurrence according to different variables. Parametric or
nonparametric tests were used to analyze the relationship between risk factors, clinical
and staging data, histopathological analysis, and SSTs expression levels. In vitro cell
proliferation experiments were assessed by multiple comparison tests (one-way ANOVA
followed by Dunnet post-hoc test) and performed in a minimum of three independent
primary cultures from different patients (at least 4 replicates/treatment per experiment),
and results are expressed as percentage of control (vehicle-treated cells; set at 100%).
Statistical significance was considered when p < 0.05. A trend was considered when p < 0.1.
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3. Results

This study includes the analysis of 37 patients diagnosed with OSCC, 19 men (52%)
and 18 women (48%), with a mean age of 64 ± 2-years-old (range 26–86 years). The
patient’s follow-up time was 24 to 43 months after surgery. The 2 years overall survival
(OS) was 76% with a rate of 20.2 ± 1.3 (range 2–24) months. Our cohort is comprised by
50% of patients with advanced Stages IV, 16% with Stage III, 29% Stage II, and 5% with
Stage I; 34% of our patients belonged to pT4 tumors, 23% were pT3, 37% were pT2 and 5%
were pT1. The cervical lymph node involvement was positive in 42% with pN1 in 10%, and
with pN2 and pN3 both in 16%. The recurrence analysis showed that the overall recurrence
rate (RR) was 26% (9/34), the local recurrence was 23% (8/34), the regional was 21% (7/34),
and both local and regional combined recurrence was 15% (5/34). The distant metastasis
rate in the cohort accounted for 9% (3/34).

3.1. Expression of Somatostatin Receptors in the Healthy Oral Cavity and OSCC Tissues

A variable expression level for each of the five SST subtypes was found in OSCC
(Figure 1). Specifically, the present work revealed that SST1 is the dominant SST subtype
expressed in healthy oral cavity tissues (mean ± SEM: 9408 ± 2737 mRNA copy number),
followed by SST2 > SST5 > SST4 > SST3 (5245 ± 999; 4432 ± 1437; 2454 ± 1312; 347 ± 157;
respectively). In contrast, this profile was found to be altered in OSCC samples being
SST2 the dominant SST subtype expressed (mean ± SEM: 24,245 ± 5730 mRNA copy
number), followed by SST5 > SST4 > SST1 > SST3 (8698 ± 3561; 7295 ± 4381; 6318 ± 2648;
2171 ± 652, respectively). Thus, when we compared the expression levels between OSCC
and healthy samples, we found that in general, the expression of all receptors, except SST1,
was increased in OSCC, compared to healthy adjacent control samples, being this increase
statistically significant for SST2 and SST3 (p < 0.01 and p < 0.001, respectively). No sex
differences were found in the expression of SSTs.
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Figure 1. mRNA expression levels of Somatostatin Receptors. mRNA expression levels of SSTs genes were measured by
qPCR and adjusted by normalization factor. Values represent the mean ± SEM. Asterisk represents statistically significant
differences (**, p < 0.01; ***, p < 0.001).

3.2. In Vivo Association between SST-Subtypes Expression in OSCC with Relevant Clinical and
Pathological Parameters

As previously reported [27,28], to perform the relationship between the expression
levels of SSTs in OSCC tissues and the different clinical and histopathological data (includ-
ing the Kaplan Meier curves), we represented the expression levels of SSTs as numerical
or categorical (expression level higher (>) or lower (<) median values). It should be noted
that given the high number of analyses that were performed, and in order to simplify the
representation of these associations, we decided to include only the “p” and corresponding
“R” values of these analyses in the tables described below.

OS and Recurrence: Our analyses revealed that higher expression of SST2 (the dom-
inant SST subtype expressed in OSCC samples) was related to a lower rate of regional
recurrence (p = 0.04) and both local and regional recurrence (p = 0.02) (Table 1). We also
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found a trend for significant association (p = 0.07) between higher expression of SST2 and
lower presence of distant metastasis (Table 1). Moreover, we found that higher expression
of SST5 showed a trend for a lower incidence of both local and regional recurrence (p = 0.05)
(Table 1).

Table 1. In vivo association between SST-subtypes expression in OSCC with overall survival (OS), recurrence rate (RR), and
distant metastasis. SSTs expression is expressed as categorical with “>/< median” analysis. The p-values were calculated
with the log-rank test for the analysis between SSTR >/< median analysis and OS, overall RR, local RR, regional RR, local
and regional RR, and distant metastasis.

SSTR OS RR Local RR Regional RR Local and
Regional RR

Distant
Metastasis

SST1
>/< median

p = 0.39
R − 0.20

p = 0.45
R 0.10

p = 0.99
R − 0.04

p = 0.97
R − 0.04

p = 0.29
R − 0.23

p = 0.7
R − 0.08

SST2
>/< median

p = 0.14
R 0.16

p = 0.23
R − 0.20

p = 0.13
R − 0.22

p = 0.04 (−)
R − 0.37

p = 0.02 (−)
R − 0.43

p = 0.07 (−)
R − 0.32

SST3
>/< median

p = 0.46
R − 0.08

p = 0.71
R 0.07

p = 0.73
R − 0.07

p = 0.70
R 0.07

p = 0.65
R − 0.08

p = 0.53
R 0.10

SST4
>/< median

p = 0.78
R 0.05

p = 0.53
R − 0.09

p = 0.42
R − 0.13

p = 0.41
R − 0.13

p = 0.27
R − 0.18

p = 0.14
R − 0.26

SST5
>/< median

p = 0.38
R − 0.20

p = 0.38
R 0.01

p = 0.48
R 0.01

p = 0.47
R – 0.16

p = 0.05 (−)
R − 0.38

p = 0.76
R − 0.06

(−), negative correlation; (+), positive correlation. The bold is to highlight the significant result of these analysis and different categories of
SST receptors.

Staging data: The univariate analysis showed that SST2 expression was statistically
increased on patients with less cervical nodal disease [pN (p = 0.02), pN × 4 (p = 0.02),
pN × 2 (p = 0.05); Table 2].

Table 2. In vivo relationship between SST-subtypes expression in OSCC and Staging data. SSTs Numerical expression is
expressed as mean ± SD in each category. Nonparametric Kruskal-Wallis and U-Mann Whitney tests are used to analyze
the relationship between SSTs expression and Staging data.

SSTR pT pT × 2 pN pN × 4 pN × 2 pN−/pN+

SST1
Numerical

p = 0.37
pT1: 0

pT2: 14,515 ± 10,312
pT3: 318,394 ± 312,755

pT4: 10,161 ± 6971

p = 0.34
pT1 + pT2: 12,579 ±

8985
pT3 + pT4: 133,414 ±

124,958

p = 0.74
pN0: 133,837 ± 124,939

pN1: 4819 ± 3000
pN2a: 5003 ± 3128

pN2b: 68,309 ± 67,711
pN2c: 811 ± 811

pN3b: 2544 ± 1910

p = 0.78
pN0: 133,837 ±

124,939
pN1: 4819 ± 3000

pN2: 24,709 ±
pN3: 2544 ± 1910

p = 0.92
pN0 + pN1: 112,334

± 104,147
pN2 + pN3: 14,633 ±

12,181

p = 0.63
pN-: 133,837 ± 124,939

pN+: 12,016 ± 8921

SST2
Numerical

p = 0.80
pT1: 23,645 ± 20,298
pT2: 25,851 ± 7180

pT3: 321,684 ± 305,878
pT4: 24,318 ± 12,041

p = 0.34
pT1 + pT2: 25,557 ±

6501
pT3 + pT4: 143,264 ±

122,292

p = 0.02, (−)
pN0: 151,455 ± 121,862

pN1: 12,049 ± 6652
pN2a: 36,269 ± 19,590
pN2b: 41,679 ± 33,279

pN2c: 3003 ± 561
pN3b: 1887 ± 1074

p = 0.02, (−)
pN0: 151,455 ±

121,862
pN1: 12,049 ± 6652

pN2: 26,984 ± 12,566
pN3: 1887 ± 1074

p = 0.05, (−)
pN0 + pN1: 128,221

± 101,693
pN2 + pN3: 15,576 ±

7674

p = 0.03, (−)
pN−: 151,455 ± 121,862

pN+: 14,636 ± 5792

SST3
Numerical

p = 0.41
pT1: 7051 ± 7051

pT2: 1,520,615 ± 151,915
pT3: 255,331 ± 251,582

pT4: 11,187 ± 9756

p = 0.19
pT1 + pT2: 1,318,806

± 131,685
pT3 + pT4: 108,845 ±

100,565

p = 0.51
pN0: 109,093 ± 100,554

pN1: 2189 ± 1436
pN2a: 2166 ± 1935

pN2b: 9,877,900 ± 987,692
pN2c: 0

pN3b: 1648 ± 1084

p = 0.13
pN0: 109,093 ±

100,554
pN1: 2189 ± 1436
pN2: 3,293,315 ±

329,228
pN3: 1648 ± 1084

p = 0.97
pN0 + pN1: 91,275 ±

8342
pN2 + pN3: 1,797,125

± 179,576

p = 0.94
pN-: 109,093 ± 100,554

pN+: 1,318,475 ±
1,316,879

SST4
Numerical

p = 0.65
pT1: 0

pT2: 83,614 ± 75,783
pT3: 25,890 ± 25,558
pT4: 11,869 ± 10,693

p = 0.67
pT1 + pT2: 72,466 ±

65,757
pT3 + pT4: 17,477 ±

11,767

p = 0.33
pN0: 67,623 ± 49,981

pN1: 1224 ± 495
pN2a: 2012 ± 2012

pN2b: 35,105 ± 33,658
pN2c: 0

pN3b: 989 ± 989

p = 0.62
pN0: 67,623 ± 49,981

pN1: 1224 ± 495
pN2: 12,372 ± 11,296

pN3: 989 ± 989

p = 0.87
pN0 + pN1: 56,556 ±

41,789
pN2 + pN3: 7198 ±

6180

p = 0.65
pN-: 56,556 ± 41,789

pN+: 5605 ± 4529

SST5
Numerical

p = 0.24
pT1: 0

pT2: 5915 ± 2586
pT3: 174,997 ± 173,940

pT4: 17,632 ± 9363

p = 0.97
pT1 + pT2: 5126 ±

2292
pT3 + pT4: 80,597 ±

69,296

p = 0.87
pN0: 793,751 ± 69,346

pN1: 11092 ± 10581
pN2a: 4833 ± 1503
pN2b: 7949 ± 6748
pN2c: 1575 ± 1192
pN3b: 5589 ± 4638

p = 0.77
pN0: 79,3751 ±

69,346
pN1: 11,092 ± 10,581

pN2: 4786 ± 2153
pN3: 5589 ± 4638

p = 0.58
pN0 + pN1: 67,991 ±

57,803
pN2 + pN3: 5151 ±

2278

p = 0.63
pN-: 793,751 ± 69,346

pN+: 6735 ± 3100

Abbreviations: pT, tumor size (pT1, pT2, pT3, pT4); pT × 2 (pT1 + pT2/pT3 + pT4); pN, cervical metastasis (pN0/pN1/pN2a/pN2b/pN3);
pN × 4 (pN0/pN1/pN2/pN3); pN × 2 (pN0 + pN1/pN2 + pN3), pN− (pN0) vs. pN+ (pN1, pN2, pN3); (−), negative correlation; (+),
positive correlation. The bold is to highlight the significant result of these analysis and different categories of SST receptors.
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Patients with pN− vs. pN+ showed higher SST2 expression (p = 0.03; Table 2). This
was also observed with the categorical analysis where patients with higher SST2 expression
presented less cervical nodal disease [pN (p = 0.04), pN × 4 (p = 0.05), pN − /pN +
(p = 0.03); Table 3]. SST2 had no relationship with pT; however, SST3 expression above the
median had a positive correlation with a higher pT and a higher Stage [pN × 2 (p = 0.03)
and Stage × 2 (p = 0.04), respectively; Table 3].

Table 3. In vivo relationship between SST-subtypes expression in OSCC and histopathological data. SSTs Categorical
expression is expressed as >/< median. Chi2 or Fisher tests are used to analyze the relationship between SSTs expression
and histopathological data.

SSTR pT pT × 2 pN pN × 4 pN × 2 pN−/pN+ Stage Stage × 2

SST1
>/< median

p = 0.46
R 0.13

p = 0.5
R 0.14

p = 0.41
R − 0.01

p = 0.30
R − 0.01

p = 0.54
R − 0.04

p = 0.44
R 0.08

p = 0.37
R 0.17

p = 0.17
R 0.22

SST2
>/< median

p = 0.68
R − 0.15

p = 0.20
R − 0.19

p = 0.04
(−)

R − 0.43

p = 0.05
(−)

R − 0.43

p = 0.08
R − 0.29

p = 0.03
(−)

R − 0.38

p = 0.42
R − 0.19

p = 0.11
R − 0.26

SST3
>/< median

p = 0.13
R 0.33

p = 0.03 (+)
R 0.38

p = 0.49
R 0.08

p = 0.94
R 0.08

p = 0.63
R = 0.08 p = 0.62

R 0.08
p = 0.16
R 0.33

p = 0.04 (+)
R 0.34

SST4
>/< median

p = 0.60
R 0.17

p = 0.36
R 0.11 p = 0.18

R 0.01
p = 0.34
R 0.01

p = 0.53
R -0.05

p = 0.51
R 0.11

p = 0.50
R 0.20

p = 0.28
R 0.22

SST5
>/< median

p = 0.36
R 0.01

p = 0.44
R − 0.08

p = 0.79
R 0.04

p = 0.79
R 0.04

p = 0.73
R 0.08

p = 0.73
R 0.08

p = 0.37
R = 0.07

p = 0.59
R − 0.02

G DOI × 3 PTI PTI × 2 PNI LVI Invasion
Front Uniformity

SST1
>/< median

p = 0.43
R 0.08

p = 0.17
R 0.23

p = 0.60
R 0.08

p = 0.41
R 0.09

p = 0.71
R 0.10

p = 0.31
R 0.20

p = 0.08 (+)
R 0.31

p = 0.08 (+)
R 0.31

SST2
>/< median

p = 0.56
R − 0.02

p = 0.04
(−)

R − 0.21

p = 0.06
R 0.20

p = 0.08
R 0.32

p = 0.57
R 0.01

p = 0.60
R 0.02

p = 0.08 (+)
R 0.31

p = 0.08 (+)
R 0.31

SST3
>/< median

p = 0.56
R − 0.02

p = 0.52
R 0.17

p = 0.37
R 0.13

p = 0.58
R − 0.02

p = 0.10
R − 0.27

p = 0.31
R − 0.14

p = 0.30
R 0.16

p = 0.30
R 0.16

SST4
>/< median

p = 0.41
R − 0.09

p = 0.79
R 0.09

p = 0.29
R 0.11

p = 0.31
R 0.19

p = 0.15
R − 0.25

p = 0.22
R − 0.18

p = 0.02 (+)
R 0.40

p = 0.03 (+)
R 0.40

SST5
>/< median

p = 0.18
R − 0.25

p = 0.86
R − 0.07

p = 0.54
R 0.02

p = 0.73
R 0.09

p = 0.73
R 0.10

p = 0.71
R 0.08

p = 0.01 (+)
R = 0.46

p = 0.01 (+)
R = 0.46

Abbreviations: DOI, Depth Of Invasion (>5 mm, 5–10 mm, >10 mm); DFS, Disease Free Survival; G, Grade; Invasion (expansive (+)
vs. infiltrative (−)); LVI, lymphovascular invasion; OS, overall survival; pN, cervical metastasis (pN0/pN1/pN2a/pN2b/pN3); pN × 4
(pN0/pN1/pN2/pN3); pN × 2 (pN0 + pN1/pN2 + pN3), pN − (pN0) vs. pN + (pN1, pN2, pN3); perineural invasion; pT, tumor size
(pT1,pT2,pT3,pT4); pT × 2 (pT1 + pT2/pT3 + pT4); PTI, peritumoral inflammation (mild/moderate/severe) PTI × 2 (absent+mild/
moderate + severe); RR recurrence rate; Stage (I/II/III/IV); Stage × 2 (I + II/III+/IV); Invasion front (poor defined tumor edges (−) vs.
well defined edges (+)); (−), negative correlation; (+), positive correlation. The bold is to highlight the significant result of these analysis
and different categories of SST receptors.

Histopathological data: SST5 expression was statistically increased in G1 tumors
(p = 0.02; Table 4), which are the well differentiated tumors. Moreover, SST1,2,4,5 expres-
sion was statistically increased in OSCC that had an expansive front of tumor invasion,
compared to OSCC, with an infiltrative front of tumor invasion (p = 0.01, p = 0.03, p = 0.03,
p < 0.01, respectively; Table 4). Similarly, our results showed that SST1,2,4,5 were overex-
pressed in OSCC with uniform tumor invasion edges, compared to the poorly defined ones
(p=0.08, p = 0.08, p = 0.03, and p < 0.01; Table 3) (p = 0.01, p = 0.03, p = 0.03, and p < 0.01,
respectively; Table 4).
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Table 4. In vivo relationship between SST-subtypes expression in OSCC and histopathological factors. SSTs numerical
expression is expressed as mean ± SD in each category. Spearman test and Nonparametric Kruskal-Wallis and U-Mann
Whitney tests are used to analyze the relationship between SSTs expression and histopathological data.

SSTR G DOI DOI × 3 PTI PTI × 2

SST1
Numerical

p = 0.73
G1:143400 ± 138998

G2:16222 ± 9026
p = 0.68
R − 0.08

p = 0.77
<5 mm:0

5–10 mm: 180,295 ±
166,375

> 10 mm: 9534 ± 5349

p = 0.42
Mild: 2586 ± 1178

Moderate:16,856 ± 156,073
Severe: 8339 ± 4533

p = 0.90
Abs + mild: 8513 ± 6027

Mod + sev:130,371 ± 118,966

SST2
Numerical

p = 0.96
G1: 154,884 ± 135,804

G2:27,144 ± 9505
p = 0.42
R − 0.08

p = 0.11
< 5 mm: 14,620 ± 9821

5–10 mm: 190,516 ±
162,368

> 10 mm:20,776 ±
9683

p = 0.11
Mild: 10,567 ± 3660

Moderate:177,377 ± 152,420
Severe:25,336 ± 14,448

p = 0.22
Abs + mild: 20,281 ± 10,287

Mod + sev: 141,177 ± 116,175

SST3
Numerical

p = 0.88
G1:114,126 ± 111,900

G2:1,170,866 ±
1,161,515

p = 0.82
R − 0.13

p = 0.68
< 5 mm: 1525 ± 3525
5–10 mm: 1,452,796 ±

1,314,132
> 10 mm: 9559 ± 7310

p = 0.14
Mild: 1133 ± 452

Moderate: 1,363,582 ±
1,232,491

Severe: 1702 ± 1702

p = 0.75
Abs + mild: 9511 ± 8388

Mod + sev:1,039,325 ± 940,660

SST4
Numerical

p = 0.93
G1:55,744 ± 54,997
G2:25,478 ± 13,957

p = 0.86
R − 0.08

p = 0.81
< 5 mm: 558 ± 558
5–10 mm:72,668 ±

65,741
> 10 mm:21,517 ±

14620

p = 0.18
Mild: 629 ± 397

Moderate:19,210 ± 13,131
Severe:198,323 ± 198,093

p = 0.39
Abs + mild: 9825 ± 9203

Mod + sev: 618,56 ± 47,519

SST5
Numerical

p = 0.02 (−)
G1:86,155 ± 76,907

G2:8097 ± 6496
p = 0.91
R − 0.06

p = 0.53
< 5 mm: 2890 ± 2430

5–10 mm:97,734 ±
92,515

> 10 mm:13,180 ±
7217

p = 0.44
Mild: 6133 ± 3537

Moderate:91,039 ± 86,784
Severe:8202 ± 6380

p = 0.80
Abs + mild:13,630 ± 8181

Mod + sev:71,315 ± 66,089

PNI LVI Invasion front Uniformity

SST1
Numerical

p = 0.81
Yes: 106,694 ± 100,039

No:18,963 ± 13,299

p = 0.75
Yes:139,111 ± 131,580

No:13,367 ± 8440

p = 0.01 (+)
Expansive: 448,221 ±

412,110
Infiltrative: 5781 ±

3024

p = 0.01 (+)
Uniform: 448,221 ± 412,110
Non-Uniform: 5781 ± 3024

SST2
Numerical

p = 0.81
Yes: 117,537 ± 97,878
No: 31,020 ± 10,019

p = 0.80
Yes: 150,406 ± 128,653

No: 24,433 ± 7121

p = 0.03 (+)
Expansive: 446,069 ±

403,333
Infiltrative: 19,732 ±

5736

p = 0.03 (+)
Uniform: 446,069 ± 403,333
Non-uniform: 19,732 ± 5736

SST3
Numerical

p = 0.15
Yes: 86,476 ± 80,549

No: 1,979,708 ±
19,75,010

p = 0.42
Yes: 113,586 ± 105,890

No: 1,237,553 ±
1,234,483

p = 0.17
Expansive: 3,630,478

± 3,241,581
Infiltrative: 6073 ±

4069

p = 0.17
Uniform: 3,630,478 ± 3,241,581

Non-uniform: 6073 ± 4069

SST4
Numerical

p = 0.15
Yes: 46.034 ± 39.704
No: 28.568 ± 20.697

p = 0.31
Yes: 8520 ± 6834

No: 79.666 ± 62.136

p = 0.05 (+)
Expansive: 177.277 ±

163.059
Infiltrative: 12.858 ±

8194

p = 0.05, (+)
Uniform: 177.277 ± 163.059
Non-uniform: 12.858 ± 8194

SST5
Numerical

p = 0.17
Yes: 66,279 ± 55,467

No: 3146 ± 575

p = 0.63
Yes: 83,845 ± 72,960

No: 5962 ± 2429

p < 0.01 (+)
Expansive: 245,340 ±

28,491
Infiltrative: 7462 ±

40,152

p < 0.01, (+)
Uniform: 245,340 ± 28,491

Non-uniform: 7462 ± 40,152

Abbreviations: G, grade; DOI, Depth of Invasion; DOI × 3 (<5mm, 5–10mm. >10mm); Invasion front (expansive (+) vs. infiltrative (−)); PTI
(mild, moderate, severe), PTI × 2 (absent + mild/moderate+severe); PNI, perineural invasion; LVI, lymphovascular invasion; Uniformity
(poor defined tumor edges (−) vs. well defined edges (+)); (−), negative correlation; (+), positive correlation. The bold is to highlight the
significant result of these analysis and different categories of SST receptors.

Our data also revealed that patients with higher SST2 expression more frequently
presented tumor depth of invasion (DOI) of 5–10 mm, compared to >10 mm and <5 mm
(p = 0.04; Table 3). SST2 expression also showed a statistical tendency to be present on
tumors that showed a higher peritumoral inflammation reaction [PTI (p = 0.06) and PTI × 2
(p = 0.08), Table 3].

Finally, we found that the expression of SST2 in OSCC had a negative correlation to
the number of positive lymph nodes, the number of lymph nodes with ENE+, and their
bigger size (p < 0.01, p = 0.03, and p = 0.05, respectively; Table 5).
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Table 5. In vivo relationship between SST-subtypes expression in OSCC and lymph node pathological
data. Spearman correlation test was used for the analysis between SSTs numerical expression and
lymph node results.

SSTR N◦ + lymph N◦ ENE + Size (mm)

SST1
Numerical

p = 0.68
R 0.07

p = 0.83
R. 0.04

p = 0.29
R 0.20

SST2
Numerical

p < 0.01 (−)
R − 0.535

p = 0.03 (−)
R − 0.40

p = 0.05 (−)
R − 0.36

SST3
Numerical

p = 0.63
R 0.09

p = 0.96
R − 0.01

p = 0.62
R 0.09

SST4
Numerical

p = 0.88
R 0.02

p = 0.64
R − 0.08

p = 0.28
R 0.20

SST5
Numerical

p = 0.94
R 0.01

p = 0.84
R 0.03

p = 0.89
R 0.03

Abbreviations: ENE+, extranodal extension; (−), negative correlation; (+), positive correlation. The bold is to
highlight the significant result of these analysis and different categories of SST receptors.

3.3. Antitumor Actions of First- and Second-Generation Somatostatin Analogues on
Patient-Derived Primary Oral Squamous Carcinoma Cell Cultures

In the present study, we also explored the effect of different SSAs (octreotide, lan-
reotide, and pasireotide) on the proliferation rate of patient-derived primary OSCC cell
cultures. Remarkably, our results demonstrated that all SSAs tested (10−7 M) significantly
reduce the proliferation rate of primary OSCC cell cultures OSCC (Figure 2). Specifically,
all SSAs decreased proliferation rate at 24-, 48-, and 72-h of incubation (this inhibition was
not statistically significant in the case of octreotide at 24 h and lanreotide at 72-h) (Figure 2).
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Figure 2. Effect of different somatostatin analogues (octreotide, lanreotide, and pasireotide) on cell proliferation OSS primary
cell cultures. Proliferation rate (24- to 72-h treatment) was measured by Alamar Blue reduction. Data are expressed as
percent of vehicle-treated control (set at 100%). Values represent the mean ± SEM (n = 3–4 tumors, 3–4 replicates/treatment).
Asterisk represents statistically significant differences (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).

4. Discussion

Oral cancers are among the most common malignant tumors worldwide, wherein
more than 90% of all oral malignancies are OSCC, which significantly reduce patients’
quality of life [29]. Importantly, although OSCC is considered a disease of old age, a
recent clinical scenario witnesses its increasing incidence among young individuals [30]. In
fact, according to recent statistics from the International Agency for Research on Cancer
(http://gco.iarc.fr/, accessed on 22 September 2021), the number of OSCC cases that are
newly diagnosed each year is very worrying. Therefore, this high incidence, together with
the hidden onset, low survival rate, and the limited and inefficient treatments, clearly
emphasize the necessity of identifying novel biomarkers for these tumors. These potential

http://gco.iarc.fr/
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biomarkers would help to refine OSCC diagnosis, to better predict their prognosis and
tumor behavior, and provide tools to develop novel therapeutic targets.

In this study, we have investigated the expression pattern of all SSTs in parallel using
a quantitative PCR method in a group of samples derived from patients with OSCC (tumor
vs. adjacent non-tumor tissues and evaluated their potential relationship with key clinical
and pathological parameters. To the best of our knowledge, this is the first time that the
expression of SST in OSCC has been thoroughly and quantitatively (mRNA copy number)
analyzed in a relatively large series of samples. In the present series, we observed a differen-
tial SST expression pattern in OSCC tissues (SST2 >> SST5 > SST4 > SST1 > SST3), compared
to their corresponding adjacent non-tumor tissues (SST1 > SST2 > SST5 > SST4 > SST3).
Moreover, we demonstrated the existence of an overall increase in the expression of
SST2,3,4,5 in OSCC samples, compared to control tissues, being this overexpression statisti-
cally significant for SST2 and SST3 levels. This might be considered an important clinical
finding, as the responsiveness of SSAs is critically dependent on the presence of SSTs, and
because the treatment with available SSAs (e.g., first generation compounds, octreotide
and lanreotide, which preferential bind to SST2) has become the mainstay of medical
therapy for tumor control in neuroendocrine disorders expressing SSTs, such as pituitary
and gastroenteropancreatic neuroendocrine tumours [18,19]. In this sense, during the last
decade, neuroendocrine differentiation has been found in some tumors not considered
to be of neuroendocrine origin, including SCC of the lung, esophagus, larynx, head, and
neck [5,6,31], suggesting that the use of neuropeptides analogues (e.g., SSAs) could be used
as a potential therapeutic avenue for OSCC.

Our observations compare favorably with previous reports indicating that the expres-
sion of different SST-subtypes, including SST2 and SST3, is consistently increased in other
tumors, compared to normal tissues, including human prostate [32,33], pituitary [17,21,34],
and neuroendocrine tumors [14,25], among others, and with previous scarce observations,
indicating that the head and neck squamous cell carcinoma specimens express different SST-
subtypes (mainly SST1,2,5 using semi-quantitative immune-histochemical staining) [6–8].
Hence, it seems reasonable to suggest that overexpression of SSTs might be a common cellu-
lar/molecular signature across various tumor types and that SSAs may have a therapeutic
role in these tumors.

Another relevant finding of our study was that the expression levels of different SSTs,
especially SST2 (the dominant SST subtype expressed in OSCC samples), were associated
with malignancy features. Firstly, we found a correlation between higher SST2 expression
and less regional metastasis. Moreover, SST2 expression also had a negative correlation
to the number of positive lymph nodes, the number of lymph nodes with ENE+, and
their size, which are well-known risk factors in OSCC for regional recurrence and distant
metastasis [35]. Additionally, we observed that the expression of SST2 and SST5 was related
to a lower rate of regional and both local and regional recurrence. On the contrary, the
expression of SST3 (the SST subtype with lower levels in OSCC samples) was positively
correlated with a higher pT and a higher Stage. Therefore, these results show that the main
clinical correlations were associated with SST2 expression in oral cavity SCC, a dominant
receptor in these tumors that seems to be associated with decreased malignancy features,
suggesting a potential prognostic value as metastatic and recurrence biomarker.

Prognostic factors of oral cavity cancer are well known and under continuous review.
DOI was recently introduced to the major changes in the last 8th TNM Edition [35]. Our
results showed a higher expression of SST2 (p = 0.04) in tumors with DOI 5–10 mm (15/37),
compared to >10 mm (18/37) or <5 mm (4/37). We believe this last observation might
be associated with the small number of pT1 (<5 mm DOI) analyzed in the study, due to
the limiting selection criteria. Besides DOI, recent papers have also focused on the impact
of tumor budding and the pattern of invasion in recurrence rate [36,37]. We have found
that SSTs are related to histopathological factors known to be present in tumors with a
less aggressive histopathological behavior, such as an expansive vs. infiltrative front of
invasion, lower histopathological grade, or uniform edges, compared to the poorly defined
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ones. In addition, peritumoral inflammation has been considered a defense mechanism
against cancer progression and invasion [38–40]. It has been proposed that inflammatory
activity, such as an immunological response to the tumor, could be used as a prognostic
factor since the lower the inflammatory infiltrate, the greater the risk of regional or distant
metastasis. However, the PTI’s role in the prognosis of OSCC is still very controversial.
Other studies suggest peritumoral stromal inflammation is more likely to contribute to
cancer development [41]. Our results showed that higher PTI had better survival curves
and a lower recurrence rate. Furthermore, SST2 expression shows a statistical tendency
to be present on tumors that show a higher PTI. Hence, all the data mentioned so far
in the present study support the idea that the expression of SST2 might be used as a
potential prognostic biomarker in OSCC and provide a scientific rationale for a randomized
controlled trial of an SST analogue (especially those that preferentially bind to SST2) in
these tumors.

Thus, given the result obtained in the present study indicating that OSCC tissues
express high levels of different SST-subtypes and that the expression of SST (specially
SST2) is associated with relevant clinical and pathological data of OSCC patients, together
with the poor outcome in advanced cases, and the marginal survival benefit of toxic
chemotherapy regimens, this disease demands testing novel therapeutic strategies such
as SSAs. In fact, to the best of our knowledge, our results are the first to demonstrate
that OSCC cells are responsive in vitro to first and second generation of SSAs (octreotide,
lanreotide, and pasireotide). Interestingly, all SSAs tested equally reduced cell proliferation
in OSCC cells; therefore, no evident correspondence was found with the SST profile. Thus,
it seems plausible that additional factors, besides the simple abundance of a given SST,
critically influence the SSA response in OSCC cells, as has been previously suggested in
other tumor pathologies [24].

The present study has some limitations: the limited number of cases analyzed and
the short follow-up time for the analysis of the OS, which is usually measured on a 5-
years period. Therefore, we will continue increasing the number of samples for future
investigations and continue following these patients for a proper analysis of the impact
of SSTs on patient´s survival. However, it should be noted that it is known that local or
regional events occur within the first two years [42], which was the minimum follow-up
time of all our patients.

5. Conclusions

In summary, this report assesses the expression levels of all five SST subtypes in
OSCC by qPCR, and it is the first series to compare the expression levels of each receptor
between OSCC and control (adjacent non-tumor) tissues. Additionally, although the role
of SSTs as possible prognostic biomarkers and therapeutic targets in OSCC needs to be
further explored, this study strongly suggests that: (1) expression levels of SST2 could be
related with less rate of regional recurrence, both local and regional and less incidence
of distant metastasis, suggesting that the assessment of SST expression profiles by qPCR
may represent an effective screening tool to predict prognosis of OSCC; and, (2) SSAs exert
antitumoral effects on OSCC cells, opening new avenues to explore their potential as novel
targeting therapy for patients with OSCC.
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Abbreviations

DFS Disease-Free Survival
DOI Depth of Invasion
ENE+ Extranodular Extension
FBS Fetal Bovine Serum
G Histological Grade
LVI Lymphatic/Vascular Invasion
OS Overall Survival
OSCC Oral Squamous Cell Carcinoma
PBS Phosphate Buffered Saline
PCR Polymerase Chain Reaction
pN Cervical Metastasis
PNI Perineural Invasion
pT Tumor Stage
PTI Peritumoral Inflammation
qPCR Quantitative Real-Time PCR
RR Recurrence Rate
RT Retrotranscription
SCC Squamous Cell Carcinoma
SD Standard Deviation
SEM Standard Error of The Mean
SSA Somatostatin-Analogues
SST Somatostatin
SSTs Somatostatin-Receptors
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