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b Universidad de Jaén, Departamento de Geología, Facultad de Ciencias Experimentales, Campus Universitario Las Lagunillas, 23071 Jaén, España 
c Instituto Nacional de Investigaciones Agrícolas (INIA-CENIAP), Av. Universidad vía El Limón, 02105 Maracay, Venezuela 
d Universidad Central de Venezuela, Facultad de Agronomía. Av. Universidad, Maracay, Venezuela 
e Instituto de Agricultura Sostenible CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, España   
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A B S T R A C T   

Soil morphological properties described in the field, such as texture, consistence or structure, provide a valuable 
tool for the evaluation of soil productivity potential. In this study, we developed a regression model between the 
soil morphological variables of banana plantations and a crop Productivity Index (PI) previously developed for 
the same areas in Venezuela. For this, we implemented categorical regression, an optimal scaling procedure in 
which the morphological variables are transformed into a numerical scale, and can thus be entered in a multiple 
regression analysis. The model was developed from data from six plantations growing “Gran Nain” bananas, each 
with two productivity levels (high and low), in two 4-ha experimental plots, one for each productivity level. 
Sixty-three A horizons in thirty-six soils were described using 15 field morphological variables on a nominal scale 
for structure type, texture and hue, and an ordinal scale for the rest (structure grade, structure size, wet and dry 
consistence, stickiness, plasticity, moist value, chroma, root abundance, root size, biological activity and reaction 
to HCl). The optimum model selected included biological activity, texture, dry consistence, reaction to HCl and 
structure type variables. These variables explained the PI with an R2 of 0.599, an expected prediction error (EPE) 
of 0.645 and a standard error (SE) of 0.135 using bootstrapping, and EPE of 0.662 with a SE of 0.236 using 10- 
fold cross validation. Our study showed how soil quality is clearly related to productivity on commercial banana 
plantations, and developed a way to correlate soil quality indicators to yield by using indicators based on easily 
measured soil morphological parameters. The methodology used in this study might be further expanded to other 
banana-producing areas to help identify the soils most suitable for its cultivation, thereby enhancing its envi
ronmental sustainability and profitability.   

1. Introduction 

The banana is one of the most important crops in the world after rice, 
wheat and corn, both in terms of production yields and area cultivated. 
This fruit constitutes the basis of the diet in tropical countries like Costa 
Rica, Colombia, Ecuador, Panama and Venezuela. It is also an important 
source of income for producers (FAO, 2020). Identification of the most 
suitable areas for banana cultivation is essential to increasing its pro
ductivity in tropical regions. Therefore, soil properties must be charac
terized to understand their relationship to crop productivity (Villarreal- 
Núñez et al., 2013; Delgado et al., 2010b). 

Soil morphological field properties have been recognized as a valu
able tool for studying a broad range of soil characteristics, including 
those related to soil development in agricultural areas, for the ease and 
speed with which they can be described (Soil Survey Staff, 2017; Calero 
et al., 2008; Pulido-Moncada et al., 2017). Soil morphological properties 
are relatively easily and economically characterized in soil pits, almost 
all are included in soil databases, and they can be easily determined by 
technicians (Delgado et al., 2010a). Unlike soil chemistry and most of its 
biological properties, field morphological data are generally nonnu
merical (nominal or ordinal) and measured on evaluation scales with 
origins difficult to establish (Vaughan & Ormerod, 2005; Meulman et al., 
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2002). Similarly, numerical relationships of different categories are still 
poorly developed. Such data cannot be subjected to rigorous treatment 
by statistical methods, such as factor analysis or multiple regression, like 
numerical quantitative data (Andrews et al., 2004; Linting et al., 2007; 
Calero et al., 2005). Therefore, there is little background for calculating 
soil quality indices from categorical indicators established by decision 
rules based on existing knowledge (Pulido-Moncada et al., 2014, Calero 
et al., 2018). 

Soils in banana plantations in Venezuela were first characterized at 
the beginning of the 20th century. Other regional and farm character
ization studies were carried out under Venezuelan research and devel
opment programs from 1970 to 1998 (Martínez et al., 2008). Some of 
the most recent soil characterization studies in banana zones are those 
by Hernández et al. (2007), Rey, 2009, Delgado et al. (2010a, 2010b), 
González-Pedraza et al. (2014), Olivares et al. (2020), González García 
et al. (2021a, 2021b, 2021c) and González-Pedraza and Carlos Escalante 
(2021). From the 1970 s onwards, the worldwide trend toward inten
sification of banana production systems was also observed in Venezuela, 
and the relationship between reduction in productivity and loss of soil 
quality became apparent. As a result, growers are looking for innovative 
sustainable management methods that can simultaneously maintain or 
increase productivity. Improved use of available, or newly acquired, soil 
information, is essential for achieving such sustainable banana pro
duction in tropical countries. 

The link between soil quality and current or potential productivity is 
critical in the search increased productivity and sustainability in agri
culture. As mentioned, most approaches are based on quantitative var
iables, while the potential of morphological variables has still only been 
moderately explored. Several methods have been studied, in which the 
high potential of categorical regression (CATREG), already in use in such 
fields as education, marketing, and agricultural economics, among 
others (van der Kooij, 2007; Meulman et al., 2019; Sevinç et al., 2019), 
has been highlighted. However, to our knowledge, it has not been 
extensively used in agronomic sciences and never in banana fields. This 
is a novel element in our study, in which soil morphological properties 
were explored as promising new soil indicators for assessing banana 
productivity in Venezuelan soils. Our study is a pioneer in the applica
tion of CATREG, an optimal scaling procedure, to the transformation of 
morphological variables into a numerical scale, which is completely 
novel in banana soils. Nevertheless, beyond its application in the case of 
a specific crop (banana) and geography (Venezuela), we have developed 
a scientific rationale that is easily transferred to other areas, not only in 
agriculture, but soil science in general. 

According to many authors (i.e., MacEwan and Fitzpatrick, 1996; 

Lal, 1998; and just recently Vasu et al., 2021), it is important for soil 
assessment to be based on such characteristics as morphological prop
erties, that are measured easily and inexpensively. Beyond its taxonomic 
utility, morphological properties can improve soil assessment. A wealth 
of such data is available from agricultural services (universities, research 
centers, etc.), just waiting to be usefully employed, and our study is a 
fine example of how it can be used. 

This study aimed to validate the hypothesis that soil morphological 
properties can differentiate banana productivity levels in large areas of 
Venezuela using a categorical regression prediction model. In this case, 
qualitatively estimated soil morphological properties could be used for 
improving the assessment of banana productivity. Categorical regres
sion analysis can provide an operating model for bananas in an area 
where there is little background of soil quality indices with categorical 
soil properties. 

2. Materials and methods 

2.1. Description of the study areas and banana plantations 

Six banana plantations in the states of Aragua and Trujillo in 
Venezuela were selected (Table 1). The plantations in the State of Ara
gua (PL, SM, PZ and CH) are in the Lake Valencia Basin. They are 
characterized by a tropical savanna (Aw) climate with a mean annual 
rainfall depth of 980 mm. Rainfall in this area is seasonal for five to six 
rainy months, concentrated between May and October (Olivares et al., 
2021). The mean annual temperature is 26.2 ◦C and the mean annual 
relative humidity is 70.0% (Olivares, 2018). The terrain relief is flat 
(slope 0–2%). Plantation PL is located on the fourth level of the lacus
trine terrace produced by drying of Lake Valencia, while Plantations SM, 
PZ and CH are on alluvial soils, all with medium to silty textures. Soils in 
these farms are Mollisols and Inceptisols, generally with moderate to 
good drainage, soil pH neutral to alkaline, fertile, with medium to high 
organic matter content (Delgado et al., 2010a). 

The second study area is located in the State of Trujillo (Plantations 
BA and KA), in the region southeast of Lake Maracaibo, also charac
terized by a tropical savanna (Aw) climate. The mean annual precipi
tation is 1094 mm, with two rainfall peaks, one in April-May (monthly 
precipitation approximately 120 mm) and the other in October (monthly 
precipitation approximately 145 mm). The driest months are January 
and February when the monthly precipitation is<50 mm (Olivares et al., 
2017). The area has a mean annual temperature of 27.5 ◦C and a mean 
relative humidity of 78.0%. This area of the State of Trujillo is an alluvial 
plain with slopes of <1.0% with mainly Entisol soils (Rodríguez et al., 

Table 1 
Geographic location and planted area of bananas (ha) of the sampled plantations in Venezuela.  

Plantations code Geographical coordinates Height (masl) Sites Soil Taxonomyy State planted area (ha) 

PL 10◦ 12′ N; 67◦ 30′ W 435 H Mollic Ustifluvents 
Fluventic Haplustolls 
Cumulic Haplustolls 

Aragua 135    

L Oxyaquic Ustifluvents 
Fluventic Haplustolls   

SM 10◦ 12′ N; 67◦ 23′ W 502 H Fluventic Haplustepts 
Fluventic Haplustolls 

Aragua 11    

L Fluventic Haplustolls   
PZ 10◦ 11′ N; 67◦ 31′ W 514 H Fluventic Haplustolls Aragua 20    

L Fluventic Haplustepts   
CH 10◦ 11′ N; 67◦ 31′ W 498 H Fluventic Haplustolls Aragua 9    

L   
BA 09◦ 29′ N; 70◦ 57′ W 16 H Oxyaquic Ustifluvents Aeric Fluvaquents Trujillo 300    

L Typic Ustifluvents 
Oxyaquic Ustifluvents   

KA 09◦ 28′ N; 70◦ 55′ W 17 H Oxyaquic Ustifluvents 
Fluventic Haplustoll 

Trujillo 270    

L Typic Ustifluvents 
Oxyaquic ustifluvents   

y Soil Survey Staff (2014). Sites: H: High and L: Low productivity. 
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2006). These soils have moderate to poor drainage with neutral to 
alkaline pH. They are moderately fertile and average organic matter 
content is around 2.75% (Rey, 2009). In both areas, soil management 
was concentrated on fertilization, and no reclamation action was taken 
to improve drainage or increase organic matter. 

2.2. Soil sampling 

Banana productivity was estimated in sampling areas delimited by 
productivity level following the guidelines proposed by Rosales et al. 
(2008). On all the plantations, two plots or productivity levels were 
identified a priori as High (H) and Low (L) for estimating the Produc
tivity Index (PI). The “Gran Nain” variety was the only variety grown, 
and each productivity plot had an area of 4 ha (on the large > 50 ha 
plantations, PL, BA and KA) with four replicated plots in each field. On 
large plantations (≥50 ha, PL, BA and KA), the average yield of high 
productivity plots was 69.8 ± 5.0 t ha− 1 yr− 1 and in low productivity 
plots, it was 59.7 ± 5.3 t ha− 1 yr− 1. On the remaining small plantations 
(<25 ha, SM, PZ and CH) these two levels of productivity were identified 
in 1-ha fields, with two replicated plots in each field, for a total of 36 
plots. The average yield on small plantations was 11.5 ± 0.7 t ha− 1 yr− 1 

for high productivity plots and 1.6 t ha− 1 yr− 1 for those with low 
productivity. 

2.3. Productivity index (PI) 

Our study used the banana productivity index (PI) previously 
developed by Olivares et al. (2020) to estimate productivity in each of 
the evaluation plots. The PI is based on the morphometric characteristics 
of banana plants, such as circumference of the mother plant pseudo-stem 
at 1 m height (cm), number of hands per bunch (n), and height of the 
succession plant (cm), following the methodology proposed by Rosales 
et al. (2008). The PI was generated from a principal component analysis 
(PCA) in which the variables best represented on the first axis (Principal 
Component 1) were retained. In addition, the linear combination of the 
three biometric variables evaluated was used as a synthesis variable, 
where the coefficients of this linear combination were the variable 
loadings in PC1. Then, in the categorical regression the ordinal scaling 
level was considered the response variable. 

2.4. Morphological characterization of soil properties 

A soil profile was evaluated in each of the thirty-six replicated plots 
indicated in Section 2.2. The A horizon morphological properties were 
described and characterized in the field following the FAO (2006) and 
the Soil Survey Staff (2017) methodologies. Color was determined ac
cording to the Munsell soil color charts (Munsell Color Company, 1999). 
Texture was determined in the laboratory by sieving and sedimentation, 
using a Robinson pipette, (Soil Survey Staff, 2017). Fifteen morpho
logical variables in these soil profile descriptions were studied: texture 
class, structure size, structure grade, structure type, moist hue, moist 
value, moist chroma, moist consistence, dry consistence, stickiness, 
plasticity, biological activity, root abundance, root size and reaction to 
HCl. 

2.4.1. Sample analysis 
Our analysis was applied to the A horizons (N = 63) in each soil. The 

average thickness of these horizons is 31 ± 12 cm, which roughly co
incides with the area of maximum concentration of the banana tree (30 
cm). We hypothesized that focusing our analysis on the A horizon would 
make more agronomic sense, since this is the area that most influences 
plant development and yield. The functional roots of the banana in our 
profile descriptions were concentrated in the A horizons which ranged, 
from about the top 30 to 40 cm deep, a root concentration range similar 
to the description of banana in the tropics by Gauggel et al. (2005). 

2.5. Statistical modelling of field data 

2.5.1. Regression with optimal scaling 
First, a regression model was fitted to be able to predict the banana 

productivity index (PI) (outcome) based on the soil morphological 
properties (predictors) on the plantations sampled. However, the cate
gorical or nonmetric nature of the predictors prevents proper applica
tion of classical regression analysis. Various techniques have been 
applied in an attempt to include categorical variables in multiple 
regression, such as the creation of dummy variables. These variables, 
however, introduce high multicollinearity and hinder interpretation of 
the model, reducing the significance of the regression coefficients 
(Wissmann et al., 2011) and the predictive power of the model (Hair 
et al., 1999; Xu et al., 2010). 

The problem of multicollinearity between predictors can be dealt 
with by selecting a good theoretical model, which enters only those 
predictors with a high degree of unique variance with the dependent 
variable (Hair et al., 1999). However, it is hard to select categorical 
predictors using the usual stepwise procedure, where each variable is 
selected or discarded before its transformation to a numeric scale. For 
rigorous treatment of categorical variables, such as field morphological 
variables, in multivariate methods, optimal scaling methods need to be 
applied (Calero et al., 2018). 

Categorical regression (CATREG) (van der Kooij et al., 2006; Meul
man et al., 2019) is an optimal scaling technique that can transform the 
kj categories (s = 1, …, j) of the jth nonmetric predictors, and the kr 
categories of the response variable r, by means of nonlinear numerical 
functions, while minimizing the error (that is, increasing the coefficient 
of determination R2 of the model). CATREG takes the classical linear 
regression model with nonlinear optimal scaling (Equation (1)): 

φ(y) =
∑p

j=1
βjφ(x)+ e (1)  

where βj are the regression coefficients of the jth predictor, φ(x) and φ(y) 
the transformation functions of predictors (x) and response variable (y), 
respectively, and e is the model error. In this study, the only restriction 
applied to φ(x) and φ(y) was monotonicity, which makes it possible to 
distinguish between field soil morphological properties measured on an 
ordinal scale (having an intrinsic categorical order i.e., stickiness: from 
not sticky to very sticky) from nominal variables not having this re
striction. Hue, structure type and texture class were the second type. 
Rewriting Equation (1) in terms of indicator matrices and category 
quantifications yields Equation (2): 

Gryr =
∑p

j=1
βjGjyj + e (2)  

where β (β1, …, βp), in order p (the number of predictor variables), is the 
vector containing regression coefficients, yj and yr, in order kj and kr, the 
optimal scalings or numerical transformations of the categories for the 
predictors and response variable, respectively, and Gj and Gr, in order n 
× kj and n x kr (where n is the number of cases), indicator matrices, such 
that 1 is when the ith object is in the kj category of variable j and 
0 otherwise. CATREG estimates the regression coefficients by mini
mizing the least squares loss function (van der Kooij et al., 2006) in 
Equation (3): 

σ
(
yr; β; yj

)
= ‖Gryr −

∑p

j=1
βjGjyj‖

2
(3) 

The multiple correlation coefficient R2 can be found from the ratio 
between the regression sum of squares and the total sum of squares (Gifi, 
1990; van der Kooij, 2007) in Eq. (4): 

R2 = N − 1/2(Gryr)
’v(vv’)

− 1/2 (4)  

where N is the number of observations and v is the accumulated 
contribution of predictor variables so that: 
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v =
∑p

j=1
βjGjyj (5) 

The statistics (t, F values) and fit and error measures, as well as the 
correlation matrices R, partial correlation and predictor tolerance, 
which will be used to assess the goodness of the model, are found from βj 
and R2. Tolerance is defined as one less the determination coefficient R2 

of the prediction of any predictor by the others, considering them in
dependent variables, so it should be high to avoid multicollinearity. 

2.5.2. Accuracy of categorical regression (CATREG) 
The error term in the regression model (1-R2) is usually not a good 

estimator of the prediction error, since it is found from the same data 
used to fit the model. To obtain a better estimate, resampling methods, 
such as cross validation or bootstrapping, may be used. 

In CATREG, the goal is to minimize the dataset prediction error. The 
expected prediction error (EPE) must be known to be able to assess the 
reliability of predictions of future observations (van der Kooij, 2007). 
Therefore, ideally, a training dataset would be used to estimate a model 
and a test dataset. However, in this case, there is no test dataset, and 
therefore two resampling methods were used: K-Fold Cross-Validation 
(CV) and the 0.632 Bootstrap, using the mean square error (MSE) for 
assessing the EPE. 

In K-Fold Cross-Validation, data are divided into randomized k 
groups of approximately the same size. K-1 groups are used to train the 
model and another is used for validation. This process is repeated k times 
using a different group as validation in each iteration. The process 
generates k estimates of the error which is averaged as the final estimate 
(Meulman et al., 2019). In bootstrapping, N cases of the same size as the 
sample are taken at random from the full dataset in each resampling to 
obtain B bootstrapped samples. Then, a model is fitted for each boot
strapped sample, estimating its prediction error from the original (not 
resampled) dataset. Contrary to CV, random sampling is performed with 
replacement, that is, an observation can be repeated in the bootstrapped 
sample, while another is excluded (out-of-bag set). The simple bootstrap 
estimate of the expected prediction error is found by averaging the error 
estimates of the B bootstrapped samples. Since the bootstrapped 
(training set) and the original sample (validation set) have many ob
servations in common, the bias seems to be greater than with CV and, in 
general, it performs worse. Efron (1983) proposed a modification of the 
bootstrap prediction error called the 0.632 method, which includes the 
bootstrapped model error estimates in the simple bootstrap in their own 
out-of-bag observations (not the original dataset). This corrects the bias 
and improves model performance (van der Kooij, 2007). Here, we used 
10 folds for CV and 50 bootstrap samples in 0.632 bootstrapping. In 
addition to the reliability of the prediction estimated by the MSE, a more 
flexible approach can be used to evaluate the CATREG model accuracy 
(Hartmann et al., 2009). For this, the dependent variable (PI, which 
usually ranged from − 4 to + 4) was distributed into two classes or 
groups: N, negative with PI < 0 and P, positive with PI > 0, using zero as 
the cut-off point. Thus, model accuracy could be addressed by such 
classification accuracy measures as Efficiency and the Receiver Oper
ating Characteristic (ROC) curve (Garosi et al., 2019). Efficiency can 
therefore be defined as: 

Efficiency =
TP + TN

TP + TN + FP + FN
(6)  

where TP (true positive) and TN (true negative) represent the number of 
correctly classified P and N plots, respectively, FP (false positive) the 
number of N plots that have been classified as P and FN (false negative) 
those P considered N. 

The ROC curve plots the sensitivity (the ratio of the number of 
correctly classified P to total observed P) versus “1 – specificity” (spec
ificity is the ratio between the number of correctly classified N and the 
total observed N). A model’s predictive performance is high if high 
sensitivity is obtained at low values of “1 – specificity”, that is, good 

capacity for correctly classifying P with a low number of false positives. 
This yields a curve closer to the upper left-hand corner (Garosi et al., 
2019). The Area under the ROC curve (AUC) quantifies this relationship, 
so that a model is considered acceptable if AUC ≥ 0.7, excellent if AUC 
≥ 0.8 and outstanding if AUC ≥ 0.9. 

2.5.3. Regularization of CATREG 
Regularization is used for selecting the model and avoiding over

fitting in predictive techniques, since estimation of the regression co
efficients by least squares may present collinearity (James et al., 2013). 
It is especially useful in categorical regression (Meulman et al., 2019). Of 
the three main regularization techniques, Ridge, Lasso and Elastic Net, 
Lasso is one of the most widely employed for optimal scaling regression. 
As first developed by Tibshirani (1996), Lasso regularization can deal 
with complex models with many predictors and high multicollinearity, 
when ordinary least squares show instability and overfitting. Both ef
fects (instability and overfitting) are common in optimal scaling 
regression and can make it difficult to select a satisfactory theoretical 
model (Hartmann et al., 2009). 

Lasso applies a λ penalty to the CATREG loss function that reduces 
the estimated regression coefficients, shrinking them to zero as the 
penalty increases (van der Kooij, 2007) in Eq. (7). 

σlasso(β) = ‖Gyyr −
∑p

j=1
βjGjyj‖

2
+ λ

∑p

j=1

⃒
⃒βj

⃒
⃒ (7) 

Predictors with the most stable estimate of the coefficient shrink to 
zero more slowly, so Lasso regularization can be used to advantage for 
exploratory analysis instead of stepwise procedures to obtain a set of 
predictors with low multicollinearity. The advantage of Lasso over al
ternatives like Ridge regularization is that it shrinks the coefficients to 
zero, which the others do not. By cancelling coefficients, model inter
pretation (coefficient selection) becomes straightforward. Lastly, the 
Elastic Net regularization combines the ridge penalty rule and Lasso, but 
involves a complicated calculation, and its interpretation is not as im
mediate as Lasso. For details of the mathematics of these three regula
rization techniques in optimal scaling regression, see Meulman et al. 
(2019). 

Since each λ penalty involves a regression model, the model that the 
regularized regression coefficients will be based on must be selected. We 
followed the procedure specified in Meulman et al. (2019) for this, 
selecting the most parsimonious model with the lowest prediction error. 
As an increase in the penalty usually yields lower prediction errors, the 
best model would be the one in which most of the coefficients are 
cancelled out, that is, when the sum of the standardized regression co
efficients is very close to zero. However, a local minimum might be 
selected, such that it keeps a suitable number of coefficients, enabling an 
adequate theoretical model to be established. The one standard error (1- 
SE) rule can be applied for this (James et al., 2013). We chose the 
regularized model with the lowest number of predictors (the more 
parsimonious model) within one standard error of the model with the 
lowest EPE (the optimal model). All statistical analyses, including the 
regularized regression, were performed with IBM SPSS 24 (IBM Corp., 
2016). 

3. Results 

3.1. Morphological soil properties 

Tables 2 and 3 show the values of morphological soil properties: 
texture, colour, structure, consistence, stickiness, plasticity, biological 
activity, roots, and reaction to HCl of representative profiles on the high 
and low productivity banana sites, respectively. The characteristics of 
high (Mollic Ustifluvents) and low (Fluventic Haplustolls) productivity 
sites on Plantation PL are similar, except for texture: High productivity 
soils are silty loam (Table 2), while low productivity soils are generally 
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silty clay loam (Table 3), with the same very dark greyish brown colour 
(2.5 Y 3/2), and a blocky subangular structure, with moderate-to- 
medium particle size. At both sites vegetation growth is limited by the 
high calcium carbonate content from its parent material, which origi
nated in Lake Valencia. At Plantation SM, high productivity soils 

(Fluventic Haplustepts) usually have high biological activity, and a 
moderate reaction to HCl, with weak structural stability and lithological 
discontinuity (Tables 2 and 3). However, low productivity soils (Flu
ventic Haplustolls) were limited by their susceptibility to sealing and 
compaction due to the high proportion of silt and fine sand (100 and 

Table 2 
Values of morphological soil properties in the A horizons of a representative profile of each high productivity level of plantations: texture, color, structure, consistence 
when moist and dry, stickiness and plasticity.  

Plantations Horizony Depth 
(cm) 

Texture Color Structure Consistence     

When 
Dry 

When 
moist 

Stickiness plasticity Biological 
activity 

Root 
abundance 

Root 
size 

Reaction to 
HCl 

PL Ap 0–20 sil 2,5 Y 
3/2 

sbk/m/ 
gm 

dsh mfr wss wps ah raf rsm rhs 

SM Ap 0–17 sil 2,5 Y 
4/2 

sbk/f/gw dsh mvfr wss wps ah ra rsm rhm 

PZ Ap 0–22 ls 2,5 Y 
3/2 

sbk/f/gw dsh mvfr wso wpo ah ram rsvf rhno 

PZ A1 22–44 ls 2,5 Y 
4/2 

sbk/f/gw ds mvfr wss wpo am raf rsvf rhno 

CH Ap 0–18 sil 2,5 Y 
3/2 

abk/m/ 
gw 

dsh mfr wss wps ah ram rsf rhno 

CH A1 18–38 sil 2,5 Y 
4/2 

abk/m/ 
gm 

dsh mfr wss wps am raf rsm rhw 

BA Ap 0–18 sic 2,5 Y 
4/2 

abk/m/ 
gm 

dsh mfi ws wp ah ram rsm rhno 

BA AC 18–40 sil 2,5 Y 
4/4 

m/ns/ng ds mfr wss wps am raf rsm rhno 

KA Ap 0–24 sicl 2,5 Y 
3/2 

sbk/m/ 
gm 

dsh mfi ws wp ah ram rsm rhw 

KA A/C 24–42 sicl 2,5 Y 
4/2 

m/ns/ng ds mfr ws wp am raf rsf rhw 

y Soil Survey Staff (2014). Abbreviations: Texture: ls = sandy loam; cl = clay loam; s = sand; L = loam; lvfs = very fine sandy loam; sic = silty clay; sicl = silty clay 
loam; sil = silty loam; sc = sandy clay. Structure: Size: ns = Structureless; vf = very fine; f = fine; m = medium; c = coarse. Grade: ng = structureless; gw = weak; gm 
= moderate; gs = strong. Type: m = massive; gr = granular; sbk = subangular blocky; abk = agular blocky; pr = prismatic. Consistence: when dry: dl = loose; ds =
soft; dsh = slightly hard; dh = hard. When moist: mvfr = very friable; mfr = friable; mfi = firm. Stickiness (consistence when wet): wso = non-sticky; wss = slightly 
sticky; ws = stick. Plasticity (consistency when wet): wpo = non-plastic; wps = slightly plastic; wp = plastic. Root abundance: raf = few roots; ram: many roots. 
Root size: rsvf: very fine; rsf: fine; rsm: medium. Biological activity: ah = high activity; am = medium activity. Reaction to HCl: rhno = no reaction; rhw = weak 
reaction; rhm = moderate reaction; rhs = strong reaction. 

Table 3 
Values of morphological soil properties in the A horizons of a representative profile of each low productivity level of plantations: texture, color, structure, consistence 
when moist and dry, stickiness and plasticity.  

Site Horizony Depth 
(cm) 

Texture Color Structure Consistence     

When 
Dry 

When 
moist 

Stickiness plasticity Biological 
activity 

Root 
abundance 

Root 
size 

Reaction to 
HCl 

PL Ap 0–28 sicl 2,5 Y 
3/2 

sbk/m/ 
gm 

dh mfi wss wps ah raf rsf rhs 

SM Ap 0–18 sicl 2,5 Y 
3/2 

abk/m/ 
gm 

dsh mfi ws wp ah raf rsm rhm 

SM A1 18–44 sicl 2,5 Y 
4/2 

sbk/m/ 
gm 

dsh mfi ws wp am raf rsm rhm 

PZ Ap 0–18 sicl 2,5 Y 
3/2 

abk/m/ 
gm 

dsh mfi wss wps am raf rsf rhno 

CH Ap 0–20 sil 2,5 Y 
3/2 

sbk/m/ 
gw 

dsh mfr wss wps am ram rsf rhno 

CH A1 20–42 sil 2,5 Y 
4/2 

abk/m/ 
gw 

dsh mfr wss wp al raf rsm rhno 

BA Ap 0–14 sicl 2,5 Y 
4/2 

abk/m/ 
gm 

dsh mfi ws wp am raf rsvf rhno 

KA Ap 0–22 sicl 2,5 Y 
4/2 

sbk/m/gs dsh mvfi ws wp ah ram rsm rhno 

KA A/C 22–42 sicl 2,5 Y 
4/4 

sbk/f/gm dsh mfi ws wp al raf rsf rhw 

y Soil Survey Staff (2014). Abbreviations: Texture: Ls = sandy loam; cl = clay loam; s = sand; L = loam; lvfs = very fine sandy loam; sic = silty clay; sicl = silty clay 
loam; sil = silty loam; sc = sandy clay. Structure: Size: ns = Structureless; vf = very fine; f = fine; m = medium; c = coarse. Grade: ng = structureless; gw = weak; gm 
= moderate; gs = strong. Type: m = massive; gr = granular; sbk = subangular blocky; abk = angular blocky; pr = prismatic. Consistence: when dry: dsh = slightly 
hard; dh = hard. When moist: mvfr = very friable; mfr = friable; mfi = firm; mvfi = very firm. Stickiness (consistence when wet): wss = slightly sticky; ws = sticky. 
Plasticity (consistency when wet): wps = slightly plastic; wp = plastic. Root abundance: nra = no root; raf = few; ram: many. Root size: nra = no root; rsvf: very 
fine; rsf: fine; rsm: medium. Biological activity: ah = high activity; am = medium activity; al = low activity. Reaction to HCl: rhno = no reaction; rhw = weak 
reaction; rhm = moderate reaction; rhs = strong reaction. 
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200 µm) and very fine sand (50 and 100 µm) (Table 3). 
The high productivity soils (Fluventic Haplustolls) at Plantation PZ 

have geomorphological characteristics favouring high biological activ
ity (Table 2). The low productivity (Fluventic Haplustepts) sites show an 
abrupt textural change coupled with heavier soil texture, which is a 
significant limitation for banana productivity (Table 3). At Plantation 
CH, friable consistence along with weakly adhesive and plastic charac
teristics favour high biological activity and the common presence of fine 
roots at both productivity sites (Table 2). In the low productivity soils, 
characteristics are related to the sharp textural change in depth and poor 
structure. Soils at both sites are classified as Fluventic Haplustolls 
(Table 3). 

At Plantation BA in the State of Trujillo, the high productivity sites 
have dark greyish brown (2.5 Y 4/2) silty clay soils (Oxyaquic Usti
fluvents). The consistence is firm when moist, adhesive and plastic with 
high biological activity, no reaction to HCl and abundant roots (Table 2). 
On the other hand, low productivity soils (Typic Ustifluvents) on this 
plantation also have certain limitations associated with poor drainage 
and the presence of a water table. They are generally unstructured with 
abrupt textural changes, and few very fine roots (Table 3). At Plantation 
KA, the high and low productivity soils are silty clay loam, predomi
nantly Entisols (Oxyaquic Ustifluvents) (Table 2), while in lower pro
ductivity soils the limitations are associated with poor soil structure 
(Table 3). 

3.2. Model selection 

From the original set of 15 predictors, we obtained a significant 
model with a high coefficient of determination, R2 = 0.746 (p < 0.007). 
However, as most of the regression coefficients in the that first model 
was not significant (Table 4), it had to be refined. The coefficients of 
texture, structure type, dry consistence, biological activity and reaction 
to HCl were significant (p < 0.05). These variables should be considered 
in a stepwise procedure since they respond to soil processes related to 
plant physiology and eventual yield. Therefore, to fit a better model with 
significant coefficients while keeping R2 as high as possible, we checked 
the MSE as a measure of the expected prediction error (EPE) given by 
alternative models in which predictors were progressively removed 
(Fig. 1). Thus, the optimum model included five predictors (Fig. 1). 
Table 5 shows the expected prediction errors in the nonregularized and 
regularized models. Considering the average EPEs of both bootstrap and 
cross-validation estimations, the most accurate models seem to be 
Elastic Net (average EPE of 0.676) and Lasso (average EPE of 0.677), 
because they had the lowest EPE. We used the Lasso model to select the 
optimal set of predictors since it is simpler and easier to interpret, and in 
addition, there are no appreciable differences in accuracy from the 

Elastic Net model. 
The Lasso paths (Fig. 2) drawn represent the 42 regularized models 

performed by increasing λ (Equation (7)) by 0.02 per step, from a 
standardized sum of coefficients of 1 (unshrunk coefficients, right side of 
the graph) to 0 (left side of the graph). The variables with the regression 
coefficients that are shrunken earliest, lowering their penalized co
efficients to zero, should be taken as those with the lowest predictive 
power, regardless of their starting value (right of the plot), so they can be 
removed from the model. On the contrary, coefficients that keep non- 
zero values at 1-SE of the regularized optimal model may be left in the 
theoretical model. Our optimum model included eight predictors with a 
λ of 0.260, an EPE of 0.789 and a SE of 0.122, while the most 

Table 4 
Regression coefficients, correlation with the outcome and tolerance of the modelfrom the initial set of fifteen predictors.  

Predictors Coefficients Correlation with the outcome Tolerance  

Beta B* gl F p-value r Partial r After Before 

Texture  0.397  0.224 5  3.127  0.023  0.118  0.556  0.723  0.704 
Moist hue  0.193  0.195 2  0.980  0.388  − 0.017  0.275  0.557  0.617 
Moist value  0.175  0.203 1  0.742  0.396  0.049  0.272  0.663  0.641 
Moist chroma  0.245  0.277 2  0.780  0.468  − 0.092  0.298  0.414  0.411 
Structure type  0.409  0.216 3  3.598  0.026  0.275  0.575  0.748  0.263 
Structure size  − 0.005  0.397 1  0.000  0.989  − 0.251  − 0.007  0.397  0.148 
Structure grade  0.281  0.547 1  0.264  0.612  − 0.298  0.299  0.316  0.151 
Dry consistence  − 0.612  0.234 2  6.829  0.004  − 0.297  − 0.645  0.483  0.628 
Moist consistence  − 0.515  0.349 3  2.178  0.113  − 0.253  − 0.508  0.334  0.312 
Stickiness  − 0.609  0.462 2  1.735  0.195  − 0.193  − 0.469  0.193  0.189 
Plasticity  0.430  0.383 2  1.256  0.300  − 0.186  0.334  0.172  0.189 
Biological activity  0.792  0.311 2  6.480  0.005  0.273  0.688  0.364  0.221 
Root abundance  − 0.112  0.452 1  0.061  0.807  0.172  − 0.137  0.392  0.192 
Root size  0.052  0.409 3  0.016  0.997  0.119  0.072  0.493  0.370 
Reaction to HCl  − 0.532  0.240 2  4.898  0.015  − 0.252  − 0.645  0.638  0.398 

* Bootstrap SE estimates of Beta coefficients (1,000 boostrap resamplings) 

Fig. 1. Expected Prediction Error (EPE) of 15 different no-regularized models, 
employing the 0.630 Bootstrapping procedure (standard errors are showed by 
the vertical bars. The grey line shows the lowest EPE). 

Table 5 
Expected Prediction Error (EPE) and Standard Error (SE) of regularized CATREG 
models for the intial set of fifteen predictors.  

Regularization 0.632 Bootstrapping 10-fold Cross Validation 

EPE SE EPE SE 

No regularized  1.405  0.277  1.398  0.334 
Ridge  0.792  0.125  0.836  0.116 
Lasso  0.861  0.104  0.493  0.087 
Elastic Net  0.859  0.104  0.493  0.087  
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parsimonious, with an EPE of 0.861 (λ of 0.400) was fitted using seven 
predictors. In this case, there was no important difference in simplicity 
(parsimony) between the two regularized models. Only the standardized 
coefficient of root abundance was reduced to zero in the most parsi
monious model with respect to the optimum. The eight predictors for the 
optimum model were: 1) biological activity, 2) dry consistency, 3) 
texture, 4) structure grade, 5) structure type, 6) HCl reaction, 7) stick
iness, and 8) root abundance. From this starting set of predictors (Model 
4 in Table 6), alternative nonregularized models of seven (Model 3), six 
(Model 2) and five (Model 1) predictors were tested in a backward 
stepwise regression to find the statistically significant model with the 
highest R2 and minimum prediction error (Table 6). Model 1 was finally 
selected, because it met all these conditions: statistical significance of R2 

(p < 0.0001) and of all its coefficients (p < 0.050), while yielding the 
minimum bootstrapped EPE (0.645, see also Fig. 1) and a good enough 
R2 (0.599) close to the model with the highest determination coefficient 
(Model 4, R2 = 0.645). 

The statistical significance of the regression coefficients was the 
main issue with these alternative models, because they all yielded quite 
similar prediction errors (within one SE) and significant overall fit (p <
0.0001). In Model 4, with eight predictors, elimination of root 

abundance was supported by the 1-SE rule, as discussed above, while 
stickiness and structure grade presented coefficients far from statistical 
significance (p = 0.195 and 0.612, respectively) in the starting model 
(Table 4), as well as lower tolerances of all predictors (except plasticity). 
Therefore, Model 1 with five predictors seemed to be the best model for 
predicting the PI, and it was chosen as the definitive CATREG optimal 
scaling model (Table 7). 

According to the sign of the coefficients, the ordinal variable, bio
logical activity, is positively correlated with the dependent variable, PI, 
which implies that higher biological activity is correlated with higher 
productivity, while harder (drier consistence) soils with carbonates 
(reaction to HCl) are associated with lower productivity. The trans
formation functions (optimal scaling) indicate the linearity of this 
relationship, as well as the direction of the variation of the nominal 
variables, texture and structure (Fig. 3). 

3.3. Optimal scaling of the field soil morphological variables 

Fig. 3 shows optimal scaling of the selected categorical regression 
model. Of the transformation functions, dry consistence and biological 
activity were practically linear, which implies a proportional increase 

Fig. 2. Categorical regression (CATREG)-Lasso coefficients path estimated with the 0.632 bootstrap (dashed bar shows the most parsimonious –black vertical line – 
and the optimal –grey vertical line– models within one standard error). The coefficients in the right side of the plot (standardized sum of coefficients of 1.000) are the 
same of that in Table 4. 

Table 6 
Selection of the optimal CATREG model.  

Model Number of 
predictors 

R2 p-value EPE (SE) 1 Predictors (p-value for regression coefficients)2 

Bootstrapped 10-fold 
crossvalidation 

#1 5  0.599  <0.0001 0.645 
(0.135) 

0.662 (0.236) Bio. Act. (<0.0001), Texture (<0.0001), Dry cons. (0.001), Str. Type (0.000), HCl 
(0.017) 

#2 6  0.633  <0.0001 0.656 
(0.145) 

0.651 (0.134) Bio. Act. (<0.0001), Texture (0.001), Dry cons. (0.001), Str. Type (0.001), HCl (0.013), 
Str. Grade (0.065) 

#3 7  0.636  <0.0001 0.738 
(0.115) 

0.685 (0.139) Bio. Act. (<0.0001), Texture (0.008), Dry cons. (0.001), Str. Type (0.003), HCl (0.013), 
Str. Grade (0.449), Stickiness (0.838) 

#4 8  0.645  <0.0001 0.770 
(0.169) 

0.778 (0.153) Bio. Act. (0.044), Texture (0.006), Dry cons. (0.001), Str. Type (0.002), HCl (0.182), 
Stickiness (0.818), Str. Grade (0.478), Root abundance (0.657) 

1 EPE: expected prediction error; SE: standard error (in bracket). 
2 Bio. Act.: biological activity; Str. Grade: structure grade; Str. Type: structure type; Dry cons.: dry consistence; HCl: reaction to HCl. 
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(biological activity) or decrease (dry consistency) in productivity (PI) 
with these variables. Two soil productivity groups were formed ac
cording to the acid reaction to their carbonate content: 1) no reaction 
(rhno) and weak reaction (rhwo), and 2) moderate (rhm) or strong (rhs) 
reaction. As this predictor has a negative correlation (beta coefficient) 
with PI, moderate or strong reactions must be associated with a decrease 
in productivity. 

For structure type, categories were ordered (entered in the model as 
nominal, and therefore, with unrestricted order) as prismatic (pr) <
subangular blocks (sbk) < massive (m) < angular blocks (abk). As the 
beta coefficient was positive, a positive correlation was defined between 
more developed (angular) structures and productivity, while prismatic 

structure, “extreme” development of the angular structure, was as un
favorable as massive structure, which could be explained by its char
acteristic loss of porosity (macro porosity). Texture categories, also 
entered as nominal, were ordered on a rough gradient from finer clay 
(cl) to loamy textures (l), and as the beta coefficient was positive, this 
was the most closely correlated with productivity (PI). (Fig. 3). 

3.4. Prediction accuracy 

Fig. 4 shows the prediction plot of observations versus predictions. 
As mentioned above, the CATREG model with the lowest bootstrap es
timate of the prediction error was selected. However, it yielded a 

Table 7 
Regression coefficients, correlation with the outcome and Tolerance of the optimal CATREG model.  

5 predictors 
(Model #1) 

Beta B* p-value Correlation with outcome Tolerance 

r Partial r After Before 

Texture  0.371  0.157  <0.0001  0.221  0.495  0.945  0.963 
Structure type  0.463  0.154  <0.0001  0.309  0.571  0.904  0.856 
Dry consistence  − 0.440  0.151  0.001  − 0.232  − 0.551  0.902  0.793 
Biological activity  0.581  0.108  <0.0001  0.292  0.645  0.849  0.907 
Reaction to HCl  − 0.336  0.160  0.017  − 0.302  − 0.463  0.968  0.976 

* Bootstrap SE estimate of Beta coefficients (1,000 samples) 

Fig. 3. Optimal scaling’s of texture, dry consistence, structure type, biological activity, and reaction to HCl. Abbreviations: Texture: ls = sandy loam; cl = clay loam; 
l = loam; sic = silty clay; sicl = silty clay loam; sil = silty loam. Dry consistence: ds = soft; dsh = slightly hard; dh = hard. Structure type: m = massive; pr =
prismatic; sbk = subangular blocky; abk = angular blocky. Biological activity: al = low activity; am = medium activity; ah = high activity. Reaction to HCl: rhno = no 
reaction; rhw = weak reaction; rhm = moderate reaction; rhs = strong reaction. 
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relatively high MSE (EPE) of 0.645 (RMSE of 0.803), accounting for 
11.7% of the outcome ranking, which varies from − 4.178 to 2.680 (X- 
axis in Fig. 4). 

For a more general assessment of model performance, the observed 
and predicted dependent variables were classified into two groups or 
classes, with a PI of zero as the cut-off point: one level, N, with PI <
0 (low PI) and another with PI > 0 (high PI). It should be mentioned that 
most of the horizons of soils in high productivity sites (Table 1) also had 
positive predicted PI values. Table 8 shows the confusion matrix of the 
resulting classification, and various measures of their discrimination 
accuracy. 

Under these conditions, the model showed high sensitivity of 86%, 
and misclassified only five cases recognized as positive or high PI 
(bottom right-hand quadrant in Fig. 4). Specificity, although slightly 
lower (75%), was also satisfactory, as was classification efficiency (81%) 
and the area under the ROC curve (AUC), which was 0.834, considered 
excellent. Therefore, although the prediction based on continuous PI 
values is not as reliable as might be desired, prediction of the level of 
productivity of the plot from the morphological indicators would be 
quite suitable. Finally, as deduced from Fig. 4, the statistical relationship 
between predicted PI and a priori plot type, High or Low productivity, 
was also significant: The mean predicted PI for High productivity was 

1.579 (SD = 3.018), and mean predicted PI for Low productivity was 
− 1.872 (SD = 1.642), t = -5.530 (p = 0.000). 

4. Discussion 

The objective of this study was to validate the hypothesis that a 
quantitative relationship between banana productivity and key soil 
morphological properties is feasible. This was demonstrated using cat
egorical regression analysis with transformation (Table 7 and Fig. 3). 
Categorical regression with optimal scaling was implemented to find 
nonlinear transformations (Lasso) to select a sparse model with stable 
predictors and bootstrap 0.632 to evaluate prediction accuracy. With 
this approach we identified a subset of five variables that best predicts 
banana productivity levels in two areas of Venezuela. These variables 
included texture, soil structure type, dry consistence, biological activity 
indicators and HCl reaction. The model developed enables biophysical 
interpretation, clearly related to banana productivity. The categorical 
regression developed was able to correctly discriminate between areas 
of high and low productivity on the same plantation, and captured the 
trend in variation in productivity among plantations as their soil 
morphological variables changed (Fig. 4). The accuracy of this model is 
in line with the prediction accuracy found by van der Kooij (2007). 

An interesting feature of the regression model developed in our study 
is that, combined with the optimal scaling developed, it can be easily 
interpreted by banana production technicians in relation to some key 
soil properties. In addition, the key soil variables used can usually be 
found in soil profile descriptions, and with little explanation can also be 
interpreted by growers or other stakeholders. Texture, structure (grade 
and type) and biological activity are closely related to productivity. Soil 
texture influences the availability of water and nutrients, as well as 
aeration, drainage and accessibility in the use of agricultural imple
ments. The model calibrated identified this, with a higher score in 
productivity for the loamy textures. This is in line with observations at 
Plantations PL, BA and KA, where the high productivity plots had loamy 
textures (L/L-SL) and low productivity plots had a moderate to fine 
texture in the A horizon. In the largest plantations, the high productivity 
plots were in the alluvial plains (BA, KA, SM, PZ and CH) which had a 
higher clay content than the lower productivity plots on the same 
plantations. Overall, this agrees with Vaquero (2005) who concluded 
that the areas with low banana productivity had soil horizons with 
coarse textures (very sandy soils) and very fine textures (clayey, with 
content of clay>60%) due to the direct influence on the water retention 
capacity and permeability. In this regard, medium-to-fine textured soils 
(loam to silty loam) with good structure and porosity, developed a 
deeper, more extensive root system (Vaquero, 2005; Rey, 2009; Delgado 
et al., 2010b). Higher biological activity, an indicator of healthy soil, 
was also positively correlated to higher productivity as indicated by the 
regression coefficient and the scaling ranking. This is not only an 
important technical result, but also for spreading good agricultural 
practices among banana stakeholders, since it shows a clear link be
tween soils with good biological activity and higher productivity. 

The fourth variable which contributed to our predictive model of 
banana productivity was the type of soil structure (Table 7 and Fig. 3). 
This is not surprising, since it reflects the process of soil formation and 
anthropogenesis (Hernández et al., 2010). Voorhees et al. (1971) stated 
that soil structure is a fundamental function in pedogenesis and for plant 
nutrition, because of its enormous significance in improving fertility and 
regulating the microbial activity of soils. In our analysis, soils with 
massive or highly developed prismatic structure had a lower score in 
productivity. This agrees with the results of Gauggel et al. (2005), who 
found rapid deterioration of the banana root system in coarse and very 
coarse blocks and prismatic structures, as is the case of the low pro
ductivity soils on the plantations located in the State of Trujillo (BA and 
KA). It also agrees with the results of Gauggel et al. (2005) and Villar
real-Núñez et al. (2013), who noted deterioration of the root system 
where soil with massive clay structures at shallow depths forms barriers. 

Fig. 4. Observed vs. Predicted values of the productivity index (PI) for the five 
predictors optimal categorical regression model. The colour of each point shows 
whether the plot belongs to a High (red) or Low (blue) productivity plantation. 
Grey lines: cut-off value for dependent variable classification in P (PI > 0) and 
N (PI < 0) groups. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Table 8 
Confusion matrix and discrimination accuracy of classified values of the 
outcome variable: Sensitivity, Specificity, Efficiency and Area under the curve 
ROC (AUC).   

Predicted PI level Total observed 

P N 

Observed PI level P 30 5 35 
N 7 21 28 

Total predicted 37 26 63 

P: positive PI (>0), N: negative PI (<0) 
Sensitivity = 0.86, Specificity = 0.75, Efficiency = 0.81, AUC = 0.834 

B.O. Olivares et al.                                                                                                                                                                                                                             



Catena 208 (2022) 105718

10

Dry consistency was the most significant variable associated with the PI 
(Table 7), where consistence was strong in lower productivity soil 
(Table 7 and Fig. 3). In alluvial soils, firm and very firm consistence with 
weak or no structure can cause compaction, which according to Dorel 
(1993), lowers banana productivity. The results of Vaquero (2005), who 
found that banana root density was higher in soils with friable to very 
friable consistence, low bulk density and low resistance to penetration, 
also coincide with ours. In our study, root density was drastically 
reduced in areas with high penetration resistance associated with a firm 
or very firm soil consistence and bulk density over 1.2 g cm− 3 (Data not 
shown). 

High carbonate content, indicated by the reaction to HCl, the fifth 
parameter in our model (Table 7 and Fig. 3), can also decrease banana 
productivity (Cigales & Pérez, 2011). This is associated with the limited 
response to fertilization of very calcareous soils, which can even prevent 
bunch development and reduce the size of the pseudo stem and plant 
height, and sometimes facilitate the appearance of diseases (Olivares 
et al., 2020). Phosphorus, iron, zinc, and nitrogen deficiencies can be 
explained by excessive presence of carbonates. When carbonate accu
mulates at a certain depth in the soil profile, the apical bud can die, even 
after normal initial development (Vanilarasu and Balakrishnamurthy, 
2014; El-Khawaga, 2013). 

Overall, our study has shown how the use of categorical regression 
analysis with optimal scaling can deliver an operating model able to 
incorporate the effect of qualitative soil information into banana pro
ductivity. When properly scaled to other soil types and farms, it has the 
potential of being a useful tool for farmers, technicians or investors for 
identifying the best areas for banana plantations. It can also contribute 
to independent management in different areas within the same planta
tion based on relatively easily acquired soil information. One of the 
major advantages of this model is that it is based on relatively simple 
field evaluations at a moderate cost, and soil information from field 
surveys carried out previously for other purposes can be used. 

5. Conclusions 

The five morphological properties of the soil (soil texture, soil 
structure type, dry consistence, biological activity and HCl reaction) in 
our empirical categorical regression model have a clear agronomic 
relationship with banana productivity. The proposed model could be 
used in the field for reliable identification of areas of high and low po
tential banana productivity in other banana growing areas such as, the 
states of Barinas, Sucre and Zulia in Venezuela after local assessment. 
Identification of the main soil morphological properties associated with 
banana productivity by applying categorical regression can contribute 
to the long-term sustainability of banana soils in Venezuela, and other 
tropical areas. 

Our results suggest the potential for further studies of quantitative 
transformation of soil morphological properties and application of cat
egorical regression, as carried out in this study, with different levels of 
banana productivity This methodology can be easily applied to other 
crops, requiring little or no expert knowledge. 

This study can serve as an example of a relatively straight forward 
way to quantitatively assess the effect of soil properties on banana 
productivity using information generated from soil surveys which are 
relatively inexpensive and often already available for other reasons. 
Calibrating similar correlations between banana productivity indicators, 
or even actual yield records, with soil morphological properties in spe
cific areas, using the methodology proposed in this manuscript could be 
done in a few months at relatively moderate cost, which would be 
compensated by the savings in planting the banana plots in the most 
suitable areas. 
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González García, H.G., Pedraza, A.F.G., Yzquierdo, G.R., Pacheco, R.L., Vásquez, M.B., 
2021b. Vigor of plantain plants (Musa AAB cv. Harton) and its relationship with 
physical, chemical and biological characteristics of the soil. Agron. Costarricense 45 
(2), 115–134. https://doi.org/10.15517/rac.v45i2.47772. 
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González D., Rosales, F., Pocasangre, L., Delgado, E., 2006. Banana root health in 
lots with different productivity levels in a soil at the oriental coast of Maracaibo 
Lake, Venezuela. XVII Reunión Internacional ACORBAT: Banano un negocio 
sustentable. Joinville, Santa Catarina, Brasil. Nov 15–20. p. 355. 

Rosales, F.E., Pocasangre, L.E., Trejos, J., Serrano, E., Peña, W., 2008. Guía de 
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