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Abstract: Different musculoskeletal disorders are a source of pain in the spinal region; most of them 

can be divided into mechanical, such as low back pain (LBP), or inflammatory origins, as is the case 

of axial spondyloarthritis (axSpA). Nevertheless, insufficient information is available about the 

muscle negative consequences of these conditions. Thus, the objective of this study was to identify 

whether mechanical muscle properties (MMPs) of cervical and lumbar muscles are different be-

tween patients with axSpA, subacute LBP (sLBP), and healthy controls. Furthermore, we aimed 

identify whether MMPs were related to sociodemographic and clinical variables in various study 

groups. The MMPs, sociodemographic, and clinical variables were obtained in 43 patients with 

axSpA, 43 subjects with sLBP, and 43 healthy controls. One-way ANOVAs and ROC curves were 

applied to identify whether the MMPs could differentiate between the study groups. Intra-group 

Pearson r coefficients to test the associations between MMPs and the rest of the variables were cal-

culated. The results showed that axSpA subjects have a higher tone and stiffness and a lower relax-

ation and creep than sLBP and healthy ones (p < 0.05). All lumbar and cervical MMPs, except for 

decrement, could correctly classify axSpA and healthy subjects and axSpA and sLBP patients (in 

both cases, Area Under the Curve > 0.8). However, no MMP could differentiate between sLBP and 

healthy subjects. Each group had a different pattern of bivariate correlations between MMPs and 

sociodemographic and clinical data, with a worse state and progression of the axSpA group associ-

ated with a higher tone and stiffness in both spinal regions. This study supports that MMPs are 

different and show different patterns of correlations depending on the type of spinal pain. 
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1. Introduction 

Spinal disorders constitute a significant health problem with a high prevalence rate 

[1] that has increased in recent years [2]. The annual costs for the management of spinal 

pain costs 17 billion euros in Germany or 100 billion dollars in the United States [3,4]. 

Common symptoms and signs have been identified in subjects with spinal pain, such as 
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a decreased range of motion (ROM), impaired spinal motor control, increased disability, 

or decreased quality of life (QoL) [5–9]. 

Rheumatic pathologies, specifically axial spondyloarthritis (axSpA), are among the 

most relevant etiologies of spinal pain. This chronic inflammatory disease has an esti-

mated prevalence of between 0.9 and 1.4% of the adult population in the United States 

[10] and 1.9% of the general Spanish population, and the delay of its diagnosis is more 

than six years [11]. In most cases, back pain is the initial manifestation of the disease, 

which is associated with stiffness and inflammation of the spinal and sacroiliac joints [12], 

with a clear evolution towards new bone formation in the sacroiliac joints and axial skel-

eton and decreased spinal mobility and functionality [10,13]. Furthermore, these subjects’ 

skeletal muscles, especially the paravertebral muscles, are also affected [14–16], showing 

electromyographic alteration, fatty infiltration, fibrosis, and atrophy. Myofascial hyperto-

nicity at the lumbar level, even in the early stage, stiffness and tightness can also be ob-

served [17–20], but less information is available for cervical spinal muscles. Moreover, 

limited information is available on the relations between spinal mechanical muscle prop-

erties (MMPs) and clinical state in axSpA patients. 

Low back pain (LBP) is the pathology that most contributes to the years lived with 

disability [21,22]. Its estimated prevalence in 2017 was about 577 million people [4,23], and 

more than 90% of the total LBP cases corresponds to unspecific mechanical LBP [24,25]. 

Important muscle morphological changes have been associated with the presence of LBP 

[26]. Among them, the presence of fat infiltration, reduction in muscle size, alteration in 

fiber distribution, and muscle recruitment strategies have been described [8,27–29], as 

well as their relationship with the evolution time [30]. Although these muscle alterations 

are well documented, mainly at the lumbar level, it remains unknown whether the muscle 

behavior is similar between different causes of spinal pain [31,32]; it could even depend 

on the acute or chronic stages [33,34]. For these purposes, more resources are necessary to 

assess MMPs in a clinical setting. 

It has been described that muscle alterations may be an underestimated source of 

spinal pain [22] and that muscle physiology determines optimal spinal performance [30]. 

Indeed, excessive spinal muscle use or disuse is a well-known source of pain [35]. Alt-

hough magnetic resonance imaging, computed tomography and ultrasound methods 

have allowed us to assess the soft tissues in spinal pain patients [36,37], more information 

and resources are necessary to describe other muscle features, such as MMPs. In recent 

years, the MyotonPro© , a manual device designed to assess MMPs, has provided reliable 

data in clinical settings [38]. In fact, the determination of MMPs has been successfully ap-

plied in assessing healthy subjects and athletes, patients with stroke, scoliosis, Parkin-

son’s, chronic low back pain (cLBP), and cervical dystonia, among others [32,39–42]. In 

spinal pain research, increases in tone and stiffness and decreases in the elasticity of the 

lumbar paraspinal muscles have been detected for axSpA and cLBP with the MyotonPro©  

[6,38,43,44]. However, no data are available in other regions, such as the cervical spine, 

which could be of interest in terms of disease state and evolution for axSpA [45] and due 

to possible compensatory mechanisms in LBP [6]. 

The MMP similarities or differences between axSpA and LBP patients along the spi-

nal paraspinal muscles are still unknown. Their determination can be helpful to improve 

diagnosis and to control the evolution of patients in a clinical setting [6,46]. Therefore, the 

main objective of this study was to identify differences in the MMPs at lumbar and cervi-

cal spinal levels between subjects with axSpA, subacute LBP (sLBP), and controls. The 

secondary objective was to identify associations between MMPs and sociodemographic 

and clinical variables. 

2. Methods 

An observational, cross-sectional case-control study with consecutive sampling was 

conducted. Participants were recruited with a non-probabilistic sampling from three cen-

ters, Physiobalance (private physiotherapy center), Rheumatology Department of the 
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Hospital Universitario Reina Sofía, Córdoba, and the Biosanitary campus of the Univer-

sity of Córdoba, in Spain, from November 2018 to January 2021. 

The Research Ethics Committee of Córdoba approved this project (registration num-

ber 0887, 2017). All participants signed the informed consent form. 

2.1. Participants 

Subjects of both sexes, over 18 years, participated in the study. Two groups of cases 

were defined. First, the axSpA group was composed of patients diagnosed according to 

the evaluation criteria of the SpondyloArthritis International Society (ASAS) [47]. Second, 

for the sLBP group, the subjects had less than 12 weeks of pain evolution time [48] and a 

value of ≥3 on the numerical pain rating scale (NPRS) [49]. The existence of any inflam-

matory pathology was a specific exclusion criterion for this group. 

The control group included healthy subjects that did not have spinal pain in the last 

six months or any neurological or musculoskeletal disorder. 

Exclusion criteria common to the three groups were history of vertebral fracture or 

spinal surgery; deformity due to scoliosis (Cobb angle higher than 20°); less than 20° of a 

total range of rotation in either hip; received physiotherapy treatment in the last six 

months; pregnancy. 

To improve comparability between groups, for each subject with sLBP included in 

the study, one axSpA patient and one healthy subject were recruited, in both cases 

matched for age (±3 years), body mass index (BMI) (±3 Kg/m2), and sex. 

All measurements were performed by rheumatologists and physiotherapists trained 

in the Movement Analysis Laboratory of the Reina Sofía University Hospital in Córdoba 

(Spain). 

2.2. Sample Size 

Sample calculation was performed using the G*Power 3.1 software with the one-way 

ANOVA (F-test) as a statistical test. To achieve a moderate f effect size of 0.33 for MMPs, 

common in clinical practice for musculoskeletal outcomes [50], with an α coefficient of 

0.05 and a power of 0.90, 40 subjects per group are necessary. Finally, 43 subjects per group 

were included due to possible missing data. 

2.3. Assessments and Procedures 

Sociodemographic aspects such as age, sex, weight, height, and BMI were collected. 

Commonly well-known questionnaires in clinical setting for axSpA and sLBP patients 

were applied to identify disability and QoL. Subsequently, an evaluation of the MMPs of 

the cervical and lumbar spine was carried out. After this, a record of spinal mobility was 

made using conventional metrology. Approximately 45 min were necessary for the com-

plete evaluation of each subject. 

2.4. Myotonometric Measurements 

A manual myotonometer (MyotonPro®  Myoton AS, Tallinn, Estonia) was used to rec-

ord the MMPs of the lumbar and cervical regions with the patient lying in the prone po-

sition with the arms along the body. The probe of the device was positioned perpendicular 

to the erector spinae, 2.5 cm from the spinous process of L5 in both sides [46] (Figure 1a) 

and in the semispinalis capitis of both sides at the C4 level [51,52] (Figure 1b). The me-

chanical impulses exerted by the probe, with a pulse of 15 ms and 0.40 N of mechanical 

force, allowed us to record the tissue response. The MMPs are expressed as follows: mus-

cle tension or tone in resting state (Hz), defined by frequency; stiffness (N/m), which re-

flects the ability of the muscle to resist contraction or external force that deforms its initial 

shape; logarithmic decrement in the amplitude of oscillation, which has no unit (Ø ), and 

describes the ability of the tissue to restore its shape after deformation, characterizing the 

inverse of the elasticity (the lower the decrement value, the greater elasticity [53,54]); the 
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relaxation time of stress (ms), which is the recovery time for the muscle to return to its 

normal state after deformation; and the Creep (Deborah Number), which is the property 

of progressive deformation while applying constant stress, which reflects the viscosity of 

the tissue [43].  

The recording was performed during five seconds of apnea after exhalation [45] to 

reduce the abdominal influence on the test. The test had to be repeated if the coefficient 

of variation among the mechanical impulses was higher than 3% [44]. 

A randomization plan generator (www.randomization.com, accessed on 5 Novem-

ber 2018) was used to establish the order of the evaluations (right/left). The first ten sub-

jects in each group were reassessed after one week, and intraclass correlation coefficients 

(ICC) > 0.8 was obtained for all evaluations and MMPs to assess intra-rater reliability be-

tween days. The absence of differences between sides allowed the utilization of the mean 

of both sides for the analyses. 

  
(a) (b) 

Figure 1. Measurement of the Mechanical Properties of Muscles (MMPs). (a) Lumbar evaluation. Position of the subject at 

rest and location of the myotonometer. (b) Cervical evaluation. Position of the subject at rest and location of the myoto-

nometer. 

2.5. Clinical Variables 

After the myotonometric measurement, a metrological assessment was performed 

that consisted of: (1) cervical rotation; (2) tragus-wall distance; (3) lateral spinal flexion; 

(4) modified Schöber test; (5) intermalleolar distance [13]. Additionally, the Bath Ankylos-

ing Spondylitis Metrology Index (BASMI) was added. The axSpA patients also completed 

the Bath Ankylosing Spondylitis Function Index (BASFI) and the Bath Ankylosing Spon-

dylitis Disease Activity Index (BASDAI) for the function and disease activity evaluation, 

respectively. BASMI, BASFI, and BASDAI ranged from zero to ten, with the higher values 

identifying the worse condition. The radiographic structural damage of these patients was 

determined according to the modified Stoke Ankylosing Spondylitis Spinal Score 

(mSASSS) index, which ranges from 0 to 72 [13], where the higher values also demon-

strated a worse condition. The Oswestry Disability Index (ODI), which scores from zero 

(no disability) to five (highest disability) and has demonstrated high internal consistency 

(Cronbach’s α = 0.92) and construct validity [55], was applied to sLBP patients. 

The 12-item short-format health survey (SF-12) was used to assess health-related 

QoL. It contains 12 questions that can be answered in less than two minutes. Each of the 

questions has a possibility of three to five responses; such a survey reflects the general 

state of health with two different scores: a physical component (PCS-12) and a mental 

component (MCS-12) [56,57]. Scores are calibrated so that 50 is the average or the norm, 

and lower scores represent poorer health-related QoL [58]. The SF-12 has shown good 

internal consistency (Cronbach’s α from 0.72 to 0.89) and test–retest reliability (ICC from 

0.73 to 0.86) [59]. High correlations (ICC = 0.94) were also found between the SF-12 and 

the SF-36 in Spain [57]. 

The intensity of the patients’ pain was recorded with an NPRS, whose reliability and 

validity are widely demonstrated [48,49,60]. 
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2.6. Statistical Analysis 

For descriptive purposes, frequencies and percentages of categorical variables were 

presented, while mean and standard deviation with a 95% confidence interval (95%CI) 

were used for continuous data. The Kolmogorov–Smirnov test showed their normal dis-

tribution (all variables: p > 0.05). 

As the study’s main aim was to identify differences in MMPs and sociodemographic 

and clinical variables between groups, one-way ANOVAs were conducted, with Tukey’s 

test for post-hoc analyses. To compare pain data between the axSpA and sLBP groups, the 

unpaired Student-t test was applied.  

To determine if the MMPs can classify subjects between the three groups, Receiver 

Operating Characteristics (ROC) curves were developed, with the Area Under the Curve 

(AUC) interpreted as follows: fail to discriminate (0.5 to 0.6), poor (0.6 to 0.7), acceptable 

(0.7 to 0.8), excellent (0.8 to 0.9), and outstanding (more than 0.9) [61]. 

Finally, Pearson r coefficients were calculated to identify intra-group associations be-

tween the MMPs and sociodemographic and clinical data. Correlations were considered 

to be negligible (0.0 to 0.19), fair (0.20 to 0.39), moderate (0.40 to 0.69), strong (0.70 to 0.89) 

or almost perfect (0.0 to 1.00) [62].  

The level of significance was set at 0.05. The IBM-SPSS®  software, version 25 (SPSS 

Inc., Chicago, IL, USA), was used for the analyses. 

3. Results 

3.1. Differences in MMPs, Sociodemographic, and Clinical Variables between Groups 

Table 1 shows the scores in all outcomes of the three groups. Age, sex, BMI, and MCS-

12 were not different between the three groups. The PCS-12 was more than 11 points 

higher for healthy controls than for both spinal pain groups with statistical differences. 

Additionally, pain intensity, assessed with NPRS, did not show statistical differences be-

tween the subjects with spinal pain. For the metrological variables, the cervical rotation 

showed the differences between the three groups, with at least 9° of difference and the 

axSpA group having less mobility. The lateral spinal flexion and intermalleolar distance 

showed lower values for the axSpA group compared with the other groups, as with 

BASMI. No differences were identified for the tragus to the wall distance and the modified 

Schöber test. 

For the MMPs of the lumbar region, the one-way ANOVA showed significant differ-

ences between the axSpA group and the others (p < 0.001), except for decrement, which 

was different only between axSpA and healthy groups. The axSpA patients showed a 

higher tone and stiffness, with more than 2 Hz and 80 N/m in mean, respectively. On the 

contrary, lower relaxation and creep was found for the axSpA group. The lumbar decre-

ment was significantly higher (p = 0.007) in the axSpA group than in the control group 

(2.01, 95%CI 0.35–0.05), but was not significantly different compared with the sLBP group 

(0.12, 95%CI −0.27–0.03). No differences were detected between the sLBP and the healthy 

groups, although, as occurred with the axSpA group, the sLBP patients showed a higher 

tone, stiffness and decrement, and a lower relaxation and creep, on average, than the 

healthy ones. 

When the cervical region was analyzed, a similar pattern of differences between the 

axSpA group and the other two groups was detected (p < 0.001), except for decrement, 

which showed no statistical significance. Thus, tone and stiffness were higher, and the 

relaxation and creep were lower in the axSpA group (p < 0.001), with similar values for 

sLBP and healthy groups (p > 0.05 for all MMPs). 

The cervical tone, stiffness, and decrement were higher in all groups, and the relaxa-

tion and creep were lower for the lumbar region compared with the cervical region. Fur-

thermore, the size of the differences and the variability of the results were, in general, 

slightly lower for the cervical MMPs than for those found in the lumbar region (Table 1). 
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Table 1. Sociodemographic, clinical characteristics, and MMPs of patients with subacute low back pain, axSpA, and 

healthy controls. 

 axSpA Group (n = 43) sLBP Group (n = 43) Control Group (n = 43) p-Value 

Age (years) 41.9 ± 9.5 40.2 ± 12.3 39.2 ± 11.3 0.581 

Sex (female/male) 15/28 15/28 15/28 1.000 

BMI (Kg/m2) 24.6 ± 3.4 24.7 ± 3.0 23.9 ± 3.4 0.440 

PCS-12 42.5 ± 9.8 41.0 ± 8.3 53.9 ± 4.3 <0.001 ‡ 

MCS-12 50.4 ± 9.1 51.0 ± 9.0 53.2 ± 6.6 0.483 

NPRS 4.4 ± 2.6 4.9 ± 1.8  0.341 

Lateral spinal flexion (cm) 13.8 ± 8.4 18.5 ± 5.2 21.7 ± 11.5 <0.001 † 

Tragus to wall distance (cm) 12.5 ± 4.0 11.9 ± 1.6 11.5 ± 1.4 0.197 

Modified Schöber test (cm) 5.1 ± 1.5 4.8 ± 1.4 5.1 ± 1.2 0.562 

Intermalleolar distance (cm) 98.0 ± 16.6 114.3 ± 20.0 116.3 ± 14.1 <0.001 † 

Cervical rotation (°) 61.2 ± 17.3 70.3 ± 13.3 79.3 ± 7.5 <0.001 § 

Evolution time (years) 17.6 ± 12.0    

BASMI 3.0 ± 1.6 1.9 ± 0.6 1.5 ± 0.6 <0.001 † 

BASFI 2.8 ± 2.6    

BASDAI 3.8 ± 2.5    

mSASSS 15.3 ± 14.7    

ODI  18.0 ± 12.6   

Muscle Mechanical Properties (MMPs) 

Lumbar tone (Hz) 18.23 ± 1.67 16.01 ± 2.34 15.28 ± 2.21 <0.001 † 

Lumbar stiffness (N/m) 383.13 ± 53.22 303.81 ± 64.79 284.23 ± 82.61 <0.001 † 

Lumbar decrement 1.45 ± 0.29 1.38 ± 0.28 1.25 ± 0.31 0.009 * 

Lumbar relaxation (ms) 14.03 ± 1.64 17.88 ± 3.70 18.99 ± 4.54 <0.001 † 

Lumbar creep (Deborah number) 0.88 ± 0.09 1.09 ± 0.18 1.13 ± 0.25 <0.001 † 

Cervical tone (Hz) 16.56 ± 1.70 14.76 ± 1.85 14.71 ± 1.99 <0.001 † 

Cervical stiffness (N/m) 314.71 ± 43.87 250.60 ± 54.76 247.40 ± 61.21 <0.001 † 

Cervical decrement 1.25 ± 0.20 1.35 ± 0.36 1.25 ± 0.25 0.134 

Cervical relaxation (ms) 16.53 ± 20.13 20.69 ± 3.49 16.53 ± 2.22 <0.001 † 

Cervical creep (Deborah number) 1.01 ± 0.12 1.23 ± 0.18 1.19 ± 0.20 <0.001 † 

§: Statistical differences between the three groups. ‡: Statistical differences between both LBP and axSpA groups against 

the control group. †: Statistical differences between axSpA group and both LBP and control groups. *: Statistical differences 

between axSpA and control groups. Abbreviations: BMI: body mass index; PCS-12: Physical Component Summary of 12-item Short-

Form Health Survey; MCS-12: Mental Component Summary of 12-item Short-Form Health Survey; NPRS: Numerical Pain Rating Scale; 

BASMI: Bath Ankylosing Spondylitis Metrology Indes; BASFI: Bath Ankylosing Spondylitis Function Index; BASDAI: Bath Ankylosing 

Spondylitis Disease Activity Index; mSASSS: modified Stoke Ankylosing Spondylitis Spinal Score; ODI: Oswestry Disability Index. 

3.2. ROC Curves Based on MMPs 

To classify subjects with axSpA and healthy controls, the ROC curves of all lumbar 

MMPs demonstrated statistical significance (p ≤ 0.003). The high AUC values were for 

tone, stiffness, relaxation, and creep (0.832< AUC < 0.855), while the lowest ones were for 

the decrement (AUC = 0.687, 95%CI 0.572–0.801) (Figure 2a). The same pattern of ROC 

curves was found for the cervical MMPs (p < 0.001), except for decrement (p = 0.904). The 

AUCs were between 0.757 (95%CI 0.653–0.861) for the tone and 0.815 (95%CI 0.721–0.909) 

for the stiffness (Figure 2b). 
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Figure 2. Receiver Operating Characteristic (ROC) curves of the MMPs to discriminate between 

axSpA and healthy subjects. (a, left) Area Under the Curve (AUC) for: Lumbar Tone = 0.851 (95%CI 

= 0.770–0.933); Lumbar Stiffness = 0.832 (95%CI = 0.745–0.918); Lumbar Decrement = 0.687 (95%CI = 

0.572–0.801). (a, right) AUC: Lumbar Relaxation = 0.855 (95%CI = 0.772–0.937); Lumbar Creep = 0.854 

(95%CI = 0.771–0.936). (b, left) AUC for: Cervical Tone = 0.757 (95%CI = 0.653–0.861); Cervical Stiff-

ness = 0.815 (95%CI = 0.721–0.909). (b, right) AUC: Cervical Relaxation = 0.813 (95%CI = 0.718–0.909); 

Cervical Creep = 0.812 (95%CI = 0.715–0.909). 

The ROC curves to classify patients with axSpA and sLBP were similar to those ob-

tained for axSpA and healthy controls. Thus, with the only exception of the decrement, all 

lumbar and cervical MMPs showed AUCs with values higher than 0.8 (p < 0.001) (Figure 

3). On the contrary, no ROC curve achieved statistical significance (p > 0.05) when sLBP 

and healthy groups were analyzed. 
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Figure 3. Receiver Operating Characteristic (ROC) curves of the MMPs to discriminate between 

axSpA and sLBP subjects. (a, left) Area Under the Curve (AUC) for: Lumbar Tone = 0.797 (95%CI = 

0.695–0.898); Lumbar Stiffness = 0.828 (95%CI = 0.738–0.917). (a, right) AUC: Lumbar Relaxation = 

0.841 (95%CI = 0.755–0.928); Lumbar Creep = 0.868 (95%CI = 0.788–0.948). (b, left) AUC for: Cervical 

Tone = 0.779 (95%CI = 0.676–0.881); Cervical Stiffness = 0.825 (95%CI = 0.732–0.918). (b, right) AUC: 

Cervical Relaxation = 0.848 (95%CI = 0.761–0.936); Cervical Creep = 0.846 (95%CI = 0.758–0.935). 

3.3. Intra-Group Associations among MMPs, Sociodemographic, and Clinical Variables 

The axSpA group showed multiple associations between MMPs and clinical varia-

bles, with a higher intensity for the lumbar region. Specifically, age was positively related 

to lumbar tone, stiffness, and decrement and negatively to cervical tone and decrement 

(0.323 < r < 0.696). Moreover, the evolution time was related to all lumbar MMPs and cer-

vical tone, stiffness, and relaxation in moderate to strong fashion (|0.743 < r < 0.405|). 

Similarly, total pain, PCS-12, and MCS-12 were fair to moderately related to almost all the 

MMPs (|0.315 < r < 0.618|). BASMI, BASDAI, and BASFI showed fair to moderate relations 

with the MMPs, mainly for the lumbar region. In all cases, the higher tone, stiffness and 

decrement, and the lower relaxation and creep, the higher evolution time, pain, BASMI, 

BASDAI, and BASFI, and the lower PCS-12 and MCS-12. 

Some metrology variables showed fair and moderate correlations (|0.342 < r < 0.560|) 

with the lumbar MMPs, except for the decrement. Finally, only the lateral spinal flexion 

showed significant relations with cervical MMPs (|0.384 < r < 0.456|). In all cases, the 

lower the metrology values, the higher the tone, stiffness and decrement, and the lower 

the relaxation and creep (Table 2). 
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Table 2. Correlations between sociodemographic and clinical characteristics within the axSpA group. 
 Lumbar Tone 

Lumbar 

Stiffness 

Lumbar 

Decrement 

Lumbar 

Relaxation 

Lumbar 

Creep 

Cervical 

Tone 

Cervical 

Stiffness 

Cervical 

Decrement 

Cervical 

Relaxation 

Cervical 

Creep 

Age 0.520 ** 0.326 * 0.696 ** NS NS 0.323 * NS 0.573 ** NS NS 

Height NS NS NS NS NS NS NS NS NS NS 

Weight NS NS NS NS NS NS NS NS NS NS 

BMI NS NS NS NS NS NS NS NS NS NS 

Evolution time 0.622 ** 0.513 ** 0.743 ** −0.473 ** −0.405 ** 0.627 ** 0.505 ** NS. −0.407 * NS 

Total pain 0.370 * 0.412 ** 0.504 ** −0.336 * NS. 0.478 ** NS NS −0.316 * −0.315 * 

PCS-12 −0.617 ** −0.551 ** −0.369 * 0.494 ** 0.476 ** −0.610 ** −0.462 * NS. 0.417 * NS 

MCS-12 −0.546 ** −0.497 ** NS 0.538 ** 0.540 ** −0.592 ** −0.467 ** NS 0.481 ** 0.444 * 

BASMI 0.449 ** 0.419 ** 0.385 * −0.330 * NS NS NS NS NS NS 

BASDAI 0.416 ** 0.437 ** 0.445 ** −0.352 * NS 0.389 * NS NS NS NS 

BASFI 0.500 ** 0.513 ** 0.533 ** −0.423 ** −0.362 * 0.356 * NS NS NS NS 

mSASSS NS NS NS NS NS NS NS NS NS NS 

Lateral spinal flexion −0.407 ** −0.388 * NS 0.370 * 0.342 * −0.456 ** −0.456 ** NS. 0.384 * NS. 

Tragus to wall distance 0.491 ** 0.560 ** NS. −0.469 ** −0.441 ** NS NS NS NS NS 

Modified Schöber test  −0.402 * −0.469 ** NS. 0.455 ** 0.453 ** NS NS NS NS NS 

Intermalleolar distance NS NS NS NS NS NS NS NS NS NS 

Cervical rotation −0.346 * −0.373 * NS NS NS NS NS NS NS NS 

Abbreviations: BMI: body mass index; PCS-12: Physical Component Summary of 12-item Short-Form Health Survey; MCS-

12: Mental Component Summary of 12-item Short-Form Health Survey; BASMI: Bath Ankylosing Spondylitis Metrology 

Indes; BASDAI: Bath Ankylosing Spondylitis Disease Activity Index; BASFI: Bath Ankylosing Spondylitis Function Index; 

mSASSS: modified Stoke Ankylosing Spondylitis Spinal Score; NS: Not significant (p-value > 0.05); * expresses significance 

at 0.05 level; ** expresses significance at 0.01 level. 

In the sLBP group, few significant correlations were detected. In fact, only age 

showed a consistent trend of fair to strong relations with both lumbar and cervical MMPs 

(|0.360 < r < 0.767|), except for creep. The higher the age, the higher the tone, stiffness, and 

decrement, and the lower the relaxation and creep. BMI was negatively related to the cer-

vical decrement (r = −0.342, p = 0.025), and was positively related to cervical relaxation (r 

= 0.381, p = 0.013) and creep (r = −0.327, p = 0.032). Only fair correlations were found be-

tween the ODI and tone and stiffness at the lumbar level; no other clinical variable was 

related to the MMPs. 

Some metrology variables showed significant correlations with MMPs to a fair inten-

sity, mainly at the lumbar region. This pattern was identified for lateral spinal flexion, 

intermalleolar distance, and cervical rotation (|0.309 < r < 0.398|). In all cases, the higher 

tone, stiffness, and decrement, and the lower relaxation and creep, the lower the metrol-

ogy values. Only the intermalleolar distance showed correlations with two cervical MMPs 

(stiffness: r = −0.342, p = 0.025; decrement: r = −0.475, p = 0.001) (Table 3). 

For the control group, again the age was the variable that showed more quantity and 

more intensity correlations with MMPs. Specifically, the age was positively correlated 

with lumbar tone (r = 0.685, p ≤ 0.001), stiffness (r = 0.670, p ≤ 0.001), decrement (r = 0.570, 

p ≤ 0.001), cervical tone (r = 0.312, p = 0.042) and decrement (r = 0.475, p = 0.01), and nega-

tively with lumbar relaxation (r = −0.604, p ≤ 0.001) and creep (r = −0.513, p ≤ 0.001). Fur-

thermore, the anthropometrical variables showed a fair to strong relationship with the 

cervical MMPs, as occurred between cervical decrement (r = −0.463, p = 0.002) and relaxa-

tion (r = 0.420, p = 0.005), and height, and between all cervical MMPs and the weight 

(|0.401 < r < 0.665|) and BMI (|0.306 < r < 0.702|). With the exception of the negative rela-

tion between MCS-12 and cervical decrement (r = −0.448, p = 0.042), no other clinical vari-

able was correlated with any MMP. 

Finally, some metrological variables were related to both lumbar and cervical MMPs, 

in all cases in a fair to moderate intensity. This was the case with the tragus to wall distance 

with lumbar and cervical decrement (r = −0.315, p = 0.040 and r = −0.428, p = 0.004, respec-

tively) and cervical relaxation (r = 0.372, p = 0.014), and the cervical rotation with lumbar 

tone (r = −0.335, p = 0.028), lumbar and cervical stiffness (r = −0.340, p = 0.026, r = −0.311, p 

= 0.043, respectively), and lumbar and cervical decrement (r = −0.521, p ≤ 0.001, r = −0.382, 
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p = 0.011, respectively). In all cases, the higher tone, stiffness, and decrement and the lower 

relaxation and creep were linked to the lower metrological variable values (Table 4). 

Table 3. Correlations between sociodemographic and clinical characteristics within the sLBP group. 

 
Lumbar Tone 

Lumbar 

Stiffness 

Lumbar 

Decrement 

Lumbar 

Relaxation 

Lumbar 

Creep 

Cervical 

Tone 

Cervical 

Stiffness 

Cervical 

Decrement 

Cervical 

Relaxation 

Cervical 

Creep 

Age 0.470 ** 0.579 ** 0.605 ** −0.394 ** NS 0.464 ** 0.523 ** 0.767 ** −0.360 * NS 

Height NS NS NS NS NS NS NS NS NS 0.339 * 

Weight NS NS NS NS NS NS NS NS NS 0.379 * 

BMI NS NS NS NS NS NS NS −0.342 * 0.381 * 0.327 * 

Total pain NS NS NS NS NS NS NS NS NS NS 

PCS-12 NS NS NS NS NS NS NS NS NS NS 

MCS-12 NS NS NS NS NS NS NS NS NS NS 

ODI 0.366 * 0.322 * NS NS NS NS NS NS NS NS 

Lateral spinal flexion −0.348 * −0.333 * NS. −0.311 * NS NS NS NS NS NS 

Tragus to wall distance NS NS NS NS NS NS NS NS NS NS 

Modified Schöber test  NS NS NS NS NS NS NS NS NS NS 

Intermalleolar distance NS. −0.349 * −0.309 * NS NS NS −0.342 * −0.475 ** NS NS 

Cervical rotation −0.384 * −0.332 * NS. 0.398 ** 0.393 ** NS NS NS NS NS 

Abbreviations: BMI: body mass index; PCS-12: Physical Component Summary of 12-item Short-Form Health Survey; MCS-

12: Mental Component Summary of 12-item Short-Form Health Survey; ODI: Oswestry Disability Index; NS: Not signifi-

cant (p-value > 0.05). * expresses significance at 0.05 level; ** expresses significance at 0.01 level. 

Table 4. Correlations between sociodemographic and clinical characteristics within the healthy control group. 

 
Lumbar 

Tone 

Lumbar 

Stiffness 

Lumbar 

Decrement 

Lumbar 

Relaxation 

Lumbar 

Creep 

Cervical 

Tone 

Cervical 

Stiffness 

Cervical 

Decrement 

Cervical 

Relaxation 

Cervical 

Creep 

Age 0.685 ** 0.670 ** 0.570 ** −0.604 ** −0.513 ** 0.312 * NS. 0.475 ** NS NS 

Height NS NS NS NS NS NS NS −0.463 ** 0.420 ** NS. 

Weight NS NS NS NS NS −0.401 ** −0.413 ** −0.442** 0.665 ** 0.603 ** 

BMI NS NS NS NS NS −0.408 ** −0.445 ** −0.306* 0.642 ** 0.702 ** 

PCS-12 NS NS NS NS NS NS NS NS NS NS 

MCS-12 NS NS NS NS NS NS NS −0.448 * NS NS 

Lateral spinal flexion NS NS NS NS NS NS NS NS NS NS 

Tragus to wall distance NS NS −0.315 * NS NS NS NS −0.428 ** 0.372 * NS 

Modified Schöber test  NS NS NS NS NS NS NS NS NS NS 

Intermalleolar distance NS NS NS NS NS NS NS NS NS NS 

Cervical rotation −0.335 * −0.340 * −0.521 ** NS NS NS −0.311 * −0.382 * NS NS 

Abbreviations: BMI: body mass index; PCS-12: Physical Component Summary of 12-item Short-Form Health Survey; MCS-

12: Mental Component Summary of 12-item Short-Form Health Survey; NS: Not significant (p-value > 0.05). * expresses 

significance at 0.05 level; ** expresses significance at 0.01 level. 

4. Discussion 

This study showed that cervical and lumbar MMPs are different depending on the 

type of spinal pain. In fact, except for the decrement, the spinal MMPs of axSpA patients 

showed a higher tone and stiffness and a lower relaxation and creep than those with sLBP 

and healthy controls. Furthermore, all lumbar and cervical MMPs, except decrement, cor-

rectly classified patients with axSpA and healthy subjects, as well as subjects with axSpA 

and sLBP, but not with sLBP and those who were healthy, according to ROC curves. 

Each one of the groups showed a different pattern of correlations between MMPs and 

sociodemographic and clinical variables, age being the variable most correlated with the 

MMPs of both regions for the three groups. Moreover, the lumbar MMPs of the axSpA 

patients were correlated with clinical and metrological variables in a moderate to strong 

intensity, while a scant number of correlations with moderate intensity were found for 

sLBP patients. Furthermore, the healthy group showed a similar trend to the sLBP one, 

but more correlations between cervical MMPs and weight and BMI inside this group were 

identified. 
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4.1. Differences in MMPs, Spinal Mobility, Pain, and Quality of Life between Groups 

Higher lumbar tone or stiffness values were found in patients with axSpa compared 

to sLBP and healthy ones. Our results for the axSpA group are consistent with recent re-

search that found that higher lumbar and cervical tone, stiffness and decrement, and lower 

relaxation and creep for axSpA patients compared to healthy controls [45] is possibly due 

to increased spinal stiffness associated with axSpA [17,19,43]. Furthermore, the lumbar 

tone, stiffness, and decrement of the current sLBP and healthy groups were similar to 

those reported in subjects with chronic LBP and healthy subjects, respectively [54]. On the 

contrary, our results showed higher tone and stiffness and lower relaxation and creep 

than those reported in other younger axSpA and healthy samples [17,53], probably due to 

the changes of the MMPs associated with age [44]. 

Surprisingly, the sLBP and healthy groups did not show statistical differences in the 

MMPs, although the tone, stiffness, and decrement for the sLBP group were slightly 

higher than for the healthy one in both spinal regions, in line with results previously re-

ported in sLBP [6], and were slightly lower than those previously reported for cLBP [44]. 

Such findings could be explained by the association between the behavior of MMPs and 

the evolution of the LBP from acute to chronic, where higher tone, stiffness, and lower 

elasticity have been described [30,40]. Furthermore, this different behavior between the 

types of spinal pain, and even between spinal regions, could be explained by the spinal 

biomechanics or the different molecular compositions of the muscle tissues responsible, 

among other aspects, of the development of passive tension, related to the collagen con-

tent [63]. 

Related to lumbar decrement, which is the inverse of the tissue elasticity, we found 

differences only between axSpA and healthy ones. Our decrement values at the lumbar 

level were similar to those detailed in previous studies [38,43,44], although these research-

ers found differences between groups. Moreover, the cervical decrement did not show 

differences between the three groups in the current research. These results are consistent 

with those reported for axSpA patients by Garrido-Castro et al. [45] However, other recent 

research in sLBP patients has shown that the spinal decrement is important to distinguish 

between subjects with acute spinal mechanical pain and healthy ones [6], which could 

mean that the elasticity is affected to different intensities depending on the type of spinal 

pain, the chronicity of the disease or even other unknown factors. 

Independent of the statistical significance, the differences in the MMPs found be-

tween axSpA, sLBP, and healthy groups exceeded in all cases the Minimum Detectable 

Change in both regions (MDC: lumbar < 2%, cervical > 7%) [45]. Furthermore, the differ-

ences obtained for tone and stiffness between axSpA and sLBP in the present study and 

between axSpA and healthy groups were greater than those reported in previous LBP 

studies (0.7 Hz and 26.6 N/m) [40,64] and even in healthy subjects (1.22 Hz and 45.40 N/m) 

[65], which reflects the clinical significance of the current results. 

Concerning metrology, several outcomes also showed differences between the three 

groups. Specifically, the lowest cervical rotation was found in the axSpA group, followed 

by the sLBP group. This pattern of mobility restriction can be caused by the pathological 

status at the spinal level, with compensatory movements in other structures, such as the 

ribcage. In addition, lateral flexion and intermalleolar distance differentiated the axSpA 

group from the other two groups, but not the sLBP and healthy subjects. The mean values 

of both variables were similar to those reported by other studies with patients with spinal 

inflammatory pathology [66]. 

Finally, the PCS-12 was higher in healthy subjects with respect to spinal pain patients, 

as has been previously reported in acute spinal pain [6], but there was no difference be-

tween patients with sLBP and with axSpA, which reflects the negative consequences of 

the spinal pain disorders in the patients’ QoL. The mean values of the PCS-12 in our sam-

ple were similar to others reported in sLBP [6] and cLBP [67] researches. However, the 

data related to the MCS-12 in our study are higher and are similar between groups. The 
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causes of this behavior could be complex in chronic diseases [68], which exceeds the ob-

jectives of the current research, but it could be related to the recent improvements of the 

healthcare received for the chronic inflammatory patients [69]. 

4.2. Capacity of MMPs to Discriminate between Patients with Inflammatory and Mechanical 

Low Back Pain and Healthy Subjects 

The ROC curves of all lumbar and cervical MMPs, except for decrement, demon-

strated an excellent capacity for classifying subjects with axSpA and healthy controls. A 

similar pattern yields the ROC curves for patients with axSpA and sLBP. No previous 

research studied the discriminant capacity of MMPs to identify axSpA patients, which 

prevents possible direct comparisons with the current data. However, it has been sug-

gested that MMPs can become a specific marker of the axSpA status and progression 

[18,45,64], increasing interest in their determination in spinal pain syndromes in both lum-

bar and cervical regions. 

With respect to sLBP and healthy groups, no other MMP could discriminate the sub-

jects. In a previous study, the cervical decrement consistently classified subjects with acute 

LBP and healthy subjects [6]. The elasticity may be a specific characteristic in LBP at the 

early stages, but the current study cannot confirm this. 

4.3. Associations between MMPs with Sociodemographic and Clinical Data 

In general, there were different patterns of correlations depending on the study 

group. Therefore, different origins of spinal pain can determine specific associations be-

tween MMPs and other clinical and sociodemographic variables. The age was the variable 

correlated with a greater number of MMPs, which is directly related to tone, stiffness, and 

decrement, and inversely related to relaxation and creep, independent of the study group. 

These results agree with previous research at the spinal level, both in axSpA [45,46] and 

cLBP patients [44] and in other regions, such as neck and upper and lower limb muscles 

[43,51,70], which demonstrate that the advance of age is related to MMPs changes (i.e., 

increase in tone and stiffness, decrease in elasticity, relaxation time and viscosity), inde-

pendent of the clinical state. Moreover, as proposed by White et al., the longer duration 

of the disease may be related to the lumbar myofascial changes [43], as occurred in the 

current study, where higher tone and stiffness at lumbar and cervical levels, and lower 

relaxation, are related to a higher evaluation time of the axSpA. 

Regarding the metrological data, a negative relationship between the cervical rota-

tion and lumbar tone and stiffness was observed in all groups. This relationship has al-

ready been reported for acute LBP patients [6] and could be based on the regional inter-

dependence concept [71], which establishes the possible consequences of specific disor-

ders (i.e., lumbar pain) at distant levels (i.e., at cervical region). The lumbar lateral flexion 

showed negative relations with lumbar tone and stiffness and positivity with relaxation 

and creep in both spinal pain groups, as previous research stated for axSpA [46]. Never-

theless, only the axSpA patients showed a relationship with cervical MMPs, probably due 

to the most intense cervical involvement in patients with axSpA. 

The clinical variables of the axSpA group, such as evolution time, BASMI, BASDAI, 

and BASFI, correlated with most of the lumbar MMPs and with cervical tone. This out-

come is relevant since possible interactions between the muscle alterations and the clinical 

state could explain some pathological mechanism. In fact, it is known that mechanical 

stress is a relevant factor in the pathophysiology of the disease when an advanced struc-

tural damage is found [72]. Furthermore, the pain was related to different MMPs of both 

spinal regions only in axSpA patients. Therefore, these results reinforce that muscle tone 

could be a contributor to the bidirectional pain-spasm model [40] as well as being the 

cause of a circulatory deficit in the musculature that generates an increase in stiffness [73], 

at least in chronic states. Moreover, the associations found between MMPs and QoL, de-
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tected mainly in the axSpA group, confirm the impact of the physical symptoms, includ-

ing rigidity, linked to the axSpA progression in the physical and mental state, as estab-

lished by other authors [16,20]. 

The low number of correlations between MMPs and sociodemographic variables 

identified in the sLBP group, which agrees with previous patterns in acute LBP [6], differs 

from the pathological changes described in chronic stages and is related to the viscoelastic 

characteristics of the musculature [74]. Moreover, the disability was only associated with 

the lumbar tone and stiffness, with fair intensity. In other words, the pathological mecha-

nisms underlying the deterioration associated with cLBP have not occurred in subacute 

stages. The similarities identified in the correlation pattern between MMPs and metrolog-

ical and QoL data, when the sLBP and the healthy groups were compared, could be in line 

with this approach. Finally, the stable pattern of correlations between cervical MMPs and 

weight and BMI found in the healthy group has not been previously reported. Nonethe-

less, the positive relationship between anthropometric variables, such as weight and BMI, 

the cervical relaxation time and the tissue viscosity, was reported in a similar sample [6]. 

This association could be originated by the increment of lipid content in skeletal muscles 

when weight and BMI increase [75]. 

4.4. Strengths and Limitations 

One of the strengths of this study was the evaluation of cervical MMPs in patients 

with a main alteration at the lumbar level, as previously suggested [54]. On the other hand, 

it is necessary to emphasize the clinical applicability of this research. Indeed, the determi-

nation of the MMPs is fast and painless and does not need to use expensive imaging sys-

tems. Finally, the study results could help in decision making, facilitating the adequate 

selection of treatment approaches or the identification of clinical effects for spinal pain 

patients [76–78]. 

Likewise, it is necessary to recognize some limitations of the study. First, the assessor 

was not blinded to the group assignment, as the subjects with spinal pain were in an active 

phase of disease. Second, the depth reached by the MyotonPRO device does not exceed 2 

cm [17], which prevented the recording of the MMPs in deep musculature. Third, our 

study did not differentiate the sample by sex, which could be interesting since differences 

between both sexes have been described in the muscle structure. Finally, the differentia-

tion of the subjects with spinal pain according to the time suffering from pain (i.e., acute, 

subacute, or chronic stages) is of interest since a delay of only six months in diagnosis can 

lead to structural damage and worse treatment results [11], but this was not performed in 

this study. 

5. Conclusions 

The lumbar and cervical MMPs are different depending on the type of spinal pain. 

The patients with axSpA show a higher tone and stiffness and lower relaxation and creep 

than those with sLBP and healthy controls. Furthermore, the spinal MMPs, except for dec-

rement, are able to classify patients with axSpA and healthy subjects, but not subjects with 

sLBP and healthy ones, which increases the interest regarding the assessment of the spinal 

MMPs as a possible marker of the muscle state and progression in the clinical context of 

inflammatory spinal pain. 

The patients with axSpA show a specific pattern of correlations between MMPs and 

clinical and metrological variables that do not appear in sLBP and healthy subjects. This 

pattern associates a worse state and progression of axSpA to higher tone and stiffness in 

lumbar and cervical regions. 
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Abbreviation 

ASAS  SpondyloArthritis International Society  

axSpA  Axial spondyloarthritis  

AUC Area Under the Curve  

BASDAI  Bath Ankylosing Spondylitis Disease Activity Index  

BASFI  Bath Ankylosing Spondylitis Function Index  

BASMI  Bath Ankylosing Spondylitis Metrology Index  

BMI  Body Mass Index  

cLBP  Chronic low back pain  

ICC Intraclass Correlation Coefficient  

LBP  Low Back Pain  

MCS-12 Mental Component Summary of 12-item Short-Form Health Survey 

MMP  Muscle Mechanical Property  

mSASSS  Modified Stoke Ankylosing Spondylitis Spinal Score  

NPRS  Numerical Pain Rating Scale  

NS  Not Significant  

NWC  Number of Words Chosen  

PCS-12 Physical Component Summary of 12-item Short-Form Health Survey 

QoL Quality of life 

ROC Receiver Operating Characteristic 

ROM Range Of Motion 

SF-12 12-item Short-Form Health Survey 

sLBP Subacute LBP 

95%CI 95% Confidence Interval 
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